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(57) ABSTRACT

A transform coder is described that performs a time-split
transform in addition to a discrete cosine type transform. A
time-split transform is selectively performed based on char-
acteristics of media data. Transient detection identifies a
changing signal characteristic, such as a transient in media
data. After encoding an input signal from a time domain to
a transform domain, a time-splitting transformer selectively
perform an orthogonal sum-difference transform on adjacent
coeflicients indicated by a changing signal characteristic
location. The orthogonal sum-difference transform on adja-
cent coeflicients results in transforming a vector of coeffi-
cients in the transform domain as if they were multiplied by
an identity matrix including at least one 2x2 time-split block
along a diagonal of the matrix. A decoder performs an
inverse of the described transforms.
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CODING WITH IMPROVED TIME RESOLUTION
FOR SELECTED SEGMENTS VIA ADAPTIVE
BLOCK TRANSFORMATION OF A GROUP OF

SAMPLES FROM A SUBBAND DECOMPOSITION

BACKGROUND

[0001] Transform coding is a compression technique often
used in digital media compression systems. Uncompressed
digital media, such as an audio or video signal is typically
represented as a stream of amplitude samples of a signal
taken at regular time intervals. For example, a typical format
for audio on compact disks consists of a stream of sixteen-bit
samples per channel of the audio (e.g., the original analog
audio signal from a microphone) captured at a rate of 44.1
KHz. Each sample is a sixteen-bit number representing the
amplitude of the audio signal at the time of capture. Other
digital media systems may use various different amplitude
and time resolutions of signal sampling.

[0002] Uncompressed digital media can consume consid-
erable storage and transmission capacity. Transform coding
reduces the size of digital media by transforming the time-
domain representation of the digital media into a frequency-
domain (or other like transform domain) representation, and
then reducing resolution of certain generally less perceptible
frequency components of the frequency-domain representa-
tion. This generally produces much less perceptible degra-
dation of the signal compared to reducing amplitude or time
resolution of digital media in the time domain.

[0003] More specifically, a typical audio transform coding
technique divides the uncompressed digital audio’s stream
of time-samples into fixed-size subsets or blocks, each block
possibly overlapping with other blocks. A linear transform
that does time-frequency analysis is applied to each block,
which converts the time interval audio samples within the
block to a set of frequency (or transform) coefficients
generally representing the strength of the audio signal in
corresponding frequency bands over the block interval. For
compression, the transform coefficients may be selectively
quantized (i.e., reduced in resolution, such as by dropping
least significant bits of the coefficient values or otherwise
mapping values in a higher resolution number set to a lower
resolution), and also entropy or variable-length coded into a
compressed audio data stream. At decoding, the transform
coeflicients will inversely transform to nearly reconstruct the
original amplitude/time sampled audio signal.

[0004] Many audio compression systems utilize the
Modulated Lapped Transform (MLT, also known as Modi-
fied Discrete Cosine Transform or MDCT) to perform the
time-frequency analysis in audio transform coding. MLT
reduces blocking artifacts introduced into the reconstructed
audio signal by quantization. More particularly, when non-
overlapping blocks are independently transform coded,
quantization errors will produce discontinuities in the signal
at the block boundaries upon reconstruction of the audio
signal at the decoder.

[0005] One problem in audio coding is commonly referred
to as “pre-echo.” Pre-echo occurs when the audio undergoes
a sudden change (referred to as a “changing signal charac-
teristic”). For example, a changing signal characteristic such
as a transient. In transform coding, particular frequency
coeflicients commonly are quantized (i.e., reduced in reso-
Iution). When the transform coefficients are later inverse-
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transformed to reproduce the audio signal, this quantization
introduces quantization noise that is spread over the entire
block in the time domain. This inherently causes rather
uniform smearing of noise within the coding frame. The
noise, which generally is tolerable for some part of the
frame, can be audible and disastrous to auditory quality
during portions of the frame where the masking level is low.
In practice, this effect shows up most prominently when a
signal has a sharp attack immediately following a region of
low energy, hence the term “pre-echo.”“Post-echo™ is a
changing signal characteristic that occurs when the signal
transition from high to low energy is less of a problem to
perceptible auditory quality due to a property of the human
auditory system.

[0006] Thus, what is needed is a system that addresses the
pre-echo effect by reducing the smearing of quantization
noise over a large signal frame.

SUMMARY

[0007] A transform coder is described that performs an
additional time-split transform selectively based on charac-
teristics of media data. A transient detection component
identifies changing signal characteristic locations, such as
transient locations to apply a time-split transform. For
example, a slow transition between two types of signals is
usually not considered a transient and yet the described
technology provides benefits for such changing signal char-
acteristics. An encoding component transforms an input
signal from a time domain to a transform domain. A time-
splitting transformer component selectively performs an
orthogonal sum-difference transform on adjacent coeffi-
cients indicated by the identified changing signal character-
istic location. The orthogonal sum/difference transform
results in transforming a vector of coefficients in the trans-
form domain as if they were multiplied selectively by one or
more exemplary time-split transform matrices.

[0008] In other examples, a window configuration com-
ponent configures window sizes so as to place one or more
small window sizes in areas of transient locations and large
window sizes in other areas. The encoding component
inverse-transforms to produce a reconstructed version of the
input signal and a quality measurement component measures
the achieved quality of the reconstructed signal. The window
configuration component adjusts window sizes according to
the achieved quality. The quality measurement component
further operates to measure achieved perceptual quantiza-
tion noise of the reconstructed signal. The window configu-
ration component further operates to increase a window size
where the measure of achieved perceptual quantization noise
exceeds an acceptable threshold. The quality measurement
component further operates to detect pre-echo in the recon-
structed signal and the window configuration component
further operates to decrease window size where pre-echo is
detected.

[0009] A transform decoder provides an inverse time-
splitting transformer and an inverse transformer. The inverse
time-splitting transformer receives side information and
coeflicient data in a transform domain and selectively per-
forms an inverse orthogonal sum-difference transformation
on adjacent coefficients indicated in received side informa-
tion. Next, the inverse transformer transforms coeflicient
data from the transform domain to a time domain.



US 2007/0016405 Al

[0010] In other examples, an inverse window configura-
tion component receives side information about window and
sub-frame sizes and the inverse transformer transforms
coeflicient data according to the window and sub-band sizes.
In one such example, the inverse orthogonal sum-difference
transformation results in transforming a vector of coeffi-
cients in the transform domain as if it were multiplied by an
inverse of a time-splitting transform. In another example, the
inverse time-splitting transformer component receives side
information indicating that there are no time-splits in at least
one sub-frame, and in another example, the side information
indicates whether or not there is a time-split in an extended
band.

[0011] A method of decoding receives side information
and coefficient data in a transform domain. The method
selectively performs an inverse time-split transform on
adjacent coefficients as indicated in received side informa-
tion and further transforms the coefficient data from the
transform domain to a time domain. In another example, the
method identifies sub-frame sizes in received side informa-
tion and the inverse transform is performed according to the
identified sub-frame sizes. In yet another example, the side
information indicates whether there is a time-split in a
sub-band, or whether or not there is a time-split in each
sub-band in an extended band. In another example, the
method determines a pair of adjacent coefficients in a
transform domain on which to perform an inverse sum-
difference transform.

[0012] Additional features and advantages of the inven-
tion will be made apparent from the following detailed
description of embodiments that proceeds with reference to
the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0013] FIG. 1 is a block diagram of an exemplary audio
encoder performing selective time-split transform.

[0014] FIG. 2 is a block diagram of an exemplary audio
decoder performing inverse selective time-split transform.

[0015] FIG. 3 is a block diagram of an exemplary trans-
form coder performing selective time-split transform.

[0016] FIG. 4 is a flow chart of an exemplary changing
signal characteristic detection process.

[0017] FIG. 5 is a flow chart of an exemplary window
configuration process.

[0018] FIG. 6 is a graph of an example window configu-
ration produced via the process of FIG. 5.

[0019] FIG. 7 is a flow chart of an exemplary windows
configuration process.

[0020] FIG. 8 is a flow chart of an exemplary process to
detect pre-echo.

[0021] FIG. 9 is a graph representing exemplary overlap-
ping windows covering segmentation blocks.

[0022] FIG. 10 is a graph of the basis vectors that con-
tribute to the MLT coefficients corresponding to the middle
two sub-frames.

[0023] FIG. 11 is a graph of the basis vectors that con-
tribute to the MLT coefficients corresponding to the middle
four sub-frames with smaller sized segmentation.
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[0024] FIG. 12 is a graph representing how time-splitting
combines adjacent coefficients.

[0025] FIG. 13 is a matrix representing an exemplary
time-split transform of FIG. 12.

[0026] FIG. 14 is a graph of two new exemplary time-split
window functions.

[0027] FIG. 15 is a graph representing an exemplary set of
spectral coefficients.

[0028] FIG. 16 is a graph of an exemplary time-frequency
plot of selected frequency coefficients.

[0029] FIG. 17 is a diagram representing a linear trans-
formation of a time domain vector into a transform domain
vector including a time-split transform matrix of FIG. 13.

[0030] FIG. 18 illustrates a generalized example of a
suitable computing environment in which the illustrative
embodiment may be implemented.

DETAILED DESCRIPTION

Brief Overview

[0031] The following describes a transform coder capable
of performing an additional time-split transform selectively
based on characteristics of spectral digital media data.

