(12) SOLICITUD INTERNACIONAL PUBLICADA EN VIRTUD DEL TRATADO DE COOPERACIÓN EN MATERIA DE PATENTES (PCT)

(19) Organización Mundial de la Propiedad Intelectual

Oficina internacional

(43) Fecha de publicación internacional 8 de Marzo de 2007 (08.03.2007)

(10) Número de Publicación Internacional WO 2007/026037 A2

- (51) Clasificación Internacional de Patentes: Sin clasificar
- (21) Número de la solicitud internacional:

PCT/ES2006/000491

(22) Fecha de presentación internacional:

28 de Agosto de 2006 (28.08.2006)

(25) Idioma de presentación: español

(26) Idioma de publicación: español

(30) Datos relativos a la prioridad: P200502158 31 de Agosto de 2005 (31.08.2005) ES

- (71) Solicitante: UNIVERSIDAD DE MÁLAGA [ES/ES]; Plaza de El Ejido s/n, E-29071 Málaga (ES).
- (72) Inventores; e
- (75) Inventores/Solicitantes (para US solamente): DE LA COBA LUQUE, Francisca [ES/ES]; Dpto de Ecología y Geología, Facultad de Ciencias, Campus de Teatinos, E-29071 Málaga (ES). AGUILERA ARJONA, José [ES/ES]; Dpto de Ecología y Geología, Facultad de Ciencias, Campus de Teatinos, E-29071 Málaga (ES). LÓPEZ FIGUEROA, Félix [ES/ES]; Dpto de Ecología y Geología, Facultad de Ciencias, Campus de Teatinos, E-29071 Málaga (ES).

- (81) Estados designados (a menos que se indique otra cosa, para toda clase de protección nacional admisible): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
- (84) Estados designados (a menos que se indique otra cosa, para toda clase de protección regional admisible): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), euroasiática (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europea (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Publicada:

 sin informe de búsqueda internacional, será publicada nuevamente cuando se reciba dicho informe

Para códigos de dos letras y otras abreviaturas, véase la sección "Guidance Notes on Codes and Abbreviations" que aparece al principio de cada número regular de la Gaceta del PCT.

- (54) Title: USE OF A MIXTURE OF MYCOSPORIN-TYPE AMINO ACIDS (ASTERIN 330 + PALYTHINE) AS AN ANTIOXIDANT
- (54) Título: MEZCLA DE AMINOÁCIDOS TIPO MICOSPORINA (ASTERINE 330 + PALYTHINE) COMO ANTIOXIDANTE
- (57) Abstract: The invention relates to a mixture of mycosporin-type amino acids (asterin 330 + palythine) which can be used as an antioxidant and which is suitable for use in the biotechnological industry. The invention outlines the potential use of a purified extract of mycosporin (MAA)-type amino acids as an antioxidant substance, specifically asterin 330 + palythine isolated from red alga *Gelidium sesquipedale*, and to the possible use thereof in pharmaceutical, nutraceutical or functional food preparations, among others, for the prevention of oxidative stress.
- (57) Resumen: Mezcla de aminoácidos tipo micosporina (asterine 330 + palythine) como antioxidante. La presente invención se encuadra en el sector biotecnológico y describe el potencial uso como sustancia antioxidante de un extracto purificado de aminoácidos tipo micosporina (MAA), concretamente de asterine 330 + palythine aislado del alga roja Gelidium sesquipedale, además de su posible aplicación en preparados farmacéuticos, nutraceúticos, o alimentos funcionales, entre otros, para la prevención de estrés oxidativo.

MEZCLA DE AMINOÁCIDOS TIPO MICOSPORINA (ASTERINE 330 + PALYTHINE) COMO ANTIOXIDANTE

5 SÉCTOR TÉCNICO

10

15

20

25

30

35

La presente invención se encuadra en el sector biotecnológico y describe el potencial uso como sustancias antioxidantes de determinados metabolitos secundarios denominados aminoácidos tipo micosporina (MAAs) aislados de algas rojas y líquenes marinos además de su posible aplicación en preparados farmaceúticos, nutraceúticos, alimentos funcionales para la prevención de estrés oxidativo.

TÉCNICA ANTERIOR

La radiación ultravioleta es uno de factores biológicos que limitan la supervivencia, fisiología y crecimiento de muchos organismos. Algunos de los múltiples efectos dañinos de la radiación UV incluye la alteración de moléculas de ADN y proteínas, inactivación de enzimas y a la formación de radicales libres, los cuales atacan a membranas celulares y otras moléculas diana alterando su funcionalidad. Todos los organismos aerobios disponen de una gran variedad de sistemas de defensa antioxidante tanto enzimáticos como no enzimáticos que se coordinan cooperativamente y protegen al organismo de los riesgos que conlleva el estrés oxidativo. Entre ellos destacan las actividades enzimáticas de la superóxido dismutasa (SOD), glutatión peroxidasa (GPX) y catalasa (CAT); además del ácido ascórbico (vitamina C), α- tocoferol (vitamina E), glutatión (GSH), β- caroteno, vitamina A, flavonoides y ácidos fenólicos entre otros.

