(54) 发明名称
边框无色差的触屏面板及其制造方法

(57) 摘要
一种触屏面板包括一基板、一透明导电层、一遮蔽装饰层、一透明导电连接层以及一非透明导电层，透明导电层设置于基板，遮蔽装饰层设置于基板及透明导电层，透明导电连接层设置于透明导电层与遮蔽装饰层，并从透明导电层朝遮蔽装饰层延伸且超过透明导电层的边缘，非透明导电层设置于遮蔽装饰层与透明导电连接层且未设置于透明导电层上方。因此，装饰层可遮蔽作为边框线路的非透明导电层避免视觉上露出，使得边框线路在视觉上不会被用户察觉。此外，本发明可以仅使用单片基板，因而免除额外使用透明接着胶或玻璃盖板的需要，利于产品薄型化。
1. 一种触屏面板,其特征在于,包括:
 一基板;
 一透明导电层,设置于所述基板;
 一遮蔽装饰层,设置于所述基板及所述透明导电层;
 一透明导电连接层,设置于所述透明导电层与所述遮蔽装饰层,并从所述透明导电层
 朝所述遮蔽装饰层延伸且超过所述透明导电层的边缘,以及
 一非透明导电层,设置于所述遮蔽装饰层与所述透明导电连接层,且未设置于所述透明
 导电层上方。

2. 根据权利要求1所述的触屏面板,其特征在于,所述非透明导电层在所述遮蔽装饰
 层上朝所述透明导电层延伸且未达所述透明导电层的边缘。

3. 根据权利要求1所述的触屏面板,其特征在于,所述遮蔽装饰层的材质包括具备绝
 缘性的各种颜色油墨,所述透明导电连接层的材质包括高分子导电材料或氧化铟锡,所述
 非透明导电层的材质包括银胶、铜、铝或铝。

4. 根据权利要求1所述的触屏面板,其特征在于,所述遮蔽装饰层的颜色不与所述透
 明导电连接层对应,而可为各种颜色。

5. 根据权利要求1所述的触屏面板,其特征在于,还包括:
 一接脚;以及
 一导电黏接物,黏接所述接脚与所述非透明导电层。

6. 根据权利要求1所述的触屏面板,其特征在于,所述遮蔽装饰层在所述透明导电层
 上具有一开口,所述透明导电连接层填入所述开口,所述触屏面板还包括;
 另一遮蔽装饰层,设置于所述透明导电连接层上遮住所述开口。

7. 根据权利要求1所述的触屏面板,其特征在于,所述触屏面板是一电阻式触屏面板
 或一电容式触屏面板,所述透明导电层定义有一触摸感应线路。

8. 根据权利要求1所述的触屏面板,其特征在于,所述基板兼具触摸感知及保护的功
 效。

9. 一种触屏面板,其特征在于,包括:
 两个基板单元,各具有:
 一基板;
 一透明导电层,设置于所述基板;
 一遮蔽装饰层,设置于所述基板及所述透明导电层;
 一透明导电连接层,设置于所述透明导电层与所述遮蔽装饰层,并从所述透明导电层
 朝所述遮蔽装饰层延伸且超过所述透明导电层的边缘,以及
 一非透明导电层,设置于所述遮蔽装饰层与所述透明导电连接层,且未设置于所述透明
 导电层上方;以及
 一空气层,设置于所述基板单元的所述透明导电层之间,所述透明导电层之间未设有
 光学胶。

10. 根据权利要求1或9所述的触屏面板,其特征在于,所述基板为透明塑料基板或透
 明玻璃基板。

11. 一种触屏面板的制造方法,其特征在于,包括:
权利要求书

于一基板上形成一透明导电层；
于所述基板及所述透明导电层上形成一遮蔽装饰层；
于所述透明导电层与所述遮蔽装饰层上形成一透明导电连接层，其中所述透明导电连接层从所述透明导电层朝所述遮蔽装饰层延伸且超过所述透明导电层的边缘，以及
于所述遮蔽装饰层与所述透明导电连接层上形成一非透明导电层，其中所述非透明导电层未设置于所述透明导电层上方。

