发明名称 耐热抗冲丙烯酸/环氧粘合剂

摘要

公开了一种耐热抗冲粘合剂。该粘合剂包括至少一种丙烯酸基单体，至少一种环氧单体/树脂，至少一种可与丙烯酸基单体和环氧单体/树脂化学反应的双官能单体，至少一种抗冲改性剂，和催化剂体系。
1. 一种耐热抗冲粘合剂，包括：
至少一种丙烯酸基单体，
至少一种环氧单体/树脂，
至少一种可与丙烯酸基单体和环氧单体/树脂化学反应的双官能单体，
至少一种抗冲改性剂，和
催化剂体系。

2. 如权利要求1的粘合剂，进一步包括一种或多种弹性体。

3. 如权利要求1的粘合剂，其中所述的催化剂体系含有氧化剂和还原剂，其中所述的氧化剂选自过氧化物、氢过氧化物、过酯和过酸等及其混合物，及其中还原剂选自胺、醛-胺缩合产物、苯胺、甲苯胺等及其混合物。

4. 如权利要求1的粘合剂，其中催化剂体系含有氧化剂和还原剂，其中氧化剂为苯甲酰过氧化物，其中还原剂为羟乙基甲苯胺。

5. 如权利要求1的粘合剂，其中所述的催化剂体系为热活化催化剂。

6. 如权利要求1的粘合剂，其中所述的体系包括含有磷酸氯的化合物、氧化剂和还原剂，其中所述的氧化剂选自过氧化物、氢过氧化物、过酯和过酸等及其混合物，及其中还原剂选自胺、醛-胺缩合产物、苯胺、甲苯胺等及其混合物。

7. 如权利要求1的粘合剂，其中所述的体系包括含有磷酸氯的化合物、氧化剂和还原剂，其中氧化剂为氢过氧化枯烯，其中还原剂
为二氢吡啶。

8. 如权利要求 1 的粘合剂，其中丙烯酸基单体是甲基丙烯酸甲酯。

9. 如权利要求 1 的粘合剂，其中环氧单体/树脂为双酚的二环氧甘油醚。

10. 如权利要求 1 的粘合剂，其中双官能单体选自甲基丙烯酸缩水甘油酯、甲基丙烯酸、2-羟乙基甲基丙烯酸酯磷酸偏酯、2-丙烯酰胺-2-甲基丙烷磺酸等及其混合物。

11. 如权利要求 1 的粘合剂，其中双官能单体为甲基丙烯酸。

12. 如权利要求 1 的粘合剂，其中双官能分子为 2-羟乙基甲基丙烯酸酯磷酸偏酯。

13. 如权利要求 1 的粘合剂，其中抗冲改性剂是选自 ABS、MBS、MABS、ASA、全丙烯酸、SA EPDM 及 MAS 的芯-壳接枝共聚物。

14. 如权利要求 1 的粘合剂，其中抗冲改性剂为 Paraloid BTA 753。

15. 如权利要求 1 的粘合剂，其中弹性体具有二级玻璃转化温度（T_g）小于-25℃，而且溶解于丙烯酸基单体中。

16. 如权利要求 1 的粘合剂，其中粘合剂的后固化粘合剂面的抗冲强度为约 8 in.lbs~约 113 in.lbs。

17. 如权利要求 1 的粘合剂，其中粘合剂的后固化粘合剂面的抗
18. 如权利要求 1 的粘合剂，其中基于粘合剂的重量，双官能单
体的含量高达约 2 wt%，粘合剂的双官能单体与环氧单体/树脂的摩尔
比为约 1 份双官能单体比 1 或更多份的环氧单体/树脂。

19. 如权利要求 1 的粘合剂，其中基于粘合剂的重量，双官能单
体的含量大于约 2 wt%，粘合剂的双官能单体与环氧单体/树脂的摩尔
比为约 1 份双官能单体比约 0.3 或更多份的环氧单体/树脂。

20. 一种制造粘合剂的方法，包括如下步骤：
混合至少一种丙烯酸基单体、至少一种环氧单体/树脂、至少一
种可与丙烯酸基单体和环氧单体/树脂可反应的双官能分子、至少一种
抗冲改性剂、催化剂体系和活化剂，
将所述的混合物施加到第一或第二表面，
及使第一和第二表面接触。

21. 一种结合两表面的方法，包括如下步骤：
（a）混合至少一种丙烯酸基单体、至少一种环氧单体/树脂、至
少一种可与丙烯酸基单体和环氧单体/树脂可反应的双官能分子、至少
一种抗冲改性剂和催化剂体系以形成混合物；
（b）将混合物施加到第一表面；
（c）将活化剂施加到第二表面；及
（d）将第一表面与第二表面结合。
耐热抗冲丙烯酸/环氧粘合剂

发明领域

本发明一般涉及粘合剂领域，更具体地说，涉及耐热抗冲的丙烯酸/环氧粘合剂，其具有增加的粘接能力。

背景技术

不限制本发明的范围，描述的其背景涉及各种粘合剂的特性。

丙烯酸/环氧粘合剂已经用于需要组合物显示快速固化和挠性粘合质量的应用场合。尽管丙烯酸基粘合剂一般对不同的基质例如塑料具有良好粘合性，但通常热性不理想。可塑化的环氧树脂也已经成为粘合剂组合物。环氧树脂形成致密的聚合物网络，一般地说显示出理想的热性能。但是环氧树脂往往不能很好地结合到塑料上，而且往往是脆的，显示出热的抗冲性能。一般地说，环氧化合物固化缓慢，致使其在许多工业应用中不合适。

许多的粘合剂在不同的使用场合显示出差的物理性能例如下的抗冲强度、差的粘结能力及固化时间。将抗冲改性剂和其它的共聚物加入到粘合剂中可改进这些物理性能。不幸的是，尽管抗冲改性剂通常可以改进一些物理性能，但它们通常显示出差的耐热性。随着在一些工业应用中例如机动车装配中使用越来越多的塑料，因此对可用于塑料和金属，形成在大量的各种不利条件下保持粘性结合的粘合剂的需求持续不断。

发明内容

一种对新颖的快速凝固、室温可固化粘合剂的需求，所述的粘合剂集合有丙烯酸基粘合剂室温固化和快速凝固的特征，和环氧树脂基
粘合剂的耐热特性。而且，所需要的粘合剂是耐热和抗冲的，可用于结合困难的基质。

本发明的一个实施方式是耐热抗冲的粘合剂。所述的粘合剂包括至少一种丙烯酸基单体、至少一种环氧单体/树脂、至少一种可与丙烯酸基单体和环氧单体/树脂化学反应的双官能单体、至少一种抗冲改性剂和催化剂体系。本发明的粘合剂也含有至少一种弹性体。

