wo 20187013157 A1 |0 000 OO0 O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

J

=

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
18 January 2018 (18.01.2018)

(10) International Publication Number

WO 2018/013157 Al

WIPO I PCT

(51) International Patent Classification:
GO6F 13/362 (2006.01) GO6F 13/16 (2006.01)

(21) International Application Number:
PCT/US2016/053131

(22) International Filing Date:
22 September 2016 (22.09.2016)

(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:

15/211,815 15 July 2016 (15.07.2016) US

(71) Applicant: ADVANCED MICRO DEVICES, INC.
[US/US]; One AMD Place, AMD Law Department, Sunny-
vale, California 94088 (US).

(72) Imventors: MAGRO, James R.; 7171 Southwest Parkway,
Austin, Texas 78735 (US). BALAKRISHNAN, Kedar-
nath; 7171 Southwest Parkway, Austin, Texas 78735 (US).

PENG, Jackson; One AMD Place, Sunnyvale, Califor-
nia 94088 (US). KANAYAMA, Hideki; One AMD Place,
Sunnyvale, California 94088 (US).

(74) Agent: POLANSKY, Paul, J,; POLANSKY &
ASSOCIATES, P.L.L.C., 12600 Hill Country Blvd., Suite

R-275, Austin, Texas 78738 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA,CH,CL,CN,CO,CR, CU,CZ,DE, DK, DM, DO, DZ,
EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR,
HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KW, KZ,
LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK,
MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA,
PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD,
SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT,
TZ,UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(54) Title: COMMAND ARBITRATION FOR HIGH SPEED MEMORY INTERFACES

FROM COMMAND QUEUE 520 538
TO COMMAND =
600~ QUEUE 520 UCLK
4610 4620 4630
660 1 l
! 534y i PH PC PM
| ! ARB ARB ARB [605
| 5364 TMING| |
612 622
| [PacE T ! 632
TOFROMREPLAY) | TABLE 662 | 4 614 624
QUEUE 530 | PAGE CLOSE).. : 634
| PREDICTOR |
g +
FINAL ARBITER
\ /<650
CMD1 CMD2
TO QUEUE 514

FIG. 6

(57) Abstract: In one form, a memory controller includes a command queue and an arbiter. The command queue receives and stores
memory access requests. The arbiter includes a plurality of sub-arbiters for providing a corresponding plurality of sub-arbitration
winners from among the memory access requests during a controller cycle, and for selecting among the plurality of sub-arbitration
winners to provide a plurality of memory commands in a corresponding controller cycle. In another form, a data processing system
includes a memory accessing agent for providing memory accesses requests, a memory system, and the memory controller coupled to

the memory accessing agent and the memory system.

[Continued on next page]

WO 2018/013157 A1 { NI /00O N OO

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Published:
— with international search report (Art. 21(3))

WO 2018/013157 PCT/US2016/053131

COMMAND ARBITRATION FOR HIGH SPEED MEMORY INTERFACES

James R. Magro
Kedarnath Balakrishnan
Jackson Peng

Hideki Kanayama

TECHNICAL FIELD

[0001] This disclosure relates generally to data processing systems, and more specifically to memory

controllers for use in data processing systems with high speed memory interfaces.

BACKGROUND ART

[0002] Computer systems typically use inexpensive and high density dynamic random access memory
(DRAM) chips for main memory. Most DRAM chips sold today are compatible with various double data rate
(DDR) DRAM standards promulgated by the Joint Electron Devices Engineering Council (JEDEC). DDR DRAMs
use conventional DRAM memory cell arrays with high-speed access circuits to achieve high transfer rates and to
improve the utilization of the memory bus. For example, DDR4 DRAMs use memory cell arrays that require 12-15
nanosecond (ns) access times, but access large amounts of data and serialize the data at speeds up to 3.2 giga
transfers per second (GT/sec) corresponding to a memory clock frequency of 1.6 gigahertz (GHz). The transfers use
pseudo-open-drain techniques with on-die termination for good transmission line performance. While it is possible
to operate a point-to-point interface at that rate to achieve fast transfers, it has become increasingly difficult for

memory controllers to operate at fast enough speeds to schedule memory accesses.

[0003] A typical DDR memory controller maintains a queue to store pending read and write requests to allow
the memory controller to pick the pending requests out of order and thereby to increase efficiency. For example, the
memory controller can retrieve multiple memory access requests to the same row in a given rank of memory
(referred to as “page hits”) from the queue out of order and issue them consecutively to the memory system to avoid
the overhead of precharging the current row and activating another row repeatedly. However scanning and picking
accesses from a deep queue while taking advantage of the bus bandwidth available with modern memory

technologies such as DDR4 has become difficult to achieve with known memory controllers.

BRIEF DESCRIPTION OF DRAWINGS
[0004] FIG. 1 illustrates in block diagram form a data processing system according to some embodiments;

[0005] FIG. 2 illustrates in block diagram form an accelerated processing unit (APU) suitable for use in the

data processing system of FIG. 1;

[0006] FIG. 3 illustrates in block diagram form a memory controller and associated physical interface (PHY)

suitable for use in the APU of FIG. 2 according to some embodiments;

1

WO 2018/013157 PCT/US2016/053131

[0007] FIG. 4 illustrates in block diagram form another memory controller and associated PHY suitable for

use in the APU of FIG. 2 according to some embodiments;
[0008] FIG. 5 illustrates in block diagram form a memory controller according to some embodiments; and

[0009] FIG. 6 illustrates a block diagram an arbiter that may be used as the arbiter of FIG. 5 according to

some embodiments.

[0010] In the following description, the use of the same reference numerals in different drawings indicates
similar or identical items. Unless otherwise noted, the word “coupled” and its associated verb forms include both
direct connection and indirect electrical connection by means known in the art, and unless otherwise noted any
description of direct connection implies alternate embodiments using suitable forms of indirect electrical connection

as well.

DESCRIPTION OF EMBODIMENTS

[0011] As will be described below in one form, a memory controller includes a command queue and an
arbiter. The command queue is for receiving and storing memory access requests. The arbiter includes a plurality
of sub-arbiters providing a corresponding plurality of sub-arbitration winners from among the memory access
requests during a controller cycle, and selects among the plurality of sub-arbitration winners to provide a plurality of
memory commands in a corresponding controller cycle. In some embodiments, a memory command cycle may be
shorter in time than the controller cycle. For example, the controller can operate according to a controller clock
signal while the memory cycles are defined by a memory clock signal, the memory clock signal having a higher
frequency than the controller clock signal. The plurality of sub-arbiters can include a first sub-arbiter that selects a
first sub-arbitration winner among page hit commands in the command queue, a second sub-arbiter that selects a
second sub-arbitration winner among page conflict commands in the command queue, and a third sub-arbiter that
selects a third sub-arbitration winner among page miss commands in the command queue. The arbiter can further

include a final arbiter for selecting among the first, second, and third sub-arbitration winner.