12. 根据权利要求11所述的制造方法，其特征在于，所述遮蔽装饰层在所述透明导电层上具有一开口，所述透明导电连接层填入所述开口，所述制造方法还包括：
于所述透明导电连接层上形成另一遮蔽装饰层以遮住所述开口。

13. 根据权利要求11所述的制造方法，其特征在于，所述触屏面板制造完成后，所述基板兼具触摸感知及保护的功能。

14. 根据权利要求11所述的制造方法，其特征在于，所述基板为透明塑料基板或透明玻璃基板。
边框无色差的触屏面板及其制造方法

技术领域
[0001] 本发明关于一种输入面板及其制造方法，特别关于一种触屏（触控）面板及其制造方法。

背景技术
[0002] 各类型的触屏（触控）输入装置已广泛应用于电子产品，例如：行动电话与平板计算机多以触屏（触控）面板作为输入装置，用户可以方便的将手直接接触输入面板的表面来下达指令，或是在触屏面板的表面游移来操作鼠标或是进行手写文字的输入。与触屏面板搭配的显示面板亦可显示出血虚按按键供用户点选，用户可透过这些虚拟按键来输入对应的相关文字。
[0003] 一般来说，触屏面板一般分为电阻式、电容式、超音波式及红外线式等多种类型，其中又以电阻式触屏面板的产品最多，电阻式触屏面板的设计主要又可区分为四线式、五线式、六线式、八线式等等。四线式触屏面板因为成本及技术层面较为成熟，目前已被广泛的生产与应用。
[0004] 触屏面板包括一基板、在基板上形成的一线路层、绝缘层及软性印刷电路板图案等。然而，基板通常采用透明材质例如玻璃，位于基板边缘的黏接用材料一般为透光材质，故其无法在视觉上遮住绝缘层及软性印刷电路板图案，用户从基板侧观看触屏面板时仍会看到绝缘层及软性印刷电路板图案。为解决此视觉不美观的问题，传统技术需在壳体额外加上边框，当触屏面板组装于壳体内外，利用边框将触屏面板不欲为人观看到的部份（例如绝缘层及软性印刷电路板图案）遮住，这也造成产品的壳体必须保留额外边框的缺点。
[0005] 因此，如何提供一种触屏面板及其制造方法，使其中的边框线路在视觉上不会被用户察觉，已成为一项重要的课题。

发明内容
[0006] 本发明的目的为提供一种避免边框线路视觉上露出的触屏面板及其制造方法。
[0007] 本发明另一目的为透过一种新颖的触屏面板设计，使得基板得以兼具多种功能于一体，包括可装饰遮蔽内部线路、保护内侧组件及/或提供完整触控（触控）功能。
[0008] 本发明可采用以下技术方案来实现的。
[0009] 本发明的一种触屏面板包括一基板、一透明导电层、一遮蔽装饰层、一透明导电连接层以及非透明导电层，透明导电层设置于基板，遮蔽装饰层设置于基板及透明导电层，透明导电连接层设置于透明导电层与遮蔽装饰层，非透明导电层设置于遮蔽装饰层与透明导电连接层，且非设置于透明导电层上方。
[0010] 本发明可采用以下技术方案来实现的。
[0011] 本发明的一种触屏面板包括两个基板单元以及一空气层，基板单元各具有基板、一透明导电层、一遮蔽装饰层、一透明导电连接层以及非透明导电层，透明导电层设
置于基板，遮蔽装饰层设置于基板及透明导电层，透明导电连接层设置于透明导电层与遮蔽装饰层，并从透明导电层朝遮蔽装饰层延伸且超过透明导电层的边缘，非透明导电层设置于遮蔽装饰层与透明导电连接层，且未设置于透明导电层上方，空气层设置于基板单元的透明导电层之间，透明导电层之间没有光学胶。