本发明的另一个实施方式是制造所述的粘合剂的方法。该方法包括使混合物与活化剂接触的步骤，其中所述的混合物包括至少一种丙烯酸基单体、至少一种环氧单体/树脂、至少一种可与丙烯酸基单体和环氧单体/树脂可反应的双官能单体、至少一种抗冲改性剂和催化剂体系。

本发明的另一个实施方式是结合两表面的方法。该方法包括如下步骤：混合至少一种丙烯酸基单体、至少一种环氧单体/树脂、至少一种可与丙烯酸基单体和环氧单体/树脂可反应的双官能单体、至少一种抗冲改性剂和催化剂剂；将混合物施加到第一表面；将活化剂施加到第二表面；及第一表面与第二表面结合。

本发明的另一个实施方式是结合两表面的方法。该方法步骤如下步骤：混合至少一种丙烯酸基单体、至少一种环氧单体/树脂、至少一种可与丙烯酸基单体和环氧单体/树脂可反应的双官能单体，至少一种抗冲改性剂和催化剂剂；将混合物施加到第一表面或第二表面；及第一表面与第二表面结合。

发明的详细描述

尽管以下实施和利用本发明的各个实施方式，但应理解本发明提供了许多可应用的概念，其体现在大量的具体上下文中。本发明讨论的具体实施方式仅仅是以具体方式说明实施和利用本发明，不是对本
发明范围的限制。

本发明的粘合剂具有改进的粘结能力及改进的抗冲及耐热性。本发明的粘合剂包括丙烯酸基单体、环氧单体/树脂，使用丙烯酸/环氧聚合固化体系可使其聚合。本发明的发明人已经发现使用利用丙烯酸基固化体系和环氧基固化体系的聚合体系导致改进的粘合性。本发明的粘合剂也包括抗冲改进剂，可改进抗冲性能、粘合剂及处理性能，也包括可改进挠性和粘合性的弹性体。

单体

如本发明使用，术语丙烯酸基单体或丙烯酸基粘合剂组分是一般地使用，通常指具有如下化学结构的化合物：

其中 R₁ 例如可以是氢、甲基或乙基。 “丙烯酸基”定义为包括酸和其盐。例如，丙烯酸基化合物可包括丙烯酸和丙烯酸酯。丙烯酸基化合物可包括丙烯酸酯基和甲基丙烯酸酯基化合物。术语丙烯酸、丙烯酸酯和甲基丙烯酸酯基可以简单方便地方法表示官能团位于粘合剂组分中何处，并可以相互交换。例如使用如上所述的结构，当 R 和 R₁ 都为 H，丙烯酸基粘合剂组分熟知为丙烯酸（有机酸）。当 R 为 H，及当 R₁ 为甲基时，丙烯酸基粘合剂组分熟知为甲基丙烯酸。当 R 为甲基，及 R₁ 为 H 时，丙烯酸基粘合剂组分熟知为甲基丙烯酸酯，丙烯酸基粘合剂组分被认为是丙烯酸酯基的。丙烯酸基组分通常具有化学结构（H₂C=CH-COO⁻）。当 R 和 R₁ 都为甲基时，丙烯酸酯基粘合剂组分熟知为甲基丙烯酸甲酯（MMA），被认为是甲基丙烯酸酯基的。甲基丙烯酸酯基组分一般具有化学结构（H₂C=CCH₃COO⁻）。
用于本发明的丙烯酸基单体包括，但不限于丙烯酸酯基及甲\基丙烯酸酯基单体。丙烯酸酯基单体包括丙烯酸酯，其中酯的醇部分含有约 1~约 20 个碳原子。其实例包括但不限于丙烯酸甲酯、丙烯酸乙酯、丙烯酸丁酯、丙烯酸 2-乙基己酯等及其混合物。甲基丙烯酸酯基单体包括甲基丙烯酸酯单体，其中酯的醇部分含有约 1~约 20 个碳原子。这样的酯单体例子包括但不限于甲基丙烯酸甲酯、甲基丙烯酸乙酯、甲基丙烯酸 2-乙基己酯、甲基丙烯酸环己酯、乙氧基化双\酚 A 二甲基丙烯酸酯等及其混合物。也可使用甲基丙烯酸丁酯及甲基\丙烯酸四氢呋喃酯。其他有用的单体包括丙烯腈、甲基丙烯腈、苯乙烯、乙烯基甲苯等。在本发明的一个实施方式中，丙烯酸基的单体为\MMA 或甲基丙烯酸甲酯。

本发明的粘合剂含有足量的丙烯酸基单体以形成具有抗冲耐热\和增加粘结能力的粘合剂。在本发明的一个实施方式中，丙烯酸基单\体的含量基于粘合剂重量为约 30wt%~约 60wt%。在另一个实施方式\中，丙烯酸基单体的含量基于粘合剂的重量为约 40wt%~约 55wt%。\在另一个实施方式中，丙烯酸基单体的含量基于粘合剂的重量为约\45wt%~约 55wt%。

如本发明使用，“环氧化物基单体”或“环氧化物”或“环氧化\物树脂”或“环氧单体/树脂”可以相互替换使用，指含有三元“环氧\化物”基团或环状化合物，如下所示，作为化学结构的主要部分。

用于本发明的环氧基单体/树脂包括，但不限于双酚 A 和 F\的二环氧甘油醚，脂肪族和脂环族环氧物。其他的例子包括但不\限于，3,4-环氧基环己基甲基-3,4-环氧基环己基羧酸酯（联碳公司 的
ERL-4221），及山梨糖醇缩水甘油醚（来自CVC特种化学品的Erisys GE-60）。

本发明的粘合剂含有足夠量的环氧基单体/树脂以形成抗沖耐热并具有增加的粘结能力的粘合剂。一般地说，环氧基单体/树脂的量部分取决于后固化条件（如过热）。在本发明的一个实施方式中，环氧基单体/树脂的含有量基于粘合剂的重量为约大于40wt%。在本发明的一个实施方式中，环氧基单体/树脂的含有量基于粘合剂的重量为约2wt%～约40wt%。在本发明的一个实施方式中，环氧基单体/树脂的含有量基于粘合剂的重量为约3wt%～约16wt%。

聚合体系

通常在本领域中丙烯酸基单体的聚合通过自由基加成聚合机制进行。可使用的丙烯酸基固化体系例子包括但不限于使用硫酸盐的体系。这些体系一般使磺酸氯与还原剂结合，例如二氢吡啶（也熟知为胺-醇缩合产物）以产生自由基从而使丙烯酸基单体聚合。基于磺酸氯的固化体系一般描述于US 3,890,407、4,112,013、4,182,644、4,536,546、4,714,730及4,773,957；及4,959,405，其全部在此引入作为参考。

