2013/122815 AT I 000 OO0 OO0 0

W

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2013/122815 Al

(51

eay)

(22)

(25)
(26)
(30)

1

(72)
1

74

22 August 2013 (22.08.2013) WIPOIPCT
International Patent Classification: (81)
GO6F 21/00 (2013.01)
International Application Number:

PCT/US2013/025211

International Filing Date:
7 February 2013 (07.02.2013)

Filing Language: English
Publication Language: English
Priority Data:

61/598,305 13 February 2012 (13.02.2012) US

Applicant: NIMBULA, INC. [US/US]; 1200 Villa Street,
Suite 160, Mountain View, CA 94041 (US).

Inventors; and

Applicants (for US only): PALAN, Kiran [IN/US]; 131
Saratoga Avenue, Apt. 3210, Santa Clara, CA 95051 (US).
VAN BILJON, Willem, Robert [ZA/ZA]; 12 Hillwood
Road, Claremont, 7708 Cape Town (ZA). SIDDHA,
Vividh [IN/US]; 1570 Lochinvar Avenue, Sunnyvale, CA
94087 (US). JUDKOWITZ, Jay [US/US]; 1389 Via De
Los Reyes, San Jose, CA 95120 (US).

Agent: JACKSON, Blake, W.; DIA Piper LLP, 2000 Uni-
versity Avenue, East Palo Alto, CA 94303 (US).

(84)

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU,
RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ,
™™, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
IM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
ML, MR, NE, SN, TD, TG).

Published:

with international search report (Art. 21(3))

(54) Title: COORDINATION OF PROCESSES IN CLOUD COMPUTING ENVIRONMENTS

Figure 6

(57) Abstract: Methods and systems of managing computer cloud resources, including at least one database, at least one server con-
figured to, act as an orchestration site, wherein the orchestration site is configured to receive at least one cloud resource management
plan from at least one user and store the at least one plan in the at least one database and act as an orchestration manager. The or -
O chestration manager is configured to retrieve the at least one plan from the at least one database and execute the plan with at least
one site controller.

WO 2013/122815 PCT/US2013/025211

COORDINATION OF PROCESSES IN CLOUD COMPUTING ENVIRONMENTS

FIELD
[0001] The present invention relates to cloud computing. More particularly, the present

invention relates to the coordination of processes in cloud computing.

BACKGROUND
[0002] Cloud computing is a way for users to store data and operate computational processes
on infrastructure connected by a network. Thus, instead of having to purchase physical
infrastructure, users send processes and data out to be run and stored on infrastructure owned by
other entities. The user only pays for the amount of data storage or processing capability that he
or she desires. This allows the user to tap computing resources that would be impossible without
owning actual, physical and vast computing resources. Cloud computing opens up great
possibilities because of the many resources available. But, by its very nature, the cloud

computing has so many tools and resources that it is difficult to organize efficiently.

SUMMARY
[0003] Systems and methods of managing computer cloud resources, may comprise
receiving, via at least one server acting as an orchestration site, at least one cloud resource
management plan from at least one user and storing, via the at least one server, the at least one
plan in at least one storage and retrieving, via the at least one server acting as an orchestration
manager, the at least one plan from at the at least one database, and executing the plan, via the at
least one server, with at least one site controller.
[0004] Examples of these may also include where the orchestration site and the orchestration
manager are further configured to communicate over a distributed messaging bus. Also, where
the communication includes information regarding whether the at least one plan is ready for
execution.
[0005] Still other examples include where the at least one plan includes at least one group of
cloud resources. And where the at least one group includes at least one cloud resource and a

policy regarding the at least one resource.

WO 2013/122815 PCT/US2013/025211

[0006] Some examples may include where the plan includes information regarding the
interaction of the at least one group with other groups. Also, where the plan includes a name of
the plan. And where the at least one site controller includes a computer cloud resource. Yet
others may include where the storage is at least one of a database and cloud storage.

[0007] Examples may also include where the system and methods include at least one cloud
resource management plan includes instructions including configuring a master orchestration to
drive at least one sub orchestration. Also where a cloud resource includes at least one of, a third
party provided object and third party provided cloud service.

[0008] Other embodiments include where the cloud resource is, or is a combination of, a
virtual machine, a physical machine, an operating system, storage service, networking service,

and an application service.

DESCRIPTION OF THE DRAWINGS
[0009] For a better understanding of the embodiments described in this application, reference
should be made to the description below, in conjunction with the following drawings in which
like reference numerals refer to corresponding parts throughout the figures.
[0010] Figure 1 is an overview of the steps required to create an orchestration according to
some embodiments.
[0011] Figures 2(a) to (c) illustrate the steps of Figure 1 schematically with reference to
various objects in cloud computing according to some embodiments.
[0012] Figure 3 is an expansion of Figure 2 showing how an orchestration can be joined to
another orchestration according to some embodiments.
[0013] Figure 4 is still a further expansion of Figures 2 and 3, showing multiple layers of
orchestrations driving other orchestrations according to some embodiments.
[0014] Figure 5 is a schematic overview of a system on which these orchestrations can run
according to some embodiments.
[0015] Figure 6 is a schematic illustrating an alternate structure of a cloud computing system,
suitable for use with the orchestration techniques described herein according to some

embodiments.

WO 2013/122815 PCT/US2013/025211

DETAILED DESCRIPTION
[0016] In the following detailed descriptions, numerous specific details are set forth to
illustrate the subject matter presented in this document. It will, however, be apparent to one of
ordinary skill in the art that the subject matter may be practiced without these exact specific
details. Moreover, the descriptions are provided by way of example and should not be used to
limit the scope of any later claimed inventions.
[0017] Computer networks of many kinds exist today. Closed and proprietary networks, open
and public networks, and hybrid networks as well. These networks tie together computer servers
and databases in ways that allow computer programs to run efficiently. Some embodiments of
such networks are known as “cloud computing.” Over such a network, such as the internet,
computer resources such as infrastructure, platforms and applications can all be used by client
users. The physical resources of such cloud networks may be scattered around various physical
locations, but by being networked together, can become a larger resource. Various systems and
methods can be used to manage the resources that can be hosted and run on such a cloud
network.
[0018] The technology described in this document seeks to address this by allowing users to
coordinate their cloud computing in order to become efficient, coherent, redundant,
interdependent, and secure. This ‘orchestration’ provides for the automated management of user-
defined system components for high availability, monitoring, and persistence allowing users to
troubleshoot systems, manage processes and to create and coordinate complex processes in a
computing cloud, or over numerous clouds.
[0019] Orchestration is a specification by which user can specify different objects or
references to other orchestrations or objects, establish relationships between them and apply
different kinds of policies on them. These objects include but are not limited to all first class
features provided by the cloud and Cloud Services Extensions added to the cloud. Different kind
of relationships can be specified. “dependency” is one example of a relationship. Different kinds
of policies can be applied. “high-availability(HA) and autoscaling” are few examples of such
policies. User can co-ordinate several processes on the same, multiple or public clouds. These
processes may include any functionality/objects provided by the cloud. Example: security