本发明可采用以下技术方案来实现的。

本发明的一种触屏面板的制造方法，包括：于基板上形成一透明导电层；于基板及透明导电层上形成一遮蔽装饰层；于透明导电层与遮蔽装饰层上形成一透明导电连接层，其中透明导电连接层从透明导电层朝遮蔽装饰层延伸且超过透明导电层的边缘；以及于遮蔽装饰层与透明导电连接层上形成一非透明导电层，其中非透明导电层未设置于透明导电层上方。

在实施例中，非透明导电层在遮蔽装饰层上朝透明导电层延伸且未达透明导电层的边缘。

在实施例中，遮蔽装饰层的材质包括具备绝缘性的各种颜色油墨，透明导电连接层的材质包括高分子导电材料或氧化铟锡，非透明导电层的材质包括银胶、铜、钼或铝。

在实施例中，遮蔽装饰层的颜色不需与透明导电连接层对应，可为各种颜色。

在实施例中，透明导电层定义有一触控（触控）感应线路。

在实施例中，触屏面板还包括一夹板以及一导电黏接物，导电黏接物黏接接脚与非透明导电层。

在实施例中，遮蔽装饰层在透明导电层上具有开口，透明导电连接层填充开口。

触屏面板可还包括一遮蔽装饰层，其设置于透明导电连接层上遮住所述开口。

触屏面板是一电阻式触屏面板或一电容式触屏面板。

在实施例中，基板兼具触摸感测及触电的功效。或换言之，触屏面板制造完成后，基板兼具触摸（触控）感测及触电的功效，可以取代设置盖板的效果。

在实施例中，基板可为透明塑料基板，透明玻璃基板，聚酰亚胺（polyimide，PI）或聚对苯二甲酸乙二酯膜状基板。

承上所述，本发明的触屏面板及其制造方法中，透明导电连接层从透明导电层朝遮蔽装饰层延伸且超过透明导电层的边缘，非透明导电层设置于透明导电连接层且未设置于透明导电层上方，因此，装饰层可遮蔽作为边框的非透明导电层避免视觉上露出，使得边框线路在视觉上不会被用户察觉。此外，利用本发明的触屏面板及其制造方法，可以仅使用单片基板，因而免去额外使用透明接着胶或玻璃盖板的需要，利于产品薄型化。

更重要且有利的是，本发明的触屏面板，其基板可兼具多种功能于一体，是为已知技术中所不能达成的。其一为提供装饰功能，以遮蔽内部线路；其二是保护导电层及内部线路不被损害；其三是透过设置完整的导电层，以提供触控功能。总和而言，虽然先前技术可以加设盖板的方式而有前述的装饰及保护两项效果，但需要额外的制程及材料，反观本发明透过新颖的设计，实现了多功能基板的概念，又因为单一个基板的功能增强，免除了面板内另一个基板的需求，以及简化其它为达装饰目的而增加的额外黏贴或组装步骤，故适合模块化的制程，有利成本的降低。

附图说明
具体实施方式

以下将参照相关附图，说明依本发明优选实施例的一种触屏（触控）面板及其制造方法，其中相同的元件将以相同的元件符号加以说明。

图1A至图1C为本发明优选实施例的触屏面板1的示意图，如图1A所示，一触屏面板1包括一基板10、一透明导电层11、一遮蔽装饰层12以及一透明导电连接层13，透明导电层11设置于基板10，遮蔽装饰层12设置于基板10及透明导电层11。

举例来说，透明导电层11至透明导电连接层13可依据下述步骤依序形成于基板10上：

于基板10上形成透明导电层11；

于基板10及透明导电层11上形成一遮蔽装饰层12；以及

于透明导电层11及遮蔽装饰层12上形成一透明导电连接层13，其中透明导电连接层13从透明导电层11朝遮蔽装饰层12延伸且超过透明导电层11的边缘，透明导电连接层13可利用印刷方式形成。