其他的丙烯酸基固化体系的例子包括使用过氧化物和甲苯胺还原剂。这些体系通常使过氧化物例如苯甲酰过氧化物与甲苯胺还原剂以生产可聚合丙烯酸基单体的自由基。基于过氧化物/苯甲胺体系的固化体系描述于US 4,942,201、5,112,691及5,206,288，其全部在此引入作为参考。

环氧聚合一般是各种化学品（键）断开并結合到环氧环上的结果。可与环氧化合物反应的典型有机化学品包括但不限于酸、硫醇、胺和酰胺。环氧环通常是更大的分子的一部分。例如，其骨架可以是脂肪族有机分子、环状有机分子、芳香有机分子或多其任意组合。当有
两种环氧合物在一个分子上，及在一个化合物上两个反应性基团加到环氧合物上时，由于端部一起反应分子量增加，形成聚合物。

使用利用丙烯酸基固化体系和环氧基固化体系的丙烯酸/环氧聚合体系可形成本发明的粘合剂。本发明的发明人已经发现例如丙烯酸/环氧聚合体系可以通过使用“双官能”分子驱动反应得以实现，所述的双官能分子在同一分子中具有环氧基反应性基团和丙烯酸基反应性基团。如本发明使用，“双官能”分子或单体是指含有两种不同的化学反应官能团。例如，甲基丙烯酸含有丙烯酸基官能团和环氧化合物反应基。为说明本发明的目的，双官能分子包括具有双官能团的分子，所述的双官能团的一个官能团能够与环氧化合物基团反应，另一个官能团能不能与丙烯酸基官能团反应。双官能团的例子包括在 US 4,426,243 中，在此引入作为参考。

相反，“二官能”分子是指含有两种相同的化学反应性基团的分子。例如，环氧基化的双酚 A 二甲基丙烯酸酯分子具有两个甲基丙烯酸酯官能团。另一个例子双键双酚 A 二环氧合物分子含有两个环氧化合物官能团。同样的理解，三羟甲基丙烷[2-乙基-2-(羟甲基)-1,3-丙二醇]三甲基丙烯酸酯是“三官能团”分子的例子，因为其含有三个甲基丙烯酸酯基团。

合适的化学物种的例子可以用作双官能分子的骨价。例如，也可以使用双酚 A，也熟知为 4,4’-亚丙基二酚。双酚 A 的化学结构如下:

![化学结构]

通常在本发明中可使用的二环氧合物基分子包括双酚 A 的二环氧甘油醚，及通常的二丙烯酸基分子包括环氧基化的双酚 A 二甲基丙烯酸酯。如本领域的普通技术人员所熟知，这两个例子的二官能团分子
结构类似，但化学特性不同。

用于本发明的双官能分子的例子包括但不限于，MAA（甲基丙烯酸）、AMPS 2404（由 Lubrizol 公司得到的 2-丙烯酰胺-2-甲基丙烯酸酯磷酸酯）等及其混合物。本发明的粘合剂含有足够量的双官能分子以生产抗冲击、抗冲热、具有增加粘结能力的粘合剂。在本发明的粘合剂中含有的双官能分子的量通常根据不同的条件变化。在本发明的另一个实施方式中，含有的双官能分子的量基于粘合剂的量高达约 20 wt%。在本发明的另一个实施方式中，含有的双官能分子的量基于粘合剂的量为约 2wt%~约 15 wt%。在本发明的另一个实施方式中，含有的双官能分子的量基于粘合剂的重量为约 2wt%~约 10 wt%。

本发明粘合剂中含有的双官能分子的量可影响粘合剂中含有的环氧树脂单体/树脂的浓度。在本发明的实施方式中，基于粘合剂的重量，含有的双官能单体为高达约 2 wt%，粘合剂中的双官能单体与环氧基单体的摩尔比为约 1:1 或更多的环氧基单体/树脂。在本发明的另外一种实施方式中，基于粘合剂的重量双官能团的含量为大于约 2wt%，及粘合剂中双官能单体与环氧基单体/树脂的摩尔比为约 1:0.3 或更多的环氧基。

本发明的双官能分子可以与不同的固化体系组合物结合使用以生产本发明的粘合剂。例如，根据本发明的一个实施方式，双官能分子可与基于磺酸酯（丙烯酸单体）和环氧聚合（环氧基单体/树脂）的丙烯酸/环氧固化体系结合使用。在本发明的另一个实施方式中，双官能分子可与基于过氧化物/苯甲酰（丙烯酸单体）和环氧聚合（环氧基单体/树脂）的丙烯酸/环氧固化体系结合使用。在本发明的一个实施方式中，本发明的粘合剂含有至少一种丙烯酸单体、至少一种环氧单体/树脂、至少一种双官能分子、至少一种弹性体和催化剂，所述的催化剂含有至少一种还原剂例如羟基甲苯和至少一种催化剂例
如苯甲酰过氧化物。另外，粘合剂任选可含有至少一种交联单体，及至少一种添加剂例如增塑剂或蜡。

在一个具体的实施方式中，本发明的粘合剂含有至少一种丙烯酸基单体、至少一种环氯单体/树脂、至少一种双官能分子、至少一种抗冲改性剂和至少催化剂体系，所述的催化剂体系含有至少一种氧化剂例如氢过氧化枯烯、至少一种含有磷酸酰的化合物和至少一种还原剂例如二氢吡啶。另外，粘合剂任选可含有至少一种交联单体，及至少一种添加剂例如增塑剂或蜡。

聚合催化剂

根据本发明的一个具体实施方式，使用催化剂以引发聚合反应。如本发明使用的术语“催化剂”描述至少如下其中之一：（a）自由基发生器，（b）引发剂，（c）促进剂，（d）加速剂。另外，术语催化剂包括氧化剂和还原剂。在本发明中使用的催化剂包括含有或不含有其他的增强催化剂反应性组分的聚合催化剂。本发明中使用的催化剂通常是可引发丙烯酸单体聚合的自由基发生器。本发明中使用的自由基发生器包括但不限于过氧化物、氢过氧化物、过酯、过酸及其混合物。这些催化剂可以用辐射能量例如紫外线或热进行活化。可使用的催化剂的例子包括但不限于，苯甲酰过氧化物、氢过氧化枯烯、叔丁基氢过氧化物、过氧化二枯基、过乙酸叔丁酯、过苯甲酸叔丁酯、二叔丁基偶氮二异丁基腈等及其混合物。催化剂的其他例子包括含有磷酸酰的化合物。在本发明的一个实施方式中，催化剂是磷酸酰和氢过氧化枯烯。