[0012] In another form, a data processing system includes a memory accessing agent for providing a plurality
of memory access requests, a memory system, and a memory controller coupled to the memory accessing agent and
the memory system. The memory controller includes a command queue and an arbiter. The command queue stores
memory access commands received from the memory accessing agent. The arbiter includes a plurality of sub-
arbiters for providing a corresponding plurality of sub-arbitration winners from among the memory access requests
during a controller cycle and for selecting among the plurality of sub-arbitration winners to provide a plurality of

memory commands in a corresponding controller cycle.

[0013] In yet another form, a method for arbitrating among memory access requests may be used to improve
performance and efficiency. A plurality of memory access requests are received and stored in a command queue. A
plurality of sub-arbitration winners are selected from among the memory access requests during a first controller
cycle. A plurality of memory commands are selected among the plurality of sub-arbitration winners and provided in

a corresponding plurality of memory command cycles.

[0014] FIG. 1 illustrates in block diagram form a data processing system 100 according to some embodiments.

Data processing system 100 includes generally a data processor 110 in the form of an accelerated processing unit

2

WO 2018/013157 PCT/US2016/053131

(APU), a memory system 120, a peripheral component interconnect express (PCle) system 150, a universal serial
bus (USB) system 160, and a disk drive 170. Data processor 110 operates as the central processing unit (CPU) of
data processing system 100 and provides various buses and interfaces useful in modern computer systems. These
interfaces include two double data rate (DDRx) memory channels, a PCle root complex for connection to a PCle
link, a USB controller for connection to a USB network, and an interface to a Serial Advanced Technology
Attachment (SATA) mass storage device.

[0015] Memory system 120 includes a memory channel 130 and a memory channel 140. Memory channel
130 includes a set of dual inline memory modules (DIMMs) connected to a DDRx bus 132, including representative
DIMMSs 134, 136, and 138 that in this example correspond to separate ranks. Likewise memory channel 140
includes a set of DIMMs connected to a DDRx bus 142, including representative DIMMs 144, 146, and 148.

[0016] PCle system 150 includes a PCle switch 152 connected to the PCle root complex in data processor
110, a PCle device 154, a PCle device 156, and a PCle device 158. PCle device 156 in turn is connected to a
system basic input/output system (BIOS) memory 157. System BIOS memory 157 can be any of a variety of non-
volatile memory types, such as read-only memory (ROM), flash electrically erasable programmable ROM
(EEPROM), and the like.

[0017] USB system 160 includes a USB hub 162 connected to a USB master in data processor 110, and
representative USB devices 164, 166, and 168 each connected to USB hub 162. USB devices 164, 166, and 168
could be devices such as a keyboard, a mouse, a flash EEPROM port, and the like.

[0018] Disk drive 170 is connected to data processor 110 over a SATA bus and provides mass storage for the

operating system, application programs, application files, and the like.

[0019] Data processing system 100 is suitable for use in modern computing applications by providing a
memory channel 130 and a memory channel 140. Each of memory channels 130 and 140 can connect to state-of-
the-art DDR memories such as DDR version four (DDR4), low power DDR4 (LPDDRA4), graphics DDR version
five (GDDRSY), and high bandwidth memory (HBM), and can be adapted for future memory technologies. These
memories provide high bus bandwidth and high speed operation. At the same time, they also provide low power
modes to save power for battery-powered applications such as laptop computers, and also provide built-in thermal

monitoring.

[0020] FIG. 2 illustrates in block diagram form an APU 200 suitable for use in data processing system 100 of
FIG. 1. APU 200 includes generally a central processing unit (CPU) core complex 210, a graphics core 220, a set of
display engines 230, a memory management hub 240, a data fabric 250, a set of peripheral controllers 260, a set of

peripheral bus controllers 270, a system management unit (SMU) 280, and a set of memory controllers 290.

[0021] CPU core complex 210 includes a CPU core 212 and a CPU core 214. In this example, CPU core
complex 210 includes two CPU cores, but in other embodiments CPU core complex 210 can include an arbitrary
number of CPU cores. Each of CPU cores 212 and 214 is bidirectionally connected to a system management
network (SMN), which forms a control fabric, and to data fabric 250, and is capable of providing memory access
requests to data fabric 250. Each of CPU cores 212 and 214 may be unitary cores, or may further be a core complex

with two or more unitary cores sharing certain resources such as caches.

WO 2018/013157 PCT/US2016/053131

[0022] Graphics core 220 is a high performance graphics processing unit (GPU) capable of performing
graphics operations such as vertex processing, fragment processing, shading, texture blending, and the like in a
highly integrated and parallel fashion. Graphics core 220 is bidirectionally connected to the SMN and to data fabric
250, and is capable of providing memory access requests to data fabric 250. In this regard, APU 200 may either
support a unified memory architecture in which CPU core complex 210 and graphics core 220 share the same
memory space, or a memory architecture in which CPU core complex 210 and graphics core 220 share a portion of
the memory space, while graphics core 220 also uses a private graphics memory not accessible by CPU core

complex 210.

[0023] Display engines 230 render and rasterize objects generated by graphics core 220 for display ona
monitor. Graphics core 220 and display engines 230 are bidirectionally connected to a common memory
management hub 240 for uniform translation into appropriate addresses in memory system 120, and memory
management hub 240 is bidirectionally connected to data fabric 250 for generating such memory accesses and

receiving read data returned from the memory system.

[0024] Data fabric 250 includes a crossbar switch for routing memory access requests and memory responses
between any memory accessing agent and memory controllers 290. It also includes a system memory map, defined
by BIOS, for determining destinations of memory accesses based on the system configuration, as well as buffers for

each virtual connection.

[0025] Peripheral controllers 260 include a USB controller 262 and a SATA interface controller 264, each of
which is bidirectionally connected to a system hub 266 and to the SMN bus. These two controllers are merely
exemplary of peripheral controllers that may be used in APU 200.

[0026] Peripheral bus controllers 270 include a system controller or “Southbridge” (SB) 272 and a PCle
controller 274, each of which is bidirectionally connected to an input/output (I/O) hub 276 and to the SMN bus. /O
hub 276 is also bidirectionally connected to system hub 266 and to data fabric 250. Thus for example a CPU core
can program registers in USB controller 262, SATA interface controller 264, SB 272, or PCle controller 274
through accesses that data fabric 250 routes through I/O hub 276.