透明导电层11经图案化处理后定义出触控（触控）感应线路，其材质例如是氧化铟锡（Indium Tin Oxide，ITO），遮蔽装饰层12的材质例如是绝缘材料或具备绝缘性的各种颜色油墨（Ink）。透明导电连接层13的材质例如包括高分子导电材料或氧化铟锡，高分子导电材料例如是导电油墨，其可利用印刷方式形成于透明导电层11与遮蔽装饰层12上。透明导电层11在触屏面板1的触控输入区上定义有多个导线作为触控感应线路，在触控输入
说明书

区的透明导电层 11 未被遮蔽装饰层 12 所遮住。

基板 10 可为一透明基板，例如是透明塑料基板或透明玻璃基板，另外，基板 10 也可以是聚酰亚胺(polyimide, PI)或聚对苯二甲酸乙二酯膜状基板，本发明在此不限。基板 10 的外表面 101 供用户操作，用户通常从外表面 101 观看触屏面板 1 并于外表面 101 进行操作，触屏面板 1 的其余各层结构及组件设置于基板 10 的内表面 102。

然后，如图 1B 所示，触屏面板 1 包括一非透明导电层 14，非透明导电层 14 设置于遮蔽装饰层 12 与透明导电连接层 13，且未设置于透明导电层 11 上方。非透明导电层 14 的材质可包括银胶，其可经由网印设备铺排细线路的网版而定义出细线路，并印刷于遮蔽装饰层 12 上。另外，非透明导电层 14 的材质可包括铜、铝等金属，其可由溅镀制程形成铜导线或铝铝导线。非透明导电层 14 在遮蔽装饰层 12 上朝透明导电层 11 延伸且未达透明导电层 11 的边缘。

举例来说，在图 1A 的各层形成后，非透明导电层 14 形成于遮蔽装饰层 12 与透明导电连接层 13 上，透明导电层上方未形成非透明导电层。故非透明导电层 14 与透明导电层 11 会经由透明导电连接层 13 导通。

如图 1C 所示，触屏面板 1 还包括一绝缘层 15，一导电黏接物 16 及一接脚 17，绝缘层 15 设置于非透明导电层 14 上，导电黏接物 16 黏接接脚 17 与非透明导电层 14。

举例来说，绝缘层 15 以网版印刷方式覆盖于非透明导电层 14 上，借以保护非透明导电层 14 防止因暴露于空气中造成氧化。接脚 17 可以是一软性印刷电路板(Flexible Printed Circuit Board, FPC)的接脚，其通过导电黏接物 16 黏着固定于非透明导电层 14 上及绝缘层 15 旁，接脚 17 透过导电黏接物 16 及非透明导电层 14 而与透明导电层 11 电性连接。导电黏接物 16 可以是异方性导电膜(Anisotropic Conductive Film, ACF)或异方性导电胶(AnisotropicConductive Paste, 简称 ACP)。

图 2A 及图 2B 为本发明一优选实施例的触屏面板 1a 的示意图，如图 2A 所示，透明导电层 11 设置于基板 10，遮蔽装饰层 12 设置于基板 10 及透明导电层 11，遮蔽装饰层 12 具有一开口、一第一部分 121 及一第二部份 122，开口位于透明导电层 11 上方并在第一部分 121 及第二部份 122 之间，透明导电连接层 13 填入开口和透明导电层 11 接触。透明导电层 11、遮蔽装饰层 12 及透明导电连接层 13 的结构及制造过程与图 1A 类似。在遮蔽装饰层 12 的开口上方再形成另一遮蔽装饰层 12’，遮蔽装饰层 12’至少设置于透明导电连接层 13 上以将遮蔽装饰层 12 的开口遮蔽，借以防止光线从触屏面板 1 的一侧通过此开口后穿出触屏面板 1 的另一侧。