本发明的一个具体实施方式中使用的产生自由基的催化剂的量，基于组合物的总量高达约 20 wt%。在另一个具体实施方式中，基于组合物的总重量，使用的催化剂的含量为约 0.01 wt%~约 10 wt%。在另一个具体实施方式中，基于组合物的总重量，使用的催化剂的含量为约 0.05 wt%~约 3 wt%。
其他可增强催化剂反应性的组分包括促进剂、引发剂和加速剂。在本发明中使用的促进剂通常包括过渡金属的有机盐例如钴、镍、锰或铁的环烷酸盐、辛酸铜、乙酰丙酮铜、己酸铁和丙酸铁。可加入促进剂以有助于热诱导过氧化物分解。在本发明的一个具体实施方式中，基于组合物的总重量，使用的促进剂的量高达约 0.5 wt%。在本发明的另一个具体实施方式中，基于组合物的总重量，使用的促进剂的含量为约 1 ppm～约 0.5 wt%。

本发明使用的引发剂通常是还原剂。引发剂有用的例子包括但不限于，叔胺例如 N,N-二甲基苯胺、N,N-二甲基甲苯胺、N,N-二乙基苯胺、经乙基甲苯胺、N,N-二乙基甲苯胺等及其混合物。其他可使用的叔胺包括在 US 4,112,023 中描述的那些，其全部内容在此引入作为参考。在本发明的一个具体实施方式中，基于粘合剂的总重量，使用的引发剂的量为约 0.1～约 3。在本发明的另一个具体实施方式中，基于粘合剂的总重量，使用的引发剂的含量为约 0.25～约 2。在本发明的另一个具体实施方式中，基于粘合剂的总重量，使用的引发剂的含量为约 0.5～约 1.5。

本发明中使用的其他的还原剂可包括醛-胺缩合产物。醛-胺缩合产物的例子是由丁醛与伯胺得到的，例如苯胺或丁胺。脂肪族醛与脂肪族或芳香族胺的缩合缩合产物也可以使用。可以使用具有一个或多个磺酰氯部分的有机物质以使与这些还原剂反应。在本发明的一个具体实施方式中，含有磺酰氯的化合物是 Hypalon 30。在本发明的一个具体实施方式中，基于组合物的总重量，使用的含有磺酰氯化合物的量高达约 50 wt%。在本发明的另一个具体实施方式中，基于组合物的总重量，使用的含有磺酰氯化合物的含量为约 10 wt%～约 40 wt%。在本发明的另一个具体实施方式中，基于组合物的总重量，使用的含有磺酰氯化合物的含量为约 25 wt%。
在本发明的一个具体实施方式中，催化剂体系含有氧化剂和还原剂，其中氧化剂选自过氧化物、氢过氧化物、过氧化物和过酸等及其混合物，其中还原剂选自胺、醛-胺缩合物产物。在本发明的一个具体实施方式中，催化剂体系含有氧化剂和还原剂，其中氧化剂为苯甲酰过氧化物，其中还原剂为羟基甲苯胺。在本发明的另一个实施方式中，催化剂体系包括含有磺酰氯的化合物、氧化剂和还原剂，其中氧化剂选自过氧化物、氢过氧化物、过酸和过酸等及其混合物，其中还原剂选自胺、醛-胺缩合物产物。在本发明的另一个实施方式中，催化剂体系包括含有磺酰氯的化合物、氧化剂和还原剂，其中氧化剂是氢过氧化物，其中还原剂二氢吡啶。

可以使用含有磺酰氯的化合物例如磺酰氯衍生物作为催化剂体系的加速剂。磺酰氯衍生物的例子包括但不限于醇、丙烷磺酰氯、对甲苯磺酰氯。本发明使用的氯磺化聚乙烯聚合物描述于 US 3,890,407、4,112,013 和 4,182,644 中，其全部内容在此引述作为参考。本发明使用的氯磺化聚乙烯聚合物，每 100 g 该聚合物含有约 25%~70 wt%的氯和约 3%~160 毫摩尔的磺酰氯部分。

在本发明的一个具体实施方式中，氯磺化聚乙烯聚合物树脂由品牌聚乙烯制备，市场商标为“HYPALON 30”，从 Du Pont 商业得到。使用的 HYPALON 30 型氯磺化聚乙烯聚合物树脂，每 100 g 聚合树脂中含有约 43 wt%的氯和约 34 毫摩尔的磺酰氯，由支化的聚乙烯制备，具有约 100 的熔融指数。其他有用的氯磺化聚乙烯树脂的例子描述于 US 4,536,546 中，其全部内容在此引述作为参考。

抗冲改性剂

在本发明的一个具体实施方式中，粘合剂包括至少一种抗冲改性剂。在本发明的一个具体实施方式中，抗冲改性剂包括芯壳接枝共聚物。用于本发明的芯壳接枝共聚物树脂通常具有弹性的芯和硬的外壳，在粘合剂中膨胀但不溶解在粘合剂中。这样形成的粘合剂具有改
进的在许多领域中极其希望的展开和流动性能。例如，当粘合剂通过注射器型施加方式施加于制品时，在使用涂布器的那一点和涂布器的下一点之间粘合剂被拉长。采用本发明，可以施加一小滴粘合剂到制品上以进行结合而没有形成拉长的粘合剂。接枝共聚物的聚合物芯或主链的玻璃化转变温度基本上低于环境温度。接枝到聚合物主链上的壳聚合物的玻璃转化温度基本上高于环境温度。

有用的芯-壳接枝共聚物的例子是这样的化合物，其中含有硬的化合物例如苯乙烯、丙烯腈或甲基丙烯酸甲酯接枝到含有软的或弹性化合物例如丁二烯或丙烯酸乙酯聚合物得到的弹性芯上。在此引入作为参考的 US 3,985,703 描述了有用的芯-壳聚合物，其芯由丙烯酸丁酯制备，但可基于乙基异丁基、2-乙基己基或其他烷基的丙烯酸酯或其混合物。芯聚合物可任选包括高达 20 wt%的含有其他可共聚的化合物例如苯乙烯、乙酸乙烯酯、甲基丙烯酸甲酯、丁二烯、异戊二烯等。芯聚合物任选含有高达 5 wt%的具有两个或多个大约相同反应活性的非共轭双键的交联单体例如二丙烯酸乙二醇酯、二甲基丙烯酸丁二醇酯等。芯也任选含有高达 5 wt%的具有两个或多个不等反应活性的非共轭双键的接枝交联单体，例如马来酸二烯丙酯和甲基丙烯酸烯丙酯。