policies, storage co-ordination, networking, actual CRs (computational resources which includes

WO 2013/122815 PCT/US2013/025211

but is not limited to a virtual machine, OS container or an actual physical machine), new cloud
services/extensions enabled on the cloud, etc.

[0020] User can create/add his own orchestration which may contain the potpourri of his
desired objects or contain references to other orchestrations. The user can establish relationships
between different kinds of objects/references and apply policies example: HA. After the User has
created his orchestration, he can start the orchestration. When the orchestration is started, the
cloud objects are orchestrated according to the specifications in the orchestration. The
Orchestration is the coordination of the objects. A single orchestration can even create and
manage other orchestrations. For example, a Master Orchestration can drive three children
orchestrations, each of those three of their own children, and so on, creating a compounding or
mushrooming effect.

[0021] Just as objects can have dependencies among and between them, entire orchestrations
can do the same. In this way, not only separate objects are coordinated, but orchestrations, more
complex series of objects run in concert are then coordinated. A Cloud administrator can set up
users and groups this way as well as security, or other processes. Different kinds of relationships
can be defined among and between the objects and orchestrations. It is important to bear in mind
that usually, a user admin/user/developer etc can specify only cloud objects on which he/she has
permissions. All existing security mechanisms including permissions, access, keys on each
individual cloud objects are honored. For example: a cloud admin can orchestrate
users/groups/networks etc while another user can orchestrate CRs(virtual machines, OS
containers etc .) and they can even co-ordinate Cloud Services.

[0022] Different kind of policies can be applied on cloud objects. Policies include but are not
limited to High Availability (apply different policies if they go away e.g. — recreate them on
same/another cloud etc..), Monitoring (monitor the state of the objects), Autoscaling (scale the
objects up or down based on certain criteria). Cloud can provided its own implementation of
these policies or a user /cloud-admin can create custom policies.

[0023] Thus, orchestration ties together cloud computing components into a single,
manageable collection for the user. For example, with orchestration a user can associate
networks, network security, and storage with the instantiation of a Computational Resource,
which includes, but is not limited to a Virtual Machine, OS containers or an actual physical

machine. This instantiation can be restarted automatically if it terminates for some reason, it can

WO 2013/122815 PCT/US2013/025211

be monitored, or it can be disabled. In addition, a user can specify dependencies to affect the
sequence of how components are orchestrated.

Overview

[0024] In overview, the steps for creating an orchestration are illustrated in Figure 1.
Specifically, a user group 110 objects of similar type to create an orchestration plan or ‘oplan.’
Thereafter, 112, the user adds one or more policies, for example ‘high availability” (HA) to the
specific oplan. Then, 114, the user adds a unique label to the oplan. Once that is done, the user
adds additional groupings of similarly created bur differently functioning, oplans, 116. At this
stage, 118, the user defines the relationships between the added oplans and thereafter, 120, has
created an ‘orchestration.” Thus, an orchestration is a group of objects. As will be shown below,
it can also have other orchestrations as objects.

[0025] Figures 2(a) to (c) illustrate these processes with reference to cloud computing objects
shown schematically. In Figure 2(a), a user (not shown) has grouped objects 212a, 212b, and
212¢ of similar type into an orchestration plan 214. The user has added one or more policies,
shown schematically as “policies,” and added a unique label A in this case to the oplan.

[0026] In Figure 2(b), the user has added (in this illustration, two) other of similarly created
but differently functioning, oplans 216 and 218, each with their own name (B, C respectively)
and ‘policies.’ Then, as shown in Figure 2(c), the user has defined relationships 220 and 222,
which may or may not be the same relationships, respectively between oplans 214 and 216 and
216 and 218. This results in an overall orchestration 224.

[0027] The orchestration model therefore represents a grouping of objects, namely: oplans: is
a fully listed sub collection of oplans described below; status: overall status for this
orchestration; and relationships: list of relationships. This defines the relationships between two
or more oplans. ‘01< 02 or 02 > 01’ would implies an order in which o1 should be before 02. If a
dependency fails then subsequent oplans will not be started.

[0028] Also, for the above, it will be apparent that the oplan represents an orchestration plan
for a specific object and that it only exists as part of an orchestration. It may include a number of
attributes, including: obj_type: refers to the type of the object. It is nothing but the base path for
other models in the system. Examples: launchplan, vservice/vdhcpservice etc.; objects: List of
object dictionaries or names of obj_type. See examples below; status: status for this oplan; and

ha policy: if a user wants an object to persist, for example with instances, launchplans, etc., the

WO 2013/122815 PCT/US2013/025211

user can apply an ha policy here. It is possible to support 3 policies - disabled, monitor and
active, in which disabled: means that the object will not monitored at all. (This is the default
policy); monitor: monitor the object and just report error when something goes wrong; and
active: monitor the object and if it is not found or in error state. keep trying to create it again or
bring it back to a sane state.

[0029] Asis illustrated in Figure 3, this concept can be expanded even further so that a single
orchestration, for example orchestration 224 created with reference to Figure 2; can have another
orchestration 310 as an object. As before this added orchestration 310 will itself have a unique
label “D” and policies at the orchestration level and will also have a defined relationship 312
with the orchestration 224 created with reference to Figure 2. Thus a single orchestration can
drive other orchestrations.