[0032] Optionally, an adaptive window size is provided
when a selective time-split transform does not produce a
sufficient benefit. The coder selects one or more window
sizes within a frame of spectral digital media data. Spectral
Data analysis (e.g., changing signal characteristic detection)
identifies one or more frequencies for a time-split transform.
If the results of a time-split transform are not sufficient, then
a window size may be adapted. Optionally, using one or
more passes at time-split transform, data energy analysis,
and or window size adaptation provides improved coding
efficiency overall.

[0033] When providing a sub-band decomposition for
coding of data, with overlapped or block based transform, or
when using a filterbank (which can also be represented as an
overlapped transform), the sub-band structure is typically
fixed. When providing an overlapped transform (such as
modulated lapped transform (MLT)), the sub-frame size can
be varied which results in adapting the time/frequency
resolution depending on signal characteristics. However,
there are certain cases in which using a large sub-frame size
(better frequency resolution, lower time resolution) provides
efficient coding, but results in noticeable artifacts at higher
frequencies. In order to remove these artifacts, various
possible features are described for reducing artifacts. For
example, a block based transform (e.g., a time-split trans-
form) is applied subsequent to an existing fixed transform
(e.g., a discrete cosine (DCT transform, a MLT transform,
etc.)). In one example, the time-split transform is used
selectively to provide better time resolution upon determin-
ing that the time-split transform is beneficial for one or more
select groups of frequency coefficients. The frequency selec-
tions is based on detected energy change.

[0034] If there are only certain regions of the frequency
that need better time resolution, then using a smaller time
window can result in a significant increase in the number of
bits needed to code the spectral data. If sufficient bits are
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available this is not an issue, and a smaller time window
should be used. However, when there are not enough bits,
using a selective time-split transform on only those fre-
quency ranges where it is needed can provide improved

quality.

[0035] A time-split transform improves data coding when
better time resolution is needed for coding of certain fre-
quencies. A time-split transform and or various other fea-
tures described herein can be used in any media encoder or
decoder. For example, a time-split transform can be used
with the digital media codec techniques described by
Mehrotra et. al., “Efficient Coding of Digital Media Spectral
Data Using Wide-Sense Perceptual Similarity” U.S. patent
application Ser. No. 10/882,801, filed Jun. 29, 2004. For
example, a time-split transform can be used to improve
coding of high, medium, or low frequencies.

Exemplary Encoder and Decoder

[0036] FIG. 1 is a block diagram of a generalized audio
encoder (100). The relationships shown between modules
within the encoder and decoder indicate the main flow of
information in the encoder and decoder; other relationships
are not shown for the sake of simplicity. Depending on
implementation and the type of compression desired, mod-
ules of the encoder or decoder can be added, omitted,
divided into multiple modules, combined with other mod-
ules, and/or replaced with like modules. In alternative
embodiments, encoders or decoders with different modules
and/or other configurations of modules perform time-split
transforms.

[0037] The generalized audio encoder (100) includes a
frequency transformer (110), a multi-channel transformer
(120), a perception modeler (130), a weighter (140), a
quantizer (150), an entropy encoder (160), a rate/quality
controller (170), and a bitstream multiplexer [“MUX”]
(180).

[0038] The encoder (100) receives a time series of input
audio samples (105). For input with multiple channels (e.g.,
stereo mode), the encoder (100) processes channels inde-
pendently, and can work with jointly coded channels fol-
lowing the multi-channel transformer (120). The encoder
(100) compresses the audio samples (105) and multiplexes
information produced by the various modules of the encoder
(100) to output a bitstream (195) in a format such as
Windows Media Audio [“WMA”] or Advanced Streaming
Format [“ASF”]. Alternatively, the encoder (100) works
with other input and/or output formats.

[0039] The frequency transformer (110) receives the audio
samples (105) and converts them into data in the frequency
domain. The frequency transformer (110) splits the audio
samples (105) into blocks, which can have variable size to
allow variable temporal resolution. Small blocks allow for
greater preservation of time detail at short but active tran-
sition segments in the input audio samples (105), but sac-
rifice some frequency resolution. In contrast, large blocks
have better frequency resolution and worse time resolution,
and usually allow for greater compression efficiency at
longer and less active segments. Blocks can overlap to
reduce perceptible discontinuities between blocks that could
otherwise be introduced by later quantization. The fre-
quency transformer selectively applies a time-split trans-
form based on characteristics of the data. The frequency
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transformer (110) outputs blocks of frequency coeflicient
data to the multi-channel transformer (120) and outputs side
information such as block sizes to the MUX (180). The
frequency transformer (110) outputs both the frequency
coeflicient data and the side information to the perception
modeler (130).

[0040] The frequency transformer (110) partitions a frame
of audio input samples (105) into overlapping sub-frame
blocks with time-varying size and applies a time-varying
MLT to the sub-frame blocks. Possible sub-frame sizes
include 128, 256, 512, 1024, 2048, and 4096 samples. The
MLT operates like a DCT modulated by a time window
function, where the window function is time varying and
depends on the sequence of sub-frame sizes. The MLT
transforms a given overlapping block of samples x[n],
O=n<subframe_size into a block of frequency coefficients
X[k],0=k<subframe_size/2 The frequency transformer
(110) can also output estimates of the complexity of future
frames to the rate/quality controller (170). Alternative
embodiments use other varieties of MLT. In still other
alternative embodiments, the frequency transformer (110)
applies a DCT, FFT, or other type of modulated or non-
modulated, overlapped or non-overlapped frequency trans-
form, or use subband or wavelet coding. Typically after the
transform to the frequency domain, the frequency trans-
former selectively applies a time-split transform based on
characteristics of the data.

[0041] For multi-channel audio data, the multiple channels
of frequency coefficient data produced by the frequency
transformer (110) often correlate. To exploit this correlation,
the multi-channel transformer (120) can convert the multiple
original, independently coded channels into jointly coded
channels. For example, if the input is stereo mode, the
multi-channel transformer (120) can convert the left and
right channels into sum and difference channels:

Xren k] + Xpigm [k
Kok = Lﬁ[]2 Right [K]

Xiof (K] — Xrign: [K]
Xpigrlk] = %

[0042] Or, the multi-channel transformer (120) can pass
the left and right channels through as independently coded
channels. More generally, for a number of input channels
greater than one, the multi-channel transformer (120) passes
original, independently coded channels through unchanged
or converts the original channels into jointly coded channels.
The decision to use independently or jointly coded channels
can be predetermined, or the decision can be made adap-
tively on a block by block or other basis during encoding.
The multi-channel transformer (120) produces side infor-
mation to the MUX (180) indicating the channel mode used.

[0043] The perception modeler (130) models properties of
the human auditory system to improve the quality of the
reconstructed audio signal for a given bitrate. The perception
modeler (130) computes the excitation pattern of a variable-
size block of frequency coefficients. First, the perception
modeler (130) normalizes the size and amplitude scale of the
block. This enables subsequent temporal smearing and
establishes a consistent scale for quality measures. Option-
ally, the perception modeler (130) attenuates the coefficients
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at certain frequencies to model the outer/middle ear transfer
function. The perception modeler (130) computes the energy
of the coefficients in the block and aggregates the energies
by 25 critical bands. Alternatively, the perception modeler
(130) uses another number of critical bands (e.g., 55 or 109).
The frequency ranges for the critical bands are implemen-
tation-dependent, and numerous options are well known. For
example, see ITU-R BS 1387 or a reference mentioned
therein. The perception modeler (130) processes the band
energies to account for simultaneous and temporal masking.
In alternative embodiments, the perception modeler (130)
processes the audio data according to a different auditory
model, such as one described or mentioned in ITU-R BS
1387.

[0044] The weighter (140) generates weighting factors
(alternatively called a quantization matrix) based upon the
excitation pattern received from the perception modeler
(130) and applies the weighting factors to the data received
from the multi-channel transformer (120). The weighting
factors include a weight for each of multiple quantization
bands in the audio data. The quantization bands can be the
same or different in number or position from the critical
bands used elsewhere in the encoder (100). The weighting
factors indicate proportions at which noise is spread across
the quantization bands, with the goal of minimizing the
audibility of the noise by putting more noise in bands where
it is less audible, and vice versa. The weighting factors can
vary in amplitudes and number of quantization bands from
block to block. In one implementation, the number of
quantization bands varies according to block size; smaller
blocks have fewer quantization bands than larger blocks. For
example, blocks with 128 coefficients have 13 quantization
bands, blocks with 256 coefficients have 15 quantization
bands, up to 25 quantization bands for blocks with 2048
coeflicients. The weighter (140) generates a set of weighting
factors for each channel of multi-channel audio data in
independently coded channels, or generates a single set of
weighting factors for jointly coded channels. In alternative
embodiments, the weighter (140) generates the weighting
factors from information other than or in addition to exci-
tation patterns.

[0045] The weighter (140) outputs weighted blocks of
coefficient data to the quantizer (150) and outputs side
information such as the set of weighting factors to the MUX
(180). The weighter (140) can also output the weighting
factors to the rate/quality controller (140) or other modules
in the encoder (100). The set of weighting factors can be
compressed for more efficient representation. If the weight-
ing factors are lossy compressed, the reconstructed weight-
ing factors are typically used to weight the blocks of
coeflicient data. If audio information in a band of a block is
completely eliminated for some reason (e.g., noise substi-
tution or band truncation), the encoder (100) may be able to
further improve the compression of the quantization matrix
for the block.