壳部分可通过甲基丙烯酸甲酯和任选其他的甲基丙烯酸烷基酯例如乙基、丁基或其混合物聚合得到。高达 40 wt%的壳单体可以是苯乙烯、乙酸乙烯酯、氯乙烯等。在本发明实施方式中用的另外的芯-壳共聚物描述于 US 3,984,497、4,096,202、4,034,013、3,944,631、4,306,040、4,495,324、4,304,709 和 4,536,436 中，其全部内容在此引入作为参考。芯-壳接枝共聚物的例子包括当不限制于，“MBS”（甲基丙烯酸酯-丁二烯-苯乙烯），其通过在聚丁二烯或聚丁二烯共聚物橡胶存在下由聚合甲基丙烯酸甲酯得到。MBS 接枝共聚物树脂通常含有苯乙烯丁二烯橡胶芯和烯丙酸聚合物或共聚物。可以使用的芯-壳接枝共聚物树脂的例子包括 ABS（丙烯腈-丁二烯-苯乙烯）、MABS（甲
基丙烯酸酯-丙烯腈-丁二烯-苯乙烯）、ASA（丙烯酸酯-苯乙烯-丙烯腈）、所有的丙烯酸化合物、SA EPDM（苯乙烯-丙烯腈接枝到乙烯-丙烯二烯共聚物的弹性主链上）、MAS（甲基丙烯酸-丙烯酸橡胶苯乙烯）等及其混合物。

5 参用的抗冲改性剂的例子包括但不限于，Paraoid BTA 753，从Rohm & Hass Co.可商业获得，及Blendex B983，可以从GE Specialty Chemicals 商业获得。本发明的粘合剂含有足够量的抗冲改性剂以形成抗冲耐热而且具有增加粘结能力的粘合剂。在本发明的一个实施方式中，基于粘合剂的重量，抗冲改性剂的含量为约5 wt%~约35 wt%。

在本发明的另一个具体实施方式中，基于粘合剂的重量，抗冲改性剂的含量为约10 wt%~约30 wt%。在本发明的另一具体实施方式中，基于粘合剂的重量，抗冲改性剂的含量为约15 wt%~约25 wt%。

10 弹性体

在本发明使用的单体中可溶。有用的弹性体包括合成的高聚物，其具有塑性流动特性，通常包括商业可提供作为粘合剂或粘合级的那些。

本发明具体实施方式中使用的弹性体的例子包括但不限于，聚氯丁烯和丁二烯或异戊二烯与苯乙烯、丙烯腈、丙烯酸酯、甲基丙烯酸酯等的共聚物。有用的弹性体另外的例子包括乙烯和丙烯酸酯的共聚物、交联醇的均聚物和交联醇与乙烯的共聚物。

20 在本发明中使用的弹性体的例子可以根据ASTM D1418使用它们的字母命名、它们的商标、通用名称及化学描述进行描述。这样的例子包括CR-氯丁二烯橡胶-聚氯丁二烯、NBR-腈橡胶-丁二烯丙烯腈共
聚合物，含有约 25~45 wt%的丙烯腈，用羧基改性的 COX-Hycar 1072-丁二烯-丙烯腈共聚物、SBR-GR-S-苯乙烯-丁二烯共聚物，含有约 10%~约 30%的苯乙烯、ABR-丙烯酸橡胶丙烯酸酯丁二烯共聚物，及 CO、ECO-Hydrin 100 和 200-均聚物或苯乙烯与环氧乙烷的共聚物。其它的例子包括 D1116（Kraton D1116，苯乙烯-丁二烯-苯乙烯嵌段共聚物）和 AD-10 和 AD-5（氯丁二烯橡胶 AD-10 和 AD-5 为聚氯丁二烯）。另外有用的弹性体包括由 Du Pont 以商标 Vamac 商业出售的弹性体。这些弹性体包括乙烯与丙烯酸酯的共聚物例如丙烯酸甲酯和丙烯酸乙酯，其中共聚物含有至少 30 wt%的丙烯酸酯。

在本发明的一个具体实施方式中，弹性体可溶解于本发明粘合剂中使用的单体中。例如，弹性体可形成约 10~约 50 wt%的丙烯酸基单体溶液，例如甲基丙烯酸甲酯。在本发明的另一个实施方式中，在丙烯酸基单体中的弹性体的含量为约 15~约 40 wt%。如本发明所述，术语“溶液”是指包括显示通常或基本上为牛顿流变特性的胶态分散体。

本发明的粘合剂可以两部分制备，其中一部分含有自由基催化剂，而另一部分含有引发剂（和促进剂，如果使用的话）。就在使用前，将两部分混合在一起，然后施加到至少要粘合表面的一面。或者，含有催化剂的部分施加到一面，而含有引发剂的部分施加到另一面上。当接触时，两部分结合在一起聚合，得到的粘合剂进行粘结。

以下的实施例是对本发明的进一步说明，而不能解释为对本发明的限制。

实施例 1-表 1

使用如 US 4,959,288 和 5,206,288 中举例说明的本领域的普通技术人员熟知的技术制备本发明的粘合剂，其在此引入作为参考。如表 1 所示，使用过氧化物/甲苯胺聚合体系形成本发明的粘合剂。通过将弹性体、双官能分子、单体、单体交联剂、还原剂、添加剂（蜡）及
抗冲改性剂混合在一起制备粘合剂的粘合剂面。本实施例中使用的弹性体为 52.65 wt%的样品 25% Kraton D1116（SBS 嵌段共聚物），或者 25% 尼龙丁二烯橡胶 AD-10/MMA（聚氯丁二烯）。使用的双官能分子为 P2M（2-羟乙基甲基丙烯酸酯磷酸酯），该一个分子中含有甲基丙烯酸酯和磷酸官能度。使用的单体为 MMA（甲基丙烯酸甲酯）。10 wt%的单体交联剂、EGDMA（二甲基丙烯酸乙二醇酯）与其它的组分混合在一起。另外，1.35 wt%的还原剂 HET（羟乙基甲苯）、3 wt%的蜡 IGI 1230 蜡/MMA 和 18 wt%的 IM B564（抗冲改性剂）加入混合物中。