[0030] Moreover, as illustrated in Figure 4, a single master object 410 can drive an
orchestration 412, which can itself drive other orchestrations 414a, 414b and 414c. These
orchestrations 414a, 414b and 414c¢ can themselves drive even other orchestrations 416a and
416b, etc, thus creating an ever expanding “mushroom effect.”

[0031] A system for implementing the technology described in this document is shown in
Figure 5. Specifically, the system 510 has two main components, i.e. site controller,
orchestration site 512, which functions to expose the Web API (e.g., REST, SOAP, etc.)
interface 514. It also adds/deletes an orchestration to/from the storage such as a database (DB)
516 and assigns it to one of the orchestration managers 524. The storage could also be cloud
storage. In addition, a manager, orchestration manager 524 manages the actual orchestration by
Restfully or otherwise managing 526 objects providing ‘high availability’ (HA), monitoring and
other features. This figure also shows a plurality of controllers, site controllers 530. This publish
subscribe mechanism can exist on the same cloud or across clouds.

[0032] Figure 6 is a schematic illustrating an alternate structure of a cloud computing system,
suitable for use with the orchestration techniques described herein. In this figure, the APIs, 610
are used to communicate to the cloud 620 through a distributing load balancer 630. The load
balancer, 630 distributes services to different Orchestration Managers, 640, 642, which are each
in communication with a distributed database system, distributed data store, 650. A Messaging

Service 660 coordinates the communication among the distributed database system,

WO 2013/122815 PCT/US2013/025211

Orchestration Managers 670, 672 and the Load Balancer 630 on the cloud 620 and among other
possible clouds (not shown).
[0033] As will be described more fully below, this system allows a user to group together a
plurality of objects and to orchestrate a number of common functions, such as
add/get/delete/update; monitor status; provide High Availability; specify relationships between
different objects and auto-scale certain objects, for example, instances and cloud services.
[0034] The use of this system and the methods described above will now be described with
reference to specific, non-limiting examples.
Working with orchestration
[0035] As described, orchestration is the automated management of user-defined system
components for high availability, monitoring, and persistence. Orchestrations can be available
via a Web API/CLI/UI but they can be extended to other interfaces. For example, in a non
limiting example, one can work with orchestrations either with web console or the command
line: The web console is sufficient for basic, simple orchestrations. More complex orchestrations
can be stored in a JSON file and then added, started, stopped or deleted with the nimbula-api
command.
[0036] These specific examples should not be seen as limiting. Thus, orchestrations can be
specified in any document /object specification language, for example: JSON/YAML/XML, etc.
[0037] To illustrate, the following topics are explored below: a simple orchestration; a
generalized process for orchestrating; the status of an orchestration; the number of components,
specifying dependencies, and nesting orchestrations; an example of working with orchestration
on the command line; and orchestration with Amazon EC2. While this example considers EC2, it
should be noted that a single orchestration can span private and public clouds. Amazon EC2 is
just one of the examples. After that additional features are also explored.
A simple orchestration
[0038] One example includes starting a virtual machine, where the name of the machine
image list and the desired shape are known. From the command line, for example, an
orchestration may be started as shown in the following example.

nimbula-api orchestrate simple /acme/imagelists/lucdi64 medium
[0039] Complete details about nimbula-api orchestrate simple, including how to specify a

high availability policy and number of instances and other orchestration-related commands, are

WO 2013/122815 PCT/US2013/025211

in the The system Command-line Interface Reference, the details of which are incorporated

herein by reference.

Generalized process for orchestrating

[0040] A basic illustrative process of working with orchestrations is as follows:
i. Create the orchestration, containing the following at a minimum. For use on the
command line, an orchestration is stored in a file in JSON format; see Orchestration with
Amazon EC2. [Importantly, this JSON example and the later CLI example are is just two

of the multiple ways in which this can be accomplished.]

° Its name.
o Its “high availability policy”: active, monitor or none.
o The types of objects to orchestrate, such as instance configuration, virtual

Ethernet, permission, security lists, and others.
o Additional information depending on the object type.
ii. Add the orchestration to the system.
iii. Start the orchestration.
iv. Monitor, update, stop, or delete the orchestration.
Policies
9841} As indicated above, one can specify various policies for an orchestration. {Clouds too

-
N

can specify thelr own policies and they can applied to an oplan.] For example, one can specify
one of three high availability policies for an orchestration, which affects how it is managed by
the system. High Availability is the ability to orchestrate redundant processes in case of
halancing problems, fatlure situations, or other changes in ciraumstance. Tt allows for a HJexible

and fatlsafe series of objects run in orchestration,

Policy for high
Meaning
availability
active The orchestration is restarted if it stops unexpectedly.
monitor The orchestration is not restarted, it is monitored.
none The orchestration is neither restarted nor monitored.

WO 2013/122815 PCT/US2013/025211

W84 In general, st a minimum a user must have use permission on all objects he or she
refers to in an orchestration; otherwise, the orchestration will not start correctly,
Orchestratable components, user and object permissions, and object creation

[0043] Any object/functionality/feature provided by the cloud is supported. References to
other orchestrations or objects are also supported. It also supports object/functionality which is
dynamically added to a cloud.

[0044] These are also the valid values for the obj_type field in an orchestration in JSON
format that one craft by hand; see Orchestration with Amazon EC2 and Orchestrations in JSON
format described below. Also, in general, at a minimum one must have user and object
permission on all objects one refer to in an orchestration; otherwise, the orchestration will not
start.

[0045] Unless they were created beforehand, the network, storage, security list, or other
objects referred to in an orchestration are created when the orchestration starts and destroyed
when the orchestration stops. For nested orchestrations (see Nesting orchestrations), only objects
at the top level (the master orchestration) are created and destroyed at start and stop.

Status of an orchestration

[0046] The state of an orchestration changes overtime. Starting or stopping an orchestration
starts or stops the object it defines; this is asynchronous so some time might be required to fully
start or stop. One can watch the orchestration to see the changes.

[0047] As anon-limiting example, the possible states of an orchestration could be (this as an

example and an orchestration can reflect the following status, although it is not limited to only

these):
State Description
Starting Orchestration is beginning.
Started Orchestrated is fully started.
Ready Orchestration is running.
Stopping Orchestration is terminating.
Stopped Orchestration is fully stopped.

