Développement économique Canada

Office de la Propriété Intellectuelle du Canada

I*I Innovation, Sciences et

Innovation, Science and CA 2882498 C 2020/11/17
Economic Development Canada

Canadian Intellectual Property Office (11)(21) 2 882 498

12 BREVET CANADIEN

CANADIAN PATENT

13 C

(86) Date de dépo6t PCT/PCT Filing Date: 2013/09/04

(51) CLInt./Int.Cl. GO6F 16/23(2019.01),

(87) Date publication PCT/PCT Publication Date: 2014/04/03 GO6F 16/24(2019.01), GO6F 16/27(2019.01)

(45) Date de délivrance/lssue Date: 2020/11/17

(72) Inventeurs/Inventors:
REDOUTEY, JEAN-CHARLES, GB,;

(85) Entrée phase nationale/National Entry: 2015/02/19 SINGER, JOEL, FR;
86) N° demande PCT/PCT Application No.: EP 2013/002655 BALARD, FLORENT, FR;

L L PRUD'HOMME, FLORIAN, FR;
(87) N° publication PCT/PCT Publication No.: 2014/048540 BOUTELOUP. ROMAIN FR:

(30) Priorités/Priorities: 2012/09/27 (US13/628,517);
2012/09/27 (EP12368027 .4)

PITRAT, COLIN, FR

(73) Propriétaire/Owner:
AMADEUS S AS., FR

(74) Agent: LESPERANCE & MARTINEAU S.E.N.C.

(54) Titre : METHODE ET SYSTEME DE STOCKAGE ET DE RECUPERATION DE DONNEES
(54) Title: METHOD AND SYSTEM OF STORING AND RETRIEVING DATA

130

e

(57) Abrégé/Abstract:

A method and a system of storing data by a software application are described. In a data storage system comprising one or more
database systems and at least one cache node the software application interfaces independently the one or more database

50 rue Victoria ¢ Place du Portage 1 ® Gatineau, (Québec) KI1AOC9 e www.opic.ic.gc.ca i+l

50 Victoria Street e Place du Portage 1 e Gatineau, Quebec KIAO0C9 e www.cipo.ic.gc.ca (Eal lada

CA 2882498 C 202011117

anen 2 882 498
13 C

(57) Abrégé(suite)/Abstract(continued):

systems on a first dedicated interface, and the at least one cache node on a second dedicated interface. The method and system
are characterized in that: each read query of the data storage system by the software application is first solely issued to the plurality
of cache nodes which returns the queried data if available. If not available, the software application receives a miss that triggers a
fetch of the queried data from the one or more database systems. Upon having retrieved the queried data, the software application
adds the queried data to at least one cache node. The method and system are further characterized in that each writing of the one
or more database systems by the software application is also concurrently performed in the at least one cache node. Hence,
population of the at least one cache node is quickly done at each missed read query of the at least one cache node and at each
write query of the data storage system.

wo 2014/048540 A 1[I/ N0F V00O O

(43) International Publication Date

CA 02882498 2015-02-19

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2014/048540 A1

3 April 2014 (03.04.2014) WIPOIPCT
(51) International Patent Classification: (74) Agent: LIPPICH, Wolfgang; Samson & Partner, Widen-
GO6F 17/30 (2006.01) mayerstrasse 5, 80538 Miinchen (DE).
(21) International Application Number: (81) Designated States (uniess otherwise indicated, for every
PCT/EP2013/002655 kind of national protection available). AE, AG, AL, AM,
(22) Imternational Filing Date: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
’ BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
4 September 2013 (04.09.2013) DO, DZ. EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
(25) Filing Language: English HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
(26) Publication Language: English MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
(30) Priority Data: OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
12368027.4 27 September 2012 (27.09.2012) EP SC, SD, SE, SG, SK, SL, SM, ST, SV, 8Y, TH, TJ, TM,
13/628,517 27 September 2012 (27.09.2012) US g‘fV IR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
(71) Applicant: AMADEUS S.A.S. [FR/FR]; 485 route du Pin . o
Montard, Sophia Antipolis, F-06410 Biot (FR). (84) Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
(72) Inventors: REDOUTEY, Jean-Charles; Flat 9, 10 West- GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
bourne Terrace, London W2 3UW (GB). SINGER, Joel, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
151 Chemin des 4 Chemin, Las Palmas Bat E, F-06600 TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
Antibes (FR). BALARD, Florent; 324 avenue de Verdun, EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
F-06700 Saint-Laurent du Var (FR). PRUD'HOMME, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
Florian; Bat D7 Res Gai Logis, rue Théodore Aubanel, F- TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
13127 Vitrolles (FR). BOUTELOUP, Romain; 781 aven- KM, ML, MR, NE, SN, TD, TG).
ue des Plantiers, Villa 15, F-06700 Saint Laurent du Var Published:

(FR). PITRAT, Colin; 58 boulevard du président Wilson,
F-06600 Antibes (FR).

with international search report (Art. 21(3))

(54) Title: METHOD AND SYSTEM OF STORING AND RETRIEVING DATA

Figure 1

14

(57) Abstract: A method and a system of storing data by a software applica-
tion are described. In a data storage system comprising one or more database
systems and at least one cache node the software application interfaces inde-
pendently the one or more database systems on a first dedicated intertace,
and the at least one cache node on a second dedicated interface. The method
and system are characterized in that: each read query of the data storage sys -
tem by the software application is first solely issued to the plurality of cache
nodes which returns the queried data if available. If not available, the soft-
ware application receives a miss that triggers a fetch of the queried data from
the one or more database systems. Upon having retrieved the queried data,
the sottware application adds the queried data to at least one cache node.
The method and system are further characterized in that each writing of the
one or more database systems by the software application is also concur-
rently performed in the at least one cache node. Hence, population of the at
least one cache node is quickly done at each missed read query of the at least
one cache node and at each write query of the data storage system.

10

15

20

25

30

CA 02882498 2015-02-19

WO 2014/048540 PCT/EP2013/002655

1
METHOD AND SYSTEM OF STORING AND RETRIEVING DATA
FIELD OF THE INVENTION

The present invention relates generally to data management systems of
the type used by large providers of goods and services to keep track of their
overall product offering and level of availability, and more particularly to a
system that allows a high level of inquiries issued by remote-users of the data
storage to be responded without or within a very short delay, while not
impacting the completion of the transactions that constantly update content as a
result of the administration of the data storage.

BACKGROUND OF THE INVENTION

In an all interconnected world all large providers of goods and services

have now set up large database systems holding the characteristics,
specifications and costs of their products and service offerings. Operated under
the control of a database management system (DBMS) contents are made
accessible, simultaneously, to many online customers possibly from all over the
world. Online customers are thus offered the opportunity to query the database
and complete commercial transactions through the use of specific online
software applications that let them book and buy various products and services.
In the airline industry, examples of such very-large databases are the
ones that hold inventory of airline companies. Such databases are used to keep
track in real-time of the actual seat capacity, the current state of reservations
along with the configurations of the fleet of flights operated by a given airline.
More precisely, an airline’s inventory usually contains all flights with
their available seats and is generally divided into service classes (e.g. First,
business or Economy class) and many booking classes, for which different
prices and booking conditions apply. One of the core functions of the inventory
management is the inventory control. Inventory control steers how many seats
are available in the different booking classes for instance by opening and
closing individual booking classes for sale. In combination with the fares and
booking conditions stored in the Fare Quote System the price for each sold seat

is determined. In most cases inventory control has an interface to an airline’s

10

15

20

25

30

CA 02882498 2015-02-19

WO 2014/048540 PCT/EP2013/002655

2
Revenue Management System to support a permanent optimization of the
offered booking classes in response to changes in demand. Users access an
airline’s inventory through an availability application having a display and
graphical user interface. It contains all offered flights for a particular city-pair
with their available seats in the different booking classes.