[0046] The quantizer (150) quantizes the output of the
weighter (140), producing quantized coefficient data to the
entropy encoder (160) and side information including quan-
tization step size to the MUX (180). Quantization introduces
irreversible loss of information, but also allows the encoder
(100) to regulate the bitrate of the output bitstream (195) in
conjunction with the rate/quality controller (170). In FIG. 1,
the quantizer (150) is an adaptive, uniform scalar quantizer.
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The quantizer (150) applies the same quantization step size
to each frequency coeflicient, but the quantization step size
itself can change from one iteration to the next to affect the
bitrate of the entropy encoder (160) output. In alternative
embodiments, the quantizer is a non-uniform quantizer, a
vector quantizer, and/or a non-adaptive quantizer.

[0047] The entropy encoder (160) losslessly compresses
quantized coeflicient data received from the quantizer (150).
For example, the entropy encoder (160) uses multi-level run
length coding, variable-to-variable length coding, run length
coding, Huffman coding, dictionary coding, arithmetic cod-
ing, L.Z coding, a combination of the above, or some other
entropy encoding technique.

[0048] The rate/quality controller (170) works with the
quantizer (150) to regulate the bitrate and quality of the
output of the encoder (100). The rate/quality controller (170)
receives information from other modules of the encoder
(100). In one implementation, the rate/quality controller
(170) receives estimates of future complexity from the
frequency transformer (110), sampling rate, block size infor-
mation, the excitation pattern of original audio data from the
perception modeler (130), weighting factors from the
weighter (140), a block of quantized audio information in
some form (e.g., quantized, reconstructed, or encoded), and
buffer status information from the MUX (180). The rate/
quality controller (170) can include an inverse quantizer, an
inverse weighter, an inverse multi-channel transformer, and,
potentially, an entropy decoder and other modules, to recon-
struct the audio data from a quantized form.

[0049] The rate/quality controller (170) processes the
information to determine a desired quantization step size
given current conditions and outputs the quantization step
size to the quantizer (150). The rate/quality controller (170)
then measures the quality of a block of reconstructed audio
data as quantized with the quantization step size, as
described below. Using the measured quality as well as
bitrate information, the rate/quality controller (170) adjusts
the quantization step size with the goal of satisfying bitrate
and quality constraints, both instantaneous and long-term. In
alternative embodiments, the rate/quality controller (170)
applies works with different or additional information, or
applies different techniques to regulate quality and bitrate.

[0050] In conjunction with the rate/quality controller
(170), the encoder (100) can apply noise substitution, band
truncation, and/or multi-channel rematrixing to a block of
audio data. At low and mid-bitrates, the audio encoder (100)
can use noise substitution to convey information in certain
bands. In band truncation, if the measured quality for a block
indicates poor quality, the encoder (100) can completely
eliminate the coefficients in certain (usually higher fre-
quency) bands to improve the overall quality in the remain-
ing bands. In multi-channel rematrixing, for low bitrate,
multi-channel audio data in jointly coded channels, the
encoder (100) can suppress information in certain channels
(e.g., the difference channel) to improve the quality of the
remaining channel(s) (e.g., the sum channel).

[0051] The MUX (180) multiplexes the side information
received from the other modules of the audio encoder (100)
along with the entropy encoded data received from the
entropy encoder (160). The MUX (180) outputs the infor-
mation in WMA or in another format that an audio decoder
recognizes.
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[0052] The MUX (180) includes a virtual buffer that stores
the bitstream (195) to be output by the encoder (100). The
virtual buffer stores a pre-determined duration of audio
information (e.g., 5 seconds for streaming audio) in order to
smooth over short-term fluctuations in bitrate due to com-
plexity changes in the audio. The virtual buffer then outputs
data at a relatively constant bitrate. The current fullness of
the buffer, the rate of change of fullness of the buffer, and
other characteristics of the buffer can be used by the rate/
quality controller (170) to regulate quality and bitrate.

[0053] With reference to FIG. 2, the generalized audio
decoder (200) includes a bitstream demultiplexer [“DE-
MUX”] (210), an entropy decoder (220), an inverse quan-
tizer (230), a noise generator (240), an inverse weighter
(250), an inverse multi-channel transformer (260), and an
inverse frequency transformer (270). The decoder (200) is
often simpler than the encoder (100) because the decoder
(200) does not include modules for rate/quality control.

[0054] The decoder (200) receives a bitstream (205) of
compressed audio data in WMA or another format. The
bitstream (205) includes entropy encoded data as well as
side information from which the decoder (200) reconstructs
audio samples (295). For audio data with multiple channels,
the decoder (200) processes each channel independently,
and can work with jointly coded channels before the inverse
multi-channel transformer (260).

[0055] The DEMUX (210) parses information in the bit-
stream (205) and sends information to the modules of the
decoder (200). The DEMUX (210) includes one or more
buffers to compensate for short-term variations in bitrate due
to fluctuations in complexity of the audio, network jitter,
and/or other factors.

[0056] The entropy decoder (220) losslessly decompresses
entropy codes received from the DEMUX (210), producing
quantized frequency coefficient data. The entropy decoder
(220) typically applies the inverse of the entropy encoding
technique used in the encoder.

[0057] The inverse quantizer (230) receives a quantization
step size from the DEMUX (210) and receives quantized
frequency coefficient data from the entropy decoder (220).
The inverse quantizer (230) applies the quantization step
size to the quantized frequency coeflicient data to partially
reconstruct the frequency coefficient data. In alternative
embodiments, the inverse quantizer applies the inverse of
some other quantization technique used in the encoder.

[0058] The noise generator (240) receives from the
DEMUX (210) indication of which bands in a block of data
are noise substituted as well as any parameters for the form
of'the noise. The noise generator (240) generates the patterns
for the indicated bands, and passes the information to the
inverse weighter (250).

[0059] The inverse weighter (250) receives the weighting
factors from the DEMUX (210), patterns for any noise-
substituted bands from the noise generator (240), and the
partially reconstructed frequency coefficient data from the
inverse quantizer (230). As necessary, the inverse weighter
(250) decompresses the weighting factors. The inverse
weighter (250) applies the weighting factors to the partially
reconstructed frequency coeflicient data for bands that have
not been noise substituted. The inverse weighter (250) then
adds in the noise patterns received from the noise generator
(240).
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[0060] The inverse multi-channel transformer (260)
receives the reconstructed frequency coefficient data from
the inverse weighter (250) and channel mode information
from the DEMUX (210). If multi-channel data is in inde-
pendently coded channels, the inverse multi-channel trans-
former (260) passes the channels through. If multi-channel
data is in jointly coded channels, the inverse multi-channel
transformer (260) converts the data into independently
coded channels. If desired, the decoder (200) can measure
the quality of the reconstructed frequency coefficient data at
this point.

[0061] The inverse frequency transformer (270) receives
the frequency coefficient data output by the multi-channel
transformer (260) as well as side information such as block
sizes from the DEMUX (210). The inverse frequency trans-
former (270) applies the inverse time-split transform selec-
tively (as indicated by the side information), and applies the
inverse of the frequency transform used in the encoder and
outputs blocks of reconstructed audio samples (295).

Exemplary Transform with Selective Time-Split

[0062] FIG. 3 shows a transform coder 300 with selective
time-split transform. The transform coder 300 can be real-
ized within the generalized audio encoder 100 described
above. The transform coder 300 alternatively can be realized
in audio encoders that include fewer or additional encoding
processes than the described, generalized audio encoder 100.
Also, the transform coder 300 can be realized in encoders of
signals other than audio.

[0063] A transform coder 110 need not employ adaptive
window sizing. In one such an example, a default window
size is used to transform coefficients from the time domain
to the transform domain (e.g., frequency domain). Changing
signal characteristic detection is used to determine where to
selectively apply a time-split transform to coefficients in the
frequency domain.

[0064] Optionally, a time-split transform may be used in
conjunction with adaptive window sizing. The transform
coder 300 utilizes a one or more pass process to select
window sizes for transform coding. In a first, open-loop
pass, the transform coder detects changing signal character-
istics in the input signal, and selectively performs a time-
split transform. An initial window configuration may or may
not take changing signal characteristic detection into con-
sideration. Optionally, window sizes may be adapted before
or after selectively applying a time-split transform.

[0065] When window size adaptation is employed for an
initial window-size configuration, the transform coder
places one or more small windows over changing signal
characteristic regions and places large windows in frames
without changing signal characteristics. The transform coder
first transform codes, time-split transforms (selectively) and
then reconstructs the signal using the initial window con-
figuration, so that it can then analyze auditory quality of
transform coding using the initial window configuration.
Based on the quality measurement, the transform coder
adjusts window sizes, either combining to form larger win-
dows to improve coding efficiency to achieve a desired
bit-rate, or dividing to form smaller windows to avoid
pre-echo. To save on computation, the transform coder 300
can use the quality measured on the previous frame to make
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adjustments to the window configuration of the current
frame, thereby merging the functionality of the two passes,
without having to re-code.

[0066] With reference to a particular example shown in
FIG. 3, the transform coder 300 comprises components for
changing signal characteristic detection 320, windows con-
figuration 330, encoding 335, and selective time-split trans-
form 340. Optionally 345, quality measurement 350 is used
to provide one or more window configurations 365.

