(51) International Patent Classification: G02B 6/42

(21) International Application Number: PCT/SE02/01094

(22) International Filing Date: 6 June 2002 (06.06.2002)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
0102120-3 14 June 2001 (14.06.2001) SE

(72) Inventors; and

(75) Inventors/Applicants (for US only): STEIJER, Odd [SE/SE]; Tackjärnvägen 14, S-161 31 Bromma (SE).

HOLM, Ulf [SE/SE]; Gosta Tamms Vag 31, S-191 33 Solleuta (SE).

ERIKSEN, Paul [SE/SE]; Skogsvagen 16, S-135 49 Tyreso (SE).

(74) Agents: ALBHN S STOCKHOLM AB et al.; P.O. Box 5581, Linnegatan 2, S-114 85 Stockholm (SE).

Published: — with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: AN OPTOCAPSULE UNIT FOR AN OPTOHYBRID ASSEMBLY, A LOWER CASING PART OF SUCH AN OPTOCAPSULE UNIT, AND AN OPTOELECTRONIC MODULE COMPRISING SAID OPTOCAPSULE UNIT AND AN OPTOHYBRID ASSEMBLY

(57) Abstract: An optocapsule unit for an optohybrid assembly (10), said capsule unit comprising a lower casing part (36) and a compatible upper cover part (54) which together form, at one end (50) thereof, an integral receptacle section for obtaining an optomechanical interface and receiving and detachably holding therein an optical connector with at least one external optical fiber. A central section (38) of the lower casing part (36) has a cavity (42) for receiving, in a form-closed manner, a ferrule (12) of the opto-hybrid assembly (10). The lower casing part (36) has, at a second end thereof, a base plate (44) for supporting a substrate (20) having at least one optoclip (26, 28) and a proximal end of at least one primary optical fiber (22, 24) mounted thereon. The cover part (54) also has a section (58) covering the substrate (20) and at least a portion of the base plate (44) of the lower part. The invention is also addressed to the lower casing part (36) of the optocapsule unit for enclosing an optohybrid assembly (10) therein, and to an optoelectronic module (62) comprising the capsule unit with an optohybrid assembly enclosed therein.
An Optocapsule Unit for an Optohybrid Assembly, a Lower Casing Part of such an Optocapsule Unit, and an Optoelectronic Module comprising said Optocapsule Unit and an Optohybrid Assembly

TECHNICAL FIELD OF THE INVENTION

The present invention relates to an optocapsule unit for an optohybrid assembly according to the preamble of independent claim 1. The invention also relates to a lower casing part of such an optocapsule unit, according to the preamble of claim 3, as well as to an optoelectronic module comprising said optocapsule unit enclosing an optohybrid assembly, according to the preamble of claim 4.

BACKGROUND OF THE INVENTION

Conventional optical semiconductor devices for use in telecommunication systems can usually be connected to an external equipment through a so-called pigtail cord connected to an optical semiconductor chip, such as a laser diode of the device, or, more preferably, through a receptacle type of optomechanical interface to which an optical fiber of the external equipment may be connected.

US-A-5617495 discloses semiconductor devices having a connecting structure of the receptacle type wherein an external fiber may be detachably connected to the optical assembly of the equipment. Although a receptacle type of optomechanical interface is preferred to pigtail arrangements due to a less complicated handling and mounting procedure, the known devices of the receptacle type are still not optimized as far as versatility and accurate, easy assembly and automatization of the production of the components are concerned.
SUMMARY OF THE INVENTION

It is an object of the present invention to provide an improved optocapsule unit for an optohybrid assembly, wherein:

a) a group of electrical lead pins is integrally formed in a front portion of a lower casing part of the capsule unit so that a substrate of the optohybrid assembly supported thereon may be easily wire-bonded to the lead pins;

b) a recess in a central portion of said lower casing part of the optocapsule unit is formed for an accurate, form-closed positioning of a ferrule of the optohybrid assembly therein so as to secure a well-defined location of an optomechanical interface of the capsule unit; and

c) a receptacle for detachably receiving an external optical fiber connector is integrally formed in a rear portion of the lower casing part.

For this purpose the optocapsule unit of the present invention is characterized by the features set forth in claim 1.

Furthermore, a lower casing part of the capsule unit of the present invention is characterized by the features specified in claim 3.

An optoelectronic module, comprising a capsule unit of the present invention and an optohybrid assembly, is characterized by the features stated in claim 4.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is perspective view of an optohybrid assembly intended to be mounted in a capsule unit of the present invention;
Fig. 2 is a perspective view of a lower case part of the capsule unit and a frame of electrical lead pins integrated therewith;

Fig. 3 is a view similar to Fig. 2 showing the optohybrid assembly mounted to the lower casing part;

Fig. 4 is a perspective view of an upper casing part (cover) of the capsule unit; and

Fig. 5 is an exploded perspective view of an optoelectronic submodule formed by the capsule unit of the invention and the optohybrid assembly mounted therein, where the submodule is mounted in its turn on a PCB with a shielding metal cover placed above it.