Airline inventory databases are usually managed by airlines. Airline
inventory databases can also be set up by companies that provide travel
services to many actors of the travel industry including the airlines, the
traditional travel agencies and all sorts of other online travel service providers
too. Such a company is for example AMADEUS, a European travel service
provider with headquarters in Madrid, Spain. Some inventories are directly run
by airlines and are interfaced with a global distribution systems (GDS) or a
central reservation system (CRS).

In this environment, the utilization of these databases is characterized
by a level of interrogations or read queries which has dramatically increased
over the years. Indeed, the look-to-book ratio of transactions that databases
must handle is becoming very high. Hence, travel service providers must put in
place the necessary computerized resources to co'pe with that situation so that
an ever growing number of online customers can effectively query the
databases, and still obtain a quick response, while updating of the database can
go on simultaneously as a result of the completion of booking and selling of
seats to air travelers in the case of airlines.

Large database systems provided by a few specialized companies like
Oracle, a company headquartered in Redwood Shores, California, United
States that specializes in developing database management systems, are
available and largely used for implementing those databases. Alone, standard
DBMS cannot however cope with the level of requirements raised by the need
that large service providers of goods and services may have to serve
simultaneously tens of thousands of potential customers. To achieve this
objective, the database must somehow be shielded from the myriad of user
queries it would otherwise directly receive.

Many solutions for caching database contents have thus been
developed. Cache may be an application cache, located at application tier,

10

15

20

25

30

CA 02882498 2015-02-19

WO 2014/048540 PCT/EP2013/002655

3

which basically reuses pieces of data previously fetched from the database by
the application. This immediately raises the issue of the data quality then
delivered in response to further user interrogations since database contents
may have been updated in the mean time. This turns out to be truly challenging
for some applications where databases are constantly updated and require a
high quality of data. This is for instance the case of applications related to
airline’s inventory where the freshness of the data directly impacts the
possibility to sell seats and the price offered to customers.

Thus, unless the quality of data delivered by this type of cache is not of
prime importance, and may be considered as being more informative than
anything else, this type of application caches requires the implementation of
sophisticated mechanisms, between database et cache, that allow invalidation
and/or replacement of the previously fetched pieces of data when updated in
database thus keeping application cache and database contents indeed
consistent. Often, cache is inserted in the path between the database and the
application so that it is always queried first by the application. If the queried data
is not present in cache, then it is fetched from the database and brought into the
cache before being delivered to the application. All these solutions have in
common to réquire that cache and database be tightly coupled and need to be
aware of each other. As a consequence, these solutions are not easily scalable
when service provider must deploy more computer resources to cope with an
increase of traffic and serve more customers while maintaining system
performances.

A specific solution that allows a rather good scalability brings some
independence between cache and database is however shown in US patent
6,609,126 which describes a “System and method for routing database
requests to a database and a cache”. In the disclosed solution database and
cache are becoming somehow independent by being driven separately, solely
under the control of the application. However, the cache is only used to answer
read queries while updates are performed only in database by application.
Hence, to reflect the changes brought to the database into the caches the
above patent describes a replication component contained in database that
updates the caches.

10

15

20

25

30

CA 02882498 2015-02-19

WO 2014/048540 PCT/EP2013/002655

4

All above caching solutions bring an important additional workload to
the database while caches and databases are not however guaranteed to be
always coherent and databases must be aware of the various caches. This
requires that specific operations be performed in databases when adding a new
cache thus preventing scalability to be simply achievable. As mentioned, US
patent 6,609,126 requires that the database management system imbeds a
foreign component. This is not really compatible with the utilization of a
standard DBMS.

It is thus an object of the invention to describe a computerized data
system equipped with a database that allows a high traffic and a high scalability
while providing user with a suitable data quality.

Further objects, features and advantages of the present invention will
become apparent to the ones skilled in the art upoh examination of the following
description in reference to the accompanying drawings. It is intended that any
additional advantages be incorporated herein.

SUMMARY OF THE INVENTION

The foregoing and other problems are overcome, and other advantages

are realized, in accordance with the embodiments of this invention.

In a first aspect thereof this invention provides a method of storing data in
a data storage system and retrieving data from the data storage system,
comprising a software application, one or more database systems and a
plurality of cache nodes, the software application being configured to receive
user requests requiring at least one reading of data or one writing of data, the
software application being further configured to send read queries and write
queries to the data storage system for processing the user requests, the
method being characterized in that the software application interfaces
independently the one or more database systems and the plurality of cache
nodes and in that the method comprises the following steps performed by the
software application with at least one data processor:

upon reception of a user request requiring at least a reading of data, the
software application sends a read query solely to at the plurality of cache

nodes. Preferably, if the software application receives a queried data (i.e., a

10

15

20

25

30

CA 02882498 2015-02-19

WO 2014/048540 PCT/EP2013/002655

5
data that is retrieved) from at least one cache node in response to the read

query, then it uses the queried data to process the user request. Preferably, if
the software application receives a miss from all cache nodes in response to the
read query, meaning thereby that the data has not been found in the cache
node, then it fetches the one or more database systems; if the queried data is
present in the database system, upon having retrieved the queried data from
the one or more database systems, the software application uses the queried
data to process the user request and sends the queried data to at least one
cache node and an instruction to add the queried data to the at least one cache

node.

According to a preferred embodiment, upon reception of a user request
requiring at least a writing of data, the software application sends an instruction
for writing the one or more database systems and also sends an instruction for
concurrently writing the plurality of cache nodes; thereby, populating the
plurality of cache nodes at each missed read query, i.e. at each read query for
which the queried data is not found in all cache nodes, and at each write query
of the data storage system. Each data is thus stored identically in at least one
cache node of the plurality of cache nodes and in the one or more database
systems, ensuring thereby that the database systems and the plurality of cache
nodes are always fully synchronized.

Thus, the invention allows having the database completely independent
from the plurality of cache comprising the plurality of cache nodes contrary to
known solutions involving a replication component integrated in the database to
perform the update of the cache, the database and cache being thereby not
fully independent which limits the scalability of the entire storage system and
requires specific database.

The computerized data system equipped with a database and a cache
that are completely independent and unaware of each other thus permits an
unbounded scalability of the data system by simply bringing more computer and
storage capacity when necessary to cope with an increase of traffic.

In addition, high scalability can be achieved while limiting the cost of the
equipment. In particular, the invention can be implemented with standard

10

15

20

25

30

CA 02882498 2015-02-19

WO 2014/048540 PCT/EP2013/002655

6
databases and DBMS. The invention also allows reducing the cost of the

maintenance. In particular, the increasing of the storage resources does not
need any operation on the database.

Sincé, the software application is in charge of updating the data in the
database and of populating the caches either through reflecting a writing of the
database or through adding a queried data that is present in the database but
not yet present in the cache, end-users can be provided with high quality data
i.e., the most up-to-date data. In addition, caches are rapidly populated which
allows increasing the throughput right upon the addition of a new cache node to
the system. ,

In addition, the invention allows providing user with precise and
customer tailored replies.

According to a non limitative embodiment, a write query comprises at
least one of: addition, update and deletion of data ih the database systems

Optionally, the method according to the invention may comprise any
one of the following facultative features and steps:

The data model of cache and database may be identical but does not
need to be strictly identical though. The only requirement is that they must be
consistent so that exact same addressing keys can be derived for accessing
cache and database records. The keys must also allow database records to be
locked for write operation consistency. Hence, data records are either stored
identically in database and in cache, when present, or in a way which
guarantees consistency of the addressing of the same data records in cache
and in database. For example, cache data model can be adapted versus the
database model to expedite the retrieving of data so that access time of the
cache is improved while addressing is kept fully consistent between the two
entities.

According to a non limitative embodiment, the data model of the cache
nodes is the same as the data model of the one or more databases. Each data
of each cache node is stored identically in the database system. Each data of
the database system is stored identically in each cache node.

The instruction to write the one or more database systems is sent by

the software application to the one or more database systems.