[0067] The changing signal characteristic detection com-
ponent 320 detects regions of the input signal that exhibit
characteristics of a changing signal characteristic, and iden-
tifies such regions to the windows configuration component
330. The changing signal characteristic detection component
320 can use various conventional techniques to detect
changing signal characteristic regions in the input signal. An
exemplary changing signal characteristic detection process
400 is illustrated in FIG. 4, and described below.

[0068] The windows configuration component 330 con-
figures windows sizes for transform coding. An initial win-
dow configuration may be provided based on results of
changing signal characteristic detection. An initial window
configuration may also be provided by a default configura-
tion without considering changing signal characteristic
detection. An initial configuration may be determined on an
open-loop basis based on the changing signal characteristic
locations identified by the changing signal characteristic
detector component 320. An exemplary open-loop windows
configuration process 500 is illustrated in FIG. 5, and
described below. Optionally, on a second iteration 365, the
windows configuration component 330 adjusts the initial
window sizes from the initial configuration based on closed-
loop feedback 365 from the quality measurement component
350, to produce a next configuration. An exemplary closed-
loop windows configuration process 700 is illustrated in
FIG. 7, and described below.

[0069] The encoding component 335 implements pro-
cesses for transform coding (e.g., DCT transform, etc.), rate
control, quantization and their inverse processes, and may
encompass the various components that implement these
processes in the generalized audio encoder 100 and decoder
200 described above. The encoding component 335 initially
transform codes (with rate control and quantization) the
input signal using the initial window size configuration
produced by the windows configuration component 330.
The time-split component 340 then selectively performs a
time-split transform, as described below. Optionally, when a
decoder is employing feedback 365, the encoding compo-
nent 335 then decodes to provide a reconstructed signal for
auditory quality analysis by the quality measurement com-
ponent 350. The encoding component 335 again transform
codes (with rate-control and quantization) the input signal
using the second-pass window size configuration provided
by the windows configuration component 330 to produce the
compressed stream 360.

[0070] The quality measurement component 350 analyzes
the auditory quality of the reconstructed signal produced
from transform coding using the initial or next window size
configuration, so as to provide closed-loop quality measure-
ment feedback to the windows configuration component
330. The quality measurement component analyzes the
quality of each coding window, such as by measuring the
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noise-to-excitation ratio achieved for the coding window.
Alternatively, various other quality measures (e.g., the
noise-to-mask ratio) can be used to assess the quality
achieved with the selected window size. Optionally, this
quality measure is used by the windows configuration com-
ponent 330 in its second-pass to select particular window
sizes to increase for rate control, with minimal loss of

quality.

[0071] The quality measurement component 350 may also
use the quality analysis to detect pre-echo. An exemplary
process to detect pre-echo is illustrated in FIG. 8), and
described below. Results of the pre-echo detection also are
fed back to the windows configuration component 330.
Based on the pre-echo detection feedback, the windows
configuration component 330 may further reduce window
sizes (e.g., where rate-control constraints allow) to avoid
pre-echo for the second-pass window configuration.

[0072] In the case of multi-channel audio encoding, the
transform coder 300 in one implementation produces a
common window size configuration for the multiple coding
channels. In an alternative implementation for multi-channel
audio encoding, the transform coder 300 separately config-
ures transform window sizes for individual coding channels.

Exemplary Changing signal characteristic Detection

[0073] FIG. 4 illustrates one exemplary changing signal
characteristic detection process 400 performed by the chang-
ing signal characteristic detection component 320 to detect
changing signal characteristics in the input signal. As indi-
cated at step 470, the process 470 is repeated on a frame-
by-frame basis on the input signal.

[0074] The changing signal characteristic detection pro-
cess 400 first band-pass filters (at first stage 410) the input
signal frame. The changing signal characteristic detection
process 400 uses three filters with pass bands in different
audio ranges, i.e., low, middle and high-pass ranges. The
filters may be elliptic filters, such as may be designed using
a standard filter design tool (e.g., MATL.AB), although other
filter shapes alternatively can be used. The squared output of
the filters represents the power of the input signal in the
respective audio spectrum range at each sample. The low-
pass, mid-pass and high-pass power outputs are denoted
herein as P,(n), P_(n), and P,(n), where n is the sample
number within the frame.

[0075] Next (at stage 420), the changing signal character-
istic detection process 400 further low-pass filters (i.e.,
smoothes) the power outputs of the band-pass filter stage for
each sample. The changing signal characteristic detection
process 400 performs low-pass filtering by computing the
following sums (denoted Q,(n), Q,,(n) and Q,(n)) of the
low-pass, mid-pass and high-pass filtered power outputs at
each sample n, as shown in the following equations:

Si(n) = Z Pn—s+i)

i=0

Sn(n)= )" Puln—s+0)

i=0
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-continued

Su(n) = )" Puln—s+i)

i=0

where s and t are predefined constants and (t=s). Examples
of suitable values for the constants are t=288 and s=256.

[0076] The changing signal characteristic detection pro-
cess 400 then (at stage 430) calculates the local power at
each sample by again summing the power outputs of the
three bands over a smaller interval centered at each sample,
as shown by the following equations:

Qm =Y Pln—u+i)

i=0

Q)= ) Puln—u+1)

i=0

Oulm) = )" Paln—u+1)

i=0

where u and v are predefined constants smaller than t and s.
Examples of suitable values of the constants are u=32 and
v=32.

[0077] At stage 440, the changing signal characteristic
detection process 400 compares the local power at each
sample to the low-pass filter power output, by calculating the
ratios shown in the following equations:

R (m)=5,(n)/Q\(n)
R (m)=5(1)/ Q)
Ry (n)=Sn(n)/ Q)

[0078] Finally, at decision stage 450 and 460, the changing
signal characteristic detection process 400 determines that a
changing signal characteristic exists if the ratio calculated at
stage 440 exceeds predetermined thresholds, T;, T, and T,
for the respective bands. In other words, if any of R,(n)>T,,
or 1/R(n)>T", or R ,(n)>T,, or I/R_(0n)>T'_, or Ry(n)>T,,
or 1/R,(n)>T",, where T, T",, T, T",,, T}, T';, are thresholds,
then the sample location n is marked as a changing signal
characteristic location. An example of suitable threshold
values is in the range of 10 to 40. It is important to note that
a changing signal characteristic is declared so long as there
is sufficient change in energy in any of the three bands. So
coding efficiency may be reduced if there are certain fre-
quency ranges where a changing signal characteristic did not
exist.

Exemplary Window Configuration

[0079] FIG. 5 shows an open-loop window configuration
process 500, which is used in the window configuration
component 530 to perform its first pass window configura-
tion. Adaptive window size configuration is not required to
perform time-split transforms in a transform coder, rather it
is an additional feature that may be employed in some
embodiments. The open-loop window configuration process
500 configures window sizes for transform coding by the
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encoding component 340 based on information of changing
signal characteristic locations detected via the changing
signal characteristic detection process 400 by the changing
signal characteristic detection component 320. In the illus-
trated process, the window configuration component 330
selects from a number of predefined sizes, which may
include a smallest size, largest size, and one or more
intermediate sizes.

[0080] As indicated at step 510 in the window configura-
tion process 500, the process 500 determines if any changing
signal characteristics (CSC), such as a transient or otherwise
were detected in the frame. If so, the window configuration
process places windows of the smallest size over changing
signal characteristic-containing regions of the frame (as
indicated at 520), such that the changing signal character-
istics are completely encompassed by one or more smallest
size windows. Then (at 530), the process 500 fills gaps
before and after the smallest size windows with one or more
transition windows.

[0081] Ifno changing signal characteristics are detected in
a frame, the window configuration process 500 configures
the frame to contain a largest size window (as indicated at
540). The process 500 continues on a frame-by-frame basis
as indicated at step 550.

[0082] FIG. 6 shows an example window configuration
produced via the process 500. First, since no changing signal
characteristic is detected in the prior frame, the process 500
places a largest size window 610 in that frame. The process
500 then places smallest size windows 620 to completely
encompass changing signal characteristics detected in a
transient region. The process 500 next fills a gap between the
window 610 and windows 620 with intermediate size tran-
sition windows 630 and 640, and also fills a gap with the
next frame window with intermediate size transition window
650. The open-loop window configuration process 500 has
the advantage that the smallest size windows are placed over
the changing signal characteristic region, as compared to
filling a full frame.

Exemplary Quality Measurement

[0083] As discussed above, an optional quality measure-
ment component 350 analyzes the achieved quality of audio
information and feeds back the quality measurements to the
window configuration component for use in adjusting win-
dow sizes. A window configuration component 350 may
take two actions depending on the achieved quality of the
signal. First, when the quantization noise is not acceptable,
the window configuration component 350 trades the time
resolution for better quantization by increasing the smallest
window size. Further, when pre-echo is detected, the win-
dow configuration component splits the corresponding win-
dows to increase time resolution, provided there are suffi-
cient spare bits to meet bit rate constraints.

[0084] More specifically, FIGS. 7 and 8 show a quality
measurement and adapted window configuration process
700. As indicated at decisions 710 and 810, a bit rate setting
can be considered in the transform coder 300 (FIG. 3) in
order to determine whether the process 700 takes the actions
depicted for processing loops 720-750 and 820-840, respec-
tively. More particularly, when a bit rate setting emphasizes
coding efficiency (at 710), the window configuration process
700 performs processing loop 720-750. When the rate
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setting is for high quality (at 810), the window configuration
process 700 performs processing in loop 820-840. These rate
setting classes need not be mutually exclusive. In other
words, there may be some rate settings in some transform
coders that call for a balance of both coding efficiency and
quality, such that both processing loops 720-750 and 820-
840 are performed.

