Abstract: A process for the production of lithium hydroxide, the process comprising the steps of: (i) Causticising lithium chloride (12) with sodium hydroxide (16) to produce a lithium hydroxide product; (ii) Collecting the solids resulting from the causticisation of step (i) and filtering (22) same; (iii) The filtered solids from step (ii) are passed to a heating step (32) in which anhydrous lithium hydroxide is produced; (iv) Filtering (34) the anhydrous lithium hydroxide product of step (iii); and (v) Quenching the anhydrous lithium hydroxide of step (iv) with water to produce lithium hydroxide monohydrate crystals.
"Production of Lithium Hydroxide"

Field of the Invention

[0001] The present invention relates to a process for the production of lithium hydroxide. More particularly, the process of the present invention is intended to allow the production of the battery grade lithium hydroxide monohydrate.

[0002] In one highly preferred form, the process of the present invention utilises the causticisation of lithium chloride with caustic soda to produce high purity battery grade lithium hydroxide monohydrate.

[0003] Additionally, the present invention relates to a process for the treatment of lithium chloride for the production of high purity battery grade lithium hydroxide monohydrate, the process utilising the causticisation of a lithium chloride obtained from either of a spodumene ore or brine source.

Background Art

[0004] Processes employed to date for the production of lithium hydroxide monohydrate from lithium chloride have typically utilised either electrolysis of lithium chloride, such as that described in US Patent 3597340, or the conversion of lithium chloride into lithium carbonate by soda ash, such as that described in US Patents 8691 169 and 8669260, followed by the causticisation of lithium carbonate so formed with hydrated lime, such as that described in US Patent 4207297.

[0005] The above described processes of the prior art are known to be relatively expensive and inefficient. For example, the production of lithium hydroxide monohydrate from the electrolysis of lithium chloride utilises very high quantities of electricity, in the order of >5,000 KWh/MT of LiOH.H₂O, and the current efficiency is lower than 65%, see US Patent Publication 2012/0107210. The production of LiOH.H₂O from lithium carbonate using hydrated lime causticisation is expensive as it first requires the production of lithium carbonate from lithium chloride, followed by causticisation using expensive purified hydrated lime as a
raw material. In turn this produces a relatively impure lithium hydroxide monohydrate product. The hydrated lime introduces calcium impurities into the lattice of LiOH.H₂O which has to be purified by expensive known methods, thereby increasing the cost of production. This is particularly problematic when attempting to produce high purity battery grade lithium hydroxide monohydrate, such as that having greater than 99.9% purity by weight.

[0006] The process of the present invention has as one object thereof to overcome substantially one or more of the above mentioned problems associated with prior art processes, or to at least provide a useful alternative thereto.

[0007] The preceding discussion of the background art is intended to facilitate an understanding of the present invention only. This discussion is not an acknowledgement or admission that any of the material referred to is or was part of the common general knowledge as at the priority date of the application.

[0008] Throughout the specification and claims, unless the context requires otherwise, the word "comprise" or variations such as "comprises" or "comprising", will be understood to imply the inclusion of a stated integer or group of integers but not the exclusion of any other integer or group of integers.

Disclosure of the Invention

[0009] In accordance with the present invention there is provided a process for the production of lithium hydroxide, the process comprising the steps of:

(i) Causticising lithium chloride with sodium hydroxide to produce a lithium hydroxide product;

(ii) Collecting the solids resulting from the causticisation of step (i) and filtering same;

(iii) The filtered solids from step (ii) are passed to a heating step in which anhydrous lithium hydroxide is produced;

(iv) Filtering the anhydrous lithium hydroxide product of step (iii); and
(v) Quenching the anhydrous lithium hydroxide of step (iv) with water to produce lithium hydroxide monohydrate crystals.

[0010] Preferably, the lithium chloride of step (i) is a purified lithium chloride.

[0011] Still preferably, the lithium chloride of step (i) is obtained from either a brine or spodumene source.

[0012] The causticising step (i) preferably employs a stoichiometric ratio of lithium chloride and sodium hydroxide.

[0013] In one form of the present invention the causticising step (i) is conducted in a series of three or more reaction vessels. The residence time in each reaction vessel is preferably between about 15 and 60 minutes. Still preferably, the residence time in each reaction vessel is about 30 minutes.

[0014] Preferably, after the relevant residence time of step (i) the product is filtered, producing a filtrate comprising precipitated lithium hydroxide monohydrate, sodium chloride and some un-reacted lithium chloride.

[0015] Still preferably, the remaining solution from filtration, containing both lithium chloride and sodium hydroxide, is recycled to the first of the series of reaction vessels.

[0016] The heating step (iii) is preferably conducted at about 500°C in a closed nitrogen atmosphere. Further, the filtering step (iv) preferably utilises ceramic filters.