Se entiende por radical libre a cualquier especie química que contiene uno o más electrones desapareados en sus orbitales externos de manera que un compuesto puede convertirse en radical libre captando o perdiendo un electrón. Aunque existen radicales libres de muy distinta naturaleza, son las especies que derivan de la molécula de oxígeno (ROS) las más abundantes en los organismos aerobios destacando productos de la ruptura o la excitación del O2 como el oxígeno singlete $^{1}O_{2}$ y especies de oxígeno que están parcialmente reducidas como el radical hidroxilo (OH•), aniones superóxido (O2°) y peróxido de hidrógeno (H2O2). Estas moléculas inestables recorren el organismo tomando electrones con lo que recuperan su estabilidad electroquímica, esto las hace muy peligrosas porque para conseguirlo atacan moléculas estables. Una vez que el radical libre ha conseguido tomar el electrón que necesita para emparejar su electrón libre, la otra molécula se convierte a su vez en un radical libre, iniciándose así un ciclo destructivo para nuestras células.

2

5

10

15

20

25

30

Los radicales libres dan lugar a alteraciones importantes en moléculas como ADN, lípidos y proteínas, alterando gravemente el ciclo y la funcionalidad celular. El ADN puede sufrir pérdida de bases así como la ruptura de una o de ambas hebras del material genético, alteraciones que pueden traducirse en mutaciones irreversibles. Muchas proteínas son capaces de absorber una gran cantidad de oxidaciones sin que aparentemente se vea afectada su función. Sin embargo, es indudable que las consecuencias de las alteraciones en algunas funciones, por ejemplo, la recepción y transmisión de señales, el transporte de iones, la duplicación y reparación del ADN, las respuestas a condiciones de tensión y el metabolismo energético, la transcripción y traducción pueden ser críticas para la célula. Los daños producidos por el OH• y el ¹O₂ son irreversibles y en términos generales marcan las proteínas para su degradación. Las membranas celulares también pueden resultar seriamente dañadas en situación de estrés oxidativo va que fosfolípidos que tienen ácidos grasos con varios dobles enlaces son muy susceptibles a la oxidación por pérdida de un hidrógeno (alílico). Una vez generado el radical carbono en un ácido graso, éste reacciona con el oxígeno molecular formando un radical peroxilo. El radical peroxilo puede tomar un hidrógeno alílico a otro metileno con lo cual se propaga la reacción. Los hidroperóxidos, que son compuestos estables, si entran en contacto con iones metálicos de transición producirán más radicales libres que iniciarán y propagarán otras reacciones en cadena. Así, las membranas resultan seriamente dañadas y por tanto su funcionalidad se ve alterada.

Los radicales libres se asocian con un amplio rango de patologías y enfermedades como el Alzheimer o el Parkinson y afecciones relacionadas con la exposición solar como la aparición de cataratas, fotoenvejecimiento, episodios inflamatorios y neoplasias. También son los responsables de la oxidación de las grasas de los alimentos, que es la forma de deterioro más importante después de las alteraciones producidas por microorganismos. Con la oxidación, aparecen olores y sabores a rancio, se altera el color y la textura, y desciende el valor nutritivo al perderse algunas vitaminas y ácidos grasos poliinsaturados. Además, los productos formados en la oxidación pueden llegar a ser nocivos para la salud.

Los aminoácidos tipo micosporina están constituidos por un anillo de ciclohexenona o de ciclohexenimina, conjugado con un sustituyente nitrogenado de un aminoácido o su aminoalcohol que actúa como cromóforo permitiendo la absorción de determinada radiación de onda corta. Los metabolitos que se aíslan en hongos presentan un rango de absorción entre 310 y 320 nm y poseen anillos de ciclohexenona exclusivamente, conociéndoseles por el nombre de *micosporinas* en referencia a su origen. Por el contrario, los metabolitos que se aislan de organismos marinos y algas contienen anillos de ciclohexenimina, con absorciones máximas

5

10

15

20

25

30

entre 310 y 360 nm y se les conoce con el nombre de *aminoácidos tipo micosporina ó MAAs*. Aún así, la mycosporine-glycine y la mycosporine taurine son aminociclohexenonas aisladas de organismos marinos. En la actualidad hay descritas 13 micosporinas distintas en hongos y 23 MAAs en organismos marinos. Son moléculas pequeñas, con pesos moleculares que rondan los 330 Da y presentan una alta fotoestabilidad. Se comportan como moléculas anfóteras, similares a los aminoácidos, de manera que presentan cargas positivas y negativas en la misma molécula. Muestran características físico-químicas propias de compuestos iónicos por ejemplo alto punto de efusión y alta solubilidad en agua.