[0085] At a first processing step 720 in the first processing
loop 720-750, the window configuration process 700 mea-
sures the achieved quality of the transform coded signal. In
one implementation, the process 700 measures the achieved
Noise-To-Excitation Ratio (NER) for each coding window.
The NER of the coding window of the reconstructed,
transform coded signal can be calculated as described in the
Perceptual Audio Quality Measurement Patent Application,
U.S. patent application Ser. No. 10/017,861, filed Dec. 14,
2001. Alternatively, other quality measures applicable to
assessing acceptability or perceptibility of quantization
noise can be used, such as noise-to-mask ration described or
referenced in “Method for objective measurements of per-
ceived audio quality,” International Telecommunication
Union-Recommendation Broadcasting Service (Sound)
Series (ITU-R BS) 1387 (1998).

[0086] Next (at 730), the window configuration process
700 compares the quality measurement to a threshold. If the
quantization noise is not acceptable, the window configu-
ration process 700 (at 750) increases the minimum allowed
window size for the frame. As an example, in one imple-
mentation, the window configuration process 700 increases
the minimally allowed window size for the frame by a factor
of'2 ifthe NER of a coding window in the frame exceeds 0.5.
If the NER is greater than 1.0, the minimum allowed
window size is increased by 4 times. The acceptable quan-
tization noise threshold and the increase in minimum
allowed window size are parameters that can be varied in
alternative implementations.

[0087] As indicated at decision 740, the window configu-
ration process 700 also can increase the window size when
the quantization noise is acceptable, but the rate control
buffer of the transform coder is nearly full (e.g., 95% or
other like amount depending on size of buffer, variance in bit
rate, and other factors).

[0088] In an alternative implementation of the process
700, the window configuration process 700 at processing
step 720 uses a delayed quality measurement. As examples,
the quality of coding of the preceding frame or average
quality of previous few frames could be used to determine
the minimum allowed window size for the current frame. In
one implementation, the final NER obtained at the preceding
frame is used to determine the minimum window size (at
750) used in the configuration process 500. Such use of a
delayed quality measurement reduces the implementation
complexity, albeit with some sacrifice in accuracy.

[0089] Inthe second processing loop 820-840, the window
configuration process 700 also measures to detect pre-echo
in the frame. For pre-echo detection, the process 700 divides
the frame of the reconstructed, transform coded signal into
a set of very small windows (smaller than the smallest
coding window), and calculates the quality measure (e.g.,
the NMR or NER) for each of the very small windows. This
produces a quality measure vector (e.g., a vector of NMR or
NER values). The process 700 also calculates a global
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achieved quality measure for the frame (e.g., the NMR or
NER of the frame). The process 700 determines that pre-
echo exists if any component of the vector is significantly
higher (e.g., by a threshold factor) than the achieved global
quality measure for the frame. Suitable threshold factor is in
the range 4 to 10. Alternative implementations can use other
values for the threshold.

[0090] In the case where pre-echo is detected and there is
sufficient spare coding capacity (e.g., rate control buffer not
full or nearly full), the window configuration process 700 (at
840) adjusts the window configuration in the frame to
further reduce the window size. In one implementation, the
process 700 decomposes the frame into a series of smallest
size windows (e.g., the size of window 620 of FIG. 6).
Alternatively, the process 700 locally reduces the size of the
first-pass coding windows in which pre-echo is detected,
rather than reducing all windows in the frame to the smallest
size. As indicated at 850, the window configuration process
700 then continues on a frame-by-frame basis. However,
alternative implementations need not perform the window
configuration on a frame basis.

Exemplary Selective Time-Splitting

[0091] In order to determine whether to apply time-split-
ting, the data is programmatically examined for certain
characteristics (see e.g., FIG. 3, 320). In another example
(not shown), after encoding (335), the results are examined
for pre or post echo or other artifacts, such as changing
signal characteristics (320, 350). Pre-echo or post-echo are
common characteristics of using a large time window when
a small one is needed.

[0092] Optionally, an input signal is coded into a baseband
and then the baseband shape is examined to determine
similar shapes in an extended band. A similar shape in the
baseband provides a shape model for similar shapes being
coded at other frequencies. The baseband shapes provide
synthetic models or codewords used to code the higher
frequencies. The coded baseband is used to create an
extended band or enhanced layer. In one such example, a
time envelope is created resulting from reconstructing with
the enhancement layer and comparing with the original time
envelope. If there is a big difference, in the original versus
reconstructed signal, then a determination is made to time-
split at or near sub-bands where signal quality is compro-
mised between the enhanced and original signal.

[0093] A changing signal characteristic detection routine
(320) should also look for large energy differences in a high
band which is being coded in the enhancement layer. If there
are significant energy differences only present in the high
band (such as, those being coded with enhancement in the
extended band), and not in frequencies which are being
coded with the baseband codec, then this is the ideal case
when a large window size should be used for the baseband.
Then, time-splitting can be used for the enhancement to get
better time resolution in high frequencies without requiring
a shorter window in the baseband. This will give the best
compression efficiency without causing undesirable artifacts
due to poor time resolution at high frequencies.

[0094] However, there might be cases when artifacts
remain even after performing the time-split transform.
Although the time-split results in energy compaction in time
domain, it does not always work as well as truly using a
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smaller time window (e.g., see smaller windows in FIG. 9,
908). In such a case, the results from time-split can be used
as feedback before deciding to modify the window size. This
means that if the high band is not able to be coded well (e.g.,
acceptable artifacts), then simply reduce the sub-frame size
being used (e.g., FIG. 3, 365).

[0095] Additionally, it will be apparent that any similarly
suitable and invertible transform can be used to alter or
dampen the artifacts created by spreading the error across
the spectrum. Here, since the MLT is an orthogonal trans-
form, applying a orthogonal transform keeps the overall
transform still orthogonal. The effect it has is in modifying
the basis functions.

Exemplary Overlapping Windows

[0096] When utilizing an MLT (e.g., MDCT), overlapping
windows are used to segment the data into blocks. For each
of these overlapping blocks, a DCT transform is performed
on the data in the window. Optionally, plural overlapping
window sizes can be used. The windows sizes can be applied
based upon signal characteristics, where small windows are
used at changing signal characteristics (e.g., where signal
characteristics such as energy change), and larger windows
are used elsewhere to obtain better compression efficiency.

[0097] FIG. 9 is a graph representing exemplary overlap-
ping windows covering segmentation blocks. As shown in
900, the segmentation blocks 902 of signal data are trans-
formed from the time domain to the transform domain (e.g.,
frequency domain) using overlapping windows 904. For
each window with M spectral samples, an overlapping
window of size 2M (50% overlap on each side) is used to
transform the data. However, the coeflicients in the 2M
window may not all be nonzero coefficients, as this depends
on the neighboring block sizes. If either of the two neigh-
boring blocks and corresponding windows are smaller than
M, then at least some of the 2M window coefficients are
Zero.

[0098] For each block (or sub-frame), an invertible trans-
form is computed transforming input audio samples from the
time domain to the transform domain (e.g., a DCT or other
known transform domains). The M resulting MLT coeffi-
cients from the 2M window are used for each M-size
sub-frame. The overlap ensures that this 2M-to-M transfor-
mation can be inverted without any loss. Of course, there
will be some loss during quantization. The 2M-to-M trans-
formation can be represented as a projection of the 2M-di-
mensional signal vector onto the basis vectors. The shape of
the M basis vectors are dependent on the window shape.
Neither overlapping windows nor any particular segmenta-
tion methodology is required to time-split adjacent coeffi-
cients. However, if overlapping windows are used, the basis
vectors typically vary based on the current sub-frame size,
the previous sub-frame size, and the next sub-frame size. If
the DCT cosine basis vectors (e.g., basis vectors) are to
provide good time resolution, then they should have local-
ized support in the time domain. If the basis vectors are
viewed as a function of time index, then they should have
most of their energy concentrated around the center of the
frame.

Exemplary Segmentation

[0099] Consider an example, with a 32-dimensional vector
(e.g., 32 input samples, such as audio/video), that has been

Jan. 18, 2007

split into 4 sub-frames of size 8 (e.g., a segmentation of [8
8 8 8]). Often, the frame would be larger (e.g., 2048
samples) and the segmentation (e.g., sub-frame sizes) would
be larger and possibly variable in size within the frame (e.g.,
[8, 8, 64, 64, 32, 128, 128]). As will be discussed, time-
splitting transform can be selectively performed without
regard to sub-frame size and whether or not segmentation
size is variable. However, the 32-dimensional vector pro-
vides an example for the following discussion, with the
understanding that the described technology is not limited to
any such configurations.

[0100] FIG. 10 is a graph of the basis vectors that con-
tribute to the MLT coefficients corresponding to the middle
two sub-frames. For example, assume that the 16 basis
vectors 1000, each with time span 16, contribute to the MLT
coeflicients from the middle two sub-frames (e.g., in bold [8
8 8 8]). This illustrates 1000 that each sub-frame has a
certain time span, and the time resolution is related to the
time span. Similarly, if the 32 dimensional vector is seg-
mented into 8 sub-frames of size 4, then the segmentation
would be[4 4444444

[0101] FIG. 11 is a graph of the basis vectors that con-
tribute to the MLT coefficients corresponding to the middle
four sub-frames with smaller sized segmentation. For
example, the basis vectors 1100 corresponding to the MLT
coeflicients for the middle 4 sub-frames (e.g.,[4 444 4 44
4]), are the same differently grouped coefficients as the
middle 2 sub-bands in the sub-band size 8 case. The basis
vectors 1100 each have a time-span of 8. The graph 1100,
shows the basis vectors as a time frequency grid, with the
time axis running along the columns, and the frequency axis
being the rows.