WO 2013/122815 PCT/US2013/025211

Number of components, specifying dependencies, and nesting orchestrations

[0048] In any single orchestration, one can include many components. Moreover, an
orchestration can include references to other “nested” orchestrations so there is no effective limit
on the number of components. For an example of nested orchestrations, see Nesting
orchestrations. One can specify the sequence in which the components in an orchestration start
their dependencies on one another. For an example, see the section on Multiple objects with
dependencies.

Example of working with orchestration on the command line

[0049] This section is an example of working with a simple orchestration to add, start,
monitor, and stop the instantiation of virtual machine. Full details about syntax and parameters
on nimbula-api for orchestration are in the system Command-line Interface Director Command-
line Interface Reference.

[0050] The orchestration in this example is shown in Basic orchestration: configuring an

instance and stored in a file called Ipl.json.

i. Add the orchestration to the system.
o The name of the orchestration is specified in the JSON file itself.
o This example uses the -f json option to display the output fully.
o After adding, the status of the orchestration is “stopped.”

nimbula-api add orchestration Ip1.json -f json -u /acme/joeuser
{
"list": [
{

"account": "/acme/default”,
"description": "",

"info": {},

"name": "/acme/joeuser/Ip1",
"oplans": [

{

n.n

"ha policy": "active",
"info": {},

10

WO 2013/122815 PCT/US2013/025211

"label": "launchplan1",

"obj_type": "launchplan”,

"objects": [
{
"instances": [
{

"imagelist": "/nimbula/public/lucid64",
"label": "test_instance",

"shape": "small",

"user_data": {}

1,

"status": "stopped"

1,

"relationships™: [],
"status": "stopped",

"uri": "https://api.nimbula.example.com/orchestration/acme/joeuser/lp1"

ii. Start the orchestration. The status displayed immediately after starting might be
“stopped,” because starting all components of an orchestration can take time is

asynchronous and can take time.
nimbula-api start orchestration /acme/joeuser/Ip1 -u /acme/joeuser -f json

{

"list": [

11

WO 2013/122815

"account": "/acme/default",
"description": "",
"info": {},
"name": "/acme/joeuser/Ip1",
"oplans": [
{
"ha_policy™": "active",
"info": {},
"label": "launchplan1"”,
"obj type": "launchplan”,
"objects": [
{
"instances": [
{
"imagelist": "/nimbula/public/lucid64",
"label": "test_instance",

"shape": "small",

"user_data": {}

15
"status": "stopped"

1,

"relationships™: [],

"status": "starting",

PCT/US2013/025211

"uri": "https://api.nimbula.example.com/orchestration/acme/joeuser/lp1"

12

WO 2013/122815 PCT/US2013/025211

iii. Watch the orchestration progress. In this example, the status has changed to

“ready.” Also, no errors have been reported. The orchestration is in full operation.

"list": [
{

"account": "/acme/default”,
"description": "",
"info": {
"errors": {}
}s
"name": "/acme/joeuser/Ip1",
"oplans": [
{
"ha_policy™": "active",
"info": {
"errors": {}
}s

"label": "launchplan1"”,

"obj type": "launchplan”,

"objects": [
{
"instances": [
{

"imagelist": "/nimbula/public/lucid64",

"ip": "10.33.1.90",

"label": "test_instance",

"name": "/acme/joeuser/49dba3c0-c7b8-456a-b017-
27267d3a2876",

13

WO 2013/122815 PCT/US2013/025211

"shape": "small",
n.n

"state": "running",

"user_data": {}

1,

"status": "ready"

1,

"relationships™: [],
"status": "ready",

"uri": "https://api.nimbula.example.com/orchestration/acme/joeuser/lp1"

iv. Stop the orchestration. The status displayed immediately after stopping might be
“ready,” because stopping all components of an orchestration is asynchronous and takes

time.

nimbula-api stop orchestration /acme/joeuser/Ip1 -f csv
uri,name,oplans,description,account,status,info,relationships

https://api.nimbula.example.com/orchestration/acme/joeuser/Ip1,/acme/joeuser/Ip1 ,"{""status"":

nn nn nn

ready"", ""info"": {""errors"": {}}, ""obj_type"": ""launchplan"", ""ha_policy"": ""active"",
""label"": ""launchplan1"",

""objects"": [{""instances"": [{""'name"": ""/acme/jocuser/49dba3c0-c7b8-456a- b017-
27267d3a2876"", ""ip"": ""10.33.1.90"", ""state"": ""running"", ""user_data"": {}, ""shape"":
""small"", ""imagelist"": ""/nimbula/public/lucid64"", ""label"":

""test instance""}]}]}",,/acme/default,stopping,"{""errors"": {}}",

V. Watch the orchestration again. The status is now “stopped.”

14

WO 2013/122815 PCT/US2013/025211

nimbula-api get orchestration /acme/joeuser/Ip1 -f csv
uri,name,oplans,description,account,status,info,relationships
https://api.nimbula.example.com/orchestration/acme/joeuser/Ip1,/acme/joeuser/Ip1 ,"{""status"":
""stopped"", ""info"": {}, ""obj_type"": ""launchplan"", ""ha policy"": ""active"", ""label"":
""launchplan1"", ""objects"": [{""instances"": [{""shape"": ""small"", ""user_data"": {},
""imagelist"": ""/nimbula/public/lucid64"", ""label"":

""test instance""}]}]}",,/acme/default,stopped,{}

Orchestration with Amazon EC2
[0051] One can orchestrate components with Amazon EC2 or any other private/public clouds
just as one normally can launch instances on EC. In the instance configuration portion of the
orchestration, one need to include the site and account details in one orchestration, as shown in
the following example:
"ha policy": "active",

"label": "orchestrate-ec2-instance",

"obj type": "launchplan”,

"objects": [
{
"instances": [
{

"account": "/nimbula/ec2account”,

"site": "ec2proxy/us-cast-1",
"imagelist": "/nimbula/public/ec2image",
"label": "ec2_instance",

"shape": "small",

15

WO 2013/122815 PCT/US2013/025211

Orchestration sampler

[0052] Presented here are orchestrations in JSON format for instantiating virtual machines.
Specifically, this section covers basic orchestration: configuring an instance and a complete
annotated instance configuration. As will be shown later under a separate heading,
orchestrations in JSON format as several other orchestrations for a variety of uses.