【0058】在本实施例中，遮蔽装饰层 12’设置于遮蔽装饰层 12 及透明导电连接层 13 上，遮蔽装饰层 12’的一侧朝第一部分 121 延伸，并且超出透明导电层 11 的边缘，但未超出透明导电连接层 13 的边缘，借以可限定后续非透明导电层 14 的设置位置。遮蔽装饰层 12’的另一侧朝第二部份 122 延伸，但不超出遮蔽装饰层 12 的边缘。

【0059】遮蔽装饰层 12、12’可以是相同或相近的颜色，避免用户看到遮蔽装饰层 12 的开口，或是察觉到透明导电连接层 13 与遮蔽装饰层 12 之间的色差。另外，遮蔽装饰层 12、12’亦可以是不同的颜色，及 / 或不同密度，遮蔽装饰层 12 的开口可以设计成特定样图，例如商品的名称文字或标示，或厂商的名称文字或标示等等，这些名称文字或标示利用遮蔽装饰层 12’来呈现，如果遮蔽装饰层 12、12’的对比越明显，则名称文字或标示会越醒目。
说明书

[0060] 然后，如图 2B 所示，非透明导电层 14 设置于遮蔽装饰层 12 及透明导电连接层 13 上，也就是说，第一部分 121 及第二部分 122 之间的开口先填入透明导电连接层 13 后，再形成非透明导电层 14 于遮蔽装饰层 12 及透明导电连接层 13 上，非透明导电层 14 的结构及制造过程与图 1B 类似。在本实施例中，非透明导电层 14 形成于遮蔽装饰层 12’ 旁，且使非透明导电层 14 由因程的误差而没有准确的形成于遮蔽装饰层 12’ 的旁，例如部分的非透明导电层 14 形成于遮蔽装饰层 12’ 与非透明导电层 14 与遮蔽装饰层 12’ 之间有间隙，这些缺点都会被遮蔽装饰层 12’/12’ 所遮蔽因而不会被用户察觉。

[0061] 另外，遮蔽装饰层 12’ 与非透明导电层 14 的形成顺序亦可互换。例如图 2A 中，透明导电层 11 设置于基板 10，遮蔽装饰层 12 设置于基板 10 及透明导电层 11，遮蔽装饰层 12 具有开口，第一部分 121 及第二部分 122，开口位于透明导电层 11 上方并在第一部分 121 及第二部分 122 之间，透明导电连接层 13 填入开口及透明导电层 11 接触，此时遮蔽装饰层 12’ 先不形成。然后如图 2B 所示形成非透明导电层 14 于遮蔽装饰层 12 及透明导电连接层 13 上，然后在遮蔽装饰层 12 的开口上方再形成遮蔽装饰层 12’，遮蔽装饰层 12’ 至少设置于透明导电连接层 13 上以将遮蔽装饰层 12 的开口遮蔽。在本实施例中，遮蔽装饰层 12’ 形成于非透明导电层 14 旁。

[0062] 接着，类似于图 1C，绝缘层 15 设置于非透明导电层 14 上，导电黏接物 16 黏接接脚 17 与非透明导电层 14。

[0063] 不论如何，因非透明导电层 14 在遮蔽装饰层 12 上未超出透明导电层 11 的边缘，其它使用连接用的非透明组件也未到达透明导电层 11 的边缘，故透明导电层 11 上方未设非透明导电层 14 及其它外部连接用的非透明组件，所以用户从外面可以观看触屏面板 1、1a 但不会在透明导电层 11 的区域看到非透明组件。且因为透明导电连接层 13 的颜色是透明，故遮蔽装饰层的颜色不需与透明导电连接层 13 对应，而可为各种颜色，同样也不影响用户观看。遮蔽装饰层 12 可遮蔽边框线路，例如遮蔽布设于非透明导电层 14 的线路，用户朝边框线路所在处会看到遮蔽装饰层 12 而不会看到边框线路。因而也不会看到因边框线路与其它组件之间的色差，从而实现边框线路无色差的触屏面板。

