发明专利申请公开说明书

公开日 2004年4月14日

申请日 2003.8.11

申请号 03153358.2

优先权

申请人 佳能株式会社
地址 日本东京都

发明人 井垣正彦 热田浩生

专利代理机构 北京市金杜律师事务所
代理人 韩登营

发明名称 旋转角度检测装置及其旋转盘

摘要

通过将旋转盘的旋转信息记录面配置在旋转盘和旋转轴的固定点与检测头的固定位置的中间位置上，获得减小由于热膨胀而造成的变化的稳定的罩。并且，因此，作为旋转盘的安装嵌入配合部形状，配有第一嵌入配合部和第二嵌入配合部，配有用于满足同轴度的第一嵌入配合部和具有用于注入粘结剂等固定机构的间隙第二嵌入配合部。利用这些结构，最佳检测位置（最佳罩位置）不会由于周围温度的变化而产生变动。
1. 一种旋转角度检测装置，其特征在于：包括：旋转轴，固定在前述旋转轴上的合成树脂制成的旋转盘，检测从设置在该旋转盘上的旋转角度信息记录部而来的信息的传感器头；其中，在前述旋转轴和前述旋转盘的相对于前述旋转轴的推力方向的粘结固定点的位置，和该传感器头的安装部相对于前述旋转轴的推力方向的粘结固定点位置之间，配置该旋转盘的旋转信息记录部面。

2. 如权利要求1所述的旋转角度检测装置，其特征在于：前述旋转盘具有：固定在前述旋转轴上的固定部，从该固定部的外周边缘沿前述旋转轴的轴线方向延伸的筒状部，从该筒状部的端部向与前述旋转轴的轴线垂直相交的方向延伸的盘主体部。

3. 如权利要求1所述的旋转角度检测装置，其特征在于：前述旋转角度信息记录部通过沿圆周方向配置一个或多个反射元件而构成。

4. 一种旋转角度检测装置的旋转盘，它由合成树脂材料构成，其特征在于：包括：固定在旋转轴检测装置的旋转轴上的固定部，从该固定部的外周边缘沿前述旋转轴的轴线方向延伸的筒状部，从该筒状部的端部沿与前述旋转轴的轴线垂直相交的方向延伸的盘主体部。

5. 如权利要求4所述的旋转盘，其特征在于：包括：相对于该旋转轴的直径具有第一嵌入配合间隙的第一嵌入配合区域，具有第二嵌入配合间隙的第二嵌入配合区域。

6. 如权利要求4所述的旋转盘，其特征在于：包括：具有嵌入配合前述旋转轴的有底凹形状状部，在该有底凹形状状部上有旋转轴和该旋转盘的粘结固定点。

7. 旋转角度检测装置，其特征在于：包括：旋转轴，具有固定在该旋转轴上的合成树脂制成的旋转角度信息记录部的旋转盘，和前述旋转角度信息记录部检测出信息的传感器部，其中，前述旋
转盘的前述旋转角度信息记录部和前述旋转轴，以随温度变化而向
前述旋转轴的推力方向移动的方向成为相互抵消的方向的方式，将
前述旋转盘安装在前述旋转轴上。

8. 如权利要求 7 所述的旋转角度检测装置，其特征在于：前述
旋转盘具有：固定在前述旋转轴上的固定部，从该固定部的外周边
缘沿前述旋转轴的轴线方向延伸的筒状部，从该筒状部的端部沿与
前述旋转轴的轴线垂直相交的方向延伸的盘主体部，其中，在前述
盘主体部上具有前述旋转角度信息记录部。
旋转角度检测装置及其旋转盘

5 技术领域

本发明涉及一种旋转角度检测装置及其旋转盘，特别涉及配有合成树脂制的旋转盘的旋转编码器等的旋转角度检测装置及其旋转盘。

10 背景技术

在现有技术中的大多数旋转编码器中，采用光学检测旋转角度信息的光学式或磁性检测旋转角度信息的磁性式。而且，光学式旋转编码器是由光束透过旋转角度信息记录部的透型式或光束被旋转角度信息记录部反射的反射型。