DESCRIPTION OF A PREFERRED EMBODIMENT

As shown in Fig. 1, 10 generally denotes an optohybrid assembly for e.g. telecommunication systems. The optohybrid assembly comprises a main body, a so-called ferrule 12 of a square cross-section which, at a first end portion 14 thereof, has an enlarged flange 16. An unpeeled section 18 of a fiber ribbon with two optical fibers extends from the flange 16 towards a silicon substrate 20, where two fibers 22, 24 are attached to and supported in U- or V-grooves (not shown) in the substrate 20 and extend up to the immediate proximity of two respective optochips 26, 28, such as laser diodes, with which the proximal ends of the fibers 22, 24 are appropriately aligned. Furthermore, the fibers 22, 24 extend through fine lumens (not shown) in the ferrule 12, and distal ends of the fibers terminate at the opposite end surface 30 of the ferrule 12, where they form an optical interface for an optomechanical connection with an external optical fiber connector (not shown) having optical fibers, whose proximal ends are aligned with the distal ends of the fibers 22, 24. Guide pins 32, 34 are attached to the ferrule 12 for ensuring an accurately aligned connection of the external connector. The optohybrid assembly 10, i.e. the ferrule 12, the silicon
substrate 20 with optochips 26, 28 and optical fibers 18, 22, 24, constitutes a discrete testable unit as far as the function of the optochips is concerned.

Fig. 2 illustrates a lower casing part 36 of a capsule unit of the present invention for a non-hermetrical encapsulation of the optohybrid assembly 10. The lower casing part 36 has a central portion 38 with a recess 40 and a cavity 42 for receiving and retaining the ferrule 12 in a form-closed manner with the flange 16 positioned in the cavity 42. The lower casing part 36 has a front base plate portion 44 provided with groups of electrical lead pins 46 integrally formed therewith and adapted to be connected by wire-bonding to the silicon substrate 20 or the optochips 26, 28 and any microelectronic chips (not shown) supported on respective substrates placed on recessed area 47 of the base plate portion 44, as shown in Fig. 2 and 3. The lead pins 46 may be broken away from their support frame 48 and bent downwardly for insertion in respective mounting holes in associated printed circuit boards (PCB) in a conventional manner. Alternatively, the pins or leads may be shaped for surface-mounting on a PCB. Furthermore, the lower casing part 36 has a rearwardly extending portion 50 forming part of a receptacle, e.g. a so called MT-RJ or LC type receptacle, for receiving therein a fiber optic connector of any suitable standard type, such as a MT-RJ or LC type of connector. Load-relieving projections or pins 52 may be provided on the underside of the lower casing part 36 for taking up forces exerted on the capsule unit when mounted on a PCB or the like. The lower casing part 36 is formed in a shape-stable thermoplastic material by an injection molding process directly on the metal frame of electrical lead pins 46.

The capsule unit further comprises an upper casing part 54 (Fig. 4) serving as a cover for the lower casing part 36 and also made of a shape-stable plastic material such as epoxy resin. Mounted on top the lower casing part 36 a rear portion 56 of the cover 54 defines, together with the rear portion 50 of the lower casing part 36, a well-defined optomechanical interface for connection of an external optical fiber connector (not shown) to the optohybrid assembly 10, whereas a front portion 58 of
the cover 54 forms a mechanical protection for the optoelectronic components mounted on the front base plate portion 44 of the lower casing part 36. The lower and upper casing parts 36, 54 may have snap-lock fastening means (not shown) for easy assembly and mutual fixation of the casing parts. Alternatively, the parts 36, 54 may be bonded together by an adhesive. The cover 54 has an aperture 60 for receiving a clasp on the connector to thereby obtain a detachable connection of the latter in the optomechanical receptacle.

The encapsulation procedure is initiated by placing the optohybrid assembly 10 on the lower casing part 36 so that the ferrule 12 and the flange 16 are positioned in a form-closed manner in their respective recess 40 and cavity 42 and fixated therein by glue or any other adhesive. The silicon substrate 20, and any other substrate with microelectronic chips, is likewise attached to the front base plate by glue-bonding. All necessary wire-bonding steps are then carried out between the respective silicon substrates and the leads 46. The cover 54 is attached to the lower casing part 36 to thereby firmly hold the optohybrid assembly 10 in an accurately predetermined position. Thus, the lower casing part 36 of the capsule unit provides for an electrical and thermal connection of the optohybrid assembly 10 to the electrical lead pins 46, and a mechanical connection of the assembly 10 into recesses 40, 42 in the lower casing part 36 to thereby obtain an accurate positioning of the ferrule 12 and the substrate 20 in the lower casing part 36 as well as a predetermined optomechanical interface in a rear integral receptacle section of the capsule unit.