[0064] 在以上实施例中，触屏面板是一电阻式触屏面板或一电容式触屏面板，电容式触屏面板例如是投射电容式触屏面板。

[0065] 在以上的实施例中，若封及面板种类，触屏面板 1，1a 可以是硬式触屏面板或可挠式触屏面板；若封基板数目，则触屏面板 1，1a 可以是仅具一基板的面板。以前述触屏面板 1，1a 仅使用一层基板来说，面板内无需设置另一基板，故面板整体的厚度较薄，且厚度较薄亦使整体透光率较佳。另外，仅使用一层基板，无需黏附两张基板，不但不致发生因黏合程序造成良率下降的问题，故生产良率得以提高，且可减少粘合所设的制程及辅助材料例如透明接着胶或玻璃盖板，因而可降低制造成本。此外，在制造成本上，因少用一片基板及光学胶，故可使成本较低。

[0066] 更有利的是，触屏面板 1，1a 的基板可兼做多种功能于一体。其一，当组装完成后，基板位于外表面，覆盖于边框线路，透明导电层及其它组件上，故一方面可以前述的遮蔽装饰层与透明导电连接层的配合，提供装饰功能，以保护装饰线路，避免外露而被察觉；另一方面也可以保护边框线路及透明导电层不受损害。再者是基板上可以设置完整的透明导电层，足以提供触控功能。是故，本发明实现了基板制程简单化且功能多样化的目标，属于前
瞻性的概念创作，并免除了额外再贴合一层的步骤，适合模块化的制造，有利成本的降低。
并在上述的概念下，本发明并无其它的限制，而涵盖以实质上相同或相似的任一制造或结构所形成的不同材料的触屏面板。

【0067】另外，在以上实施例中，触屏面板 1 1a 还可以是具有至少两个基板的面板，例如基板 10 与另一基板接合。即触屏面板包括两个基板单元，基板单元各具有前述基板、透明导电层、遮蔽装饰层、透明导电连接层以及非透明导电层。以下将举二例说明。

【0068】图 3A 为本发明一优选实施例的触屏面板 1b 的示意图，如图 3A 所示，触屏面板 1b 包括两个基板单元 SU1、SU2，接脚 17 以及一透明绝缘层 18，基板单元 SU1 包括基板 10、透明导电层 11、遮蔽装饰层 12、透明导电连接层 13、非透明导电层 14、绝缘层 15、导电黏接物 16，基板单元 SU2 包括基板 10a、透明导电层 11a、遮蔽装饰层 12a、透明导电连接层 13a、非透明导电层 14a、绝缘层 15a、导电黏接物 16a，透明绝缘层 18 设置于透明导电层 11、11a 之间，其例如是光学胶。由于基板 10a、透明导电层 11a、遮蔽装饰层 12a、透明导电连接层 13a、非透明导电层 14a、绝缘层 15a 及导电黏接物 16a 与前述图 1A 至 1C 的对应组件具有类似的结构及制造过程，故此不再赘述细节。

【0069】图 3B 为本发明一优选实施例的触屏面板 1c 的示意图，如图 3B 所示，触屏面板 1c 包括两个基板单元 SU1、SU2、接脚 17 以及一空气层 19，基板单元 SU1 包括基板 10、透明导电层 11、遮蔽装饰层 12、12’、透明导电连接层 13、非透明导电层 14、绝缘层 15、导电黏接物 16，基板单元 SU2 包括基板 10a、透明导电层 11a、遮蔽装饰层 12a、12a’、透明导电连接层 13a、非透明导电层 14a、绝缘层 15a、导电黏接物 16a，由于基板 10a、透明导电层 11a、遮蔽装饰层 12a、透明导电连接层 13a、非透明导电层 14a、绝缘层 15a 及导电黏接物 16a 与前述图 2A 至 2B 的对应组件具有类似的结构及制造过程，故此不再赘述细节。