例如，图11表示现有技术中的透型式旋转编码器，该旋转编码器的马达1的旋转轴2由轴承3，4支承。在旋转轴2的上部嵌入配合有金属制成的安装毂5，该安装毂5被紧固螺栓6固定在旋转轴2上。

在安装毂5的上表面装载有作为旋转角度信息记录体的旋转刻度7，利用固定在旋转轴2上的固定轮8和粘结剂9将旋转刻度7固定到安装毂5上。而且，在马达1的上面，经由电路基板10配置有透型的传感器头11。

传感器头11在电路基板10上配有框架12，旋转刻度7的周边部以不接触的方式配置在框架12的上框部12a和下框部12b之间。

框架12的上框部12a从上方起可依次布置有光元件13和准直透镜14，下框部12b从上方起可依次布置有固定刻度15和光接收元件16。

安装毂5由黄铜、铝等切削加工性良好的材料制成，高精度地用于配合旋转轴2的嵌入配合孔5a的内径，和用于装载旋转刻度7的接收面5b进行加工。而且，在薄玻璃或薄金属板上通过蚀刻
加工或照相制版用 PET 薄膜形成狭缝，以此构成旋转刻度 7。

在组装该旋转编器器时，将安装载 5 嵌入配合到马达 1 的旋转轴 2 上，安装载 5 定位在规定的止推高度并用紧固螺栓 6 紧固。然后，在安装载 5 的上面装载旋转刻度 7，利用固定在旋转轴 2 上的固定轮 8 进行临时固定。而且，对旋转刻度 7 的旋转角度信息记录部 7a 的记录图形的中心和旋转轴 2 的中心进行定心、调整。之后，如图 12 所示，利用粘接剂 9 固定旋转轴 2 和固定轮 8，同时，利用粘接剂 9 固定旋转刻度 7 的固定轮 8。最后，以将旋转刻度 7 的外周部插入到架 12 的上框部 12a 和下框部 12b 之间的方式，将传感器头 11 靠近安装在旋转刻度 7 附近，固定于马达 1 的适当位置上。

从传感器头 11 的发光元件 13 射出的发散光束，透过准直透镜 14 形成大致的平行光束，通过旋转刻度 7 的旋转角度信息记录部 7a，通过固定刻度 15 并入射到光接收元件 16 中。这时，将伴随着旋转角度信息记录部 7a 和固定刻度 15 的相对角度位置变化而产生的莫尔条纹变化作为入射到光接收元件 16 中的光量变化，传感器头 11 对其进行光学地读取，并检测出旋转刻度 7 的旋转角度。

图 13 表示现有技术中的反射型旋转编码器，代替上述传感器 11，检测从旋转刻度 7 的旋转角度信息记录部 7a 而来的反射光束的传感器头 17 配置于旋转刻度 7 的下方。

这样，为了制造现有技术中的旋转编码器，除了必须采用安装载 5、紧固螺栓 6、固定轮 8、粘结剂 9 等之外，施加粘结剂 9 的部分很多，进而还必须进行定心调整，加工步骤多，难以降低制造成本。并且，由于旋转刻度 7 是通过在薄玻璃或薄金属板上进行利用蚀刻工序或照相制版 PET 薄膜形成狭缝而制成的，所以难以达到很高的同轴精度和嵌入配合精度。

近年来，在旋转编码器的制造中，已知这样的方法，即，由合成树脂对安装载 5 和旋转刻度 7 进行整体成形，作为旋转盘容易地组装到旋转轴 2 上，以此降低制造成本。例如，本申请人在日本专利公报特开平 60-140119 号公报、特开昭 62-3617 号公报、实开平 5
- 84818 号公报、特公平 5-39410 号公报、特公平 5-39411 号公报等中，公开了采用 V 型槽格子的旋转刻度。在专利第 2810521 号、
专利第 2862417 号等中，提出了圆筒格子型的旋转刻度。