Son muchas las funciones que se les ha atribuido a estas moléculas en el organismo: desde osmolito orgánico en comunidades cianobacterianas *Chlorogloeopsis*, pigmentos accesorios fotosintéticos o precursores de estos, a moléculas determinantes en procesos reproductivos de algunas especies de peces, sin embargo es el papel fotoprotector frente a la radiación UV el más aceptado y documentado ya que al parecer actúan protegiendo parcialmente a los componentes celulares y procesos fisiológicos. Un número de trabajos han evaluado este tipo de moléculas por sus actividad como fotoprotectores de uso tópico vehiculizando extractos naturales con un alto porcentaje de MAAs y viendo su FPS y su potencial fotoprotector en células vegetales, queratinocitos humanos, etc. (Patente US 6787147; Patente WO 02/39974; Patente WO 03/020236). También se han publicado trabajos que hacen referencia a las propiedades antioxidativas de extractos obtenidos de algas y corales.

Dunlap y Yamamoto en 1995 (Comp. Biochem. Physiol. 112: 105-114) apuntaron a una posible actividad antioxidante de mycosporine-glycine mediante ensayos *in vitro* de peroxidación lipídica (método de la fosfatidilcolina) a partir de extractos de organismos marinos que contenían MAAs, mientras que otras iminoMAAs como porphyra 334, shinorine, palythine, asterine 330 y palythinol se mostraban oxidativamente robustas y no participaban en reacciones de oxidación-reducción. No obstante, como se ha indicado, dichos ensayos fueron realizados con extractos algales que contenían además de MAAs un alto porcentaje de otros componentes celulares como polisacáridos, enzimas, etc., por lo que no es posible afirmar firmemente la actividad antioxidante de mycosporine-glycine (o M-gly) en base a dicho trabajo.

Nakayama y colaboradores en 1999 (J. Am. Oil Chem. Soc., 76: 649-653) aislaron un nuevo aminoácido tipo micosporina del alga roja *Porphyra yezoensis* llamado usujilene, ya identificado en *Palmaria palmata* pero no en ninguna especie de *Porphyra*. Sus resultados indicaban que tal MAA mostraba actividad antioxidante frente a la autoxidación del ácido linoleico (Métodos del ácido tiobarbitúrico y tiocianato férrico), donando determinados

4

hidrógenos a radicales lipídicos LOO \cdot y dando lugar a moléculas de MAAs estabilizadas por resonancia al igual que el α - tocoferol.

Suh y colaboradores en 2003 (Photochem. Photobiol. 78: 109-113) sugieren también la función antioxidante de la M-gly, pero probablemente actuando junto con otros MAAs activos. La M-gly, entre otros, podría jugar un importante papel participando en la eliminación de O₂ generado por sistemas fotosintetizadores endógenos.

Yakovleva y colaboradores en 2004 (Comp. Biochem. Physiol., 139: 721-739 examinaron la importancia de la M-gly como antioxidante funcional frente a estrés térmico en dos corales, *Platygyra ryukyuensis* y *Stylophora pistillata*, en base a la correlación entre el grado de susceptibilidad y la concentración endógena de M-gly.

También la patente US2004228875 hace referencia a las propiedades antioxidativas de extractos obtenidos a partir de algas del género *Porphyra*, aunque sin concluir sobre el posible papel jugado por MAAs.

Publicaciones más recientes analizan las propiedades antioxidativas de extractos obtenidos a partir de algas pero sin concretar la participación de MAAs (Yuan y colaboradores, 2005, Food Chem. Toxicol., 43: 1073-1081; Kuda y colaboradores, 2005, J. Food Compos. Anal., 18: 625-633).

Se puede concluir, por tanto, que el papel antioxidante de los iminoMAAs como tales, es decir, purificados o aislados en un alto grado de pureza, no se conoce bien, como tampoco su comportamiento a nivel de secuestro de radicales libres hidrosolubles.

Un antioxidante se define como una sustancia que en bajas concentraciones comparado con un substrato oxidable, retrasa o previene su oxidación. La presente invención describe la potencialidad de un extracto de MAAs (asterine 330 + palythine) aislado de *Gelidium sesquipedale* como secuestrador de radicales e inhibidor de la peroxidación lipídica. En los ensayos realizados, el nuevo antioxidante es comparado con otro antioxidante ya conocido, el α-tocoferol. El compuesto descrito podría utilizarse en aplicaciones terapeúticas, y en aplicaciones no médicas para la estabilización de compuestos susceptibles del deterioro oxidativo, en la preservación de alimentos o productos relacionados, y en complementos nutricionales, nutracéuticos, alimentos funcionales o de parafarmacia por sus propiedades antioxidantes para prevenir el estrés oxidativo.