通过将环氧单体/树脂与氧化剂（苯甲酰过氧化物）、抗冲改性剂和增塑剂结合在一起制备粘合剂的粘合剂面。然后将活化剂部分加到粘性部分并使其固化。制备了 9 个粘合剂样品（样品 A-I），列于表 1 中。为说明的目的对每一个样品用两位数进行了编号（数字+单秒号（‘）表示粘合面，及数字+双秒号（“）表示活化剂面）。这种的标识体系的目的有助于比较粘合剂的粘合面和活化剂面中的反应物的浓度。例如，样品 A-D 及 I 都对应粘合 1 ‘，因此在混合物的粘合面中反应物的具有相同的浓度。

实施例 I-表 II

实施例 1 也说明了本发明粘合剂的特性，包括但不限于在，室温固化、改进的抗冲强度、耐热和粘结性能。分析样品 A-I 的各种物理性能，其结果列于表 II 中。进行了四种不同的测试。第一种测试是基于 ASTM 方法 D1002 进行的剪切剥离试验。通过混合粘合剂和固化剂得到粘合剂样品，将混合物置于喷砂、溶剂清洗的钢条上，用几个 0.030 英寸直径的珠以控制结合厚度。使用 1 英寸的重叠。在室温下固化样品过夜。结果如表 II 所示。

在结合强度测试之后，根据其显示的 “破坏方式” 对每一个样品进行确定。内聚破坏（CF）表示在样品的一面保留粘合剂薄膜，样
品的其它面有剩余的固化粘合剂。粘合失效（AF）表示当进行结合强度测试时，固化粘合剂从表面脱离。如表II所示，样品H（无双官能分子）显示出粘合失效，比样品B更低的结合强度，样品是相同的，不同之处在于于双官能单体。样品A-G和I显示出薄层内聚破坏。

在10 g以标明的比例混合的粘合剂和活化剂上进行的第二项试验是固化放热试验。使粘合剂固化，并对固化进行时以确定混合物达到最大放热温度的时间。

第三项试验是侧向抗冲试验（GM9751P）。样品A-G和I显示出的抗冲强度为约30~60 in-lbs。没有双官能分子的组合物H显示出低的抗冲强度约为4 in-lbs。

第四项试验是抗裂试验（ASTM3807）。在该试验中使用难于结合的基质，即Budd SMC#971N5和Cambridge SMC 252。当本发明的粘合剂施加到该基质上时显示出强的粘性结合。试验使用如下的术语：最大负载（lbf）表示使粘性结合开始破坏所需要的力。硬度（psi）是断裂整个结合所需要多少能量的度量，通常是结合强度曲线下的积分的面积。扩展度（pli）是在结合开始断裂后使结合继续分离的所需要力的量。破坏模式可以是粘合剂失效（AF），内聚破坏（CF）或深度纤维撕裂（DFT），其是这样的一种情况，其中粘合剂比施加了粘合剂的基质更坚固。

如表II示意，当与含有双官能分子的粘合剂（样品A-G和I）相比时，没有双官能分子的粘合剂样品H显示出差的结果。

实施例2-表III

如表III所示，使用磺酰氯聚合体系形成本发明的粘合剂。粘合剂的粘合面的制备包括一起混合含有磺酰氯的化合物、弹性体、双官能分子、单体、单体交联剂、氧化剂、添加剂（例如蜡和稳定剂）及
抗冲改性剂。本发明使用的弹性体为 20 wt%的氯丁二烯橡胶 AD-10,聚氯丁二烯（25% AD-10/MMA）。Hypalon 30（H30）用作含有磺酰氯的化合物（从 DuPont 可商业获得）。使用的双官能分子为 AMPS 2404（2-丙烯酰胺-2-甲基丙烷磺酸）。BHT（2,6-二-叔丁基-p-甲酚）用作稳定剂。使用的单体是 MMA（甲基丙烯酸甲酯）。10 wt%的单体交联剂，EGDMA（二甲基丙烯酸乙二醇酯）与其他组分混合。另外，1 wt%的氧化剂 CHP（氢过氧化缩烯）、3 wt%的 Boler 1977 石蜡（30% 1977/MMA）及 15~20 wt%的 Paraloid BTA753（抗冲改性剂）加入到混合物中。

通过结合环氧基树脂（由 Carbide Corp.得到的 ERL4221）与醚胺缩合产物的还原剂（Reilcat™ASY-2）制备粘合剂活化剂的一面。另外，活化剂含有单体、抗冲改性剂、添加剂（蜡）。活化剂部分然后于粘合剂部分混合并固化。如表 III 所见，制备两个样品（对照样 J 和样品 K）。

实施例 2—表 IV

分析表 III 样品的各种物理性质，其结果列于表 IV 中。对照样 J 不含有双官能分子，而样品 K 含有双官能分子 AMPS 2404。如实施例 1 描述进行了类似的试验。相对于样品 J，在喷砂处理的钢上样品 K 显示出改进的粘合性和改进的破坏模式。如表 IV 所见，样品 K（具有 AMPS 2404 双官能分子），当试验时，其比没有双官能分子的样品 J 具有更高的抗冲强度。

实施例 3—表 V

该实施例说明了在不同浓度双官能分子和环氧单体/树脂下本发明粘合剂的效果。如表 V 所示，粘合剂样品 L-T 显示出良好的耐热性，在不同浓度双官能分子和环氧单体/树脂下都有效。在这些样品上进行 GBS 结合试验（16 小时@RT，150°C 下 2 小时，1”x1”x.03”），结果列于表 V 中。
实施例 4—表 VI

该实施例说明本发明中使用的抗冲改性剂的用途。以类似实施例 1 粘合剂的方式制备含有抗冲改性剂的粘合剂。对照样 X 基于以前的技术（US 4,426,243）不含有抗冲改性剂或弹性体的粘合剂。如表 VI 所示，相对于 X 样品 U-W 显示出改进的耐热和抗冲性能。
实施例 1 表 I 基于过氧化物/甲苯胺聚合体系的粘合剂

<table>
<thead>
<tr>
<th>粘合剂面</th>
<th>化学品类型</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>粘合剂</td>
<td></td>
</tr>
<tr>
<td>样品对比号</td>
<td></td>
<td>1'</td>
<td>1'</td>
<td>1'</td>
<td>1'</td>
<td>2'</td>
<td>3'</td>
<td>4'</td>
<td>5'</td>
<td>1'</td>
</tr>
<tr>
<td>25%Kraton D1116/MMA</td>
<td>弹性体</td>
<td>52.65</td>
<td>52.65</td>
<td>52.65</td>
<td>52.65</td>
<td>52.65</td>
<td>52.65</td>
<td>0</td>
<td>52.65</td>
<td>52.65</td>
</tr>
<tr>
<td>25%Neopen AD-10/MMA</td>
<td>弹性体</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>52.65</td>
<td>0</td>
</tr>
<tr>
<td>2-羟乙基甲基丙烯酸酯</td>
<td>双官能分子</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>5</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>甲基丙烯酸甲酯</td>
<td>单体</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>5</td>
<td>0</td>
<td>10</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>二甲基丙烯酸乙二醇酯</td>
<td>单体交联剂</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>二羟乙基甲苯胺 HET</td>
<td>还原剂</td>
<td>1.35</td>
<td>1.35</td>
<td>1.35</td>
<td>1.35</td>
<td>1.35</td>
<td>1.35</td>
<td>1.35</td>
<td>1.35</td>
<td>1.35</td>
</tr>
<tr>
<td>30%石蜡/MMA</td>
<td>蜡</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Kane Ace B-564</td>
<td>抗冲改性剂</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
</tbody>
</table>