[0102] From these two FIGS. 1000, 1100, it is apparent
that sub-frame size relates to time resolution. Now, suppose
that the time resolution is sufficient at lower frequencies
(e.g., 1002), but not at higher frequencies (e.g., 1004). Note
that in FIG. 10, the top row is the lowest frequency basis
vector, and each row below it, in order, increases in fre-
quency with the bottom row being the highest frequency. For
example, if there is a changing signal characteristic in a high
frequency, it may be beneficial to provide better time reso-
Iution to reduce artifacts introduced by the changing signal
characteristic. However, it may only be the high frequency
that has a changing signal characteristic, and thus the time
resolution in a lower frequency is adequate 1002. Also, the
time resolution needed for a particular frequency range is
also dependent on the coding method being used to code that
frequency range. For example, when coding a particular
frequency range as an extended band using “Efficient coding
of digital media spectral data using wide-sense perceptual
similarity”, then better time resolution might be needed than
if coding it as a traditional baseband coding scheme.

[0103] A time-splitting transform is selectively applied at
adjacent coefficients where better time resolution is desired.
Instead of just using the coefficients obtained from the MLT,
a post block transform on a subset of the M spectral
coeflicients is performed, such as a time-splitting transform.
By imposing constraints on the structure of the transform,
better time resolution is selectively obtained for some fre-
quency coefficients, but not others.

[0104] FIG. 12 is a graph representing how time-splitting
combines adjacent coefficients. In this example, the com-
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bined coefficients are high frequencies coefficients. As
shown, the basis vectors 1-4 remain unchanged 1202, but
basis vectors 5+6, and 7+8 have been selected for a time-
split 1204. Thus, basis vectors 5 and 6 have been added to
and subtracted from one another to provide a time-split
transform. Basis vectors 7 and 8 have been added to and
subtracted from one another to provide a time-split trans-
form. In this example, two sets of basis vectors have been
transformed to represent time-splitting, but either could be
used alone, such as just 5x6, or 7+8. Additionally, the 8 rows
of'adjacent basis vectors could provide various other select-
able time-splitting transforms, such as one or more of the
following row transforms: 12, 2+3, 3+4, 45, 5+6, 6+7, or
7+8. Thus, any basis vector can be time-split with any
adjacent basis vector. The graph 1200 represents how a 5+6,
5-6 and 7+8, 7-8 time-split transform relates to the basis
vectors. A selective application of time-splitting is applied to
the high frequency coefficients, for example, using a simple
transform of the form (a+b)/2, (a-b)/2, where ‘a’ and ‘b’ are
two adjacent coefficients. Notice that FIG. 11 provides rows
of four frequency patterns and columns of four (shifting)
time patterns. Further, FIG. 10 provides rows of eight
frequency patterns and columns of two time patterns. In one
respect, time splitting as shown in FIG. 12 provides better
time resolution of FIG. 11 for a sample selection of high
frequencies, while maintaining the better frequency resolu-
tion for low frequencies of FIG. 10.

[0105] FIG. 13 is a matrix representing an exemplary
time-splitting transform of FIG. 12. The time-splitting trans-
form represented by FIG. 12, is applied after the time
domain to frequency domain (e.g., DCT) transform, in this
example using the matrix 1300. By combining (%) basis
functions from different frequencies, frequency resolution is
reduced, and time resolution is gained in the process. Better
time resolution is useful to more closely model rapidly
changing data from a transient area. For example, using the
time-split transform on the example of sub-frame size 8, the
high frequency basis functions from FIG. 11, are effectively
incorporated into the basis vectors shown in FIG. 12. The 1/
v2 scaling factor can be optionally applied, as shown in FIG.
13, to maintain proper normalization of the time-split basis
functions (such as those in FIG. 12, 1204). Alternatively,
that normalization factor can be incorporated in the quanti-
zation steps of the encoding component 335. Also, other
values for the normalization factor can be used, if it is
deemed appropriate, e.g. by the quality measurement 350.

[0106] As can be seen, the post block transform (e.g.,
time-split transform) results in time separation. Although the
time span of the resulting basis vectors is the same as before,
the energy concentration has been more localized. This is
better understood in view of the following analysis.

Exemplary Analysis of Time-splitting

[0107] The MLT coefficients for a sub-frame of size M are
defined as:

Equation 1

X[k] = \/nglx[n]h[n]cos[(n + M2+ ! ](k + %]%],
=0
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where h[n] is the window. The time index n=0 is defined to
be M/2 samples to the left of the start of the current
sub-frame, so that x[M/2] is the start of the current sub-
frame. Notice that the equation provides an optional over-
lapping window sizes (e.g., 2M). Starting with X[k]+X[k+
1], and then using the known relationship of cos(a)+
cos(b)=2 cos((a-b)/2)cos((a+b)/2), the following is
obtained:

Equation 2

M

M+1y =
oo [+ )5

+1](k+1)1]

Similarly, staring with X[k]-X[k+1], and using the known
relationship of cos(a)-cos(b)=-2 sin((a-b)/2)sin((a+b)/2),
the following is obtained:

5 2M-1 Equation 3
X[k]-X[k+1]1=2 i ; x[n]hln]

sin[(n+ M2+ 1]%]sin[(n+ M2+ 1](k+ 1)%]

Equations 2 and 3 can be rewritten as equations 4 and 5,
respectively, as follows,

X[kl+Xk+1]= Equation 4
) 2 B " M+1 PP
W 24 x[n] 1[n]cos[(n+ 3 ]( + )M]
X[k]+ X[k +1]= Equation 5

2M -1

2 % ; x[n]hz[n]sin[(n+ Mzﬂ](ku)%]

such that h;[n] and h,[n] are defined as shown in equations
7 and 8.

hy[n] = h[n]cos[(n + M2+ 1]%] Equation 7 and 8
hn] = h[n]sin[(n + M2+ ! ]ﬁ]

Thus, the two original frequency-domain coeflicients X[k]
and X[k+1], which corresponded to the modulating frequen-
cies (k+1/2)n/M and (k+3/2)t/M, respectively, are replaced.
By replacing those coefficients with the following coeffi-
cients (X[k+X[k+1]) and (X[k]-X[k+1]), there are two new
frequency-domain coefficients that now correspond to the
same frequency (k+1)m/M (but with a 90 degree phase shift,
since one is modulated by a cosine function and the other by
a sine function), but modulated by different windows h,[n]
and h,[n], respectively.
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[0108] FIG. 14 is a graph of these two new time-split
window functions. In this example, the graph is of the two
new window functions of Equations 7 and 8 plotted with
M=256. The graph of the two equations shows why the time
separation occurs. Assuming the neighbor windows have the
same window shape, the standard sub-frame window shape
906 used in FIG. 9, is represented as follows,

h[]—‘[( +1]7r] 01 oM -1 Equation 9
nl=sin|n+ 5l n=01 -1

[0109] A sub-band merging approach was first described
in R. Cox, “The Design of Uniformly and Nonuniformly
Spaced Pseudoquadrature Mirror Filters” IEEE Transactions
on Acoustics, Speech, and Signal Processing, vol. 34, pp.
1090-1096, October 1986, and was applied to the MLT in H.
S. Malvar, “Enhancing the Performance of Sub-Band Audio
Coders for Speech Signals™, Proc. 1998 IEEE International
Symposium on Circuits and Systems, vol. 5, pp. 98-101,
June 1998 (“Malvar”). Contrary to the decomposition in
Malvar, where all high-frequencies (after a predetermined
value of k) are pairwise split according to the construction
above, a time-splitting transform is performed only on
selected pairs of coefficients, according to a selection crite-
ria. Thus, fixed time-splitting is replaced by selective time-
splitting based upon the characteristics of the input signal or
derivations thereof. In practice one can combine more then
two sub-bands, but the quality of time-splitting suffers that
is, time selectivity will not be as good. See e.g., O. A.
Niamut and R. Heusdens, “Sub-band Merging in Cosine-
modulated Filter Banks”, IEEE Signal Processing Letters,
vol. 10, pp. 111-114, April 2003, and see ADAPTIVE
WINDOW-SIZE SELECTION IN TRANSFORM COD-
ING, U.S. patent application Ser. No. 10/020,708 filed Dec.
14, 2001.

Exemplary Spectral Coeflicients

[0110] FIG. 15 is a graph representing a set of spectral
coeflicients. For example, the coefficients (1500) are an
output of a sub-band transform or an overlapped orthogonal
transform such as MDCT or MLT, to produce a set of
spectral coefficients for each input block of the audio signal.

[0111] In one example, a portion of the output of the
transform called the baseband. (1502) is encoded by the
baseband coder. Then the extended band (1504) is divided
into sub-bands of homogeneous or varied sizes (1506).
Shapes in the baseband (1508) (e.g., shapes as represented
by a series of coeflicients) are compared to shapes in the
extended band (1510), and an offset (1512) representing a
similar shape in the baseband is used to encode a shape (e.g.,
sub-band) in the extended band so that fewer bits need to be
encoded and sent to the decoder.