DIVULGACIÓN DE LA INVENCIÓN

5

10

15

20

25

La presente invención presenta un extracto purificado de MMAs aislados de *Gelidium sesquipedale* con las siguientes estructuras y de utilidad como antioxidante y secuestrador de radicales libres.

5

Palythine

10

15

20

25

Se han purificado compuestos del tipo aminoácidos tipo micosporina en fase acuosa partiendo de *Gelidium sesquipedale*. Los compuestos se han detectado y caracterizado por HPLC. Se empleó un detector UV-visible (detector de fotodiodos 996), que medía la absorbancia para cada muestra entre los 290 y 400 nm. Una vez extraídos los cromatogramas a 330 nm, se identificaron los picos por co-cromatografía según sus espectros y tiempos de retención,

Asterine 330

La extracción a escala preparativa se realizó disolviendo 60-80 g (PF) de material biológico en 1litro de metanol al 20% v/v e incubándose en un baño termostático a 45 °C durante 2 horas. Posteriormente se centrifuga el extracto a 14000rpm durante 15 min y rotavaporación a 45 °C para eliminar parte del metanol de la muestra.

La purificación se realizó en tres pasos consecutivos en los que se combinan técnicas cromatográficas de absorción mediante la aplicación de carbono activo, precipitación de polisacáridos al añadir a la muestra metanol 100% y separación final mediante cromatografía de intercambio iónico. Finalmente se obtuvieron soluciones acuosas de MAA en alto grado de pureza en concentraciones del orden de mM.

Capacidad antioxidante de los aminoácidos tipo micosporina

comparándose con estándares de MAAs.

10

15

20

25

30

35

Para medir la actividad como secuestrador de radicales hidrosolubles se ha utilizado el método de la ABTS peroxidasa, el cual permite determinar la actividad antioxidante total (TAA) de una muestra entendida como un parámetro que permite cuantificar la capacidad de una muestra, natural o procesada, de secuestrar radicales libres presentes en una solución acuosa.

La mezcla purificada asterine 330 + palythine aislada de *Gelidium sesquipedale* no presenta actividad antioxidante significativa a ningún pH ensayado como inhibidor de la producción de radicales libres hidrosolubles (ABTS⁺⁾.

Capacidad como inhibidor de la peroxidación lipídica

La mezcla purificada asterine 330 + palythine aislada de *Gelidium sesquipedale* se estudió como inhibidor de la peroxidación lipídica *in vitro* mediante la técnica de decoloración del β -caroteno. El método de decoloración del β -caroteno es ampliamente utilizado para la determinación de la capacidad antioxidante de diversas sustancias en medio lipofílico, la mayoría de ellas extraídas de frutas, vegetales y demás productos destinados a consumo alimentario para poder determinar su mayor o menor grado de autoconservación en estado natural. En este ensayo, como control positivo se utilizó el α -tocoferol (α -TOC).

La mezcla purificada asterine 330 + palythine aislada de *Gelidium sesquipedale* muestra una actividad antioxidante importante a nivel de inhibición de la peroxidación lipídica, ya que a similar concentración que el α -tocoferol (10 μ M) alcanzó un 50 % de su efectividad.

Secuestro de radicales superóxido

El protocolo que se llevó a cabo fue basado en Marklund & Marklund (1974, Eur. J. Biochem., 47: 469-474) con algunas modificaciones. Relaciones de dosis-respuesta para las MAAs objeto de estudio se determinaron a diferentes concentraciones.

La mezcla purificada asterine 330 + palythine aislada de *Gelidium sesquipedale* a concentraciones de 200 μ M inhibe al 50% la cinética de oxidación del pirogalol, presentando actividad antioxidante a partir de concentraciones de 50 μ M.

Al actuar como antioxidante y secuestrador de radicales libres, este compuesto, en extractos o preparados que lo contengan, podría utilizarse en preparados o formulaciones farmaceúticas para la prevención y el tratamiento terapéutico de enfermedades o afecciones relacionadas con los radicales libres, en productos de parafarmacia, en alimentos funcionales, complementos nutricionales y preparados nutracéuticos, y en la industria alimentaria como potencial antioxidante (aditivo).

BREVE DESCRIPCIÓN DE LOS DIBUJOS

5

10

15

25

30

35

Figura 1. Area (%) de picos eluídos y concentraciones expresadas en mg g⁻¹ PS de diferentes MAAs presentes en extractos metanólicos de las algas *Porphyra leucosticta*, *Gymnogongrus devoniensis*, *Gelidium sesquipedale* y del liquen *Lichina pygmaea*. Se observa la presencia de un tipo de MAA mayoritario en cada organismo (> 66%) junto con otras MAAs minoritarias y trazas de sustancias no identificadas.