Basic orchestration: configuring an instance

[0053] This orchestration has a single object: a plan to instantiate a virtual machine from the
default machine image stored in the image list /nimbula/public/lucid64 on a small shape. The

high availability policy is set to active.

{
"name": "/acme/group1/basic_launch",
"oplans": [

{

n. n

"ha_policy™": "active",
"label": "launchplan1"”,

"obj type": "launchplan”,

"objects": [
{
"instances": [
{

"imagelist": "/acme/public/lucid64",
"label": "test_instance",

"shape": "small"

16

WO 2013/122815 PCT/US2013/025211

It is to be noted that while this example centers around a virtual machine, it could also apply to
any Computational Resources (CRs). Any higher level application services like load balancers,
AutoScaling, DNS, Platform As a Service (PaaS) provided by the cloud vendor or 3™ party cloud
service developers

Complete annotated CR configuration

[0054] An orchestration can describe the various instances to be launched, the relationships
among them, and their networking, storage, and security characteristics. Below is an
orchestration for a single instance of a primary and secondary web server that must run on
different nodes and a primary and secondary database. The example is of a CR configuration on
a specific cloud, but it is important to realize that orchestrations are not limited to any specific
clouds. They span cloud implementations, multiple clouds, hybrid clouds, etc.

[0055] The elements of this example orchestration are detailed after the listing.

{

"description": "Orchestrate e-commerce application”,
"name": "/acme/mary/sample”,
"oplans": [
{
"ha_policy": "active",
"label": "EvalGuide_servers",

"obj type": "launchplan”,

"objects": [
{
"instances": [
{

"block devices": {},
"imagelist": "/acme/mary/webserver",
"label": "Web server front-end to OS Commerce: web server #1",

"networking": {
"eth0": {

17

WO 2013/122815 PCT/US2013/025211

"dns": [

n

1,

"seclists": [

"

WwWw

"/acme/mary/webserver _list"

}
|3

"shape": "small",

"storage attachments": []

}

"block devices": {},
"imagelist": "/acme/mary/webserver",
"label": "Web server front-end to OS Commerce: web server #2",
"networking": {
"eth0": {
"dns": [

n

1,

"seclists": [

"

WwWw

"/acme/mary/webserver _list"

}
n. n

"shape": "small",

"storage attachments": []

}

18

WO 2013/122815

"block devices": {},

"imagelist": "/acme/mary/dbserver",

"label": "Database back-end for OS Commerce",

"networking": {
"eth0": {
"dns": [
"db"
I,
"seclists": [

"/acme/mary/dbserver_list"

}
|3

"shape": "small",
"storage attachments": [
{
"index": 1,

"volume": "/acme/mary/volume1"

PCT/US2013/025211

[0056] Cloud Resources (CRs) are inclusive but not limited to a) virtual machine, physical

machine or a OS container, b) any Storage services provided a private or public cloud, ¢) any

19

WO 2013/122815 PCT/US2013/025211

Networking services provided by private or public cloud, and d) any feature that is provided by
the private or public cloud.

[0057] In configuring a Computational Resource (CR) in a Nimbula cloud, one can include
Relationships and Instances. For Amazon or some other cloud these parameters will be different
and orchestration can configure CRs on any cloud.

[0058] Relationships allows one to define relationships between various instances such as
whether they should be launched on the same of a different node or the same or different cluster.
Non-limiting examples of relationships element are: same_node, different_node, same_cluster,
and different cluster.

[0059] Each type of instance can be separately defined in the launch plan. For each instance

type, the following parameters can be specified:

Shape A valid shape with the amount of RAM and the number of CPUs
needed to run one instance.

Version The version number identifying which machine image to run from the
image list.

tags (optional) A list of strings which will tag the instance for the end-user’s uses.

Creating a human-friendly tag for an instance allows one to identify a
specific instance easily during instance listing. These tags are not
available from within the instance. See User-defined parameters in
orchestration (instance configurations).

networking (optional) The networking elements allow the specification of three sub-
elements related to supported The system network services:
vEthernet, seclists and nat described below.
Be careful when constructing the networking element as certain
combinations of networking elements are not allowed together.
vEthernet - vEthernets are discussed in About virtual ethernets
(vEthernets). As vEthernets are not supported with security lists and
NAT, the vEthernet field should either be omitted or set to the default
vEthernet /nimbula/public/default if that NIC also has security lists
and/or NAT specified. Setting the vethernet sub element to the empty

20

WO 2013/122815

storage attachments

(optional)

placement_requirements

(optional)

Imagelist

PCT/US2013/025211

nn

string, "", is not acceptable.

seclists - Error: Reference source not foundAn instance can belong to
up to 64 security lists. For every customer, there is a default security
list, /customer/default/default. If one launches a VM without a
security list tag, it is assigned to the customer’s default security list.
nat - Network Address Translation is described in Using distributed
NAT. The system’s distributed NAT service provides public IP

services to instances running in the system site. A launch plan can be

used to:
o Get a temporary IP from an IP pool for use by the
instance during its lifetime, (ippool element)
o Attach a persistent IP to a VM by referencing a pre-

created IP reservation (ipreservation element).
The volumes to attach to this instance with the following sub
elements:
volume — Name of the storage volume to which the instance is
attached. To be able to attach a volume to an instance, use
permission is required on the storage volume and
storageattachment.add permission is needed under the instance
namespace.
index — The index is used to instruct the hypervisior to attach the
storage volume to an instance as a particular device. For example,
specifying index = 1 results in the storage volume being exposed as
either/dev/vda or /dev/sda depending on the virtio capability. Index =
2 will be /dev/[sv]db and so on.
These parameters are discussed in User-defined parameters in
orchestration (instance configurations). A user must have use
permission on a property to be able to specify itas a

placement requirement in a launch plan.

The full path name of one's image list

21

WO 2013/122815

attributes (optional)

Label

Site

account

PCT/US2013/025211

Optional user-defined parameters that can be passed to an instance of
this machine image when it is launched. See About user-defined

attributes and parameters in orchestrations, images, and image lists.

A label that can be used to identify this instance in the launch plan
when defining relationships between launch plan elements.

