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NEURAL NETWORK COMPONENT

The present invention relates to a neural network component.

Neural networks are biologically-inspired computation architectures for processing
information. They are increasingly used to solve problems that are difficult to solve
with conventional algorithmic programs running on conventional stored-program
computers. These typically are pattern-matching problems such as stock market
forecasting, image recognition and speech recognition. Some neural network
applications are commercially significant. For example, the touch-pads of many lap-
top personal computers use a neural network to improve reliability (neural systems are

relatively noise-insensitive).

Neurons are generally multiple input, single output devices. The strength of the
ontrt cional from a neuron is a function of the weighted sum of that neuron’s inputs

and may be represented by the following equation:

Y =ﬁ[2% X, T}
J

Where X, are inputs to the neuron (possibly from other neurons), W, are weights

; 1s the activation level of the neuron (an

applied to the inputs, the sum ZW,.j ‘X,
j

internal measurement of the state of the neuron), 7} is the threshold of the neuron, fi1s
an activation function (this is usually non-linear), and Y; is the output of ith neuron.

An output will be generated by the neuron when the activation level exceeds the

threshold.

A weight associated with a given input may be positive, in which case a signal
received at that input will cause the activation level to increase. A positive weight
may therefore be considered to be an excitory input. In some instances a weight

associated with a given input may be negative, in which case a signal received at that
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input will cause the activation level to decrease. A negative weight may therefore be

considered to be an inhibitory input.

Connections between neurons are reinforced or weakened by adjusting the values of
the weights. For example, a weight associated with a particular input of a given
neuron may be increased each time a signal is received at that input. A recurring input
signal (i.e. a signal received several times at the same input) will gradually increase
the weight associated with that input. A signal received at that input will then cause a

larger increase of the activation level of the neuron.

The activation function is usually the same for all neurons and is fixed; often a

sigmoid function is used.

The activity of the ith neuron in known neural networks is limited to being a
monotonic function of its inputs X;, determined by the values of the weights W;. This
restricts the ability of known neural networks to emulate more complex, non-

monotonic behaviours.

It is an object of the present invention to provide a component of a neural network

which overcomes the above disadvantage.

According to a first aspect of the invention there is provided a neural network
component, the component comprising a plurality of inputs, at least one processing
clement, at least one output, and a digital memory storing values at addresses
respectively corresponding to the at least one processing element, wherein the at least
one processing element is arranged to receive a value from the digital memory in
response to an input signal, and is instructed to execute one of a plurality of operations

by the value that is received from the digital memory.
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The invention contrasts with prior art neural networks, where a value received by a
processing element is always added to an activation level of the processing element
(the value is always a weight). The processing element of the invention is capable of
executing a plurality of operations, and the received value must therefore act as an
instruction in order for the processing element to choose one of the instructions for

execution.

The activation level of a processing element is an internal value indicative of the

excitation of that processing element.

Suitably, the operation is the addition of the value to an activation level of the at least

one processing element.

Suitably, the operation is a decay of an activation level of the at least one processing
element to zero, by increasing the activation level if it is negative or decreasing the

activation level if it is positive.

Suitably, the rate of decay is dependent upon the value received from the digital

memory.

Preferably, the decay is controlled by a clock.

Suitably, the operation comprises generation of an output by the at least one
processing element, and then resetting an activation level of the at least one

processing element to a predetermined minimum level.

Suitably, the operation comprises resetting an activation level of the at least one
processing element to a predetermined minimum level without an output being

generated by the at least one processing element.
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Suitably, the operation comprises modifying an activation level of the at least one

processing element in accordance with an automatic learning algorithm.

Suitably, the operation comprises modifying the value held in the digital memory in

accordance with an automatic learning algorithm.

Suitably, the automatic learning algorithm comprises a Hebbian learning algorithm.

Suitably, the output generated by the neural network component comprises a number
representative of the address of the processing element from which the output

emanated.

Suitably, the neural network component is provided with arbitration and encoding
means arranged to determine the chronological order of signal pulses received from
processing elements, and to represent each signal pulse as a number. This is
advantageous because it overcomes the problem of pin restriction for off-chip
communication, replacing for example 256 pins, if each neuron output has its own

pin, by 8 pins (where 8-bit binary address encoding is used).

Suitably, the neural network component further comprises a conventional processor

with read-write access to the digital memory.

Suitably, accesses to the digital memory by the conventional processor are arbitrated

asynchronously with accesses required by the neural processing elements.