Figura 2. Cromatogramas de un extracto acuoso de asterine 330 + palythine aislados de *Gelidium sesquipedale* eluídos de la columna cargada con resina DOWEX.

Figura 3. Tabla . Dosis (μM) - respuesta de la actividad antioxidante (%) de la mezcla purificada asterine 330 + palythine aislada de *Gelidium sesquipedale* con respecto a 10 μM de α -tocoferol por el método de decoloración del β -caroteno. Los valores representan los valores medios y desviación estándar de 3 experimentos. La mezcla purificada asterine 330 + palythine aislada de *Gelidium sesquipedale* muestra gran capacidad de inhibición de peroxidación lipídica in vitro a 10 μM , siendo máxima a 100 μM .

Figura 4. Capacidad de secuestro de radicales superóxido generados por el método del pirogalol de la mezcla purificada asterine 330 + palythine aislada de *Gelidium sesquipedale*. Se representa la media y desviación estándar de tres experimentos.

MANERA(S) DE REALIZAR LA INVENCIÓN

20 <u>Purificación a escala preparativa de la mezcla asterine 330 + palythine aislada de Gelidium sesquipedale</u>

Se ha purificado compuestos del tipo aminoácidos tipo micosporina en fase acuosa partiendo de *Gelidium sesquipedale*. Los compuestos se han detectado y caracterizado por HPLC (Waters 600). La columna empleada para la separación de los MAAs en el HPLC fue una C₈ (Sphereclone TM, Phenomenex, Aschaffenburg, Alemania), empaquetada con micropartículas porosas de sílica de 5 mm de diámetro con superficie derivatizada con una cadena alifática de 8 átomos de carbono (octadecil silano). Su tamaño era de 250 x 4.6 mm. Se empleó una precolumna (Phenomenex, Aschaffenburg, Alemania) afín a la columna empleada. La fase móvil que se empleó fue metanol al 2.5% (v/v, calidad HPLC) más 0.1 % de ácido acético (v/v) bombeada isocráticamente a una velocidad de flujo de 0.5 ml min⁻¹. Se empleó un detector UV-visible (detector de fotodiodos 996), que medía la absorbancia para cada muestra entre los 290 y 400 nm. En la figura 1 vienen recogidos los porcentajes en área de los picos cromatografiados de distintos extractos algales, algunos identificados como MAAs y otros desconocidos.

Una vez extraídos los cromatogramas a 330 nm, se identificaron los picos por cocromatografía según sus espectros y tiempos de retención, comparándose con estándares de MAAs, proporcionados por el profesor Dr. Ulf Karsten (Universidad de Rostock, Alemania) extraídos de distintos organismos marinos: *Mastocarpus stellatus* (shinorine), *Porphyra* yezoensis (porphyra-334), *Bostrychia scorpioides* (palythine), los ojos de la trucha del coral

Plectropomus leopardus (asterine 330) y el liquen Lichina pygmaea recolectado en Francia (M-glycine). Los cromatogramas de los extractos recogidos después del paso por la columna de intercambio iónico DOWEX50 se muestran en la figura 2. El extracto final de asterine 330 contiene asterine 330 + palythine en una proporción 1:6,25, frente a 1:4 del extracto de carbón activo.

La extracción a escala preparativa se realizó disolviendo 60-80 g (PF) de material biológico en 1 litro de metanol al 20% v/v e incubándose en un baño termostático a 45 °C durante 2 horas. Posteriormente se centrifuga el extracto a 14000 rpm durante 15 min y rotavaporación a 45 °C para eliminar parte del metanol de la muestra.

La purificación se realiza en tres pasos consecutivos en los que se combinan técnicas cromatográficas de absorción mediante la aplicación de carbono activo, precipitación de polisacáridos al añadir a la muestra metanol 100% y separación final mediante cromatografía de intercambio iónico (resina Dowex 50 W x 8-100). Para la elución de asterine 330, primero se eluyó con agua bidestilada para después establecer un gradiente de concentración lineal de HCl de 0,05 a 0,2 M. Finalmente se obtuvieron soluciones acuosas de MAA en alto grado de pureza en concentraciones del orden de mM.

Capacidad antioxidante a nivel de secuestro de radicales hidrosolubles ABTS

5

10

15

20

25

30

35

40

Para medir la actividad como secuestradores de radicales hidrosolubles se ha utilizado el método de la ABTS peroxidasa, el cual permite determinar la actividad antioxidante total (TAA) de una muestra entendida como un parámetro que permite cuantificar la capacidad de una muestra, natural o procesada, de secuestrar radicales libres presentes en una solución acuosa. Este parámetro está orientado a dar información de la actividad antioxidante que puede presentar una muestra concreta con independencia de las actividades parciales que puedan presentar cada uno de sus componentes o los efectos de sinergismo que pudiesen establecerse.