图 14 表示配有由合成树脂材料整体成形的旋转盘 18 的旋转编码
器，该旋转盘 18 具有旋转角度信息记录部 18a。旋转盘 18 嵌入配合
到与上述一样的马达 1 的旋转轴 2 中，利用粘结剂 19 粘结固定旋转
轴 2 和旋转盘 18。

该旋转编码器不需要上述安装毂 5、紧固螺栓 6、固定轮 8 等。
并且，易于实现相对于旋转轴 2 的旋转盘 18 的嵌入配合孔 18b 的嵌
入配合精度、和旋转角度信息记录部 18a 的图形与旋转盘 18 的嵌入
配合孔 18b 的同轴精度。进而，不需要上述的定心这样的最为繁琐
的工序。从而，除了减少构件数目之外，不需要定心调整工序，可
以大幅度地降低制造成本。

但是，由于合成树脂材料的热膨胀系数比玻璃或金属的热膨胀系
数高，在用金属制成旋转轴 2 而用合成树脂制成旋转盘 18 的情况下，
在温度变化大的情况下，旋转轴 2 和旋转盘 18 的尺寸因各自的
热膨胀系数而变化，旋转轴 2 和旋转盘 18 之间的相对位置发生变化。
同样，传感器头 11 由合成树脂材料制成的情况下，传感器头 11
因固有的温度特性系数而脱离最佳位置。

特别是，在旋转轴 2 的推力方向，旋转盘 18 和传感器头 11 的尺
寸发生变化的情况下，旋转角度信息记录部 18a 和传感器头 11 之间
的间隙发生变化，传感器头 11 的输出信号变化，从而传感器 11
的检测精度恶化。并且，在最差的情况下，旋转盘 18 和传感器头 11
机械接触，产生故障。

但是，为了解决这些问题，有必要至少对在安装旋转盘 18 和传
感器头 11 时的推力方向的安装公差尽可能地限制，这样导致制造成
本上升。

发明内容
本发明的目的是解决上述问题，提供一种以廉价的结构应对环境温度的变化，以高精度检测、获得旋转角度的旋转角度检测装置及其旋转盘。

为了实现上述目的，在由马达·齿轮·带轮等旋转构件，固定在该旋转结构的旋转轴上的合成树脂制成的旋转盘，从设置在该旋转盘上的旋转角度信息记录部检测出信息的传感器头构成的旋转角度检测装置中，本发明的旋转角度检测装置的特征在于，在该旋转轴和该旋转盘的推力方向的粘结固定点位置和该传感器头安装部的推力方向固定粘结点位置之间，配置该旋转盘的旋转角度信息记录部。

并且，本发明的旋转角度检测装置的旋转盘，其特征在于，由合成树脂材料制成，具有：固定在旋转角度检测装置的旋转轴上的固定部、从该固定部的外周边缘沿着前述旋转轴的轴线的方向延伸的筒状部，从该筒状部的端部沿着与前述旋转轴的轴线垂直相交的方向延伸的盘主体部。

在后面所述的实施方式的说明中，可以理解关于本发明的进一步的目的和结构。

附图说明

图 1 是第一个实施方式的主要部分的剖视图。
图 2 是传感器头的详细图示。
图 3 是聚光点和元件所在的点一致的状态的说明图。
图 4 是温度上升之后的状态的作用说明图。
图 5 是第二个实施方式的主要部分的剖视图。
图 6 是温度上升之后的状态的作用说明图。
图 7 是第三个实施方式的主要部分的剖视图。
图 8 是第四个实施方式的主要部分的剖视图。
图 9 是第五个实施方式的主要部分的剖视图。
图 10 是第六个实施方式的主要部分的剖视图。
图 11 是现有技术的例子的透型编码器的局部剖视图。
图 12 是现有技术的例子的局部放大平面图。
图 13 是现有技术的例子的反射型编码器的局部剖视图。
图 14 是现有技术的例子的具有成一体的旋转盘的透型编码器的局部剖视图。