The site where one wants this instance to launch if not on the local
site. For more about federation, see the system Cloud Administrator
Guide.

An account is a billing container associated with a customer. A
customer administrator must create an account to be able to launch
workloads in Amazon EC2 via the system Amazon EC2 proxy or
update the default account to contain the relevant Amazon EC2
credentials. The default account can be used to launch workloads
across The system sites and in this case does not need to be explicitly
set. The account information is passed through to all calls to a remote
site. A user needs use permission on an account that they use for
federation purposes. Account information is passed through with any
launch command: either the default account or an explicitly specified
account is used. Whether or not an action is billable, irrespective of
whether it is launched locally or on a remote The system site, will
depend on how billing is set up within the site and the billing

arrangements with other The system sites.

Orchestrations in JSON format

[0060] Here is a collection of orchestrations for various purposes, presented as a sampler. For

background see the section above on working with orchestrations. Specifically, this section gives

examples on permissions; permanent IP reservation; multiple objects with dependencies; and

nesting orchestrations. While this example is given in JSON format, the specification language is

not limited to JSON. Instead, this is only an example.

22

WO 2013/122815

Permissions

n. n

"description": "permissions",
"name": "/nimbula/public/permissionl",
"oplans": [

{
"ha policy": "active",

"label": "user-permissions",

n. n

"obj_type": "permission/user”,
"objects": [

{

"action": "GET",

", n

"authorizer": "user:/root/root",

n. n

"object": "seclist:/acme/public/",

"subject": "group:/acme/testgroupl”

}

n. n

"ha policy": "active",

"label": "object-permissions”,

n. n

"obj_type": "permission/object",
"objects": [
{

"action": "GET",

", n

"authorizer": "user:/root/root",

n. n

"object": "seclist:/acme/public/",

n. n

"subject": "group:/acme/testgroupl”

23

PCT/US2013/025211

WO 2013/122815 PCT/US2013/025211

Permanent IP reservation

[0061] This orchestration creates and monitors an IP reservation.

{
"name": "/acme/joeuser/natl",
"oplans": [
{

n. n

"ha_policy": "monitor",
"label": "ipreservation",
"obj type": "ip/reservation",
"objects": [
{
"parentpool": "/acme/public/pool-1",

"permanent": "True"

Multiple objects with dependencies
[0062] This orchestration defines security lists (plan “A”) and security rules (plan “B”) for
protecting a web server instance (plan “C”). First plan A is started, then plan B, and finally the

web server in plan C is instantiated.

"name": "/acme/public/dependencyl”,

24

WO 2013/122815 PCT/US2013/025211

"oplans": [
{
"ha_policy™": "active",
||labell|: "A"’
"obj type": "seclist",
"objects": [
{

n.n

"description": "orchestration: webserver seclist”,

"name": "/acme/public/webserver"

}

n.n

"description": "orchestration: dbserver seclist",

"name": "/acme/public/dbserver"

}

n. n

"ha_policy™": "active",
"label": "B",
"obj type": "secrule",
"objects": [
{
"action": "PERMIT",
"application": "/acme/public/mysql",
"description": "orchestration: secrule",
"dst_list": "seclist:/acme/public/dbserver”,

"name": "/acme/public/secrule",

"src_list": "seclist:/acme/public/webserver"

25

WO 2013/122815

n. n

"ha_policy": "active",
"label": "C",
"obj_type": "launchplan”,
"objects": [
{
"instances": [
{
"imagelist": "/acme/public/lucid64",
"label": "test_instance",
"name": "/acme/public/lucid64",

"shape": "small",

"user_data": {}

1,

"relationships™: [
{
"oplan": "B",
"to_oplan": "A",
"type": "depends"
}s

||0planl|: "A"’
"to_oplan": "C",

"type": "depends"

26

PCT/US2013/025211

WO 2013/122815 PCT/US2013/025211

Nesting orchestrations

[0063] In this example orchestration, several other orchestrations are referred to by name.

{
"name": "/acme/public/master1",
"oplans": [
{

n. n

"ha_policy": "monitor",
"label": "composite-orchestration",
"obj type": "orchestration",
"objects": [

{

"name": "/acme/public/secl”

}

"name": "/acme/public/Ip2"

}

"name": "/acme/public/nat1"

}

"name": "/acme/public/Ip1"

27

WO 2013/122815 PCT/US2013/025211

Third Parties

[0064] The system not only allows users to orchestrate using their own created objects and
processes, but third party created objects and processes as well. This allows for an extensible
cloud where third party objects and processes are seamlessly integrated into the cloud and can
show up in the API or CLI itself for complete availability. Using parameterized fields, templates
can also be created for these orchestrations and shared amongst community of users. This will
enable sharing of ideas amongst a community to enable multi cloud application stacks .Users can
refer other orchestrations in their templates thereby enabling richer collaboration.
Troubleshooting / Status of an orchestration

[0065] Orchestration also allows a developer to observe their entire use of the cloud at once.
A master orchestration can display information about how all the interdependent orchestrations
are running. If something isn’t working correctly, the master orchestration can indicate so. The
orchestration can also indicate if security rules have been changed. It will find faults throughout
the cloud and report them. It will find faults on objects and orchestrations running on multiple
clouds and report them as well.

Cloud Level Interface (CLI)

[0066] An example of a cloud level interface for the system is shown below:

"name": "/nimbula/public/o1",
"oplans": [
{
"label" : "tinyplan",
"obj_type": "launchplan”,
"objects": [
{
"instances" : [
{
"shape" : "small",
"imagelist": "/nimbula/public/tinycore",

"user_data": {},

28

WO 2013/122815 PCT/US2013/025211

1

"label": "test_instance'

“ha_policy”: “active”

}s

{
“label” : “other-orchestration”
“obj_type”: “orchestration”,
“objects”: [“/nimbula/public/02”]

}

[0067] As can be seen, it consists of two orchestration plans: ‘tinyplan,” which is a launchplan
and ‘other-orchestration,’ which points to another orchestration. In this case ‘adding’ an
orchestration is separated from ‘starting’ an orchestration. Since ‘Start’ is just changing the state
of an object, the query arguments are provided as part of an update operation.