El 2,2′- Azino –bis- (3- etil-benzotiazolina-6- ácido sulfónico) o ABTS es un compuesto que presenta gran estabilidad química, alta solubilidad en agua y un máximo de absorción en la banda del UVA a 342 nm. Este compuesto en presencia de H₂O₂ y enzimas peroxidasas deriva a un radical metaestable (ABTS⁺) con un espectro de absorción característico y diferente al ABTS, presentando máximos de absorción en la región espectral del UV y visible a 413, 645, 727 y 811 nm.

El ABTS es un producto que presenta gran estabilidad en un amplio rango de pH, mostrando el mismo espectro de absorbancia a pH 4 y pH 8.5. Así mismo, la formación del radical ABTS⁺ también se lleva a cabo en ese rango de pH pero la actividad enzimática de la peroxidasa sí que es dependiente del pH del medio de reacción de manera que al alcalinizarse éste la actividad disminuye, aumentando así el periodo de retardo o "lag time". La actividad de nuestra enzima se podría ajustar a una curva exponencial de manera que es máxima a pH 4.5 y deja de ser activa a pH superiores a 10. Nuestros ensayos discurrirán a pH 6-8.5 de manera que aseguramos la actividad de la enzima.

La cuantificación de la capacidad de secuestro de radicales libres de una muestra se llevan a cabo mediante ensayos de decoloración en los cuales la formación de ABTS⁺ da lugar a una coloración característica que disminuirá de manera proporcional a la cantidad de sustancias con capacidad de atrapar estos radicales que se le añadan al volumen de reacción. Esta pérdida de color puede medirse mediante seguimientos cinéticos de pérdida de absorbancia a 413 nm (longitud de onda que no interfiere con otras moléculas) a lo largo de un minuto utilizando como peroxidasa la HRP y como control negativo el ácido ascórbico (L-ASC). El medio de reacción se compone de tampón fosfato 50 mM pH 6, 7.5, 8, H₂O₂ 2mM, ABTS 2 mM, enzima HRP 0.25 μM y muestra a concentraciones crecientes.

El cálculo de TAA se establece según la relación entre las pendientes (Abs/min) de ensayos enzimáticos en los cuales el curso de la reacción es estimado en ausencia de antioxidantes (control positivo), y en presencia de diferentes concentraciones de sustancias con posible actividad antioxidante. De este modo, la pendiente de la cinética control correspondería a una TAA del cero por ciento, calculándose en base a ésta los porcentajes de inhibición de las demás curvas.

Capacidad como inhibidor de la peroxidación lipídica

5

10

15

20

25

30

35

La peroxidación lipídica es un mecanismo bien establecido de daño celular en plantas y animales, así como de deterioro de alimentos (enranciamiento). Este proceso conduce a la producción de peróxidos lipídicos y aldehídos de degradación que conlleva pérdida de la función de la membrana celular y de su integridad. La mezcla pruficada de asterine 330 + palythine aislada de *Gelidium sesquipedale* se estudió como inhibidor de la peroxidación lipídica *in vitro* mediante la técnica de decoloración del β-caroteno.

El método de decoloración del β -caroteno es ampliamente utilizado para la determinación de la capacidad antioxidante de diversas sustancias en medio lipofílico, la mayoría de ellas extraídas de frutas, vegetales y demás productos destinados a consumo alimentario para poder determinar su mayor o menor grado de autoconservación en estado natural. Se trata de un método espectrofotométrico que mide la inhibición que causa un antioxidante sobre la decoloración del β -caroteno en un sistema acuoso emulsificado con Tween 20 y ácido linoleico.

El ácido linoleico se autoxida a una alta velocidad ante la presencia de átomos de hidrógeno especialmente activados. El β-caroteno, precursor de la vitamina A, también es conocido como antioxidante lipofílico que previene de la peroxidación lipídica en membranas secuestrando moléculas de oxígeno singlete y radicales lipídicos peroxilos. El β-caroteno, cuando se encuentra en presencia de ácido linoleico, cede electrones retardando la etapa de iniciación del proceso de autooxidación del ácido linoleico así como limitando la fase de propagación del daño al eliminar simultáneamente radicales peróxidos formados. Si añadimos una nueva sustancia con posible capacidad antioxidante al medio de reacción que contiene ácido

10

linoleico y β -caroteno, ésta nueva sustancia tenderá a oxidarse ella preferentemente al β -caroteno, compitiendo con este por el secuestro de estos radicales.

El β-caroteno presenta un máximo de absorción a 470 nm. Este máximo varía cuando la molécula se oxida ya que pierde dobles enlaces y la estructura del cromóforo de la molécula se ve alterada, perdiendo así su característico color naranja y pudiendo ser detectado espectrofotométricamente. La absorbancia del medio de reacción permanecerá invariable a lo largo del tiempo en presencia de sustancias antioxidantes, advirtiéndose una caída en la absorbancia de la muestra cuando se mida en ausencia de antioxidantes. Así pues, la medida de la capacidad antioxidante de una sustancia será inversamente proporcional a la caída de pendiente de la curva que describe la oxidación del β-caroteno (medida a longitud de onda de 470 nm).