[0027] SMU 280 is a local controller that controls the operation of the resources on APU 200 and
synchronizes communication among them. SMU 280 manages power-up sequencing of the various processors on
APU 200 and controls multiple off-chip devices via reset, enable and other signals. SMU 280 includes one or more
clock sources not shown in FIG. 2, such as a phase locked loop (PLL), to provide clock signals for each of the
components of APU 200. SMU 280 also manages power for the various processors and other functional blocks, and
may receive measured power consumption values from CPU cores 212 and 214 and graphics core 220 to determine

appropriate power states.

[0028] APU 200 also implements various system monitoring and power saving functions. In particular one
system monitoring function is thermal monitoring. For example, if APU 200 becomes hot, then SMU 280 can
reduce the frequency and voltage of CPU cores 212 and 214 and/or graphics core 220. If APU 200 becomes too hot,
then it can be shut down entirely. Thermal events can also be received from external sensors by SMU 280 via the

SMN bus, and SMU 280 can reduce the clock frequency and/or power supply voltage in response.

[0029] FIG. 3 illustrates in block diagram form a memory controller 300 and an associated physical interface

(PHY) 330 suitable for use in APU 200 of FIG. 2 according to some embodiments. Memory controller 300 includes
4

WO 2018/013157 PCT/US2016/053131

a memory channel 310 and a power engine 320. Memory channel 310 includes a host interface 312, a memory
channel controller 314, and a physical interface 316. Host interface 312 bidirectionally connects memory channel
controller 314 to data fabric 250 over a scalable data port (SDP). Physical interface 316 bidirectionally connects
memory channel controller 314 to PHY 330 over a bus that conforms to the DDR-PHY Interface Specification
(DFI). Power engine 320 is bidirectionally connected to SMU 280 over the SMN bus, to PHY 330 over the
Advanced Peripheral Bus (APB), and is also bidirectionally connected to memory channel controller 314. PHY 330
has a bidirectional connection to a memory channel such as memory channel 130 or memory channel 140 of FIG. 1.
Memory controller 300 is an instantiation of a memory controller for a single memory channel using a single
memory channel controller 314, and has a power engine 320 to control operation of memory channel controller 314

in a manner that will be described further below.

[0030] FIG. 4 illustrates in block diagram form another memory controller 400 and associated PHY's 440 and
450 suitable for use in APU 200 of FIG. 2 according to some embodiments. Memory controller 400 includes a
memory channels 410 and 420 and a power engine 430. Memory channel 410 includes a host interface 412, a
memory channel controller 414, and a physical interface 416. Host interface 412 bidirectionally connects memory
channel controller 414 to data fabric 250 over an SDP. Physical interface 416 bidirectionally connects memory
channel controller 414 to PHY 440, and conforms to the DFI Specification. Memory channel 420 includes a host
interface 422, a memory channel controller 424, and a physical interface 426. Host interface 422 bidirectionally
connects memory channel controller 424 to data fabric 250 over another SDP. Physical interface 426 bidirectionally
connects memory channel controller 424 to PHY 450, and conforms to the DFI Specification. Power engine 430 is
bidirectionally connected to SMU 280 over the SMN bus, to PHYs 440 and 450 over the APB, and is also
bidirectionally connected to memory channel controllers 414 and 424. PHY 440 has a bidirectional connection to a
memory channel such as memory channel 130 of FIG. 1. PHY 450 has a bidirectional connection to a memory
channel such as memory channel 140 of FIG. 1. Memory controller 400 is an instantiation of a memory controller
having two memory channel controllers and uses a shared power engine 430 to control operation of both memory

channel controller 414 and memory channel controller 424 in a manner that will be described further below.

[0031] FIG. 5 illustrates in block diagram form a memory controller 500 according to some embodiments.
Memory controller 500 includes a memory channel controller 510 and a power controller 550. Memory channel
controller 510 includes an interface 512, a queue 514, a command queue 520, an address generator 522, a content
addressable memory (CAM) 524, a replay queue 530, a refresh logic block 532, a timing block 534, a page table
536, an arbiter 538, an error correction code (ECC) check block 542, an ECC generation block 544, and a data
buffer (DB) 546.

[0032] Interface 512 has a first bidirectional connection to data fabric 250 over an external bus, and has an
output. In memory controller 500, this external bus is compatible with the advanced extensible interface version
four specified by ARM Holdings, PLC of Cambridge, England, known as “AXI4”, but can be other types of
interfaces in other embodiments. Interface 512 translates memory access requests from a first clock domain known
as the FCLK (or MEMCLK) domain to a second clock domain internal to memory controller 500 known as the
UCLK domain. Similarly, queue 514 provides memory accesses from the UCLK domain to the DFICLK domain

associated with the DFI interface.

[0033] Address generator 522 decodes addresses of memory access requests received from data fabric 250
over the AXI4 bus. The memory access requests include access addresses in the physical address space represented
5

WO 2018/013157 PCT/US2016/053131

in as a normalized address. Address generator 522 converts the normalized addresses into a format that can be used
to address the actual memory devices in memory system 120, as well as to efficiently schedule related accesses.
This format includes a region identifier that associates the memory access request with a particular rank, a row
address, a column address, a bank address, and a bank group. On startup, the system BIOS queries the memory
devices in memory system 120 to determine their size and configuration, and programs a set of configuration
registers associated with address generator 522. Address generator 522 uses the configuration stored in the
configuration registers to translate the normalized addresses into the appropriate format. Command queue 520 is a
queue of memory access requests received from the memory accessing agents in data processing system 100, such
as CPU cores 212 and 214 and graphics core 220. Command queue 520 stores the address fields decoded by
address generator 522 as well other address information that allows arbiter 538 to select memory accesses
efficiently, including access type and quality of service (QoS) identifiers. CAM 524 includes information to enforce
ordering rules, such as write after write (WAW) and read after write (RAW) ordering rules.

[0034] Replay queue 530 is a temporary queue for storing memory accesses picked by arbiter 538 that are
awaiting responses, such as address and command parity responses, write cyclic redundancy check (CRC) responses
for DDR4 DRAM or write and read CRC responses for GDDR5 DRAM. Replay queue 530 accesses ECC check
block 542 to determine whether the returned ECC is correct or indicates an error. Replay queue 530 allows the

accesses to be replayed in the case of a parity or CRC error of one of these cycles.

[0035] Refresh logic 532 includes state machines for various powerdown, refresh, and termination resistance
(ZQ) calibration cycles that are generated separately from normal read and write memory access requests received
from memory accessing agents. For example, if a memory rank is in precharge powerdown, it must be periodically
awakened to run refresh cycles. Refresh logic 532 generates auto-refresh commands periodically to prevent data
errors caused by leaking of charge off storage capacitors of memory cells in DRAM chips. In addition, refresh logic
532 periodically calibrates ZQ to prevent mismatch in on-die termination resistance due to thermal changes in the

system. Refresh logic 532 also decides when to put DRAM devices in different power down modes.