[0068] In this case, the CLI command would be nimbula-api start orchestration
/mimbula/public/o1. RESTfully it will specify a query argument as part of update operation. For
example, PUT http://api.<sitename>.nimbula/orchestration/nimbula/public/o1?action=START.
Performance and Scale

[0069] Load Balancing is achieved via distributing orchestrations across different
orchestration managers. This way a single orchestration can point to multiple orchestration

objects and can drive a whole hierarchy (all assigned to different managers).

CONCLUSION
[0070] The foregoing description, for purpose of explanation, has been described with
reference to specific examples. However, the illustrative discussions above are not intended to be

exhaustive or to limit the invention to the precise forms disclosed. Many modifications and

29

WO 2013/122815 PCT/US2013/025211

variations are possible in view of the above teachings. This includes practicing the examples of
the various subject matter described above in any combination. The examples were chosen and
described in order to best explain the principles of the invention and its practical applications, to
thereby enable others skilled in the art to best utilize the inventions with various modifications as
are suited to the particular use contemplated.

[0071] As disclosed herein, features consistent with the present inventions may be
implemented via computer-hardware, software and/or firmware. For example, the systems and
methods disclosed herein may be embodied in various forms including, for example, a data
processor, such as a computer that also includes a database, digital electronic circuitry, firmware,
software, computer networks, servers, or in combinations of them. Further, while some of the
disclosed implementations describe specific hardware components, systems and methods
consistent with the innovations herein may be implemented with any combination of hardware,
software and/or firmware. Moreover, the above-noted features and other aspects and principles
of the innovations herein may be implemented in various environments. Such environments and
related applications may be specially constructed for performing the various routines, processes
and/or operations according to the invention or they may include a general-purpose computer or
computing platform selectively activated or reconfigured by code to provide the necessary
functionality. The processes disclosed herein are not inherently related to any particular
computer, network, architecture, environment, or other apparatus, and may be implemented by a
suitable combination of hardware, software, and/or firmware. For example, various general-
purpose machines may be used with programs written in accordance with teachings of the
invention, or it may be more convenient to construct a specialized apparatus or system to
perform the required methods and techniques.

[0072] Aspects of the method and system described herein, such as the logic, may be
implemented as functionality programmed into any of a variety of circuitry, including
programmable logic devices (“PLDs”), such as field programmable gate arrays (“FPGAs”),
programmable array logic (“PAL”) devices, electrically programmable logic and memory
devices and standard cell-based devices, as well as application specific integrated circuits. Some
other possibilities for implementing aspects include: memory devices, microcontrollers with
memory (such as EEPROM), embedded microprocessors, firmware, software, etc. Furthermore,

aspects may be embodied in microprocessors having software-based circuit emulation, discrete

30

WO 2013/122815 PCT/US2013/025211

logic (sequential and combinatorial), custom devices, fuzzy (neural) logic, quantum devices, and
hybrids of any of the above device types. The underlying device technologies may be provided in
a variety of component types, e.g., metal-oxide semiconductor field-effect transistor
(“MOSFET”) technologies like complementary metal-oxide semiconductor (“CMOS”), bipolar
technologies like emitter-coupled logic (“ECL”), polymer technologies (e.g., silicon-conjugated
polymer and metal-conjugated polymer-metal structures), mixed analog and digital, and so on.

[0073] It should also be noted that the various logic and/or functions disclosed herein
may be enabled using any number of combinations of hardware, firmware, and/or as data and/or
instructions embodied in various machine-readable or computer-readable media, in terms of their
behavioral, register transfer, logic component, and/or other characteristics. Computer-readable
media in which such formatted data and/or instructions may be embodied include, but are not
limited to, non-volatile storage media in various forms (e.g., optical, magnetic or semiconductor
storage media) and carrier waves that may be used to transfer such formatted data and/or
instructions through wireless, optical, or wired signaling media or any combination thereof.
Examples of transfers of such formatted data and/or instructions by carrier waves include, but are
not limited to, transfers (uploads, downloads, e-mail, etc.) over the Internet and/or other
computer networks via one or more data transfer protocols (e.g., HTTP, FTP, SMTP, and so on).
[0074] Unless the context clearly requires otherwise, throughout the description and the

9 &<

claims, the words “comprise,” “comprising,” and the like are to be construed in an inclusive
sense as opposed to an exclusive or exhaustive sense; that is to say, in a sense of “including, but
not limited to.” Words using the singular or plural number also include the plural or singular

9

number respectively. Additionally, the words “herein,” “hereunder,” “above,” “below,” and
words of similar import refer to this application as a whole and not to any particular portions of
this application. When the word “or” is used in reference to a list of two or more items, that word
covers all of the following interpretations of the word: any of the items in the list, all of the items
in the list and any combination of the items in the list.

[0075] Although certain presently preferred implementations of the invention have been
specifically described herein, it will be apparent to those skilled in the art to which the invention
pertains that variations and modifications of the various implementations shown and described

herein may be made without departing from the spirit and scope of the invention. Accordingly, it

is intended that the invention be limited only to the extent required by the applicable rules of law.

31

WO 2013/122815 PCT/US2013/025211

[0076] The foregoing description, for purpose of explanation, has been described with
reference to specific embodiments. However, the illustrative discussions above are not intended
to be exhaustive or to limit the invention to the precise forms disclosed. Many modifications and
variations are possible in view of the above teachings. The embodiments were chosen and
described in order to best explain the principles of the invention and its practical applications, to
thereby enable others skilled in the art to best utilize the invention and various embodiments with

various modifications as are suited to the particular use contemplated.