En este ensayo, como control positivo se utilizó el α -tocoferol (α -TOC).

La actividad de la solución se evaluó según el grado de decoloración del β-caroteno, aplicando la fórmula propuesta por Hidalgo y colaboradores (1994, Phytochemistry, 37: 1585-1587) con algunas modificaciones:

$$AA = [P \text{ muestra} - P \text{ control} / P \text{ Patrón} - P \text{ control}] \cdot 100$$

P hace referencia a las pendientes de las curvas de decoloración obtenidas (Abs/ tiempo). Para ello ajustamos mediante regresión lineal la parte de la curva cinética que describe un comportamiento lineal. Los coeficientes de correlación para cada réplica de cada muestra eran todos superiores a 0.98.

Secuestro de radicales superóxido

25

30

35

5

10

15

20

Los radicales superóxidos (O_2) son mediadores de reacciones de autooxidación de algunos compuestos. La mayoría de las veces estos compuestos oxidados se caracterizan por poseer un espectro de absorción característico y cuantificable por espectrofotometría.

El pirogalol (1,2,3-benzenotriol) es una sustancia que se autooxida rápidamente en presencia de oxígeno especialmente en soluciones alcalinas. A pH 7.9 la SOD inhibe el 99% de la reacción indicando una participación prácticamente total del anión superóxido O₂ en la reacción. El pirogalol oxidado presenta un máximo de absorción a 420 nm de manera que la capacidad de las MAAs para secuestrar radicales superóxido fue medida como pérdida de absorbancia de ensayos cinéticos monitorizados espectrofotométricamente (Shimadzu UV 1603) durante un minuto de reacción. El protocolo que se llevó a cabo fue basado en Marklund & Marklund (1974, Eur. J. Biochem., 47: 469-474) con algunas modificaciones. La mezcla reacción contenía 0.4 mM de pirogallol y el MAA a diferentes concentraciones en 50 mM de tampón fosfato a pH 8.2, conteniendo 1 mM de ácido dietilenotriaminopentaacético en un volumen final de incubación de 1ml. La temperatura se mantuvo estable a 20 ± 1 °C. El control

positivo fue la curva cinética de generación de radicales de pirogalol oxidado en ausencia de antioxidantes para compararlos con distintas concentraciones de SOD como antioxidante conocido. Relaciones de dosis-respuesta para las MAAs objeto de estudio se determinaron a diferentes concentraciones. La capacidad de secuestro de radicales superóxido de los extractos purificados se evaluó siguiendo la siguiente fórmula:

 $AA=100 - [P muestra \cdot 100/ P control]$

P hace referencia a las pendientes de las curvas cinéticas de oxidación del pirogalol (Abs 10 / tiempo).

15

5

20

25

10

25

30

REIVINDICACIONES

- 1. Mezcla purificada de aminoácidos tipo micosporina asterina 330 y palythine extraída del alga roja Gelidium sesquipedale (Clemente) Thuret in Bornet et caracterizada por estar enriquecida en asterina 330 frente a palythine (proporción 6:1), por no presentar actividad antioxidante significativa como inhibidor de la producción de radicales libres hidrosolubles en el rango de pH 6 8,5, por presentar a una concentración de 10 μ M una actividad antioxidante a nivel de inhibición de la peroxidación lipídica próxima al 50 % de la que corresponde a una concentración similar de α -tocoferol, y por presentar actividad antioxidante significativa a nivel de secuestro de radicales superóxido a concentración igual o superior a 50 μ M, inhibiendo al 50 % la cinética de oxidación del pirogalol cuando la concentración de la mezcla purificada es de 200 μ M.
- Uso la mezcla purificada de aminoácidos tipo micosporina asterina 330 y palythine
 extraída del alga roja Gelidium sesquipedale de acuerdo con la reivindicación 1 para la preparación de un producto para la prevención y el tratamiento terapéutico de enfermedades coronarias y aterosclerosis.
- 3. Uso la mezcla purificada de aminoácidos tipo micosporina asterina 330 y palythine extraída del alga roja Gelidium sesquipedale de acuerdo con la reivindicación 1 para la preparación de un producto para la prevención de procesos cancerígenos.
 - 4. Uso la mezcla purificada de aminoácidos tipo micosporina asterina 330 y palythine extraída del alga roja Gelidium sesquipedale de acuerdo con la reivindicación 1 para la preparación de un producto para la prevención y el tratamiento terapéutico del Parkinson y Alzheimer.
 - 5. Uso la mezcla purificada de aminoácidos tipo micosporina asterina 330 y palythine obtenida del alga roja Gelidium sesquipedale de acuerdo con la reivindicación 1 para la preparación de un producto para la prevención de cataratas.
 - 6. Uso la mezcla purificada de aminoácidos tipo micosporina asterina 330 y palythine extraída del alga roja Gelidium sesquipedale de acuerdo con la reivindicación 1 para la

13

preparación de un producto para la mejora en el rendimiento de prácticas deportivas de montaña y trabajos realizados en altura en condiciones de hipoxia.