具体实施方式

根据图 1～图 10 所示的实施方式，详细说明本发明。

图 1 是第一个实施方式的主要部分的剖视图，该第一个实施方式的旋转角度检测装置为反射型的旋转编码器。在马达 21 中，旋转轴 22 经由上部轴承 23 和下部轴承 24 可自由旋转地被支承。在旋转轴 22 的上部嵌入配合旋转盘 25，旋转轴 25 被粘结材料 26 粘结固定到旋转轴 22 上。在旋转盘 25 的下面设有旋转角度信息记录部 27，在该旋转角度信息记录部 27 中，沿圆周方向规则地配置图中表示出的 1 个或多个反射元件。而且，在马达 21 的安装基准面 A 上，经由电路基板 29 安装反射型的传感器头 28。

旋转盘 25 由透光性合成树脂材料整体成形而成。在旋转盘 25 上设有：固定在旋转轴 22 上的圆板状的固定部 25a，从该固定部 25a 的外周边缘沿旋转轴 22 的轴线方向，即推力方向的向下方向延伸的筒状部 25b，从该筒状部 25b 的下部沿与旋转轴 22 垂直相交的方向、即径向方向的向外方向延伸的盘主体部 25c。在固定部 25a 上形成嵌入配合旋转轴 22 的嵌入配合孔 25d，旋转角度信息记录部 27 设置在盘主体部 25c 的下面。

另外，以传感器头 28 的聚光点为 B，以马达 21 的安装基准面 A 内的旋转轴 22 和上部轴承 23 的内轮的固定点为 C，以旋转轴 22 和旋转盘 25 的固定点为 D，以旋转角度信息记录部 27 内的反射元件的所在的元件存在点为 E，以与旋转轴 22 的推力方向相关的固定点 C 和固定点 D 的距离为 L，以与旋转轴 22 的推力方向相关的安装基准面 A 和聚光点 B 的距离为 H。
点 D 和元件存在点 E 的距离为 S。

如图 2 所示，传感器头 28 的构成包括：发散光束的 LED 等发光元件 31，将从该发光元件 31 而来的光束聚光到聚光点 B 的第一准直透镜 32，对由旋转角度信息记录部 27 反射的发散光束进行聚光的第二准直透镜 33，检测出该第二准直透镜 33 的光束的光接收元件 34。

在该旋转编码器中，从发光元件 31 发散的光束，透过第一聚光透镜 32，形成会聚光束聚光于聚光点 B。会聚于聚光点 B 的光束在位于聚光点 B 的旋转角度信息记录部 27 的元件存在点 E 处反射，形成发散光束并透过第二准直透镜 33，再次形成会聚光束，并入射到光接收元件 34 中。这时，在除旋转角度信息记录部 27 的元件存在点 E 之外的部门中，光束透过旋转盘 25。而且，伴随着旋转盘 25 的旋转，旋转角度信息记录部 27 的反射元件向沿圆周方向移动，从光接收元件 34 输出的电电信号发生变化，获得旋转角度信息。

在此，在聚光点 B 和元件存在点 E 的位置一致的情况下，传感器头 28 输出良好的电信号。但是，由于从马达 21 产生的热使得环境温度上升，所以旋转轴 22、旋转盘 25、传感器头 28 等发生热膨胀，使聚光点 B 和元件存在点 E 的位置发生变化。因此，在第一个实施方式中，下述关系式（1）、（2）成立，防止聚光点 B 和元件存在点 E 的位置发生变化。

\[\beta \times H \times \Delta T = (\alpha_2 \times L + \alpha_1 \times S) \times \Delta T \quad \cdots (1) \]

\[L = S + H \quad \cdots (2) \]

其中，旋转盘 25 的热膨胀系数为 \(\alpha_1 \)，旋转轴 22 的热膨胀系数 \(\alpha_2 \)，传感器头 28 最佳位置处的温度特性系数为 \(\beta \)，温度的变化量为 \(\Delta T \)。并且，距离 H、L 的符号以安装基准面 A 的上方为 +，距离 S 的符号以固定点 D 的上方为 +。进而，旋转轴 22、旋转盘 25、传感器头 28 等的温度变化相同。