[0036] Arbiter 538 is bidirectionally connected to command queue 520 and is the heart of memory channel
controller 510. It improves efficiency by intelligent scheduling of accesses to improve the usage of the memory bus.
Arbiter 538 uses timing block 534 to enforce proper timing relationships by determining whether certain accesses in
command queue 520 are eligible for issuance based on DRAM timing parameters. For example, each DRAM has a
minimum specified time between activate commands to the same bank, known as “tsc”. Timing block 534
maintains a set of counters that determine eligibility based on this and other timing parameters specified in the
JEDEC specification, and is bidirectionally connected to replay queue 530. Page table 536 maintains state
information about active pages in each bank and rank of the memory channel for arbiter 538, and is bidirectionally

connected to replay queue 530.

[0037] In response to write memory access requests received from interface 512, ECC generation block 544
computes an ECC according to the write data. DB 546 stores the write data and ECC for received memory access
requests. It outputs the combined write data/ECC to queue 514 when arbiter 538 picks the corresponding write

access for dispatch to the memory channel.

[0038] Power controller 550 includes an interface 552 to an advanced extensible interface, version one (AXI),

an APB interface 554, and a power engine 560. Interface 552 has a first bidirectional connection to the SMN, which

WO 2018/013157 PCT/US2016/053131

includes an input for receiving an event signal labeled “EVENT n” shown separately in FIG. 5, and an output. APB
interface 554 has an input connected to the output of interface 552, and an output for connection to a PHY over an
APB. Power engine 560 has an input connected to the output of interface 552, and an output connected to an input
of queue 514. Power engine 560 includes a set of configuration registers 562, a microcontroller (uC) 564, a self
refresh controller (SLFREF/PE) 566, and a reliable read/write training engine (RRW/TE) 568. Configuration
registers 562 are programmed over the AXI bus, and store configuration information to control the operation of
various blocks in memory controller 500. Accordingly, configuration registers 562 have outputs connected to these
blocks that are not shown in detail in FIG. 5. Self refresh controller 566 is an engine that allows the manual
generation of refreshes in addition to the automatic generation of refreshes by refresh logic 532. Reliable read/write
training engine 568 provides a continuous memory access stream to memory or 1/O devices for such purposes as

DDR interface read latency training and loopback testing.

[0039] Memory channel controller 510 includes circuitry that allows it to pick memory accesses for dispatch
to the associated memory channel. In order to make the desired arbitration decisions, address generator 522 decodes
the address information into predecoded information including rank, row address, column address, bank address,
and bank group in the memory system, and command queue 520 stores the predecoded information. Configuration
registers 562 store configuration information to determine how address generator 522 decodes the received address
information. Arbiter 538 uses the decoded address information, timing eligibility information indicated by timing
block 534, and active page information indicated by page table 536 to efficiently schedule memory accesses while
observing other criteria such as QoS requirements. For example, arbiter 538 implements a preference for accesses
to open pages to avoid the overhead of precharge and activation commands required to change memory pages, and
hides overhead accesses to one bank by interleaving them with read and write accesses to another bank. In
particular during normal operation, arbiter 538 may decide to keeps pages open in different banks until they are
required to be precharged prior to selecting a different page.

[0040] FIG. 6 illustrates a block diagram of a portion 600 of memory controller 500 of FIG. 5 according to
some embodiments. Portion 600 includes arbiter 538 and a set of control circuits 660 associated with the operation
of arbiter 538. Arbiter 538 includes a set of sub-arbiters 605 and a final arbiter 650. Sub-arbiters 605 include a sub-
arbiter 610, a sub-arbiter 620, and a sub-arbiter 630. Sub-arbiter 610 includes a page hit arbiter 612 labeled “PH
ARB”, and an output register 614. Page hit arbiter 612 has a first input connected to command queue 520, a second
input, and an output. Register 614 has a data input connected to the output of page hit arbiter 612, a clock input for
receiving the UCLK signal, and an output. Sub-arbiter 620 includes a page conflict arbiter 622 labeled “PC ARB”,
and an output register 624. Page conflict arbiter 622 has a first input connected to command queue 520, a second
input, and an output. Register 624 has a data input connected to the output of page conflict arbiter 622, a clock input
for receiving the UCLK signal, and an output. Sub-arbiter 630 includes a page miss arbiter 632 labeled “PM ARB”,
and an output register 634. Page miss arbiter 632 has a first input connected to command queue 520, a second input,
and an output. Register 634 has a data input connected to the output of page miss arbiter 632, a clock input for
receiving the UCLK signal, and an output. Final arbiter 650 has a first input connected to the output of refresh logic
532, a second input from a page close predictor 662, a third input connected to the output of output register 614, a
fourth input connected to the output of output register 624, a fifth input connected to the output of output register
634, a first output for providing a first arbitration winner to queue 514 labeled “CMD1”, and a second output for

providing a second arbitration winner to queue 514 labeled “CMD2”.

WO 2018/013157 PCT/US2016/053131

[0041] Control circuits 660 include timing block 534 and page table 536 as previously described with respect
to FIG. 5, and a page close predictor 662. Timing block 534 has an input and an output connected to the first inputs
of page hit arbiter 612, page conflict arbiter 622, and page miss arbiter 632. Page table 534 has an input connected
to an output of replay queue 530, an output connected to an input of replay queue 530, an output connected to the
input of command queue 520, an output connected to the input of timing block 534, and an output connected to the
input of page close predictor 662. Page close predictor 662 has an input connected to one output of page table 536,
an input connected to the output of output register 614, and an output connected to the second input of final arbiter
650.

[0042] In operation, arbiter 538 selects memory access requests (commands) from command queue 520 and
refresh logic 532 by taking into account the page status of each entry, the priority of each memory access request,
and the dependencies between requests. The priority is related to the quality of service or QoS of requests received
from the AXI4 bus and stored in command queue 520, but can be altered based on the type of memory access and
the dynamic operation of arbiter 538. Arbiter 538 includes three sub-arbiters that operate in parallel to address the
mismatch between the processing and transmission limits of existing integrated circuit technology. The winners of
the respective sub-arbitrations are presented to final arbiter 650. Final arbiter 650 selects between these three sub-
arbitration winners as well as a refresh operation from refresh logic 532, and may further modify a read or write

command into a read or write with auto-precharge command as determined by page close predictor 662.

[0043] Each of page hit arbiter 612, page conflict arbiter 622, and page miss arbiter 632 has an input
connected to the output of timing block 534 to determine timing eligibility of commands in command queue 520
that fall into these respective categories. Timing block 534 includes an array of binary counters that count durations
related to the particular operations for each bank in each rank. The number of timers needed to determine the status
depends on the timing parameter, the number of banks for the given memory type, and the number of ranks
supported by the system on a given memory channel. The number of timing parameters that are implemented in
turn depends on the type of memory implemented in the system. For example, GDDR5 memories require more
timers to comply with more timing parameters than other DDRx memory types. By including an array of generic

timers implemented as binary counters, timing block 534 can be scaled and reused for different memory types.