[0112] Sub-bands may vary from subframe to subframe.
Similarly, a baseband (1502) size may vary, and a resulting
extended band (1504) may vary in size based on the base-
band. The extended band may be divided into various and
multiple size sub-band sizes (1506).

[0113] In this example, a baseband segment is used to
identify a codeword for a particular shape (1508) to simulate
a sub-band in the extended band (1510) transformed to
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create other shapes (e.g., other series of coefficients) that
might more closely provide a model for the vector (1510)
being coded. Thus, plural segments in the baseband are used
as potential models to code data in the extended band.
Instead of sending the actual coefficients (1510) in a sub-
band in the extended band an identifier such as a motion
vector offset (1512), is sent to the encoder to represent the
data for the extended band. However, sometimes there are
no close matches in the baseband for data being modeled in
a sub-band. This may be because of low bitrate constraints
that allow a limited size baseband. The baseband size (1502)
as relative to the extended band may vary based on com-
puting resources such as time, output device, or bandwidth.

Exemplary Transform Matrices

[0114] One channel of audio/video is split into time seg-
ments as shown in FIG. 9, and for each segment a time
domain to frequency domain transformation is provided,
optionally with an overlapping windows. For example,
assume a overlapping window is applied to a time segment
followed by a DCT. A DCT produces coefficients which are
linear projections of the windowed time segment onto basis
vectors. The inverse frequency to time domain transforma-
tion involves taking a linear combination of the basis vectors
where the basis vectors are weighted by the DCT coeffi-
cients. Thus any noise (e.g. quantization noise) or other
significant energy changes in the DCT coefficients will be
spread across time due to the support of the basis vectors.
For example, if the basis vectors have compact support (e.g.
the energy is localized in time), then there will be less
temporal smearing of the quantization noise or other
changes to the DCT coefficients. One way to do this is to
break a time window into smaller windows. Since the basis
vectors have a support of 2M samples, the smaller the M, the
smaller the support. Another way is to selectively use a
time-split transform in frequency ranges where changing
signal characteristics are detected, or in frequency ranges
where it is needed because of the coding method being used.
A time splitting transform does not reduce the support of the
basis vectors, but instead compacts the energy into different
regions of the time segment. Therefore there will be some
energy over the entire 2M samples of the basis vector, but a
large portion of it will be concentrated around a central
point.

[0115] FIG. 16 is a graph of an exemplary time domain
representation of frequency coefficients. For example, if a
signal at a frequency changes dramatically (1604), prefer-
ably a window size that is adequate for a more stable signal
(1602) should be divided into smaller windows to reduce
echo. But in the context of frequency extrapolation using a
baseband and extended band codec, not all windows can be
sub-divided. In one example, a baseband window repre-
sented frequency information coding up to 10-kilohertz
(kHz) (1606), and under 10 kHz, there is generally no need
to break windows up because the sound is quite uniform.
However, above 10 kHz, for example to 20 kHz, there might
be a distinct sound such as a metallic sound that would show
up in the 20 kHz frequency range. For this distinct sound in
a determined frequency, a time-split is possibly performed to
provide better time resolution. Thus, one or more frequen-
cies within a larger segment are selectively time split. A
larger window is used for the base transform but a time split
achieves better time resolution for selected frequencies
within the larger window.
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[0116] As shown in FIG. 16, a time domain may be
divided into Low, Medium or High Frequency (e.g., L, M,
H, etc). Other resolutions may be used for examining inputs
for data variance requiring time-split or window adaptation.
It can be any of the bands H, L, M, that need better time
resolution. Frequency coefficients (1608) are represented in
the time domain as x[n], for n=0 . . . 2M-1. The idea is to
identify any segment that could beneficially use better time
resolution and then apply a transformation that is going to
add and subtract two coeflicients together to alter the basis
vector support. Any linear transform can be described as a
matrix multiplication; however, they are often implemented
in a more efficient way (e.g., Fast Fourier Transform).

[0117] FIG. 17 is a diagram representing a linear trans-
formation of a time domain vector into a frequency domain
vector including a time-split transform matrix of FIG. 13.
For example, a vector from the time domain (1608, 1702) is
multiplied by a cosine basis matrix (1704) and a time split
matrix (1706) to create a transform domain vector (1708)
(e.g., frequency domain vector). The matrix 1704 contains
the coeflicients of the operator corresponding to the cascade
combination of the signal-domain window and a DCT (of
type IV), such as the MLT. Thus, the number of coefficients
in the signal x[n] in the time domain is 2M, and the number
of transform-domain (or frequency-domain) coefficients
X[k] is M, indexed from O to M-1. Each element in the
cosine matrix is given by Equation 9 above except for
selected frequencies, which are represented selectively in
the time-split-matrix by Equations 7 and 8 above.

[0118] Thus, at the decoder, when the frequency domain
coeflicients X[k] are transformed back to the time domain,
each vector 1708 is multiplied by similar orthogonal matri-
ces. The selected frequencies within the basis vectors 1704,
are effectively multiplied by the basis vectors show in FIG.
14, thereby a changing signal characteristic in the input
signal due to the larger window, is not spread throughout the
selected frequencies because the time-split reduces the
energy achieving a reduced or zero value. This modulated
cosine is shifted a little bit in frequency, and creates a shape
that reduces an error such as an echo. In this example, this
result is achieved by multiplying by a second time-split
transform matrix 1706, that effectively combine two adja-
cent coefficients.

[0119] As shown in FIG. 13, at whatever frequency region
time-split is desirable, a 2x2 block is inserted (1302) into the
time-split matrix. For example, two adjacent basis vectors
can be combined 1302, 1304, as shown in FIG. 13. However
in practice, combining more than two sets has not been
effective.

[0120] The time-split transform should be done prior to
quantization, but after the first transform 1704. For example,
a time split transform 1706 could also be applied before or
after the channel transform 120, but before quantization 150
and before the weighter 140. A 2x2 block can be place along
the diagonal selectivity (as shown in FIG. 13) in order to
obtain better time resolution. The transform could also be
placed in a 3x3 block, 4x4 block, but the results have not
proven as successful as a 2x2 block. Additionally, 2x2
blocks can be placed in various positions and the results of
each position is compared upon reconstruction to determine
a best placement. For example, the blocks can be trans-
formed one way, then other ways, and the best results are
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selected for final coding. In another example, frequency
regions for time-split transform are dynamically selected for
frequency regions or for multiple frequency regions via
some form of energy change detection. The results are
compared, and for each eligible 2x2 block position, a bit is
set to indicate whether the time-split transform is on or off.
Intuitively, a transform is more likely to apply to high energy
blocks since they often spread more energy.

[0121] A time-split transform is a selectively applied sum
and difference of adjacent coefficients. For example, a
time-split transform may also be called a selectively applied
sum-difference of adjacent coefficient orthogonal transform
(e.g., a SASDACO transform). Additionally, the coder sig-
nals the decoder in an output stream, where to orthogonally
apply the inverse transform. For example, a side-information
bit for each frequency pair signals where to apply the
time-splitting SASDACO transform, and eligible blocks
may be anywhere along the diagonal (e.g., two examples in
FIG. 13, 1302, 1304) or only in the enhanced frequency
(1504).

[0122] Of course, a sum-difference orthogonal transform
2x2 block is not limited to the 2x2 block shown in FIG. 13,
1302. For example, a transform coder could utilize any
orthogonal sum-difference transform with similar transfor-
mational properties. In one such example, a orthogonal
sum-difference transform on adjacent coefficients results in
transforming a vector of coefficients in the transform domain
as if they were multiplied by an identity matrix with at least
one 2x2 block along a diagonal of the matrix, where the at
least one 2x2 block comprises orthogonally transforma-
tional properties substantially similar to one of the following
2x2 blocks:

where c is a scale factor selected to vary the properties of the
transform.

[0123] In one example, an extended portion 1504 of a
sub-frame is signaled (e.g., a bit) as with or without time-
split. A signaled sub-frame, may further signal a sub-band
706 as time-split, and signal blocks to perform a SASDACO
transform. In one such example, a signaled block implicitly
indicates applying a SASDACO transform to the other
sub-bands in the sub-frame. In another example, a signal(s)
is provided for each sub-band 706. A pre-echo/post deci-
sions can be used to decide where to apply the time-split
transform. A changing signal characteristic detection com-
ponent may also be used to break a signal up into frequency
ranges, such as high, medium, and low. For these distinc-
tions, the transform coder determines whether there is a
change in energy and applies a SASDACO transform
accordingly.

Exemplary Additional Features

[0124] Thus, a block transform (e.g., time-split transform)
is used after MLT decomposition to selectively get better
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time resolution for only some frequency components. This is
useful when larger time windows can be used to get better
compression efficiency, for example with low, medium, or
frequency coefficients, and still provide better time resolu-
tion only where needed. A decision is used to select where
to perform time-split, by programmatically examining char-
acteristics of the spectral data. For example, examining a
time envelope, energy change, changing signal characteristic
detection, pre-echo, or post-echo. A decision where to per-
form time-split may instead be made by programmatically
examining characteristics of changing signal characteristic
detection. In another example, modification (reduction) of
sub-frame size for base coding is made by programmatically
examining the output of enhancement layer coding. These
various ways of making a decision of where to make a
time-split transform, may also be used to determine in a
second pass at coding, where to vary window size.