Suitably, a large number of neural network components are supervised by a parallel

network of conventional processors.

Preferably, the digital memory is a Random Access Memory.
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Suitably the component works in an asynchronous manner. Alternatively, the neural

network component may work in a clocked manner.

According to a second aspect of the invention there is provided a method of operating
a neural network component, the method comprising storing values in a digital
memory at addresses respectively corresponding to at least one processing element,
transferring a value to the at least one processing element and executing one of a
plurality of operations at the processing element in response to the value that is

received from the digital memory.

The method may include any of the above suitable or preferable features of the first

aspect of the invention.

A specific embodiment of the invention will now be described by way of example

only with reference to the accompanying Figures, in which:

Figure 1 is a schematic representation of an embodiment of a neural network
component according to the invention;

Figure 2 is a schematic representation the neural network component, including
arbitration and encoding means;

Figure 3 is a schematic representation of the arbitration and encoding means shown in
Figure 2;

Figure 4 is a graph illustrating a Hebbian learning mechanism; and

Figures 5a to Sc are flow charts illustrating operation of the neural network

component.

A neural network component as shown in Figure 1 comprises 1024 inputs 1, a

Random Access Memory (RAM) 2, 256 processing elements 3 and 256 outputs 4.
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Each input carries a signal from a processing element of a previous neural network
component. Each input carries only 1 bit of information, in other words it is either

‘on’ or ‘off’. Input signals take the form of pulses on the inputs.

The RAM 2 contains a set of values. A different address in the RAM is allocated to
cach combination of input and output (the number of addresses is 1024x256).
Referring to Figure 1, in order to assist the reader and for illustration purposes only,
the RAM may be considered to be a two dimensional matrix comprising columns and
rows, each row containing all of the values pertaining to a particular input, and each
column containing all of the values pertaining to a particular processing element. As
discussed further below, a significant proportion of the RAM addresses may contain

zero values.

In response to a pulse received at a given input, the RAM 2 looks up values located in
the row corresponding to that input. Each value is passed to the processing element 3
corresponding to the column in which that value is located. The activation level of the
processing element 3 (an internal measurement of the state of the processing element)
1s modified in accordance with the value that is received. Each processing element 3

acts as a neuron, and has 1024 inputs and 1 output.

In contrast to the prior art, the values stored in the RAM 2 may be weights or they
may be instructions. Where the value passed to a processing element 3 is an
instruction, the processing element 3 carries out an operation in accordance with the
instruction, as described further below. Where the value passed to the processing
clement 3 is a weight, that weight is added to the activation level of the processing
element 3. The operation of a processing element ‘i’ may be expressed

mathematically as:
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Where X; are inputs to the neuron, W, are the weights, the sum ZW:‘/‘ X, 1s the
J

activation level of the neuron, T, is the threshold of the processing element, f; is an
activation function (this is usually non-linear), and Y, is the output of ith processing
element. A pulse is output by the processing element when the activation level

exceeds the threshold (this is in effect the firing of the neuron).

In the present example, j, which designates a specific input may be between 1 and

1024, and i, which designates a specific output may be between 1 and 256.

Many prior art neural networks comprise neurons which generate analogue output
values. For example, referring to the above equation, the output ¥; of a neuron would
be a number having a value between 0 and 1. This output, when input to a subsequent
neuron would be multiplied by a weight, and the result of the multiplication added to

the activation level of that subsequent neuron.

The described embodiment of the invention operates in a different manner to analogue
neural networks, in that a processing element (neuron) has only two possible outputs,
L.e. 1 or O (or equivalently ‘on’ or ‘off’). An output pulse is generated by a processing
clement whenever the activation level of that processing eclement exceeds its
threshold. From an outside observer’s point of view, a pulsed output of a processing
clement may be considered to be equivalent to an analogue output. For example, if a
processing element were to generate 23 pulses in one second, then this could be
considered to be equivalent to a notional analogue value of 0.23. The generation of

pulses by the processing elements is referred to hereafter as ‘pulse rate encoding’.