活化剂面 | 化学品类型 | 1" | 2" | 3" | 5" | 4" | 6" | 2" | 2" | 6" |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>样品对比号</td>
<td></td>
<td>1"</td>
<td>2"</td>
<td>3"</td>
<td>5"</td>
<td>4"</td>
<td>6"</td>
<td>2"</td>
<td>2"</td>
</tr>
<tr>
<td>对苯二甲酸二异丁酯</td>
<td>增塑剂</td>
<td>39.8</td>
<td>32.54</td>
<td>27.52</td>
<td>21.03</td>
<td>23.84</td>
<td>18.81</td>
<td>32.54</td>
<td>32.54</td>
</tr>
<tr>
<td>Kane Ace B-564</td>
<td>抗冲改性剂</td>
<td>24.92</td>
<td>20.37</td>
<td>17.22</td>
<td>13.16</td>
<td>14.92</td>
<td>11.77</td>
<td>20.37</td>
<td>20.37</td>
</tr>
<tr>
<td>ERL 4221</td>
<td>环氧基</td>
<td>22.33</td>
<td>36.51</td>
<td>46.31</td>
<td>58.97</td>
<td>53.48</td>
<td>63.3</td>
<td>36.51</td>
<td>36.51</td>
</tr>
<tr>
<td>酸：环氧基摩尔比</td>
<td>1:1</td>
<td>1:2</td>
<td>1:3</td>
<td>1:5</td>
<td>1:2</td>
<td>1:2</td>
<td>1:2</td>
<td>0:2</td>
<td>1:6</td>
</tr>
<tr>
<td>重量混合比</td>
<td>粘合剂</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>活化剂</td>
<td>15.46</td>
<td>18.90</td>
<td>22.37</td>
<td>29.24</td>
<td>25.77</td>
<td>32.68</td>
<td>18.90</td>
<td>18.90</td>
<td>32.68</td>
</tr>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
<td>H</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>实施例1</td>
<td>表II样品A-I（表I）的性质</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>硫化剂</td>
<td>1.845</td>
<td>1.803</td>
<td>1.695</td>
<td>1.324</td>
<td>1.731</td>
<td>1.792</td>
<td>1.396</td>
<td>N.R.</td>
<td></td>
</tr>
<tr>
<td>破坏模式</td>
<td>模型CF</td>
<td>模型CF</td>
<td>模型CF</td>
<td>模型CF</td>
<td>模型CF</td>
<td>模型CF</td>
<td>模型CF</td>
<td>AF</td>
<td></td>
</tr>
<tr>
<td>破坏模式</td>
<td>90 MINS</td>
<td>68 MINS</td>
<td>58 MINS</td>
<td>54 MINS</td>
<td>54 MINS</td>
<td>59 MINS</td>
<td>59 MINS</td>
<td>AF</td>
<td></td>
</tr>
<tr>
<td>抗弯强度</td>
<td>246°F</td>
<td>232°F</td>
<td>217°F</td>
<td>205°F</td>
<td>236°F</td>
<td>222°F</td>
<td>199°F</td>
<td>195°F</td>
<td></td>
</tr>
<tr>
<td>最大破坏力</td>
<td>61,020in-lbs</td>
<td>52,216in-lbs</td>
<td>47,018in-lbs</td>
<td>43,182in-lbs</td>
<td>39,776in-lbs</td>
<td>30,284in-lbs</td>
<td>43,088in-lbs</td>
<td>43,608in-lbs</td>
<td></td>
</tr>
<tr>
<td>最大破坏力（psi）</td>
<td>124,931psi</td>
<td>112,775psi</td>
<td>107,745psi</td>
<td>100,000psi</td>
<td>100,000psi</td>
<td>100,000psi</td>
<td>100,000psi</td>
<td>100,000psi</td>
<td></td>
</tr>
<tr>
<td>彩色</td>
<td>CIP白色</td>
<td>CIP白色</td>
<td>CIP白色</td>
<td>CIP白色</td>
<td>CIP白色</td>
<td>CIP白色</td>
<td>CIP白色</td>
<td>CIP白色</td>
<td></td>
</tr>
<tr>
<td>最大破坏力（Kg）</td>
<td>1,772</td>
<td>1,772</td>
<td>1,772</td>
<td>1,772</td>
<td>1,772</td>
<td>1,772</td>
<td>1,772</td>
<td>1,772</td>
<td></td>
</tr>
<tr>
<td>扩展度（mm）</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td>5.8</td>
<td></td>
</tr>
</tbody>
</table>

1. 聚合物破环
2. 粘合剂失效
3. 过热@72°F，4小时@300°F
4. 深度纤维断裂
实施例 2 表 III 基于 1:1 磷酸氯固化体系的粘合剂

<table>
<thead>
<tr>
<th>粘合剂面</th>
<th>粘合剂</th>
<th>J 对照</th>
<th>K-15.96%2404</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>25%Neopene AD-10/MMA</td>
<td>弹性体</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>40%Hapalon H30/MMA</td>
<td>硝基</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>AMPS 2404</td>
<td>双官能分子</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2-丙烯酰胺-2-甲基丙烯磺酸</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BHT</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2,6-二叔-丁基-对-甲酚稳定剂</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHP</td>
<td>氧化剂</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>氧化剂</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Paraloid BTA 753</td>
<td>抗冲改性剂</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>MMA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(甲基丙烯酸甲酯)</td>
<td>单体</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>30%Bolero</td>
<td>蜡</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1977/MMA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EGDMA</td>
<td>单体交联剂</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>二丙烯酸乙二醇酯</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