10

15

20

25

30

CA 02882498 2015-02-19

WO 2014/048540 PCT/EP2013/002655

7

The instruction for concurrently writing the plurality of cache nodes is
sent by the software application to the plurality of cache nodes

One single software application accesses the database system and the
cache nodes.

The data storage system comprises one single database system.

The cache comprises cache nodes, comprising each data storage
means which are not persistent.

The software application receives a positive acknowledgement on
completion of a successful addition of the queried data to the at least one cache
node.

If a writing of data occurs while the same queried data are concurrently
fetched from the one or more databases then the subsequent addition of the
queried data in the at least one cache node is aborted and a negative
acknowledgement is returned to the software application; thereby, enabling the
software application to use the written data instead.

The following steps are performed upon sending of an instruction for writing
the one or more database systems and an instruction for concurrently writing

the plurality of cache nodes:

retrieving from the one or more database systems and locking in the one or
more database systems a currently stored data on which the writing applies;

processing in software application and writing in the one or more database

systems new data to be stored;

writing in software application a cache buffer to temporarily hold said new
data to be stored;

forwarding to and setting into the at least one cache node said new data to
be stored and committing the transaction to the one or more database

systems.

In the present invention a cache node or a caéhe is different from a cache
buffer. The cache buffer stores temporarily the data during the writing. No data
is retrieved from the cache buffer in response to a user request. The cache

buffer is dedicated to the processing of the writes.

10

15

20

25

30

CA 02882498 2015-02-19

WO 2014/048540 PCT/EP2013/002655

8
If the commit fails, then the application software sends an instruction to
the at least one cache node to delete said new data that has been previously
set.

The at least one cache node that contains said new data deletes it from
its content. If a plurality of cache nodes contain said new data, then all the
cache nodes of said plurality delete it.

The software application decides to which cache node or which cache
nodes among the plurality of cache nodes the instruction to add data or the
instruction for updating or deleting data is sent.

The decision takes into account a load balancing.

If the queried data is not either present in the one or more database
systems or in at least one cache node, then,

upon fetching the one or more database systems a miss is returned to the

software application instead of the queried data;

the software application sends to at least one cache node a data of
absence which is added to the at least one cache node for the
corresponding queried data, the data of absence becoming immediately
available for all next queries;
thereby, avoiding the software application to have to further fetch the one or
more databases in a next attempt to retrieve the missing queried data.

The data user requested by end-users that are not eventually found in
database are then stored in cache as “missing data” so that a next interrogation
of the cache can return immediately the information that the user requested
data is neithér present in cache nor in database. This prevents further
interrogation of the database from slowing down the database system.

According to one non limitative embodiment, each data is associated
with a header to form a record, the header indicating whether the content is
missing in the at least one database system. Thus, reading only the header of
the record enables knowing whether it is worth fetching the database system.

According to another embodiment, the cache node stores a specific
value associated to the data, said specific value indicating that the data is not
present in the database.

10

15

20

25

30

CA 02882498 2015-02-19

WO 2014/048540 PCT/EP2013/002655

9
The software application interfaces independently the one or more

database systems on a first dedicated interface, and the plurality of cache
nodes on a second dedicated interface.

The data model is chosen in such a way that it is directly map-able
between the database and the cache

Each set of data is grouped by functional entity and indexed by a key
which makes the set of data immediately accessible as a whole thanks to this
key both in the database system and in the cache nodes.

The data are grouped by flight-date and are identified by a flight-date
key. .

The software application is a software application of a travel provider's
inventory.

The software application, the database system and the cache nodes
are comprised in an inventory of a travel provider.

Typically, the travel provider is an airline.

The user request received at the software épplication is sent by at least
one of: travel agency, online travel agency, on online-customer.

The data model of the cache nodes and the database are consistent so
that exact same addressing keys can be derived for accessing cache nodes
and database data.

The data are either stored identically in the database and in at least one
cache node, when present, or in a way which guarantees consistency of the

addressing of the same data in cache and in database.

In a further aspect thereof this invention provides a computer-program
product or a non-transitory computer-readable medium that contains software
program instructions, where execution of the software program instructions by
at least one data processor results in performance of operations that comprise
execution of the above method.

The exemplary embodiments also encompass a method of storing data
in a data storage system and retrieving data from the data storage syétem,

comprising a software application, one or more database systems and a

10

15

20

25

30

CA 02882498 2015-02-19

WO 2014/048540 PCT/EP2013/002655

10

plurality of cache nodes, the software application being configured to receive
user requests requiring at least one reading of data or one writing of data, the
software application being further configured to send read queries and write
queries to the data storage system for processing the user requests, the
method being characterized in that the software application interfaces
independently the one or more database systems and the plurality of cache
nodes and in that the method comprises the following steps performed by the
software application with at least one data processor:

upon reception of a user request requiring at least a reading of data, the

software application sends a read query solely to the plurality of cache nodes;

if the software application receives the queried data (i.e., the data that is
retrieved) from at least one cache node, then it uses the queried data to
process the user request,

if the software application receives a miss from all cache nodes, then it
fetches the one or more database systems; if the queried data is present in
the database system, upon having retrieved the queried data from the one
or more database systems, the software application uses the queried data
to process the user request and sends to at least one cache node the
queried data and an instruction to add the queried data to the at least one
cache node; if not found in database, add in cache an information that
indicates that the data does not exist
and wherein each data is stored identically in at least one cache node
of the plurality of cache nodes and in the one or more database systems orin a
way which guarantees consistency of the addressing of the same data in cache
and in database.

Optionally but advantageously, upon reception of a user request
requiring at least a writing of data, the software application sends an instruction
for writing the one or more database systems and also sends an instruction for
concurrently writing the plurality of cache nodes; thereby, populating the
plurality of cache nodes at each missed read query and at each write query of
the data storage system.

10

15

20

25

30

CA 02882498 2015-02-19

WO 2014/048540 PCT/EP2013/002655

11

In yet another aspect thereof this invention provides a method of storing
data in a data storage system of an airline’s Inventory and retrieving data from
the data storage system, comprising a software application, one or more
database systems and a plurality of cache nodes, the software application being
configured to receive user requests requiring at least one of. a reading of data
to know an availability regarding at least one flight and a writing of data to
modify an availability regarding at least one flight; the software application being
further configured to send read queries and write queries to the data storage
system for processing the user requests, the method being characterized in that
the software application interfaces independently the one or more database
systems and the plurality of cache nodes and in thét the method comprises the
following steps performed by the software application with at least one data
processor;

upon reception of a user request requiring at least a reading of data to know an
availability regarding at least one flight, the software application sends a read
query solely to the plurality of cache nodes;

if the software application receives the queried data (i.e., the data that is
retrieved) from at least one cache node, then it uses the queried data to

process the user request,

if the software application receives a miss from all the cache nodes, then it
fetches the one or more database systems; if the queried data is present in
the database system, upon having retrieved the queried data from the one
or more database systems, the software application uses the queried data
to process the user request and sends the queried data to at least one
cache node and an instruction to add the queried data to the at least one

cache node;

and wherein each data is stored identically in at least one cache node of the
plurality of cache nodes and in the one or more database systems.

10

15

20

25

30

CA 02882498 2015-02-19

WO 2014/048540 PCT/EP2013/002655

12
Optionally but advantageously, the user request requiring at least a
writing to modify an availability regarding at least one flight is a user request for

at least on of: purchasing a seat, canceling a seat, modifying a seat.

In yet another aspect thereof this invention provides a data storage
system comprising one or more database systems, at least one cache node, at
least one data processor and a software application, where execution of the
software application by the at least one data processor results in performance
of operations that comprise execution of any one of the above methods and
wherein the one or more database systems and the at least one cache node are
configured to be independently driven by the software application.

Advantageously the number of cache nodés and the processing power
of the computerized means for running the software application are adapted to
meet the aggregated peak traffic generated by all end-users of the software

application.