At first sight it might appear that pulse rate encoding is very computationally
intensive when compared to the use of analogue signals. For example, a weight
allocated to a given input of a neuron may be multiplied by the analogue signal 0.23

in a single calculation, and then added to the activation level of the neuron. In
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contrast to this, when using pulse rate encoding the weight must be added to the
activation level of the neuron 23 times (i.e. once per pulse), requiring 23 separate
calculations. It is noted however that there is often no output from a given neuron.
Where pulse rate encoding is used, no calculations are carried out in this eventuality
since no input pulses are received. In contrast to this, in known analogue neural
networks, a zero value of output is effectively an output value that happens to be zero.
The weights of the neurons are multiplied by the zero output value, and the result
(also zero) is added to the activation levels of the neurons. This calculation, which
has no effect on the activation levels of the neurons occurs very frequently and is
computationally very wasteful. The use of pulse rate encoding avoids this wasteful

multiplication by zero.

The neural network component is provided with 256 processing elements 3. Each
processing element 3 acts as a neuron, and has 1024 inputs and 1 output. If individual
connections were to be provided between each processing element and each
subsequent neural network component, then the number of connections would rapidly
become so large as to be impractical. In order to avoid this problem, as shown in
Figure 2, the outputs from the processing elements are all directed into a single 8-bit
output line 5. An output pulse from a given processing element is converted into an
8-bit binary number representative of that processing element, which is carried by the
output line. This conversion, which may be referred to as ‘addressed-event encoding’

is carried out by an arbitration and encoding unit 6.

The operation of the arbitration and encoding unit 6 is illustrated schematically in
Figure 3. The unit 6 has two functions: to determine the chronological order in which
pulses are to be sent to the output line 5, and to convert each output into a number
indicative of the processing element that generated that output. The two functions are
achieved simultaneously by the unit 6. The unit 6 shown in Figure 3 is for a set of

eight processing elements.
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A first tier of the unit 6 comprises four arbitration and encoding blocks 10-13. An
input side of a first arbitration and encoding block 10 is provided with two inputs a, b
and two acknowledge outputs a,, b,,. When the output of a processing element goes
high, this is received at input a, a first output y of the block 10 goes high, and a
second output z simultaneously outputs a 1-bit number representative of input a (in
this case the binary number is ‘1’). The acknowledge output a,, then goes high,
thereby indicating to the processing element that the output has been processed by the

block 10. The output of the processing element then goes low.

If input a and input b go high at approximately the same time, then a Seitz mutual
exclusion element determines which input was the first to go high (Mutual exclusion
clements are described at pages 260 er seq. of ‘Introduction to VLSI systems’ by
Mead and Conway, published by Addison Wesley). Output from the block 10 is
generated accordingly. Once the output has been generated, and an acknowledge sent
back to the appropriate processing element, the later of the inputs is processed and

output by the block 10.

A second tier of the unit 6 comprises a pair of arbitration and encoding blocks 14,15.
Referring to a first block 14 of the pair, two inputs y, w are connected to outputs of
preceding blocks 10, 11. A first output u of the block 14 goes high in response to an
input signal, and a second output v simultaneously outputs a 2-bit number. The most
significant bit of the 2-bit number represents the input y, and the least significant bit
of the 2-bit number represents the input a of the preceding block 10. Thus, the 2-bit

number is the binary number ‘11°.

The third and final tier of the unit 6 operates in the same manner as the previous tiers.
The output from the single block 16 comprising the final tier is a 3-bit binary number,

and 1n this case is the number “111°.
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In the description of Figure 1, the output from a processing element 3 is said to be in
the form of a pulse. It will be noted that in the description of Figure 3 the output from
the processing element is said to be a continuous high which ends only after an
acknowledge signal has been received by the processing element. This modification

is required in order to allow the arbitration and encoding unit 6 to function correctly.

Referring to Figure 2, eight tiers of arbitration and encoding blocks are required to

generate an 8-bit binary number output.

Referring to Figure 2, four 8-bit input lines 19 are connected to the processing
elements 3 and RAM 2. An arbitration and encoding unit 20 is used to arbitrate
between the four input lines 19. The arbitration and encoding unit 20 operates the
manner shown schematically in Figure 2 and described above. In this case the
arbitration and encoding unit includes two tiers of blocks. The arbitration and
encoding unit has a 10-bit output, the extra two bits being used to distinguish between

the four 8-bit input lines 19.

The 10-bit output of the arbitration and encoding unit 20 is connected to a decoder
21. The decoder converts each received 10-bit input number to an output on a
corresponding 1-bit output line 1 (there are 1024 output lines). The output lines 1

correspond to the input lines 1 shown in Figure 1.