As shown in Fig. 5, the capsule unit 36, 54 of the invention and the optohybrid assembly 10 mounted therein may constitute an optoelectronic submodule 62, which in its turn may be mounted on a printed circuit board (PCB) 64 containing electronic components (not shown), with a shielding metal cover 66 placed thereabove.
Claims

1. An optocapsule unit for an optohybrid assembly (10), said capsule unit comprising a lower casing part (36) and a compatible upper cover part (54), characterized in that said parts (36, 54) together form, at one end (50) thereof, an integral receptacle section for obtaining an optomechanical interface and receiving and detachably holding therein an optical connector with at least one external optical fiber, a central section (38) of the lower casing part (36) having a cavity (42) for receiving, in a form-closed manner, a ferrule (12) of the optohybrid assembly (10), said ferrule (12) defining at a first surface (30) thereof an optical interface for alignment of a distal end of at least one primary optical fiber (22, 24) extending through said ferrule (12) with a proximal end of the external optical fiber, said primary optical fiber having an exposed section (22, 24) protruding from a second surface of the ferrule (12) and terminating at a proximal end, said lower casing part (36) having, at a second end thereof, a base plate (44) for supporting a substrate (20) having at least one optochip (26, 28) and the proximal end of the primary optical fiber (22, 24) mounted thereon, wherein said cover part (54) has a section (58) covering the substrate (20) and at least a portion of the base plate (44) of the lower part (36).

2. Optocapsule unit according to claim 1, wherein the lower and upper casing parts (36, 54) are made of a shape-stable plastic material.

3. A lower casing part of an optocapsule unit for enclosing an optohybrid assembly (10), characterized in that a frame structure (48) of electrical lead pins (46), to be wire-bonded to at least one optochip (26, 28) via a substrate (20), is integrally molded to a base plate of a first end portion (44) of said lower casing part (36), a second end portion (50) of said lower casing part (36) defining an integral receptacle section for obtaining an optomechanical interface and receiving and detachably holding an optical connector with at least one external optical fiber, wherein a central section (38) of the lower casing part (36) has a cavity (42) for
receiving, in a form-closed manner, a ferrule (12) of the optohybrid assembly (10).

4. Optoelectronic module (62), comprising a capsule unit (36, 54) enclosing an optohybrid assembly (10), said optohybrid assembly (10) comprising:

 a ferrule (12) including at a first surface (30) thereof an optical interface for alignment and detachable connection of a distal end of at least one primary optical fiber (22, 24) extending through said ferrule (12) to a proximal end of at least one secondary, external optical fiber, said primary optical fiber having an exposed section protruding from a second surface of the ferrule (12) and terminating at a proximal end; and

 a substrate (20) supporting thereon at least one optochip (26, 28), said proximal end of the primary optical fiber being aligned in close proximity with the respective optochip (26, 28) and fixated to the substrate (20), characterized in that

 said capsule unit comprises a lower casing part (36) and a compatible upper cover part (54), wherein said parts together form, at one end (50) thereof, an integral receptacle section for receiving and detachably holding an optical connector carrying said at least one secondary, external optical fiber; and a central section (38) having a cavity (42) for receiving the ferrule (12) in a form-closed manner, wherein said lower casing part (36) has, at a second end thereof, a base plate (44) provided with integrated electrical lead pins (46) wirebonded to the optochip (26, 28) via the substrate (20) and supporting said substrate (20) having said optochip and the proximal end of the primary optical fiber (22, 24) mounted thereon, and wherein said cover part (54) has a section (58) covering the substrate (20) and at least a portion of the base plate (44) of the lower casing part (36).
5. Optoelectronic module according to claim 4, characterized in that at least one substrate supporting microelectronic component is mounted (at 47) on the base plate (44).
INTERNATIONAL SEARCH REPORT

International application No.
PCT/SE 02/01094

A. CLASSIFICATION OF SUBJECT MATTER

IPC7: G02B 6/42
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC7: G02B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

SE, DK, FI, NO classes as above

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-INTERNAL, WPI DATA, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 5617495 A (MASAKI FUNABASHI ET AL), 1 April 1997 (01.04.97)</td>
<td>1,3,4</td>
</tr>
<tr>
<td>A</td>
<td>US 6220764 B1 (TAKEHI KATO ET AL), 24 April 2001 (24.04.01)</td>
<td>1,3,4</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier application or patent but published on or after the international filing date
 "L" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 "&" document member of the same patent family
 "P" document published prior to the international filing date but later than the priority date claimed

Date of the actual completion of the international search: 23 Sept. 2002
Date of mailing of the international search report: 30 -09- 2002

Name and mailing address of the ISA/
Swedish Patent Office
Box 5055, S-102 42 STOCKHOLM
Facsimile No. +46 8 666 02 86

Authorized officer
Magnus Westöö/MN
Telephone No. +46 8 782 25 00

Form PCT/ISA/310 (second sheet) (July 1998)
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 5617495 A</td>
<td>01/04/97</td>
<td>JP 2654538 B</td>
<td>17/09/97</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 7318764 A</td>
<td>08/12/95</td>
</tr>
<tr>
<td>US 6220764 A</td>
<td>24/04/01</td>
<td>US 6282352 B</td>
<td>28/08/01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2001009599 A</td>
<td>26/07/01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9845741 A</td>
<td>15/10/98</td>
</tr>
</tbody>
</table>