【0070】另外，图 3B 中基板 10、10a 之间未设有光学胶等透明绝缘层 18 而改填入空气，空气层 19 设置于基板单元的透明导电层 11、11a 之间，透明导电层 11、11a 之间未设有光学胶，空气层 19 与透明导电层 11、11a 直接接触，这种做法除了可节省非透明导电层 14a 的成本外，制造时亦不需在非透明导电层 14a 的面进行贴合的动作，故制程较为简单，亦避免因贴合不良造成良率下降的缺点。此外，图 3A 亦可在基板 10、10a 之间不设置光学胶等透明绝缘层 18 而改填入空气以在两个基板单元之间形成一空气层。

【0071】触屏面板 1b、1c 若为电容式触屏面板来说，电容的容值与两个电极之间的介电常数呈正相关，且触屏面板的触碰反应时间与电容的容值呈正相关，由于空气的介电常数比光学胶的介电常数小，故将透明绝缘层 18 替换为空气层后，透明导电层 11、11a 所构成的电容的容值会因而减少，亦使得触屏面板 1c 的触碰反应时间降低，故可增进触屏面板 1c 受触碰时的反应速度。

【0072】当然，也如同图 1A 至图 2B 所示的实施例，基板 10 可至少兼具装饰及保护的功能，为一种多功能基板，且同样免除了额外的贴合步骤，符合本发明的创作概念。结合已揭露的实施例，可证实本发明的多功能基板的创作概念不论是单层基板或多个基板单元的样态均能适用。

【0073】综上所述，本发明的触屏面板及其制造方法中，透明导电连接层从透明导电层朝遮蔽装饰层延伸且超过透明导电层的边缘，非透明导电层设置于透明导电连接层且未设置于透明导电层上方，因此，遮蔽装饰层可遮蔽作为边框线路的非透明导电层避免视觉上露
出，使得边框线路在视觉上不会被用户察觉。此外，利用本发明的触屏面板及其制造方法，可以仅使用单片基板，因而免除额外使用透明接着胶或玻璃盖板的需要，利于产品薄型化。

[0074] 更重要且有利的是，依据本发明的触屏面板，其基板可兼具多种功能于一体，是为已知技术中所不能达成的。其一是可以提供装饰功能，以遮蔽边框线路；其二是保护导电层及边框线路不受损害；其三是透过设置完整的导电层，以提供感测功能。总和而言，虽然先前技术可以加设盖板的方式而有前述的装饰及保护两重效果，但需要额外的制程及材料，反观本发明透过新颖的设计，实现了多功能基板的概念，又因为单一基板的功能增强，免除了面板内另一个基板的需求，以及简化其它为达装饰目的而增加的额外贴合或组装步骤，故适合模块化的制程，有利成本的降低。

[0075] 举例来说，触屏面板仅具有单个作保护盖板（cover lens）及触摸感应器（touch sensor）的基板，基板的相对两侧分别为内侧及外侧，内侧设有透明导电层、导电装饰层、装饰层及非透明导电层等，外侧无前述各层的设置，外侧表面可作为触碰输入的表面。触屏面板可与壳体组装，内侧表面的组件位于壳体内，外侧表面仍朝向外界。另外，触屏面板可与其它电子装置组装，举例来说，触屏面板与显示面板组装，触屏面板的内侧朝向显示面板。不论触屏面板与何者组装，单一基板可视为保护内侧各层的保护盖板。

[0076] 又即便使用双基板单元时，依据本发明的触屏面板仍还有减少额外贴合或组装步骤的优势。

[0077] 以上所述仅是举例性，而非限制性。任何未脱离本发明的精神与范畴，而对其进行的等效修改或变更，均应包括在权利要求所限定的范围内。