[0044] A page hit is a read or write cycle to an open page. Page hit arbiter 612 arbitrates between accesses in
command queue 520 to open pages. The timing eligibility parameters tracked by timers in timing block 534 and
checked by page hit arbiter 612 include, for example, row address strobe (RAS) to column address strobe (CAS)
delay time (trcp) and CAS latency (ter). For example, trep specifies the minimum amount of time that must elapse
before a read or write access to a page after it has been opened in a RAS cycle. Page hit arbiter 612 selects a sub-
arbitration winner based on the assigned priority of the accesses. In one embodiment, the priority is a 4-bit, one-hot
value that therefore indicates a priority among four values, however it should be apparent that this four-level priority
scheme is just one example. If page hit arbiter 612 detects two or more requests at the same priority level, then the

oldest entry wins.

[0045] A page conflict is an access to one row in a bank when another row in the bank is currently activated.

Page conflict arbiter 622 arbitrates between accesses in command queue 520 to pages that conflict with the page that

is currently open in the corresponding bank and rank. Page conflict arbiter 622 selects a sub-arbitration winner that

causes the issnance of a precharge command. The timing eligibility parameters tracked by timers in timing block

534 and checked by page conflict arbiter 622 include, for example, active to precharge command period (tras). Page
8

WO 2018/013157 PCT/US2016/053131

conflict arbiter 622 selects a sub-arbitration winner based on the assigned priority of the access. If page conflict

arbiter 622 detects two or more requests at the same priority level, then the oldest entry wins.

[0046] A page miss is an access to a bank that is in the precharged state. Page miss arbiter 632 arbitrates
between accesses in command queue 520 to precharged memory banks. The timing eligibility parameters tracked
by timers in timing block 534 and checked by page miss arbiter 632 include, for example, precharge command
period (trp). If there are two or more requests that are page misses at the same priority level, then the oldest entry

wins.

[0047] Each sub-arbiter outputs a priority value for their respective sub-arbitration winner. Final arbiter 650
compares the priority values of the sub-arbitration winners from each of page hit arbiter 612, page conflict arbiter
622, and page miss arbiter 632. Final arbiter 650 determines the relative priority among the sub-arbitration winners

by performing a set of relative priority comparisons taking into account two sub-arbitration winners at a time.

[0048] After determining the relative priority among the three sub-arbitration winners, final arbiter 650 then
determines whether the sub-arbitration winners conflict (i.e. whether they are directed to the same bank and rank).
‘When there are no such conflicts, then final arbiter 650 selects up to two sub-arbitration winners with the highest
priorities. When there are conflicts, then final arbiter 650 complies with the following rules. When the priority
value of the sub-arbitration winner of page hit arbiter 612 is higher than that of page conflict arbiter 622, and they
are both to the same bank and rank, then final arbiter 650 selects the access indicated by page hit arbiter 612. When
the priority value of the sub-arbitration winner of page conflict arbiter 622 is higher than that of page hit arbiter 612,
and they are both to the same bank and rank, final arbiter 650 selects the winner based on several additional factors.
In some cases, page close predictor 662 causes the page to close at the end of the access indicated by page hit arbiter

612 by setting the auto precharge attribute.

[0049] Within page hit arbiter 612, priority is initially set by the request priority from the memory accessing
agent but is adjusted dynamically based on the type of accesses (read or write) and the sequence of accesses. In
general, page hit arbiter 612 assigns a higher implicit priority to reads, but implements a priority elevation

mechanism to ensure that writes make progress toward completion.

[0050] Whenever page hit arbiter 612 selects a read or write command, page close predictor 662 determines
whether to send the command with the auto-precharge (AP) attribute or not. During a read or write cycle, the auto-
precharge attribute is set with a predefined address bit and the auto-precharge attribute causes the DDR device to
close the page after the read or write cycle is complete, which avoids the need for the memory controller to later
send a separate precharge command for that bank. Page close predictor 662 takes into account other requests
already present in command queue 520 that access the same bank as the selected command. If page close predictor

662 converts a memory access into an AP command, the next access to that page will be a page miss.

[0051] Arbiter 538 supports issuing of either one command or two commands per memory controller clock
cycle. For example, DDR4 3200 is a speed bin of DDR4 DRAM that operates with a memory clock frequency of
1600 MHz. If the integrated circuit process technology allows memory controller 500 to operate at 1600 MHz, then
memory controller 500 can issue one memory access every memory controller clock cycle. In this case final arbiter
650 is enabled to operate in a 1 X mode to select only a single arbitration winner every memory controller clock

cycle.

WO 2018/013157 PCT/US2016/053131

[0052] However for higher speed memory, such as DDR4 3600 or LPDDR4 4667, the 1600 MHz memory
controller clock speed may be too slow to use the full bandwidth of the memory bus. To accommodate these higher
performance DR AMs, arbiter 538 also supports a 2X mode in which final arbiter 650 selects two commands (CMD1
and CMD?2) every memory controller clock cycle. Arbiter 538 provides this mode to allow each sub-arbiter to work
in parallel using the slower memory controller clock. As shown in FIG. 6, arbiter 538 includes three sub-arbiters,

and in 2X mode, final arbiter 650 selects two arbitration winners as the best two of three.

[0053] Note that the 2X mode also allows memory controller 500 to operate at a slower memory controller
clock speed than its highest speed to align the memory controller command generation to the memory clock cycle.
For the example of DDR4 3600 when the memory controller can operate up to a clock speed of 1600 MHz, the
clock speed can be reduced to 900 MHz in 2X mode.

[0054] By using different sub-arbiters for different memory access types, each arbiter can be implemented
with simpler logic than if it were required to arbitrate between all access types (page hits, page misses, and page
conflicts). Thus the arbitration logic can be simplified and the size of arbiter 538 can be kept relatively small. By
using sub-arbiters for page hits, page conflicts, and page misses, arbiter 538 allows the picking of two commands

which pair well with each other to hide latency accesses with data transfers.

[0055] In other embodiments, arbiter 538 could include a different number of sub-arbiters as long as it has at
least two to support 2X mode. For example, arbiter 538 could include four sub-arbiters and would allow up to four
accesses to be picked per memory controller clock cycle. In yet other embodiments, arbiter 538 could include two
or more sub-arbiters of any single type. For example arbiter 538 could include two or more page hit arbiters, two or
more page conflict arbiters, and/or two or more page miss arbiters. In this case, arbiter 538 is able to select two or

more accesses of the same type each controller cycle.