实施例 2 表 IV 表 III 对照 J、样品 K 的性质

<table>
<thead>
<tr>
<th>粘合剂面</th>
<th>粘合剂</th>
<th>对照 J</th>
<th>样品 K</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>25%Neopene AD-10/MMA</td>
<td>弹性体</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Paraloid BTA 753</td>
<td>抗冲改性剂</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>Reilcat As2</td>
<td>二氯乙烯</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>ERL 4221</td>
<td>环氧树脂</td>
<td>16.03</td>
</tr>
<tr>
<td></td>
<td>MMA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(甲基丙烯酸甲酯)</td>
<td>单体</td>
<td>36.97</td>
</tr>
<tr>
<td></td>
<td>30% 1977/MMA</td>
<td>蜡</td>
<td>3</td>
</tr>
</tbody>
</table>

实施例 2 表 IV 表 III 对照 J、样品 K 的性质

1. 内聚破坏

2. 两跨 @72°F，4 小时 @300°F，两跨 @72°F 再一次

3. 粘合剂失效
实施例 3 表 V-在不同浓度的双官能分子和不同浓度的环氧基下使用甲苯胺/过氧化物聚合体系的粘合剂

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>M</th>
<th>N</th>
<th>O</th>
<th>P</th>
<th>Q</th>
<th>R</th>
<th>S</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>粘合剂面</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kraton D1116</td>
<td>13.34</td>
<td>13.34</td>
<td>13.34</td>
<td>13.34</td>
<td>13.34</td>
<td>13.34</td>
<td>13.34</td>
<td>13.34</td>
<td>13.34</td>
</tr>
<tr>
<td>Paraloid BTA 753</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>AMPS 2404</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>甲基丙烯酸甲酯</td>
<td>单体</td>
<td>52.16</td>
<td>52.16</td>
<td>52.16</td>
<td>47.16</td>
<td>47.16</td>
<td>47.16</td>
<td>42.16</td>
<td>42.16</td>
</tr>
<tr>
<td>EGDMA</td>
<td>单体交联剂</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>二甲基丙烯酸乙醇酯</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>HET(羟乙基甲苯胺)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>总量</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>活化剂面</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ERL4221</td>
<td>环氧基</td>
<td>2</td>
<td>2.5</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>7.5</td>
</tr>
<tr>
<td>61.5%对苯二甲酸二异丁酯/38.5%Paraloid BTA 753</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>BTN55</td>
<td>溶剂过氧化物催化剂</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>混合重量比</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>粘合剂面</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>活化剂面</td>
<td>14</td>
<td>14.5</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>18</td>
<td>19.5</td>
<td>21</td>
</tr>
</tbody>
</table>

GBS 剪切剥离试验

16hr@RT.2hr@150C"x1" x.03"
GBS(喷砂处理的钢结合)
酸：环氧基摩尔比
1:0.8 1:1.0 1:1.2 1:0.8 1:1.0 1:1.2 1:0.8 1:1.0 1:1.2
实施例 4 表 VI 与不含抗冲改性剂粘合剂比较的粘合剂 W-Y

<table>
<thead>
<tr>
<th>粘合剂</th>
<th>粘合剂类型</th>
<th>U</th>
<th>V</th>
<th>W</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kraton D1116</td>
<td>弹性体</td>
<td>11.97</td>
<td>11.97</td>
<td>11.97</td>
<td></td>
</tr>
<tr>
<td>MMA(丙烯酸甲酯)</td>
<td>单体</td>
<td>46.71</td>
<td>46.71</td>
<td>46.71</td>
<td></td>
</tr>
<tr>
<td>EGDMA(二甲基丙烯酸乙二醇酯)</td>
<td>单体交联剂</td>
<td>8.95</td>
<td>8.95</td>
<td>8.95</td>
<td></td>
</tr>
<tr>
<td>HET(羟基丙基甲基)</td>
<td>还原剂</td>
<td>0.45</td>
<td>0.45</td>
<td>0.45</td>
<td></td>
</tr>
<tr>
<td>Boier 1977蜡</td>
<td>蜡</td>
<td>0.81</td>
<td>0.81</td>
<td>0.81</td>
<td></td>
</tr>
<tr>
<td>Paraloid BTA 753</td>
<td>抗冲改性剂</td>
<td>16.11</td>
<td>16.11</td>
<td>16.11</td>
<td></td>
</tr>
<tr>
<td>2-羟乙烯基甲基丙烯酸酯氯酸偏酯</td>
<td>双官能单体</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>乙氧基化双酚 A 二甲基丙烯酸酯</td>
<td>单体交联剂</td>
<td></td>
<td></td>
<td></td>
<td>34.55</td>
</tr>
<tr>
<td>Epon 828</td>
<td>环氧基</td>
<td></td>
<td></td>
<td></td>
<td>34.55</td>
</tr>
<tr>
<td>甲基丙烯酸缩水甘油酯</td>
<td>双官能单体</td>
<td>9.87</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAA(甲基丙烯酸)</td>
<td>双官能单体</td>
<td></td>
<td></td>
<td></td>
<td>14.18</td>
</tr>
<tr>
<td>SR350(丙烯酸丙烯酸三甲基丙烯酸酯)</td>
<td>单体交联剂</td>
<td></td>
<td></td>
<td></td>
<td>4.94</td>
</tr>
<tr>
<td>CHP(氧化环己烷)</td>
<td>氧化剂</td>
<td></td>
<td></td>
<td></td>
<td>0.99</td>
</tr>
<tr>
<td>二苯基醚二磷酸氯化物</td>
<td>催化剂</td>
<td></td>
<td></td>
<td></td>
<td>0.3</td>
</tr>
<tr>
<td>活化剂</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>61.5%对苯二甲酸二异丁酯/38.5%Paraloid BTA 753</td>
<td>增塑剂/抗冲改性剂</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>BTW55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erysyl GE-60</td>
<td>环氧基</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Reilcat Asy2</td>
<td>还原剂</td>
<td>12.75</td>
<td>25.5</td>
<td>38.25</td>
<td></td>
</tr>
<tr>
<td>混合重量比</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100%</td>
</tr>
<tr>
<td>粘合剂/活化剂</td>
<td>100/24.75</td>
<td>100/37.5</td>
<td>100/50.25</td>
<td>活化剂施加到金属表面</td>
<td></td>
</tr>
<tr>
<td>侧冲强度 (in./lb/in.)</td>
<td>>113¹</td>
<td>>113¹</td>
<td>>113¹</td>
<td>14.1²</td>
<td></td>
</tr>
</tbody>
</table>

¹喷砂处理的钢 1"x1"A、B、C 结合具有 0.03 英寸直径的珠以形成结合厚度。都有基质变形：没有结合破坏。

²D 粘度低因此不使用珠

³所有结合在室温下固化 16 小时，300°F 下固化 24 小时