Optionally, the data storage system according to the invention may
comprise any one of the following facultative features and steps:

The number and storage resource of the cache nodes is adapted to
hold the whole database system contents.

Some data of the database system are stored in more than one cache
node.

The hit ratio query of the at least one cache node eventually reaches
100% when the whole database system contents has been transferred into the
at least one cache node by the software application.

In yet another aspect thereof this invention provides an Inventory of a

travel provider comprising the data storage system of the present invention.

BRIEF DESCRIPTION OF THE DRAWINGS
FIGURE 1 depicts a data storage system according to the invention.

FIGURE 2 illustrates the process that eventually permits to obtain in application
a data requested by an end user and which is not yet present in cache.

FIGURE 3 describes the process of writing concurrently database and cache
from the application.

10

15

20

25

30

CA 02882498 2015-02-19

WO 2014/048540 PCT/EP2013/002655

13
FIGURE 4 illustrates the process of getting in cache data from the database in
the particular case where a concurrent writing operation occurs.
FIGURE 5 gives further details on the timing of the data writing performed
simultaneously by the application in database and in cache.
FIGURE 6 illustrates the case where requested data is neither present in cache
nor in database. ,
FIGURE 7 illustrates the case where a writing of the database and cache is a
delete.

DETAILED DESCRIPTION
The following detailed description of the invention refers to the

accompanying drawings. While the description includes exemplary
embodiments, other embodiments are possible, and changes may be made to
the embodiments described without departing from the spirit and scope of the

invention.

Figure 1 describes a data storage system 100 according to the
invention in which a software application 10 is interfacing independently, on one
hand, a database system 20 and, on the other hand, a cache system also
referred to as cache and comprising one or more cache nodes 30.

It is worth noting here that the database cache system of the invention
described hereafter are specific mainly because the whole database content
may eventually be transferred into a set of cache nodes that operate as a front-
end processing layer shielding all the reading traffic that would otherwise reach
the database systems 20 thus dramatically improving the performances of the
data storage system 100. A sufficient number of cache nodes are then deployed
to support the whole traffic and to handle together the whole data base content.
Hence, when the system has been up and running for a significant period of
time all data entities contained in the back-end database are eventually
transferred or present into the set of cache nodes so that there is no longer any
cache miss since all read queries are then handled by the cache nodes.
Writings of the database are systematically performed in cache and in database
so that cache and database contents are always consistent. Even though data
storage system hereafter described is thus more a high speed front-end storing

10

15

20

25

30

CA 02882498 2015-02-19

WO 2014/048540 PCT/EP2013/002655

14
and processing system to a database used as a repository of data the term of
cache is however used in the following description of the invention.

The data storage system 100 follows the traditional tree-tier architecture
often used by data processing systems. The middle tier 120 is the software
application 10 tier from where the proprietary software application 10 of the
service provider is run. In the example previously used of a GDS this is typically
the inventory application of any airline which is aimed at keeping track of all
reservations and booking of seats among the airline fleet of flights.

The client tier 130 is comprised of all remotely located users 40 of the
application 10. In case of a travel application set up by a service provider like
the above airline inventory the end users are typically travel agents in traditional
travel agencies. They are as well individuals that use any of the many available
travel web sites or online travel agencies from Which they can issue travel
requests and possibly book, online, air trips.

The lower tier is the storage tier 110 that comprises the database

system 20. The invention does not make any assumption on the database

system used by the service provider. It is most often based on a standard data

base management system (DBMS) commercially available but it can be as well
a proprietary database system. Whichever database system is used by the
service provider it is implemented from a sufficient amount of hardware and
software resources to hold and process all the data of the service provider. In
Figure 1 all hardware resources needed to implement the data storage system
100 are shown as individual computer-like machines globally referred to by
numeral reference 101. Persistent, non-volatile, storage is assumed to be
available from each individual computer and also as separate data disk 102
when necessary, for example to permanently hold the database contents.

The data storage system of the invention comprises the storage tier 110
and the middle tier 120.

In the present invention, the term ‘user request’ or ‘request’ designates
a demand coming from a user 40 and that reaches an application 10. The user
can be a person such as a traveler or a travel agent or can be a computerized
system that sends requests.

10

15

20

25

30

CA 02882498 2015-02-19

WO 2014/048540 PCT/EP2013/002655
15

In the present invention, the term ‘data query’ or ‘query’ designates a
demand sent by the application 10 to a cache node 30 and/or to the database
system 20. A query can be a read query or a write query.

A read query comprises an instruction to get from at least a cache node
or to read a data from the database systems. Typically, the action for obtaining
a data from the database systems is designated as a ‘read’, whereas the action
for obtaining a data from a cache node is designated as a “get”. A queried data
is at least a data that must be get or read for fulfilling, at least in part, a user
request.

A write query comprises an instruction to add, to update/set, or to delete
a data. Typically, the action for modifying a data from the database systems is
designated as an ‘update’, whereas the action for modifying a data from a
cache node is designated as a “set”.

Thus, in the following invention, the application 10 receives user
requests and sends data queries, these queries being either read queries or
write queries.

Whichever system is actually used, the invention assumes that
database 20 is the ultimate data repository of the service provider. The
database 20 then preferably adheres to the ACID (Atomicity, Consistency,
Isolation and Durability) set of properties guaranteeing that database
transactions are thus processed reliably in terms of. Atomicity, Consistency,
Isolation and Durability.

With respect to database systems previously mentioned and known
from the prior art, the software application 10 of the present invention remains
connected directly, thus independently, to the database 20 through a dedicated
interface 12. Hence, operation of the database system is not affected
whatsoever by the one or more cache nodes 30 that have their own dedicated
interface 14 with the software application 10. As further discussed in the
following description of the invention, it is then up to the software application 10
to only send to the database the mandatory transactions that this latter must
necessarily handle, i.e., the ones in which database contents is permanently
updated as a result of new bookings being completed and generally whenever

10

15

20

25

30

CA 02882498 2015-02-19

WO 2014/048540 PCT/EP2013/002655

16
status of reservations must be changed because, for example, cancellations

have occurred.

Thus there is no connection between any one of the cache nodes 30
and the database system 20. No messages, instructions or data are exchanges
between the database system and the cache nodes 30

In data storage system 100 all of the traffic handled by the software
application 10 is then supported through the dedicated cache software
application 10 interface 14. As shown in Figure 1 cache is functionally located at
storage tier like the database. Interface 14 and the one or more cache nodes 30
are assumed to be able to handle all the traffic of the data storage system 100,
whichever throughput is targeted, just by providing and deploying at software
application 10 tier 120, and at storage tier 110 for the cache nodes, enough
hardware and software resources to meet the expected throughput. Hence,
processing more data is simply obtained by adding more computing and storing
resources to the existing ones. This way of doing provides a system scalability
which is not limited by architectural considerations other than the number of
computer platforms that need to be deployed to achieve the targeted
throughput, i.e., their cost, power dissipation and floor occupancy.

To allow above scalability to be effective, the data storage system 100
is based on a global key/value data model where contents are consistent in
cache and in database so that a same key can be used to retrieve both. The
data model is thus chosen in such a way that it is directly map-able in database
and in cache. Especially, each set of data is grouped by functional entity and
indexed by a common unique key. This makes them immediately accessible as
a whole from the unique key both in database and in cache although contents
may somehow differ. The only requirements on the data model to operate as
explained above are;

- the ability, before an update, to lock a superset of the data to be updated in
cache; |

- the possibility to deduce all cache keys impacted by a given update in the
database in order to update them.