[0056] The circuits of FIGs. 5 and 6 may be implemented with various combinations of hardware and
software. For example the hardware circuitry may include priority encoders, finite state machines, programmable
logic arrays (PLAs), and the like, arbiter 538 could be implemented with a microcontroller executing stored program
instructions to evaluate the relative timing eligibility of the pending commands. In this case some of the instructions
may be stored in a non-transitory computer memory or computer readable storage medium for execution by the
microcontroller. Invarious embodiments, the non-transitory computer readable storage medium includes a
magnetic or optical disk storage device, solid-state storage devices such as Flash memory, or other non-volatile
memory device or devices. The computer readable instructions stored on the non-transitory computer readable
storage medium may be in source code, assembly language code, object code, or other instruction format that is

interpreted and/or executable by one or more processors.

[0057] APU 110 of FIG. 1 or memory controller 500 of FIG. 5 or any portions thereof, such as arbiter 538,
may be described or represented by a computer accessible data structure in the form of a database or other data
structure which can be read by a program and used, directly or indirectly, to fabricate integrated circuits. For
example, this data structure may be a behavioral-level description or register-transfer level (RTL) description of the
hardware functionality in a high level design language (HDL) such as Verilog or VHDL. The description may be
read by a synthesis tool which may synthesize the description to produce a netlist comprising a list of gates from a
synthesis library. The netlist comprises a set of gates that also represent the functionality of the hardware

comprising integrated circuits. The netlist may then be placed and routed to produce a data set describing geometric

10

WO 2018/013157 PCT/US2016/053131

shapes to be applied to masks. The masks may then be used in various semiconductor fabrication steps to produce
the integrated circuits. Alternatively, the database on the computer accessible storage medium may be the netlist

(with or without the synthesis library) or the data set, as desired, or Graphic Data System (GDS) II data.

[0058] While particular embodiments have been described, various modifications to these embodiments will
be apparent to those skilled in the art. For example, the internal architecture of memory channel controller 510
and/or power engine 550 may vary in different embodiments. Memory controller 500 may interface to other types
of memory besides DDRx memory, such as high bandwidth memory (HBM), RAMbus DRAM (RDRAM), and the
like. While the illustrated embodiment showed each rank of memory corresponding to separate DIMMSs, in other
embodiments each DIMM can support multiple ranks.

[0059] Accordingly, it is intended by the appended claims to cover all modifications of the disclosed
embodiments that fall within the scope of the disclosed embodiments.

11

WO 2018/013157 PCT/US2016/053131

WHAT IS CLAIMED IS:

1. A memory controller (500), comprising;

a command queue (520) for receiving and storing memory access requests; and

an arbiter (538) comprising a plurality of sub-arbiters (605) for providing a corresponding plurality of sub-
arbitration winners from among said memory access requests during a controller cycle, and for
selecting among said plurality of sub-arbitration winners to provide a plurality of memory

commands in a corresponding controller cycle.

2. The memory controller (500) of claim 1, wherein a memory command cycle is shorter in time than said

corresponding controller cycle.

3. The memory controller (500) of claim 2, wherein:
said controller cycle is defined by a controller clock signal,
said memory command cycle is defined by a memory clock signal, and

said memory clock signal has a higher frequency than said controller clock signal.

4. The memory controller (500) of claim 3, wherein a frequency of said memory clock signal is twice a frequency

of said controller clock signal.

5. The memory controller (500) of claim 1 wherein said plurality of sub-arbiters (605) comprises:

a first sub-arbiter (610) coupled to said command queue (520) for determining a first sub-arbitration winner
among active entries in said command queue (520) in synchronization with a controller clock
signal; and

a second sub-arbiter (620) coupled to said command queue (520) for determining a second sub- arbitration
winner among said active entries in said command (520) queue in synchronization with said
controller clock signal, said second arbitration winner different from said first arbitration winner,

wherein said memory controller (500) is operative to output said first sub-arbitration winner as a first
memory command in a first cycle of a memory clock signal, and said second sub-arbitration
winner as a second memory command in a subsequent cycle of said memory clock signal, wherein

a frequency of said memory clock signal is higher that a frequency of said controller clock signal.

6. The memory controller (500) of claim 5, wherein said plurality of sub-arbiters (605) further comprises:
a third sub-arbiter (630) coupled to said command queue (520) for determining a third sub-arbitration

winner among active entries in said command queue (520) in synchronization with said controller

clock signal.

7. The memory controller (500) of claim 6, wherein said arbiter (538) further comprises:
a final arbiter (650) for selecting two final arbitration winners from among said first, second, and third sub-
arbitration winners, and for providing said two final arbitration winners as said first and second

memory commands.

12

WO 2018/013157 PCT/US2016/053131

8. The memory controller (500) of claim 7, wherein said final arbiter (650) selects said two final arbitration

winners further from among said first, second, and third arbitration winners and an overhead command.

9. The memory controller (500) of claim 8, wherein said overhead command comprises one of a powerdown

command, an auto-refresh command, and a calibration command.

10. The memory controller (500) of claim 7, wherein:
said plurality of sub-arbiters (605) further comprises at least one additional sub-arbiter of a same type as
one of said first sub-arbiter (610), said second sub-arbiter (620), and said third sub-arbiter (630),
and
wherein said final arbiter (650) is able to select two final arbitration winners of said same type from among

said plurality of sub-arbiters (605) in said corresponding controller cycle.

11. The memory controller (500) of claim 6, wherein:
said first sub-arbiter (610) selects said first sub-arbitration winner from page hit commands in said
command queue (520);
said second sub-arbiter (620) selects said second sub-arbitration winner from page conflict commands in
said command queue (520); and
said third sub-arbiter (630) selects said third sub-arbitration winner from page miss commands in said

command queue (520).

12. The memory controller (500) of claim 1 wherein:
each of said plurality of sub-arbiters (605) selects arbitration winners among commands of an associated
type in said command queue (520),
at least two of said plurality of sub-arbiters (605) selects arbitration winners of a same type, and
said arbiter (538) is able to select two final arbitration winners of said same type from among said plurality

of sub-arbiters (605) in said corresponding controller cycle.

13. A data processing system (100), comprising;:
a memory accessing agent (110/210/220) for providing memory access requests; and
a memory system (120); and
a memory controller (292/500) coupled to said memory accessing agent (110/210/220) and said memory
system (120), comprising;:
a command queue (520) for storing memory access commands received from said memory
accessing agent (110/210/220); and
an arbiter (538) comprising a plurality of sub-arbiters (605) for providing a corresponding
plurality of sub-arbitration winners from among said memory access requests during a
controller cycle, and for selecting among said plurality of sub-arbitration winners to

provide a plurality of memory commands in a corresponding controller cycle.

13

WO 2018/013157 PCT/US2016/053131

14. The data processing system (100) of claim 13 wherein said memory accessing agent comprises:
a central processing unit core (212/214);
a graphics processing unit core (220); and
a data fabric (250) for interconnecting said central processing unit core (212/214) and said graphics

processing unit core (220) to said memory controller (292/500).