32

WO 2013/122815 PCT/US2013/025211

CLAIMS

What is claimed is,

1. A method of managing computer cloud resources, comprising:

receiving, via at least one server acting as an orchestration site, at least one cloud
resource management plan from at least one user;

storing, via the at least one server, the at least one plan in at least one storage;

retrieving, via the at least one server acting as an orchestration manager, the at
least one plan from at the at least one database; and

executing the plan, via the at least one server, with at least one site controller.
2. The method of claim 1 wherein the orchestration site and the orchestration manager are further
configured to communicate over a distributed messaging bus.
3. The method of claim 2 wherein the communication includes information regarding whether
the at least one plan is ready for execution.
4. The method of claim 1 wherein the at least one plan includes at least one group of cloud
resources.
5. The method of claim 4 wherein the at least one group includes at least one cloud resource and
a policy regarding the at least one resource.
6. The method of claim 5 wherein the plan includes information regarding the interaction of the
at least one group with other groups.
7. The method of claim 1 wherein the plan includes a name of the plan.
8. The method of claim 1 wherein the at least one site controller includes a cloud resource.
9. The method of claim 1 wherein the storage is at least one of a database and cloud storage.
10. A method of managing computer cloud resources, comprising:

at least one storage,
at least one server configured to,

receive at least one cloud computing resource orchestration plan from at least one

user,
wherein the cloud computing resource orchestration plan includes plans to

coordinate at least one cloud resource;

group the planned cloud resources into similar types;

33

WO 2013/122815 PCT/US2013/025211

assign a policy to each group of cloud resources;
store, in at least one database, the cloud computing resource orchestration plan;
communicate that the orchestration plan is ready for execution;
coordinate execution of the orchestration plan with at least one site coordinator,
wherein the at least one site controller, controls a cloud resource.
11. The method of claim 10 wherein the cloud resource is at least one of, a virtual machine, a
physical machine, an operating system, storage service, networking service, and an application
service.
12. A system of managing computer cloud resources, comprising:
at least one storage,
at least one server configured to,
act as an orchestration site,
wherein the orchestration site is configured to receive at least one cloud
resource management plan from at least one user and store the at least one plan in the at least one
database; and
act as an orchestration manager,
wherein the orchestration manager is configured to retrieve the at least one
plan from the at least one database and execute the plan with at least one site controller.
13. The system of claim 12 wherein the orchestration site and the orchestration manager are
further configured to communicate over a distributed messaging bus.
14. The system of claim 13 wherein the communication includes information regarding whether
the at least one plan is ready for execution.
15. The system of claim 12 wherein the at least one plan includes at least one group of cloud
resources.
16. The system of claim 15 wherein the at least one group includes at least one cloud resource
and a policy regarding the at least one resource.
17. The system of claim 16 wherein the plan includes information regarding the interaction of the
at least one group with other groups.
18. The system of claim 12 wherein the plan includes a name of the plan.
19. The system of claim 12 wherein the at least one site controller includes a cloud resource.

20. The system of claim 12 wherein the storage is at least one of a database and cloud storage.

34

WO 2013/122815 PCT/US2013/025211

21. The system of claim 12 wherein the at least one cloud resource management plan includes
instructions including configuring a master orchestration to drive at least one sub orchestration.
22. The system of claim 12 wherein a cloud resource includes at least one of, a third party
provided object and third party provided cloud service.

23. The method of claim 10 wherein the cloud resource is a combination of at least two of, a
virtual machine, a physical machine, an operating system, storage service, networking service,

and an application service.

35

PCT/US2013/025211

WO 2013/122815

117

L 84nbi4

0Zl1
ajelisayoiQ

4

8L
sdiysuoneal auyaQqg

4

9Ll
(sueido ppy "o'1)
s)09lqo Jo dnoub sjdiynw ppy

4

vLL
lege enbiun ppy

zLL
(vH "68) seiolj0d ppY

oLl
(,ueldo, ue syeald

0}) adA] Jejiwis Jo syoalqo dnouo

PCT/US2013/025211

WO 2013/122815

217

()¢ 8inbi4

91¢

(e)z @inbi

7
\\\\\\\ azie
vic \\\\\\ ecie

PCT/US2013/025211

WO 2013/122815

3/7

vee

saioljod

0,

8lc

(9)z @inbi4

sololjod

d

9i¢

sololjod

v

1424

PCT/US2013/025211
1

4/7

uoneJ}seyo.Io

rIIII

WO 2013/122815

¢ ainbiH

saloljod

0,

vcée

saioljod

d

saioljod

v

PCT/US2013/025211

WO 2013/122815

5/7

Ly

437

PCT/US2013/025211

WO 2013/122815

6/7

0€g

=

9¢s

G a.nbi4

durdessopy
paMqLysIq
14

(4]

PCT/US2013/025211

WO 2013/122815

777

9 a.nbi4

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US2013/025211

A. CLASSIFICATION OF SUBJECT MATTER
IPC(8) - GOBF 21/00 (2013.01)
USPC - 715/734

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

IPC(8) - GO6F 3/01; 15/ 173; 21/00 (2013.01)
USPC - 709/219, 226; 715/734

Minimum documentation searched (classification system followed by classification symbols)

CPC - GO6F 3/01; 15/ 173; 21/00 (2013.01)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of

Google, Orbit.com, Google Patents

data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X WO 2011/159842 A2 (VAN BILJON et al) 22 December 2011 (22.12.2011) entire document 1-6, 8, 9, 12-17, 19-22
; ;,“10, 11, 18,23

Y US 2009/0240728 A1 (SHUKLA et al) 24 September 2009 (24.09.2009) entire document 7,10, 11, 18,23

A US 2012/0017112 A1 (BRODA et al) 19 January 2012 (19.01.2012) entire document 1-23

A US 2011/0055712 A1 (TUNG et. al) 03 March 2011 (03.03.2012) entire document 1-23

[:I Further documents are listed in the continuation of Box C.

[

* Special categories of cited documents:

“A” document defining the general state of the art which is not considered
to be of particular relevance

“E” earlier application or patent but published on or after the interational
filing date

“L” document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

“0” document referring to an oral disclosure, use, exhibition or other
means

“P” document published prior to the international filing date but later than

the priority date claimed

later document published after the international filing date or priority
date and not in conflict with the apﬁhqatlon but cited to understand
the principle or theory underlying the invention

document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

“Y” document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“&” document member of the same patent family

Date of the actual completion of the international search

27 March 2013

Date of mailing of the international search report

16 APR 2013

Name and mailing address of the ISA/US

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450

Facsimile No. 571-273-3201

Authorized officer:
Blaine R. Copenheaver

PCT Helpdesk: 571-272-4300
PCT OSP: 571-272-7774

Form PCT/ISA/210 (second sheet) (July 2009)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - claims
	Page 35 - claims
	Page 36 - claims
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - wo-search-report