10

15

20

25

CA 02882498 2015-02-19

WO 2014/048540 PCT/EP2013/002655

17
A typical example taken from the field of the travel industry is as in
following table:

. . . Cache keys

Key in DB Lock level (in DB) ||Key in cache generation
Flight - Date Flight - Date Flight - Date equal to key in DB |
O&D (*) - Date O&D (*) - Date one key per day in
range range 7 O&D - Date the date range
Leg (**) - Date Flight - Date Leg (**) - Date equal to key in DB

L - 0 one key per leg (**)
Flight - Date Flight - Date Leg (**) - Date in the flight
Where:

() O&D = origin & destination

(**) A leg is a part of a flight. For example, a flight can go from Nice (NCE) to
New York (NYC) with a stop at Paris (CDG). It has two legs: NCE-CDG and
CDG-NYC. (Note that it contains three O&D: ‘NCE-CDG, NCE-NYC and
CDG-NYC))

In the above example the schedule information is stored in a relational
database. The "mother" table has a Flight-Date primary key. One of the "child"
tables has a Leg-Date primary key. Some writings (updates for instance) are
done at flight level, others at leg level. Locking at flight level is used in both
cases. This is used to prevent any modification on the flight and also on all legs
of the flight. The lock cannot be set at leg-date level because an update of the
flight would then update all legs and could lead to concurrent updates.

Therefore, the data model of the database and caches, if not strictly
identical, must be consistent so that same indexing keys can be derived for
accessing cache and database records while allowing database records to be
locked.

The architecture shown in Figure 1 works with a cache organized as a
single layer client side distributed cache which supports the whole throughput
and also simplifies significantly the management of the cache data consistency.
Having a client side distributed cache means that data distribution among the
various cache nodes 30 composing the cache is known and computed on Client
side at software application 10 tier. As a consequence, all cache nodes 30 are

10

15

20

25

30

CA 02882498 2015-02-19

WO 2014/048540 PCT/EP2013/002655

18
thus fully independent and scalability of the system is indeed potentially

unlimited. However, actually getting more processing power by adding new
cache nodes 30 in the storage tier is only achievable if a balanced distribution of
data within the nodes is also maintained. To obtain that distribution be indeed
balanced, data are distributed based on their key properties. For instance, flight
oriented data are distributed on the basis of their flight number. Any modification
that would trigger a change of the distribution, e.g., because of a change of the
number of available cache nodes or of the distribution parameters, is aiso
supported through a graceful redistribution procedure that keeps the whole
cache system online and working in nominal conditions while redistribution
takes place. To this end a temporary dual-feed to two cache configurations is
later described in the following description of the invention.

The data storage system 100 of the invention does not require any type
of synchronization mechanism between cache and database. The cache is
used by the software application 10 in an explicit way, i.e.: it is up to the
software application 10 tier to use either one of the two data sources: database
or cache, or both at during the same user request, e.g., when database or
cache must be written. The direct consequence of this approach is that
database is kept totally unaware of the existence of a cache and is not at all
impacted by the presence, or not, of a cache in the data structure of the
invention. The opposite is obviously also true: the cache is totally decoupled
from the database. Both structures can then fUlIy evolve independently if
necessary.

It is worth noting that data writings within the cache are not using an
invalidation policy. All writings result in the immediate replacement of the data
into the cache. When the whole database contents is eventually mapped into
the cache and distributed over all available cache nodes 30, hit ratio reaches

100% even in case a very high level of concurrent writings happens.

Cache data can always be considered as valid and there is no need for
extra process to check for it. Indeed, every cache miss triggers the addition of
the missing value into the cache from the database. This is done once for all
thus ensuring the lowest possible load on the database which is fetched only

10

15

20

25

CA 02882498 2015-02-19

WO 2014/048540 PCT/EP2013/002655

19
once per data entity to retrieve. This occurs mostly when cache becomes
operational, e.g., after a power-on of the system following an addition of a
cache node 30, a failure or the cache node 30, an operation of maintenance
etc. The invention assumes there is enough room in the distributed cache
nodes 30 to receive the whole database contents.

The absence of data requested by an end-user in the database is also
recorded in the cache. If a piece of data requested by an end user can neither
be found in cache nor retrieved from the database then an absence of data is
recorded into the cache so that next time cache is queried no fetching of the
corresponding piece of data will be attempted from the database in order to
further limit database load. |

The architecture described in Figure 1 is extensible to any type of data
that can be key-value oriented. Also, it is applicable to any process that can be
key-value oriented. It is in particular applicable to any of the processes devised
to check flight availability.

The following figures describe the operatiohs that are conducted by the
software application 10 between database and cache to obtain that cache
eventually supports the whole traffic generated by the software application 10 to
serve all user requests.

As shown previously the cache part of the system is pretty simple and
composed of one or more standalone computers offering a basic remote
key/value protocol. Three basic operations on the cache are defined that let
software application 10 updates it, populates the cache from the database, and
retrieves data from the cache. They are:

Unconditionally update in cache the value associated
with the key

Add (key, value). Add the value associated with the key when it is not
already present in cache

Get (key): Return from cache the value associated with the key.

Set (key, value):

The invention does not make any assumption on the way they are actually
implemented by the software application 10 provided the expected level of
performance can be reached. Advantageously, bulk operations are defined

which makes possible to send and process several basic operations together.

10

15

20

25

30

CA 02882498 2015-02-19

WO 2014/048540 PCT/EP2013/002655
20

The main part of the system is on the software application 10 tier to
control data distribution over all cache nodes 30. Key/value data are spread
among the nodes composing the cache. To obtain that distribution be as much
as possible equally spread over all nodes a property of the key is extracted and
the corresponding cache node 30 is computed by the formula:

node_number = key_property_as_a_number MODULO the number_of_nodes

Flight oriented data use the property that consecutive flight numbers are
usually used for flight having same properties. In this case the flight number is
directly used as a base for the distribution.

For flight oriented data based on origin and destination of flight (O&D) a
hash value is computed on the sole O&D key.

As already discussed, balancing the data distribution over all available
nodes is really key in achieving unlimited scalability.

Figure 2 and 3 show how cache is populated and maintained coherent
with database contents under the sole control of the software application 10. |

Figure 2 describes the process that eventually permits to obtain in
software application 10 a data requested by an end user and which is not yet
present in cache. This situation mostly prevails when a cache is being
populated, e.g., after a power-on of the system or because a new node has
been inserted or removed and a rebalancing of the cache node 30 contents is in
progress. ,

When software application 10 needs to answer a user request, cache is
first read through a “Get” operation 210. In the example of an airline inventory
database this is for example to answer one of the numerous user requests that
are issued by end users of the database to find if seats are available in a
particular flight on a certain date, in a certain class, etc. If the corresponding
data is not present in cache, i.e., typically the corresponding data has not yet
been brought in cache by a previous read, cache then returns a “Miss” 220 to
the software application 10. Otherwise, the information is obviously just returned
to the software application 10 from the cache which ends the “Get” operation.
The software application 10 can thus fulfill the user request of the end-user.
Eventually, it aggregates the queried data with additional data and returns it in
response to the request from the end-user. Additional data are typically other

10

15

20

25

30

CA 02882498 2015-02-19

WO 2014/048540 PCT/EP2013/002655
21
data that may be necessarily retrieved to fulfill the user request. For instance,
some data can be get from a cache node, while other data that are also
necessary to fulfill the same user request must be get from other cache nodes
and/or must be read from the database systems 20.

Upon receiving the information that queried data is not present in
cache, the software application 10 interrogates the database with a “Read”
operation 230. The missing information is then returned 240 to the software
application 10. Reading of the data from the database occurs on the database
dedicated interface 12 previously described. This is done by issuing, from the
software application 10, the corresponding queries to the database
management system (DBMS) used by the data _storage system 100 of the

invention.

Upon receiving from database the data missing in the cache the
software application 10 then performs an “Add” operation 250 to store the data
into the cache. From this time on, the data is present 270 in cache as long as
cache stays operational and is not reconfigured. At completion of this operation
a positive acknowledgement (OK) 260 is returned to the software application
10.