15. The data processing system (100) of claim 13 wherein a memory command cycle is shorter in time than said

controller cycle.

16. The data processing system (100) of claim 15 wherein:
said controller cycle is defined by a controller clock signal,
said memory cycle is defined by a memory clock signal, and

said memory clock signal has a higher frequency than said controller clock signal.

17. The data processing system (100) of claim 16 wherein a frequency of said memory clock signal is twice a

frequency of said controller clock signal.

18. The data processing system (100) of claim 13 wherein said plurality of sub-arbiters (605) comprises:

a first sub-arbiter (610) coupled to said command queue (520) for determining a first sub-arbitration winner
among active entries in said command queue (520) in synchronization with a controller clock
signal; and

a second sub-arbiter (620) to said command queue (520) for determining a second sub- arbitration winner
among said active entries in said command (520) queue in synchronization with said controller
clock signal, said second arbitration winner different from said first arbitration winner,

wherein said memory controller (500) is operative to output said first sub-arbitration winner as a first
memory command in a first cycle of a memory clock signal, and said second sub-arbitration
winner as a second memory command in a subsequent cycle of said memory clock signal, wherein

a frequency of said memory clock signal is higher that a frequency of said controller clock signal.

19. The data processing system (100) of claim 18 wherein said plurality of sub-arbiters (605) further comprises:
a third sub-arbiter (630) coupled to said command queue (520) for determining a third sub-arbitration

winner among active entries in said command queue (520) in synchronization with said controller

clock signal.

20. The data processing system (100) of claim 19 wherein said arbiter (600) further comprises:
a final arbiter (650) for selecting two final arbitration winners from among said first, second, and third sub-
arbitration winners, and for providing said two final arbitration winners as said first and second

memory commands.

21. The data processing system (100) of claim 20 wherein:

said plurality of sub-arbiters (605) further comprises at least one additional sub-arbiter of a same type as

14

WO 2018/013157 PCT/US2016/053131

one of said first sub-arbiter (610),
said second sub-arbiter (620), and said third sub-arbiter (630), and
said final arbiter (650) is able to select two final arbitration winners of said same type from among said

plurality of sub-arbiters (605) in said corresponding controller cycle.

22. The data processing system (100) of claim 19 wherein:
said first sub-arbiter (610) selects said first sub-arbitration winner from page hit commands in said
command queue (520);
said second sub-arbiter (620) selects said second sub-arbitration winner from page conflict commands in
said command queue (520); and
said third sub-arbiter (630) selects said third sub-arbitration winner from page miss commands in said

command queue (520).

23. The data processing system (100) of claim 13 wherein
each of said plurality of sub-arbiters (605) selects arbitration winners among commands of an associated
type in said command queue (520),
at least two of said plurality of sub-arbiters (605) selects arbitration winners of a same type, and
said arbiter (538) is able to select two final arbitration winners of said same type from among said plurality

of sub-arbiters (605) in said corresponding controller cycle.

24. A method, comprising:
receiving a plurality of memory access requests;
storing said plurality of memory access requests in a command queue (520); and
selecting memory access requests from said command queue (520) wherein said selecting comprises:
selecting a plurality of sub-arbitration winners from among said memory access requests during a
first controller cycle; and
selecting among said plurality of sub-arbitration winners to provide a plurality of memory

commands in a corresponding plurality of memory command cycles.

25. The method of claim 24 wherein said selecting said plurality of sub-arbitration winners comprises:
selecting a first sub-arbitration winner from page hit commands in said command queue (520);
selecting a second sub-arbitration winner from page conflict commands in said command queue (520); and

selecting a third sub-arbitration winner from page miss commands in said command queue (520).

26. The method of claim 25 further comprising:
selecting a fourth sub-arbitration winner from among one of said page hit commands, said page conflict
commands, and said page miss commands in said command queue (520); and
selecting two final arbitration winners of a same type from among said first, second, third, and fourth sub-

arbitration winners in said first controller cycle.

15

WO 2018/013157 PCT/US2016/053131

27.

28.

29.

30.

The method of claim 24 further comprising:
selecting among said plurality of sub-arbitration winners and an overhead command to provide a second

plurality of memory commands in a corresponding second plurality of memory cycles.

The method of claim 27 further comprising:

providing said overhead command as one of a power-down command, an auto-refresh command, and a

calibration command.

The method of claim 24, wherein said selecting among said plurality of sub-arbitration winners to provide said
plurality of memory commands comprises:
selecting among said plurality of sub-arbitration winners to provide said plurality of memory
commands in a corresponding plurality of memory command cycles, wherein said

memory command cycles are shorter than said controller cycles.

The method of claim 24 wherein:
said selecting said plurality of sub-arbitration winners from among said memory access requests during
said first controller cycle comprises selecting a first plurality of sub-arbitration winners of a same
type from among said memory access requests during said first controller cycle; and
the method further comprises selecting two final arbitration winners of said same type during said first

controller cycle.

16

PCT/US2016/053131

WO 2018/013157

bOIA

JANa
o1 i
f
D SNA Y1VS 09—~
y
ﬁA ﬁA N8 400 ‘ - Bomaassn K
7 NS// 891
or—" Zh .
Ndv — 8H L 39A30 88N
SN x¥ad 50 - g0
0 7 / .
2 \% N y AL SETIN
ofL el Ok
os\)
A Houms siod
* oo L *
A 3omaaeind Y 391A30 219d
851 391A30 919d
o5, . w1 RN
001" .
/| SOBNALSAS

PCT/US2016/053131

WO 2018/013157

¢ IId

H

H

¥ITIONINOD| [43TI0HINOD [\ 757
A AHOWT AHOWIN
¥62 o
A + A » N
A y
olEYH V1Va
05z i : : |
‘ ‘ 21
“ % gnH O] anH WA N
W e ;V A, ;V o#m\ AV AV y S‘N//|
8NH M0
vz |A10d| | @S| LWALSAS [\ g4, SINIONI 30D Ndd
1 A Anasia SIIHVHO
A A OMN _
0z 277 | [vavs| [asn oz .] —
DR T .2 T A~ ! poooouer
A
NS
Y
Ve NS
002 05z

WO 2018/013157 PCT/US2016/053131

3/5
TO/FROM TO/FROM
DATA FABRIC 250 SMU 280
I SOP ______fswN_
1310~ 312 320 |
| /
300N |
MEMORY |
|| CHANNEL fe—y EOWER |
| | CONTROLLER |
|
|
[316~ \314 |
| OF APB
330~ DDRx -
PHY
TO/FROM
MEMORY
CHANNEL
FIG. 3
TO/FROM
DATA FABRIC 250 TS%RZ%I(\)/'
o sp_________fsop _____tswnN__
|
:410\ 412 422 494 [430 |
400\: L |
| CHANNEL |~ CHANNEL ENeinE | !
|| CONTROLLER CONTROLLERT |
| |
416~ \ana 426\ I |