In the pulse rate encoding system used by the embodiment of the invention,
communication between neural network components takes place on a time scale of the
order of 1pus. This appears instantaneous compared with the temporal resolution of

the neurons which fire at a rate no higher than of the order of 1kHz.

The fact that the neural network component is digital provides a degree of flexibility
not seen in analogue neural network components. In particular, a large range of

values may be stored in the RAM 2, and this allows some of the values to be used as



WO 01/29766 PCT/GB00/03957

11

‘Instructions’ for the processing elements 3. The term ‘instruction’ is intended to
mean that the processing element is instructed to carry out an operation other than
simply adding a value to the activation level. In known prior art neural networks, the
action carried out by a neuron is always the same, i.e. to add a value to the activation
level. The use of instructions allows the processing elements 3 to have much more

flexibility in their operation.

The use of instructions provides a neural network having properties which are closer
to biologically realistic neurons. One such property is a ‘leaky’ integration, in other
words an activation level which decays if there is no input activity over a period of
time. Another property is ‘refraction’, meaning that a processing element 3 ignores
all inputs for a certain period following firing. This limits the processing element’s
maximum firing rate (i.e. the rate at which the processing element 3 can produce
output pulses), thereby preventing the network from becoming unstable due to ever-
increasing neuronal activity. Both refraction and leaky integration imply some

dependence on real time.

Refraction and leaky integration are provided in the described embodiment of the
invention using a real-time reference event, for example a 32 kHz clock (not shown in
Figures 1 or 2). Pulses from the clock may transmitted as a particular binary number
via the 8-bit input (for example 00000001). Where leaky integration is required, the
value stored in each RAM address corresponding to this input number will instruct the
processing element to decrement its activation level if the activation level is positive
and increment the activation level if it is negative. Different values held in the RAM
may instruct different rates of leaky integration, for example increment/decrement in
response to every clock pulse, or increment/decrement in response to every second

clock pulse.

An instruction may be provided which determines whether or not the weight should

be adjusted by automatic learning algorithms (for example Hebbian learning
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algorithms). As an example of a neuron with automatic learning capabilities, the

following neuron behaviour can be modelled as shown in Figure 4.

The activation level of the processing element operates within the range {-L, +T},
where -L is the refractory level and T is the threshold which, when reached, causes
the processing element to output a pulse and the activation level to be reset to -L. {-
L, 0} is the refractory range of the processing element: if a weight is passed to the
processing element in response to an input pulse, the weight is not added to the
activation level (the activation level is unchanged), and the weight itself is
decremented. {0, F} is the weakly excited range: : if a weight is passed to the
processing element in response to an input pulse it will be added to the activation
level and the weight itself will be unchanged by the learning mechanism. {F, T} is
the strongly excited range: if a weight is passed to the processing element in response
to an input pulse it will be added to the activation level and the weight itself will be

incremented.

The operation of a processing element arranged to operate in accordance with the

model shown in Figure 3 is shown schematically by a flow chart in Figure 5a-c.

Referring first to Figure 5a, a pulse is received at a given input j. The value
associated with that input j for a given processing element is retrieved from the RAM
and passed to the processing element. The value will fall within one of three ranges: a
first range corresponds to weights which are to be added to the activation level, a
second range corresponds to weights which are to be added to the activation level and
in addition instruct the processing element that the weight associated with that input is

to be incremented, and a third range comprises instructions other than weights.

The remainder of Figure 5a deals with a value which falls within the first range. The
value is added to the activation level of the processing element (the activation level

will be reduced if the weight is negative). If the activation level following addition of
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the value is less than the threshold T then no further action is taken. If the activation
level s greater than the threshold T, then the processing element outputs a pulse and

the activation level of the processing element is reduced to —L.

If the value falls within the second range then operation of the processing element as
shown in the flow chart branches to Figure Sb. If the activation level of the
processing element is greater than or equal to zero then the value is added to the
activation level of the processing element. Following this, if the activation level is

greater than F then the value saved in the RAM is incremented.

If the activation level of the processing element is less than zero then the value is not

added to the activation level, and the value saved in the RAM is decremented.

If the value falls within the third range, this indicates some other form of instruction.
For example, as shown in Figure 5c, the processing element may be instructed to emit
a pulse irrespective of the activation level, and reset the activation level to the

refractory level.

This Hebbian learning algorithm, which results in a stable neural network if
appropriate values are chosen, depends on a mechanism to return the activation level
from -L to 0 which is separate from the numerical weight processing, and therefore
depends on the use of an ‘increment towards zero over time’ instruction which may be

implemented as described above.