It is worth noting here that this process occurs only once while cache is
up and running for any given pieces of data that are stored identically or
consistently in database and in cache nodes 30. This occurs the first time the
data is requested by software application 10 and is not yet present in cache.
After which corresponding data is possibly updated if database contents needs
to be changed, for example, because airline seats have been sold. In this case,
as described hereafter, the software application 10 updates both the cache and
the database so that it is never necessary to re-execute the process of Figure 2.

Figure 3 describes the process of updating concurrently database and
cache from the software application 10.

To always keep coherent database and cache contents, the software
application 10 always updates both cache and database. The updating of the
cache is then done with a “Set’ operation ‘310 previously described.
Simultaneously, an “Update” 305 of the database is performed using the query

10

15

20

25

30

CA 02882498 2015-02-19

WO 2014/048540 PCT/EP2013/002655

22
language of the DBMS in use. The update is effective after the operation has

been committed 320 to the database by the application.

More precisely, the Set is not done when the update is done in
database but when the commit is done. The application keeps the data to be set
in memory until the commit is done. There are possibly a high number of steps
between the Update 305 and the Set 310. However, the Set 310 and the
Commit 320 are intended to be performed in a row.

In steady state, i.e., after system has been up and running for a
significant period of time, the whole contents of the database has eventually
been brought and distributed over all cache nodes 30; then, the update
operations, i.e., content updates, inserts and deletes are the only operations
that need to be performed on the database interface thus much lowering the
database load. The case of a delete operation that triggers a nullification of the
corresponding data in cache is described in figure 7.

Also, it must be noted that cache of the invention is populated both from
read and writes operations since the process of Figure 3 does not assume that
any particular conditions need to be fulfilled to write into the cache. This
contributes significantly to expedite the population of the cache nodes 30 after a
power-on as compared to systems where only reads are used to populate
cache. This is possible and is thus simply done because, as already stated,
data entities stored by database and cache are both kept updated which is not
the case in other cache solutions where database and cache contents may be
significantly different generally in an attempt to keep cache storage
requirements minimum or when cache data entities delivered to the software
application 10 are built from disjoint pieces of data extracted from various parts
of the database.

Figure 4 describes the process of Figure 2 in the particular case where
a concurrent writing (update for instance) of the database is requested by the
software application 10 thus interfering with its execution.

In a manner identical to what was described in Figure 2 the process
starts with a “Get” 210 of data from the cache which is followed by a “Miss” 220
that triggers the fetching 230 of the missing data from the database. However,
while missing data is normally returned 240 to the software application 10, a

10

15

20

25

30

CA 02882498 2015-02-19

WO 2014/048540 PCT/EP2013/002655

23
write query 410 for the same data is also received by the software application
10. The writing is performed as explained in Figure 3. It is done in cache with a
“Set” operation 310 and in database with an “Update” operation 305. The
corresponding data becomes immediately available 420 when the “Set” is
issued to the cache and, in database, when the “Commit” 320 is sent. Before
the set is triggered, the application keeps the data in memory (“Set in memory”).

Then, in this particular case, cache contents must not be further
updated by the following “Add” 250 that results from the fetching 230 of the
missing data from the database since this latter has been updated in the mean
time. The “Add” 252 is then actually aborted. A negative acknowledgement (KO)
262 is returned which let know the software application 10 that the update of the
cache has not been actually performed by the “Add” operation.

Thus, for updating the cache with the data read in the database, the
invention uses the add command so that we can send data to the cache without
having to lock the data in database. Indeed, if the data is still not in the cache
when trying to add it, it will effectively be added. If it has been updated in the
meanwhile by an update process, the add will fail but this is expected: the
update process had the lock on the database and so the primacy on the update
for this key, hence it is normal this is the one that stays in the cache.

These features of the invention allow a very smooth integration with the
update process, in particular since database system and cache cannot lock or
impact the performance of each others, while still ensuring a data is never read
more than once in the database, thus having the lowest possible load on the
database.

Figure 5 gives further details on the timing of the data updates
performed simultaneously by software application 10 in database and in cache.

The software application 10 begins the update transaction by issuing
the corresponding queries 510 to the database to retrieve the current stored
values. Simultaneously, to prevent concurrent updates to occur from another
software application 10, the database management system (DBMS) locks the
current stored values. Within software application tier, data are processed by
software application 10. When data are ready to be updated 530 by DBMS an

10

15

20

25

30

CA 02882498 2015-02-19

WO 2014/048540 PCT/EP2013/002655

24
update of a buffer cache 540 in software application 10 is also performed that

holds the new data to be forwarded and stored in cache.

Then, software application 10 can commit the change 550 which is
immediately performed in cache 552 with a “Set” operation and also committed
to database 554. One may notice that the new data is thus available in cache
slightly prior 556 it is indeed committed and available 558 in database.
Reference 556 shows the timeframe during which the update is made available
to end users in cache while it is not yet available in the database system 20.

If, for any reason, e.g., because of a hardware and/or software failure,
commitment fails to complete normally the previous writing operation in cache,
i.e., the “Set” operation 552, is rolled back so that cache contents is left
unchanged. Hence, if commit fails, a “commit .KO” 560 is raised to the
application which then issues a delete 562 towards the cache to remove the
added data. As a result, a wrong value is then present in the cache in the mean
time 564.

Thus the highest performance non database related and impacting data
quality is provided to the cache: updates are propagated to the cache using a
write ahead commit with “asked for commit” data. If deferred constraints are
banned for the cached data, this makes the data in the cache “at worse” in
advance compared to the database but without any extra cost, in particular
without the very high cost of the usual two phases commit architectures. Such
quality fulfils the data quality requirements for the availability requests and can
even be considered as an advantage from the final client perspective.

Figure 6 describes the case where queried data is neither present in
cache nor in database. This covers the cases where end-users are requesting
pieces of information that are not held in database.

When such a situation occurs, to prevent further interrogations of the
database, the absence of corresponding data is also recorded into the cache.
Then, next time the cache is interrogated from the software application 10 the
information that the queried data is not present in database is directly delivered
by the cache itself thus further reducing the database load.

10

15

20

25

30

CA 02882498 2015-02-19

WO 2014/048540 PCT/EP2013/002655

25

The process is similar to the one described in Figure 2. After a “Get”
operation 210 issued to cache has returned a "Miss” 220, reading 230 of the
corresponding data in the database also returns to the software application 10 a
database “Miss” 640. Then, the absence of data is added 650 into the cache.
Like with data, the absence of data is becoming available immediately 270 in
cache which also returns an acknowledgment 260 to the software application
10. »

According to a non limitative embodiment, each data is associated with a
header to form a record and the header indicates whether the content is missing
in the database system 20. Thus, reading only the header of the record enables
to know whether it is worth fetching the database system. According to an
alternative embodiment, the cache node stores a specific value associated to
the data, said specific value indicating that the data is not present in the
database. Thus, reading only the value of the record enables to know whether it
is worth fetching the database system.

Figure 7 illustrates the case already mentioned in figure 3 where the
specific update operation from the application is a delete 705 of data from the
database. This operation is overall performed as explained in figure 3 except
that deleted data is not actually removed from the cache but replaced by the
indication of an “absence of data”. When delete is committed 320 to the
database by the application the corresponding information is stored in cache
with a specific “SET" operation 310. The “absence of data” is becoming
immediately available 330. Hence, as previously discussed, if cache is later
interrogated it can provide directly the information that the requested data is no
longer neither present in cache nor in database.

The following discusses the case where it becomes necessary to
modify the configuration of the database system of the invention, e.g., to cope
with a traffic increase. Extra cache nodes must be added to expand the system
configuration as shown in figure 1 in order to provide more cache storage
capacity and to be able to distribute the increasing traffic over a larger number
of processing nodes. However, with a larger number of nodes, and generally
speaking whenever the number of active nodes must be changed, the keys that

10

15

20

25

30

CA 02882498 2015-02-19

WO 2014/048540 PCT/EP2013/002655

26
uniquely address data in nodes must be recomputed to indeed allow the whole
traffic to be evenly spread over the new complete set of nodes.