- 7. Uso la mezcla purificada de aminoácidos tipo micosporina asterina 330 y palythine extraída del alga roja Gelidium sesquipedale de acuerdo con la reivindicación 1 para la preparación de un producto para la prevención y el tratamiento terapéutico de estados anímicos depresivos.
- 8. Uso la mezcla purificada de aminoácidos tipo micosporina asterina 330 y palythine extraída del alga roja Gelidium sesquipedale de acuerdo con la reivindicación 1 para la preparación de un producto para la prevención y el tratamiento terapéutico de eritema actínico, fotocarcinogénesis y fotoenvejecimiento.
 - 9. Uso la mezcla purificada de aminoácidos tipo micosporina asterina 330 y palythine extraída del alga roja Gelidium sesquipedale de acuerdo con la reivindicación 1 como potencial antioxidante o aditivo en la preparación de productos de la industria alimentaria tales como preparados nutracéuticos o alimentos funcionales.
- 10. Uso la mezcla purificada de aminoácidos tipo micosporina asterina 330 y palythine extraída del alga roja Gelidium sesquipedale de acuerdo con la reivindicación 1 para la preparación de un producto para la prevención de la oxidación (deterioro) en productos cosméticos y farmacéuticos.
- 11. Uso la mezcla purificada de aminoácidos tipo micosporina asterina 330 y palythine extraída del alga roja Gelidium sesquipedale de acuerdo con la reivindicación 1 para la preparación de productos de parafarmacia, productos farmacéuticos, productos cosméticos, preparados nutraceúticos o alimentos funcionales para el tratamiento terapéutico de enfermedades y afecciones relacionadas con los radicales libres enumeradas en la reivindicaciones 2, 3, 4, 5, 6, 7, 8.

30

5

15

12. Uso la mezcla purificada de aminoácidos tipo micosporina asterina 330 y palythine extraída del alga roja Gelidium sesquipedale de acuerdo con la reivindicación anterior para la preparación de productos de parafarmacia, productos farmacéuticos o productos cosméticos de

aplicación tópica para la prevención de enfermedades y afecciones relacionadas con los radicales libres enumeradas en la reivindicación 8.

Figura 1.

	Área (%)	mg MAA g ⁻¹ PS
Porphyra leucosticta		
Porphyra 334	66 ± 0.9	3.33 ± 0.38
Shinorine	7.76 ± 0.02	0.38 ± 0.08
Asterine 330	5.28 ± 0.3	0.14 ± 0.01
Palythine	5.66 ± 0.06	0.17 ± 0.02
Otros compuestos que absorben en el UV	15.3 ±0.8	_
Lichina pygmaea		
Mycosporine-glycine	72.85 ± 0.44	1.11 ± 0.23
Otros compuestos que absorben en el UV	27.14 ± 0.44	-
Gymnogongrus devoniensis		
Shinorine	98.3 ± 0.4	0.55 ± 0.07
Otros compuestos que absorben en el UV	1.7 ± 0.35	-
Gelidium sesquipedale		
Shinorine	10.97 ± 0.97	0.1 ± 0.02
Asterine 330	67.78 ± 0.64	0.47 ± 0.03
Palythine	21.23 ± 0.32	0.13 ± 0.01

Figura 2.

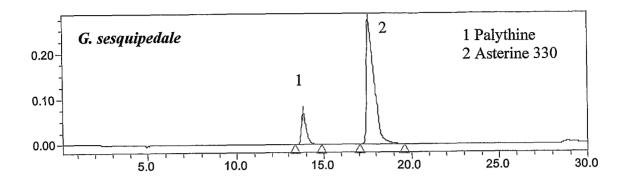


Figura 3.

ACTIVIDAD ANTIOXIDANTE (%) COMPARADA CON α- TOC 10 μM							
MAAs	10	50	100	200			
Asterine 330 + palythine	48.61 ± 4.86	77.80 ± 1.09	80.77 ± 1.02	78.68 ± 1.18			

Figura 4.

INHIBICIÓN (%)								
MAAs	50	100	200	500	1000			
Asterine 330 + palythine	15.64 ± 2.63	31.28 ± 4.22	49.99± 3.06	70.37 ± 1.82	85.43 ± 1.39			

Compuesto de referencia Superóxido dismutasa (11.7 U/ml) $90.25 \pm 3.7\%$