—_———————— - - - - - - - - - - Y — —_———- - - —_——_——_———_—] —_——— — ———a

PHY PHY
] V
TO/FROM TO/FROM
MEMORY MEMORY
CHANNEL 0 CHANNEL 1

FIG. 4

PCT/US2016/053131
4/5

WO 2018/013157

G OIAd

A A
adv 14a
W108dY " ¥10140 mp—
WION) yonL__ N -
GG 158 G —— 985
895, 95y — 88 TavL L.
— fm._. _\r-m_u;_ 49vd
o YILIY —
gy Ji 9" g | FEN0
NINIL [=—
s e —
o1 g L 91907
995’ /2957 | | Jozg HSFY43Y
5 Iy N }-¥es :
| (NOILV4aNT® V_wwuo
aa [203
\ \Z¥5
Nmm/ ovs \pbG 228
M10N 1N !
......... =lo) A1 N1Y) N N NG L = = R
oy Lo—— (TON3N) p <
! 101 215
096" U IN3AT IXV 0 _‘m\ nXv
\

PCT/US2016/053131

WO 2018/013157

9 9I1d

¥163N3ND OL
¢dNd LAWD

059
/v\ ¥311gHV TYNI4 /
}

1 i ¢S 1901
e — HSFHA3H WY
€9 {Ssonaow [
N I | 0£$ IN3IND
2)70 b19 1200/ LT v | | (AVId3dWOuA/0L
| 1 39vd [T
2€9 229 ¢19 | vl
| |ONINIL 9€S |
g9 [auv gy gy | |
Wd od Hd | Lpee |
A f H f H B I ||||M|O®©
089 0z9-" 019-*
 J
~— N 025 3N3AND 009
865—" 0zg ININO ANYIWNOD WO¥A aNVINWOO OL

INTERNATIONAL SEARCH REPORT International application No.
PCT/US2016/053131

A. CLASSIFICATION OF SUBJECT MATTER
GO6F 13/362(2006.01)i, GO6F 13/16(2006.01)i

According to International Patent Classification (IPC) or to both national classification and [PC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
GOG6F 13/362; GO6F 12/00; GO6F 9/46, GO6F 13/16; GO6F 9/312; GO6F 13/00; GO6F 12/08

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
cKOMPASS(KIPO internal) & Keywords: memory controllet, access, request, arbiter, select, priority, and similar terms.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 8,271,746 B1 (BRIAN D. HUTSELL et al.) 18 September 2012 1,13-14,24-25
See column 5, lines 50-60; column 6, lines 11-16; column 7, lines 23-39; ,27-28

column 8, lines 14-33; column 9, lines 4-7;
claims 1 and 8; and figures 2-5.

Y 2-6,11,15-19,22,29

A 7-10,12,20-21,23
,26,30

Y US 2010-0318750 A1l (ROGER ECKERT) 16 December 2010 2-6,11,15-19,22,29

See paragraphs [0031] and [0044]; and figure 2.

A US 2014-0115254 A1 (MARVELL INTERNATIONAL LTD.) 24 April 2014 1-30
See paragraphs [0088]-[0102] and figure 3.

A US 2012-0072702 A1 (MATTHEW D. PIERSON et al.) 22 March 2012 1-30
See paragraphs [0025]-[0029] and figure 4.

A WO 2007-067739 Al (ADVANCED MICRO DEVICES, INC. et al.) 14 June 2007 1-30
See page 2, line 2b - page 3, line 33; and figure 1.

. . . . N .
|:| Further documents are listed in the continuation of Box C. See patent family annex.
* Special categories of cited documents: "T" later document published after the international filing date or priority
"A" document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand
to be of particular relevance the principle or theory underlying the invention
"E" carlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive
"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of another citation or other "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is
"O" document referting to an oral disclosure, use, exhibition or other combined with one or more other such documents,such combination
means being obvious to a person skilled in the art
"P" document published prior to the international filing date but later "&" document member of the same patent family
than the priority date claimed
Date of the actual completion of the international search Date of mailing of the international search report
14 April 2017 (14.04.2017) 14 April 2017 (14.04.2017)
Name and mailing address of the [SA/KR Authorized officer

International Application Division
¢ Korean Intellectual Property Office NHO, Ji Myong
Y 189 Cheongsa-ro, Seo-gu, Daejeon, 35208, Republic of Korea

inb;imile No. +82-42-481-8578 Telephone No. +82-42-481-8528

Form PCT/ISA/210 (second sheet) (January 2015)

INTERNATIONAL SEARCH REPORT

International application No.

Information on patent family members PCT/US2016/053131

Patent document Publication Patent family Publication

cited in search report date member(s) date

US 8271746 B1 18/09/2012 None

US 2010-0318750 Al 16/12/2010 US 9195618 B2 24/11/2015

US 2014-0115254 Al 24/04/2014 CN 102129412 A 20/07/2011
TW 201145023 A 16/12/2011
TW 1512464 B 11/12/2015
US 2011-0179240 Al 21/07/2011
US 8615629 B2 24/12/2013
US 8990498 B2 24/03/2015

US 2012-0072702 Al 22/03/2012 US 2012-0072667 Al 22/03/2012
US 2012-0072668 Al 22/03/2012
US 2012-0072671 Al 22/03/2012
US 2012-0072672 Al 22/03/2012
US 2012-0072673 Al 22/03/2012
US 2012-0072674 Al 22/03/2012
US 2012-0072796 Al 22/03/2012
US 8601221 B2 03/12/2013
US 8706969 B2 22/04/2014
US 8732551 B2 20/05/2014
US 8788759 B2 22/07/2014
US 8977819 B2 10/03/2015
US 9009414 B2 14/04/2015
US 9239798 B2 19/01/2016

WO 2007-067739 Al 14/06/2007 CN 101326504 A 17/12/2008
CN 101326504 B 25/04/2012
DE 112006003358 Tb 02/10/2008
GB 2446997 A 27/08/2008
GB 2446997 B 10/11/2010
JP 2009-518753 A 07/05/2009
KR 10-2008-0075910 A 19/08/2008
TW 200728983 A 01/08/2007
US 2007-0136545 Al 14/06/2007
US 7426621 B2 16/09/2008

Form PCT/ISA/210 (patent family annex) (January 2015)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - claims
	Page 15 - claims
	Page 16 - claims
	Page 17 - claims
	Page 18 - claims
	Page 19 - drawings
	Page 20 - drawings
	Page 21 - drawings
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - wo-search-report
	Page 25 - wo-search-report