The invention does not assume any partiéular way of computing keys
from the data entities that are stored and retrieved identically from database
and cache. Most of the time, depending on the type of data to be handled by a
particular application, some hashing function is used and the node addressing
is then just derived from the hashed key by further computing it modulo the
number of nodes. Hence, if the number of nodes is changed, a different result is
obtained for retrieving a particular data entity that possibly needs to be looked
for in a different node of the new configuration. The problem comes from the
fact that a configuration update is not atomic and must be transparently
performed while database system is fully operational. Not all cache clients are
made aware of the new configuration at the same time. This means that some
writes of data would be done on the basis of the new configuration while others
could still use the oid configuration. The result would be an inconsistent set of
data between cache and database.

The invention takes care of this by enabling a procedure called “dual-
feed”. Dual feeding consists in maintaining one extra configuration in addition to
the one normally used for the cache, hence the name of “dual-feed”. The extra
configuration is not used by default but can be activated for the time of the
configuration change. When it is activated, all write operations are sent both to
the standard configuration and to the dual-feed configuration. A time-to-live
(TTL) is a property associated to each item in the cache. As the name suggests,
it corresponds to the period of time item is valid. Once it expires, the item can
no longer be retrieved from the cache, resulting in a cache miss as if the data
was missing. This can be set by configuration: one for the standard
configuration and one for the dual-feed configuration. When no time to live is
set, the item never expires.

As the activation of dual-feed configuration is not atomic either, it must
be activated in a first place with a short time to live. Once the dual feed
configuration is fully activated, the time to live can be removed. It is only once
the time to live has expired that the standard configuration and the dual-feed
configuration can be swapped. Once the configuration change is over, the dual-

10

15

20

25

30

CA 02882498 2015-02-19

WO 2014/048540 PCT/EP2013/002655
27
feed can be deactivated. During the steps where the configuration is-being
propagated (activation / deactivation of dual-feed), some "invalid" data can be
written but only in places where they are not read. Thus, the procedure is as
follows:
- creation of dual-feed configuration with short TTL
- activation of the dual-feed configuration, wait for its propagation
- removing of the short TTL from dual-feed configuration
- swapping of standard and dual-feed configurations, waiting for their
propagation

- deactivation of the dual-feed

A set of procedure to allow any change on the system in an online way
is described below.

The proposed architecture offers such scalability that the whole system
may not be later in a position to work properly without the cache. To deal with
such situation, according to an embodiment of the invention, it is proposed that
all maintenance operations are meant to be done online, impacting at most one
node (or the equivalent proportion of the traffic) at a time (eg. cache node
upgrade or replacement made one by one, global cache changes performed
using a dual feed mechanism) to lower the impact on the database.

- cache node upgrade or replacement are made one by one. The
system will preferably use the database to retrieve the data that should have
been hosted by this node.

- global cache changes, typically, adding. or removing or changing a
plurality of cache nodes, that would result in the global distribution to- be
dramatically changed are performed using a dual feed mechanism as described
in previous paragraph.

From the above description it appears clearly that the present invention
allows keeping data consistent between the cache and the database thanks to a
mechanism which is non-strictly speaking ACID compliant but highly scalable,
impactless on the database, allowing 100% hit ratio and, above all, fully meeting

CA 02882498 2015-02-19

WO 2014/048540 PCT/EP2013/002655
28
data quality needs. In addition, the invention allows to cache highly dynamic
data i.e., typically up to several tens writings per second per unitary data, while
still benefiting from the off-load effect of the cache.

29

CLAIMS

1. A method of storing and retrieving data in a data storage system, wherein the data storage
system comprises at least one computer including at least one data processor and a software
application that implements a middle tier, the data storage system further comprises one or more
database systems and a plurality of cache node‘s that implement a storage tier, the middle tier is
configured to interface the storage tier of the data storage system with a client tier, the method
comprising:

at the at least one computer of the middle tier:
+

in response to receiving a first user request from a user device of the client tier requiring at

least one reading of data, sending a read query solely to the plurality of cache nodes;

in response to receiving a first queried data from at least one cache node of the plurality of
cache nodes in response to the read query, processing, with the at least one data processor, the

first user request using the first queried data;

in response to receiving a miss from all cache nodes in response to the read query, fetching,
with the at least one data processor, the one or more database systems based on the first user

request;

in response to retrieving a second queried data from the one or more database systems,
processing the first user request using the second queried data from the one or more database
systems and sending, to the at least one cache node the second queried data and an instruction
to add the second queried data to the at least one cache node to thereby populate the at least
one cache node with the second queried data from the one or more database systems in

response to the missed read query; and

in response to receiving a second user request requiring at least one writing of updated data
concurrent with fetching the second queried data from the one or more database systems,
sending an instruction for writing the one or more database systems with the updated data,
sending an instruction for concurrently writing the at least one cache node with the updated
data to thereby populate the plurality of cache nodes at each write query of the data storage
system, and aborting a subsequent addition of the second queried data in the at least one

cache node such that the updated data is stored in the plurality of cache nodes.

CA 2882498 2020-02-14

30

2. The method of claim 1, wherein the second user request comprises at least one of: addition,
update, and deletion of data in the database systems.
3. The method of claim 1, further comprising;

receiving a positive acknowledgement on completion of a successful addition of the queried

data from the one or more database systems to the at least one cache node.

4. The method of claim 1, wherein the at least one computer of the middle tier interfaces
independently with the one or more database systems on a first dedicated interface, and the
least one computer of the middle tier interfaces with the plurality of cache nodes on a

second dedicated interface.

5. The method of claim 1, wherein a data model of the plurality of cache nodes and a data
model of the one or more databases are consistent such that common addressing keys can be

derived for accessing cache nodes and database data.

6. The method of claim 1, wherein the at least one computer of the middle tier is an inventory

system of a travel provider.

7. The method of claim 1, wherein the first user request is sent by at least one of: travel

agency, online travel agency, and online-customer.

8. The method of claim 1, further comprising:

in response to sending an instruction for the writing of data in the one or more database

systems and an instruction for concurrently writing the at least one cache node:

retrieving from the one or more database systems a currently stored data on which the

writing applies and locking said currently stored data;
writing in the one or more database systems new data to be stored;

writing in a cache buffer of the at least one computer of the middle tier to temporarily hold

said new data to be stored;

forwarding to and setting into the at least one cache node said new data to be stored; and

CA 2882498 2020-02-14

31

committing a transaction to the one ér more database systems.
9. The method of claim 8, further comprising:

in response to failing to commit, deleting the new data in the at least one cache node.
10. The method of claim 1, further comprising:

determining the at least one cache node from among the plurality of cache nodes to which
the instruction to add the second queried data or the instruction for writing the at least one

cache node with the updated data is sent.

11. The method of claim 10, wherein the at least one cache node from among the plurality is

determined based on a load balancing.

12. The method of claim 1, further comprising:

in response to the one or more database systems returning a miss associated with requested
data of the first user request, sending to the at least one cache node a data of absence for
addition to the at least one cache node corresponding to the first user request, such that the
data of absence is immediately available for all subsequent read queries to thereby avoid
subsequent fetching of the one or more databases to retrieve the requested data of the first

user request.

13. The method of claim 1, wherein each of the plurality of cache nodes stores a record
comprising a header, and the header of the at least one cache node indicates that the
requested data is missing in the at least one database system or the value of the requested

data is set to a value indicating the absence of the requested data.
14. The method of claim 1, wherein records of the plurality of cache nodes and records of the
one or more database systems are stored such that related records of the plurality of cache

nodes and the one or more database systems are consistently addressed.

15. The method of claim 14, wherein keys associated with the records allow the records stored

in the one or more database systems to be locked.

CA 2882498 2020-02-14

32

16. The method of claim 14, wherein each record of the plurality of cache nodes and each
record of the one or more database systems is grouped by functional entity and indexed by a
key which makes the record immediately accessible in the one or more database systems

and in the plurality of cache nodes.