It will be understood by those skilled in the art that the processing elements may be
capable of executing other instructions, which may be defined by values stored in the
RAM value memory. For example, the activation level may be reset to the refractory

level without firing the neuron. This models a strongly inhibitory input.
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Referring again to Figure 1, the neural network component may include a
conventional processor (not shown) with read-write access to the RAM value store 4.
In addition, the processor may have the capability to monitor and generate input and
output to neural activity streams, using suitable interface peripherals incorporated into

the neural network component.

Processor accesses to the RAM value store 4 and the neural activity streams can be
arbitrated asynchronously into the fully operational network with minimal
interference with the neural processing provided that the network is not operating near
to saturation at the time. One monitor processor could supervise a number of neural
network components, but a very large system may require several such processors.
An implementation based on 1 Gbit DRAM technology might have a monitor
processor on each chip. Thus, the neural network may be implemented as a very large
number of neural network components supervised by a parallel network of
conventional processors. The ease with which the architecture connects to
conventional machines is a merit of the invention. The control processor greatly
extends the flexibility of the architecture and provides a close coupling between the

neural processing and a conventional, sequential machine.

If communication is implemented using clocked logic the temporal firing information
will be quantised. If asynchronous logic is used this quantisation is avoided. The use

of asynchronous logic is therefore advantageous.

Although in the illustrated embodiment one processing element corresponds to one
neuron, it will be appreciated that a processing element may be responsible for

performing the calculations for more than one neuron.
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Claims

1. A neural network component, the component comprising a plurality of inputs,
at least one processing element, at least one output, and a digital memory storing
values at addresses respectively corresponding to the at least one processing element,
wherein the at least one processing element is arranged to receive a value from the
digital memory in response to an input signal, and is instructed to execute one of a

plurality of operations by the value that is received from the digital memory.

2. A neural network component according to claim 1, wherein the operation is

the addition of the value to an activation level of the at least one processing element.

3. A neural network component according to claim 1, wherein the operation is a
decay of an activation level of the at least one processing element to zero, by
increasing the activation level if it is negative or decreasing the activation level if it is

positive.

4. A neural network component according to claim 3, wherein the rate of decay is

dependent upon the value received from the digital memory.

5. A neural network component according to claim 3 or 4, wherein the decay is

controlled by a clock.

6. A neural network component according to claim 1, wherein the operation
comprises generation of an output by the at least one processing element, and then
resetting an activation level of the at least one processing element to a predetermined

minimum level.

7. A neural network component according to claim 1, wherein the operation

comprises resetting an activation level of the at least one processing element to a
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predetermined minimum level without an output being generated by the at least one

processing element.

8. A neural network component according to claim 1, wherein the operation
comprises modifying an activation level of the at least one processing element in

accordance with an automatic learning algorithm.

9. A neural network component according to claim 1 or claim 8, wherein the
operation comprises modifying the value held in the digital memory in accordance

with an automatic learning algorithm.

10. A neural network component according to claim 8§ or claim 9, wherein the

automatic learning algorithm comprises a Hebbian learning algorithm.

11. A neural network component according to any preceding claim, wherein the
output generated by the neural network component comprises a number representative

of the address of the processing element from which the output emanated.

12, A neural network component according to claim 11, wherein the neural
network component is provided with arbitration and encoding means arranged to
determine the chronological order of signal pulses received from processing elements,

and to represent each signal pulse as a number.

13. A neural network component according to any preceding claim, further

comprising a conventional processor with read-write access to the digital memory.

14. A neural network component according to claim 13, wherein accesses to the
digital memory by the conventional processor are arbitrated asynchronously with

accesses required by the neural processing elements.
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15. A neural network component according to claim 13 or 14, wherein a large
number of neural network components are supervised by a parallel network of

conventional processors.

16. A neural network component according to any preceding claim, wherein the

digital memory is a Random Access Memory.

17. A neural network component according to any preceding claim, wherein the

component works in an asynchronous manner.

18. A method of operating a neural network component, the method comprising
storing values in a digital memory at addresses respectively corresponding to at least
one processing element, transferring a value to the at least one processing element and
executing one of a plurality of operations at the processing element in response to the

value that is received from the digital memory.

19. A neural network component substantially as hereinbefore described with

reference to the accompanying figures.

20. A method of operating a neural network component substantially as

hereinbefore described with reference to the accompanying figures.
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