Exemplary Computing Environment

[0125] FIG. 18 illustrates a generalized example of a
suitable computing environment (1800) in which the illus-
trative embodiment may be implemented. The computing
environment (1800) is not intended to suggest any limitation
as to scope of use or functionality of the invention, as the
present invention may be implemented in diverse general-
purpose or special-purpose computing environments.

[0126] With reference to FIG. 18, the computing environ-
ment (1800) includes at least one processing unit (1810) and
memory (1820). In FIG. 18, this most basic configuration
(1830) is included within a dashed line. The processing unit
(1810) executes computer-executable instructions and may
be areal or a virtual processor. In a multi-processing system,
multiple processing units execute computer-executable
instructions to increase processing power. The memory
(1820) may be volatile memory (e.g., registers, cache,
RAM), non-volatile memory (e.g., ROM, EEPROM, flash
memory, etc.), or some combination of the two. The memory
(1820) stores software (1880) implementing an audio
encoder.

[0127] A computing environment may have additional
features. For example, the computing environment (1800)
includes storage (1840), one or more input devices (1850),
one or more output devices (1860), and one or more com-
munication connections (1870). An interconnection mecha-
nism (not shown) such as a bus, controller, or network
interconnects the components of the computing environment
(1800). Typically, operating system software (not shown)
provides an operating environment for other software
executing in the computing environment (1800), and coor-
dinates activities of the components of the computing envi-
ronment (1800).

[0128] The storage (1840) may be removable or non-
removable, and includes magnetic disks, magnetic tapes or
cassettes, CD-ROMs, CD-RWs, DVDs, or any other
medium which can be used to store information and which
can be accessed within the computing environment (1800).
The storage (1840) stores instructions for the software
(1880) implementing the audio encoder.

[0129] The input device(s) (1850) may be a touch input
device such as a keyboard, mouse, pen, or trackball, a voice
input device, a scanning device, or another device that
provides input to the computing environment (1800). For
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audio, the input device(s) (1850) may be a sound card or
similar device that accepts audio input in analog or digital
form. The output device(s) (1860) may be a display, printer,
speaker, or another device that provides output from the
computing environment (1800).

[0130] The communication connection(s) (1870) enable
communication over a communication medium to another
computing entity. The communication medium conveys
information such as computer-executable instructions, com-
pressed audio or video information, or other data in a
modulated data signal. A modulated data signal is a signal
that has one or more of its characteristics set or changed in
such a manner as to encode information in the signal. By
way of example, and not limitation, communication media
include wired or wireless techniques implemented with an
electrical, optical, RF, infrared, acoustic, or other carrier.

[0131] The invention can be described in the general
context of computer-readable media. Computer-readable
media are any available media that can be accessed within
a computing environment. By way of example, and not
limitation, with the computing environment (1800), com-
puter-readable media include memory (1820), storage
(1840), communication media, and combinations of any of
the above.

[0132] The invention can be described in the general
context of computer-executable instructions, such as those
included in program modules, being executed in a comput-
ing environment on a target real or virtual processor. Gen-
erally, program modules include routines, programs, librar-
ies, objects, classes, components, data structures, etc. that
perform particular tasks or implement particular abstract
data types. The functionality of the program modules may be
combined or split between program modules as desired in
various embodiments. Computer-executable instructions for
program modules may be executed within a local or distrib-
uted computing environment.

[0133] For the sake of presentation, the detailed descrip-
tion uses terms like “determine,”get,”“adjust,” and “apply”
to describe computer operations in a computing environ-
ment. These terms are high-level abstractions for operations
performed by a computer, and should not be confused with
acts performed by a human being. The actual computer
operations corresponding to these terms vary depending on
implementation.

29¢¢

[0134] Having described and illustrated the principles of
our invention with reference to an illustrative embodiment,
it will be recognized that the illustrative embodiment can be
modified in arrangement and detail without departing from
such principles. It should be understood that the programs,
processes, or methods described herein are not related or
limited to any particular type of computing environment,
unless indicated otherwise. Various types of general purpose
or specialized computing environments may be used with or
perform operations in accordance with the teachings
described herein. Elements of the illustrative embodiment
shown in software may be implemented in hardware and
vice versa.

[0135] In view of the many possible embodiments to
which the principles of our invention may be applied, we
claim as our invention all such embodiments as may come
within the scope and spirit of the following claims and
equivalents thereto.
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We claim:
1. A transform coder comprising:

a changing signal characteristic detection component
operating to identify a changing signal characteristic
location;

an encoding component transforms an input signal from a
time domain to a transform domain; and

a time-splitting transformer component operating in
response to the identified changing signal characteristic
location to selectively perform an orthogonal sum-
difference transform on adjacent coefficients indicated
by the identified changing signal characteristic loca-
tion.

2. The transform coder of claim 1 wherein the orthogonal
sum-difference transform on adjacent coefficients results in
transforming a vector of coefficients in the transform domain
as if they were multiplied by an identity matrix with at least
one 2x2 block along a diagonal of the matrix, where the at
least one 2x2 block comprises orthogonally transforma-
tional properties substantially similar to one of the following
2x2 blocks:

where ¢ is a scale factor.

3. The transform of claim 1 wherein the time-splitting
transformer component encodes side information indicating
that there are no time-splits in at least one sub-frame.

4. The transform coder of claim 1 further comprising:

a window configuration component operating in response
to the identified changing signal characteristic location
to configure a first configuration of window sizes
selected from at least a small window size and a large
window size, so as to place one or more windows of the
small window size to encompass a region of the input
signal having at least one identified changing signal
characteristic location and place windows of the large
window size in areas of the input signal having no
identified changing signal characteristic locations;

the encoding component further inverse-transforming to
produce a reconstructed version of the input signal;

a quality measurement component operating to measure
achieved quality of the reconstructed signal; and

the window configuration component operating in
response to the achieved quality measurement to adjust
sizes of the first configuration of window sizes accord-
ing to the achieved quality measurement to produce a
second configuration window sizes.

5. The transform coder of claim 4 wherein:

the quality measurement component further operates to
measure achieved perceptual quantization noise of the
reconstructed signal for at least some of the windows in
the first configuration; and

14
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the window configuration component further operates to
increase a window size where the measure of achieved
perceptual quantization noise exceeds an acceptable
threshold.

6. The transform coder of claim 4 wherein:

the quality measurement component further operates to
detect pre-echo in the reconstructed signal; and

the window configuration component further operates to
decrease at least one window where pre-echo is
detected.

7. The transform coder of claim 2 wherein the transform
coder outputs side information identifying where the
orthogonal sum-difference transform was performed.

8. A transform decoder that performs the corresponding
inverse steps to recover data coded by the transform coder
of claim 7.

9. A transform decoder comprising:

an inverse time-splitting transformer component receives
side information and coefficient data in a transform
domain and selectively performs an inverse orthogonal
sum-difference transformation on adjacent coefficients
indicated in received side information; and

after the inverse time-splitting transformer component

performs an inverse orthogonal sum-difference trans-

formation, an inverse transformer transforms coeffi-

cient data from the transform domain to a time domain.

10. The transform decoder of claim 9 wherein the trans-
form decoder outputs reconstructed audio samples.

11. The transform decoder of claim 9 further comprising:

an inverse window configuration component receives side
information about window and sub-frame sizes; and

the inverse transformer transforms coeflicient data

according to the window and sub-band sizes.

12. The transform decoder of claim 9 wherein the inverse
orthogonal sum-difference transformation on adjacent coef-
ficients results in transforming a vector of coefficients in the
transform domain as if it were multiplied by an inverse of a
time-splitting transform used to code the vector of coeffi-
cients.

13. The transform decoder of claim 9 wherein the inverse
time-splitting transformer component receives side informa-
tion indicating that an inverse selectively applied sum-
difference of adjacent coefficients orthogonal transform
should be applied to at least one pair of adjacent coefficients
in a vector X in the transform domain, where there are M
coeflicients in vector X that are uniquely identified as X[k]
with k an integer ranging from 0 to M-1, so that the pair of
adjacent coeflicients is of the form {X[2r], X[2r+1]}, where
r is an integer.

14. The transform decoder of claim 9 wherein the inverse
time-splitting transformer component receives side informa-
tion indicating that there are no time-splits in at least one
sub-frame.

15. The transform decoder of claim 9 wherein the inverse
time-splitting transformer component receives side informa-
tion indicating whether or not there is a time-split in an
extended band.

16. A method of decoding comprising:

receiving side information and coefficient data in a trans-
form domain;
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selectively performing an inverse time-split transform on
adjacent coeflicients as indicated in received side infor-
mation; and

performing an inverse transform on received coefficient
data comprising transforming the coefficient data from
the transform domain to a time domain.

17. The method of claim 16 further comprising:

identifying sub-frame sizes in received side information;
and

wherein the inverse transform is performed according to
the identified sub-frame sizes.
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18. The method of claim 16 wherein selectively perform-
ing the inverse time-split transform comprises determining
from the side information whether there is a time-split in a
sub-band.

19. The method of claim 16 wherein selectively perform-
ing the inverse time-split transform comprises determining
from side information whether or not there is a time-split in
each sub-band in an extended band.

20. The method of claim 16 wherein selectively perform-
ing the inverse time-split transform comprises determining
from side information a pair of adjacent coefficients in a
transform domain on which to perform an inverse sum-
difference transform.