而且，对应于温度变化量 \(\Delta T \) 发生变化的距离 H 的变化量为 \(\Delta H \)，温度特性系数定义为 \(\beta = \Delta H / H \)。即，温度特性系数 \(\beta \) 作为定量表示相对于距离 H 随温度的变化以何种程度的比例发生变化的系数。
图 3 表示环境温度为常温 20℃时聚光点 B 和元件存在点 E 一致的状态，即旋转盘 25 以最佳位置关系固定在旋转轴 22 上的状态。在制造旋转编码器时，热膨胀系数 α1、α2 和温度特性系数 β 是已知的，作为安装传感器头 28 的结果，可以先行确定聚光点 B 的位置、也就是距离 H，因而，在关系式 (1) 中，通过代入热膨胀系数 α1、α2、温度特性系数 β、以及距离 H 的值，并求解与关系式 (2) 连立的方程式，确定距离 L、S。而且，从这些距离 L、S 求出旋转轴 22、旋转盘 25、传感器头 28 等的形状和固定位置。

图 4 是上述构成的作用说明图，表示温度特性系数 β = 0 而环境温度变大的情况。而且，旋转轴 22 由不锈钢制成，旋转盘 25 由聚碳酸酯制成。因而，热膨胀系数 α1 = 6.6 × 10⁻⁵，热膨胀系数 α2 = 1.47 × 10⁻⁵。这时，距离 H 为 7.7mm，由关系式 (1)、(2) 得出距离 L 为 +9.9mm、距离 S 为 -2.2mm。

在这种情况下，由于温度特性系数 β = 0，所以传感器头 28 不受温度的影响，聚光点 B 的位置不会变化。而且，由于环境温度大大上升，所以旋转轴 22 和旋转盘 25 依照固有的热膨胀系数 α1、α2 发生热膨胀。旋转轴 22 发生热膨胀时，固定点 D 向上移动，形成比上述距离 L 大的距离 L’。并且，旋转盘 25 以固定点 D 为基准向下膨胀，形成比上述距离 S 大的距离 S’。这时，以旋转盘 25 的状部 25b 为主向下膨胀，抵消元件存在点 E 伴随着旋转轴 22 的膨胀向推力方向的移动。

因而，在第一个实施例中，即使环境温度大幅度上升，聚光点 B 和元件存在点 E 两者仍为不动的点，可以输出稳定的信号。

图 5 是第二个实施方式的主要部分的剖视图，图 6 是作用说明图，温度特性系数 β = 0.50 × 10⁻⁵，其它条件与上述相同。在第二个实施方式中，距离 L 为 +9.15mm，距离 S 为 -1.45mm，获得与第一实施方式相同的效果。

图 7 是在本发明第三个实施方式中、与第一和第二实施方式中的旋转轴 22 和旋转盘 25 中不同的其它固定方法、旋转盘的形状的说
明图。旋转盘 25 由射出成型金属模具成一体地形成旋转信息记录部、具有第一嵌入配合尺寸的第一嵌入配合部 25d、以及具有第二嵌入配合尺寸的第二嵌入配合部 25e。特别是，包含于旋转盘的旋转位置信息记录部的图形中心和第一嵌入配合部 25d 的同轴度高精度地形成，可以与旋转轴 22 高精度地结合。

这时，在嵌入配合部中，为了确保同轴精度，有必要尽可能排除嵌入配合部的间隙，因而，在采用粘结等结合机的情况下，难以将粘结剂注入到旋转轴 22 和嵌入配合面的间隙 25d 之间，从而，可以以嵌入配合部 25d 与另一个具有第二嵌入配合尺寸的第二嵌入配合部 25e 具有适当的间隙尺寸注入必要量的粘结剂，获得旋转盘 25 和旋转轴 22 的粘结固定强度。