17. The method of claim 16, wherein each functional entity is a flight-date and each key is a

flight-date key.

18. A method of storing and retrieving data in a data storage system, wherein the data storage
system comprises at least one computer including at least one data processor and a software
application that implements a middle tier, the data storage system further comprises one or
more database systems and a plurality of cache nodes that implement a storage tier, the
middle tier is configured to interface the storage ti.er of the data storage system with a client

tier, the method comprising:

at the at least one computer of the middle tier and in response to receiving a first user
request requiring a reading of data sending a read query solely to the plurality of cache

nodes;

in response to receiving a first queried data from at least one cache node of the plurality
of cache nodes in response to the read query, processing the user request with the first

queried data;

in response to receiving a miss from all cache nodes in response to the read query,

fetching the one or more database systems based on the first user request;

in response to retrieving a second queried data from the one or more database systems
processing the first user request and sending to the plurality of cache nodes the second
queried data and an instruction to add the second queried data to the plurality of cache
nodes to thereby populate the plurality of cache nodes with the second queried data from

the one or more database systems in response to the missed read query; and

in response to receiving a miss from all cache nodes in response to the read query and the
one or more database systems returning a miss associated with requested data of the first
user request, adding, in the plurality of cache nodes, data of absence that indicates that the

requested data of the first user request is not stored in the one or more database systems

CA 2882498 2020-02-14

33
of the data storage system such that subsequent fetching of the one or more databases to
retrieve the requested data for the first user request is avoided.

19. The method of claim 18, wherein the data storage system is an airline inventory system, the
one or more database systems store availability for flights managed by the airline inventory
system, the plurality of cache nodes store availability for flights managed by the airline
inventory system, and wherein the first user request is for an availability regarding at least

one flight managed by the airline inventory system.

20. The method of claim 19, further comprising:

in response to receiving a second user request requiring a writing to modify an availability
regarding at least one flight, sending an instruction for writing the one or more database
systems and also sending an instruction for concurrently writing the plurality of cache nodes
to thereby populate the plurality of cache nodes in response to each write query of the data

storage system.
21. The method of claim 20, wherein the second user request corresponds to at least one of:
purchasing a seat, canceling a seat, modifying a seat.
22. A data storage system comprising:
one or more database systems;
a plurality of cache nodes;
at least one data processor; and

a memory storing a software application, where execution of the software application by the

at least one data processor causes the at least one processor to:

in response to receiving a first user request from a user device, send a read query to the

plurality of cache nodes;

in response to receiving a first queried data from the plurality of cache nodes in response to

the read query, process the first user request using the first queried data;

in response to receiving a miss from the plurality of cache nodes in response to the read

query, fetch the one or more database systems based on the first user request;

CA 2882498 2020-02-14

34

in response to retrieving a second queried data from the one or more database systems,
process the first user request using the second queried data and send, to the plurality of
cache nodes, the second queried data and an instruction to add the second queried data to
the plurality of cache nodes to thereby populate the plurality of cache nodes with the second
queried data from the one or more database systems responsive to the missed read query;

and

in response to receiving a second user request requiring at least one writing of updated data
concurrent with fetching the second queried data from the one or more database systems,
send an instruction for writing the one or more database systems with the updated data and
send an instruction for concurrently writing the plurality of cache nodes with the updated
data to thereby populate the plurality of cache nodes at each write query of the data storage
system, and aborting a subsequent addition of the second queried data in the plurality of

cache nodes such that the updated data is stored in the plurality of cache nodes.

23. The data storage system of claim 22, wherein the number of cache nodes is adapted to hold

all contents of the database system.

24. The data storage system of claim 22, wherein some data of the database system are stored in

more than one cache node.

25. The data storage system of claim 22, wherein the data storage system corresponds to an

inventory system of a travel provider.

CA 2882498 2020-02-14

CA 02882498 2015-02-19

WO 2014/048540 PCT/EP2013/002655

1/5

101

101

101

Figure 1

CA 02882498 2015-02-19

WO 2014/048540 PCT/EP2013/002655
2/5
Database ——Application—, Cache
Read Write
l Get ol 210
HM iSSH
-
I~ 220

230~_ "Read"
£
= Data
— 240 % -

250 ¢ "Add" -
"Ack (OK)" ~—
260~ -t 270
Figure 2
Database ——Application—, Cache
Read Write
305—_ o "Update"
Set in Memory
()

E 31 0 \ nSetll

320—_ "Commit"

-

Figure 3

CA 02882498 2015-02-19

WO 2014/048540 PCT/EP2013/002655
3/5
Database ——Application—, Cache
Read Write
+ Get" ol — 210
"Miss"
e
™~ 220
230~ "Read" .
Data

240—Y -
o
E —_— — — — e e
i: 305\ "UDdate" . N

] Set in Memory
>410
31 o " "
320—_ "Commit" ™ Set
S R E T /
252~ "Add" O n0
, "Ack" (KO)
e

Figure 4

Time

WO 2014/048540

CA 02882498 2015-02-19

PCT/EP2013/002655

4/5
Appliqation Database Cache
5 510 3 Data ;
§ / AN\ /verswn n N
Begin Application S Retrieve Current S% §
Transaction [1Data and §§ _ §
Lock §g §
— 3N S
530 N N
540~ Upd/ate S \
Buffer Cache "IN §
Update G %§ §
e 552 N N 55
Commit Application yd /§ - Update cache _
Transaction Commit 7‘\\J ("Set") 4
7. > 4
550) 560 \554 Z; Data “ss8 Z !
)...Commit (KQ) . ™ Ve] 564
% Delete 7 % 7 l
/ / :é 4 8 4
562
Figure 5
Database ——Application—, Cache
Read Write
l llGet" - / 21 O
"Miss"
el
.\220
230~ | "Read"
IlMiSSll
6407 ™
650 ~4 "Add" (Absence of Data)
IIACk" \
260 - 270

Figure 6

CA 02882498 2015-02-19

Write

WO 2014/048540
5/5
Database ——Application—,
Read
705 " "
~l Delete
GEJ ,
= 310
~ 80|, “"Commit’ ™

Figure 7

I Set in Memory

PCT/EP2013/002655

Cache

llSetll

:(Absence of Data’)

330

	Page 1 - COVER_PAGE
	Page 2 - COVER_PAGE
	Page 3 - ABSTRACT
	Page 4 - DESCRIPTION
	Page 5 - DESCRIPTION
	Page 6 - DESCRIPTION
	Page 7 - DESCRIPTION
	Page 8 - DESCRIPTION
	Page 9 - DESCRIPTION
	Page 10 - DESCRIPTION
	Page 11 - DESCRIPTION
	Page 12 - DESCRIPTION
	Page 13 - DESCRIPTION
	Page 14 - DESCRIPTION
	Page 15 - DESCRIPTION
	Page 16 - DESCRIPTION
	Page 17 - DESCRIPTION
	Page 18 - DESCRIPTION
	Page 19 - DESCRIPTION
	Page 20 - DESCRIPTION
	Page 21 - DESCRIPTION
	Page 22 - DESCRIPTION
	Page 23 - DESCRIPTION
	Page 24 - DESCRIPTION
	Page 25 - DESCRIPTION
	Page 26 - DESCRIPTION
	Page 27 - DESCRIPTION
	Page 28 - DESCRIPTION
	Page 29 - DESCRIPTION
	Page 30 - DESCRIPTION
	Page 31 - DESCRIPTION
	Page 32 - CLAIMS
	Page 33 - CLAIMS
	Page 34 - CLAIMS
	Page 35 - CLAIMS
	Page 36 - CLAIMS
	Page 37 - CLAIMS
	Page 38 - DRAWINGS
	Page 39 - DRAWINGS
	Page 40 - DRAWINGS
	Page 41 - DRAWINGS
	Page 42 - DRAWINGS
	Page 43 - REPRESENTATIVE_DRAWING