图 8 是说明第四个实施方式的图示，与前面的图 7 一样，是在第一和第二个实施方式中的旋转轴 22 和旋转盘 25 的另一种固定方法。旋转盘的形状的说明图。与第三个实施例一样，旋转盘 25 利用射出成型金属模具成一体地形成旋转信息记录部、具有第一嵌入配合尺寸的第一嵌入配合部 25d、和具有第二嵌入配合尺寸的第二嵌入配合部 25e。特别是，高精度地形成包含于旋转盘的旋转位置信息记录部的图形中心和第一嵌入配合部 25d 的同轴部，可以与旋转轴 22 高精度地结合。

在本实施例中，旋转盘成有底的凹形形状，在有底的凹形形状上配置树脂材料的浇口是很容易的，由于在图形中心可以配置浇口，所以树脂的流动相对于图形处于点对称的位置上，因而可以使图形的精度更好。

图 9 是第五个实施方式的主要部分的剖视图，在马达 51 的旋转轴 52 的上端面上，利用粘结剂 54 固定旋转盘 53。而且，在旋转轴 52 的上端面上形成施加粘结剂 54 的槽部 52a。

在旋转盘 53 上设有：配置在旋转轴 52 上端面上的固定部 53a、从该固定部 53a 的外边缘向下方延伸的筒状部 53b、从该筒状部 53b 的下部向外侧方向水平延伸的盘主体部 53c。圆筒状部 53b 的内部形
成嵌入配合旋转轴 52 的嵌入配合孔 53d, 在旋转轴 52 的外周面和嵌入配合孔 53d 的内周面之间形成微小的间隙，旋转角度信息记录部 27 配置在盘主体部 53c 的下面。在第五个实施方式中，也能获得与第一～第三实施例相同的效果。

图 10 是第六个实施方式的主要部分的剖视图，利用垫圈 64 和紧固螺栓 65 将旋转盘 63 固定在马达 61 的旋转轴 62 的上端面上。而且，在旋转轴 62 的上端面上形成与紧固螺栓 65 螺纹配合的螺纹孔 62a。

在旋转盘 63 上设有：固定在旋转轴 62 的上端面上的圆板状的固定部 63a、从该固定部 63a 的外周边缘向下方延伸的筒状部 63b、从筒状部 63b 的下部向外侧水平延伸的盘主体部 63c。筒状部 63b 的内部形成嵌入配合旋转轴 62 的嵌入配合孔 63d，旋转轴 62 的外周面和嵌入配合孔 63d 的内周面之间形成微小的间隙。在固定部 63a 上形成贯穿插入紧固螺栓 65 的贯穿插入孔 63e，旋转角度信息记录部 27 配置在盘主体部 63c 的下面。在该第六个实施方式中，也能获得与第一～第三实施方式相同的效果。

如上所述，本发明的旋转角度检测装置，根据旋转盘的热膨胀系数、旋转轴的热膨胀系数、以及传感器头的温度特性系数，确定旋转角度信息记录部和传感器头的相对位置，因而，即使环境温度发生变化，仍可以保持旋转角度信息记录部和传感器头的最佳相对位置。因而，可以稳定输出信号并降低检测误差，同时，可以提高旋转轴和旋转盘的固定强度。并且，旋转角度信息记录部和传感器头相对的装配量可以扩大。

而且，在可以扩大可使用的温度范围的基础上，可以实现旋转角度的高分辨能力和高精度的检测。

并且，本发明的旋转角度检测装置的旋转盘，是由合成树脂材料制成的，具有：固定在旋转角度检测装置的马达的旋转轴上的固定部、从固定部的外周边缘沿旋转轴的轴线方向延伸的筒状部、从筒状部的端部沿与旋转轴的轴线垂直相交的方向延伸的盘主体部，因
而，在环境温度上升时，筒状部主要沿轴线方向膨胀，可以抵消沿旋转轴的轴线方向的膨胀。

进而，重视旋转轴和旋转盘的同轴度，通过设置尽量减少嵌入配合间隙的第一嵌入配合部和用于旋转轴与旋转盘的粘结·固定的的第二嵌入配合部，可以保持高精度的同轴度，相对于温度变化十分稳定地保持传感器头和旋转盘的位置关系。
图 1
现有技术

图 11
图 12
图 13
现有技术

图 14