[0017] Preferably, the lithium hydroxide monohydrate crystals produced in step (v) are dried at about 45°C under vacuum.

[0018] It is understood that the lithium hydroxide monohydrate product of the present invention is of a purity of greater than 99.9% by weight. This makes the product particularly suitable for use as a high purity battery grade cathode material.
In accordance with the present invention there is further provided a process for the treatment of lithium chloride obtained from either spodumene or brine source to produce a lithium hydroxide monohydrate product, the process comprising the steps of:

(i) Passing the purified lithium chloride product obtained through either a brine or spodumene source to react with sodium hydroxide solution thereby producing lithium hydroxide;

(ii) A stoichiometric ratio of the solutions of LiCl and NaOH are allowed to react in series of reaction vessels (minimum of three) for a residence time of fifteen minutes to an hour in each vessel, preferably half an hour, this reaction being exothermic;

(iii) After completion of residence time of the stoichiometric solutions of LiCl and NaOH in each reaction vessel, the mass is filtered which consists of precipitated lithium hydroxide monohydrate, sodium chloride and in part un-reacted LiCl;

(iv) All solids thus formed in all the three or more reaction vessels are collected, whereas spent mixture of solution of LiCl and NaOH is recycled to the first reaction vessel;

(v) The solids of step (iv) are heated at about 500°C in closed nitrogen atmosphere, thereby melting lithium hydroxide which is in turn filtered using, optionally, ceramic filters; and

(vi) Lithium hydroxide anhydrous thus obtained is quenched with water to form lithium hydroxide monohydrate crystals which are dried at 45°C under vacuum, and packaged.

The Lithium hydroxide monohydrate obtained by the above process is of very high quality and consequently suitable for use as high purity battery grade cathode material.
[0021] The solid products of the filters of step (v), which preferably consists of predominantly NaCl, but some LiCl, are sent to re-leaching where LiCl is separated.

Brief Description of the Drawings

[0022] The process of the present invention will now be described, by way of example only, with reference to one embodiment thereof and the accompanying drawings, in which:-

Figure 1 is a schematic flow-sheet depicting a process for the production of lithium hydroxide in accordance with the present invention.

Best Mode(s) for Carrying Out the Invention

[0023] The present invention provides a process for the production of lithium hydroxide, the process comprising the steps of:

(i) Causticising lithium chloride with sodium hydroxide to produce a lithium hydroxide product;

(ii) Collecting the solids resulting from the causticisation of step (i) and filtering same;

(iii) The filtered solids from step (ii) are passed to a heating step in which anhydrous lithium hydroxide is produced;

(iv) Filtering the anhydrous lithium hydroxide product of step (iii); and

(v) Quenching the anhydrous lithium hydroxide of step (iv) with water to produce lithium hydroxide monohydrate crystals.

[0024] The lithium chloride of step (i) is a purified lithium chloride, obtained from either a brine or spodumene source. The causticising step (i) employs a stoichiometric ratio of lithium chloride and sodium hydroxide.
[0025] In one embodiment of the present invention the causticising step (i) is conducted in a series of three or more reaction vessels. The residence time in each reaction vessel is between about 15 and 60 minutes. The residence time in each reaction vessel is about 30 minutes.

[0026] After the relevant residence time of step (i) the product is filtered, producing a filtrate comprising precipitated lithium hydroxide monohydrate, sodium chloride and some un-reacted lithium chloride. The remaining solution from filtration, containing both lithium chloride and sodium hydroxide, is recycled to the first of the series of reaction vessels.

[0027] The heating step (iii) is conducted at about 500°C in a closed nitrogen atmosphere. Further, the filtering step (iv) utilises ceramic filters. The lithium hydroxide monohydrate crystals produced in step (v) are dried at about 45°C under vacuum.

[0028] It is understood that the lithium hydroxide monohydrate product of the present invention is of a purity of greater than 99.9% by weight. This makes the product particularly suitable for use as a high purity battery grade cathode material.

[0029] The process of the present invention will now be described, with reference to one embodiment thereof and a single Figure, for the purposes of illustration.

[0030] In Figure 1 there is shown a process 10 for the production of lithium chloride, in accordance with one embodiment of the present invention, the process 10 comprising in part the treatment of lithium chloride with sodium hydroxide

[0031] All of the unit operations embodied in the process are intended to operate continuously with full process instrumentation and control being provided for.

[0032] A solution of LiCl 12 between about 15% to 30% w/w, for example about 20% w/w, obtained from either spodumene or brine source is first prepared in one vessel 14. Similarly a solution of NaOH 16 between 30% to 45% (w/w), for example about 45% w/w, is prepared in a separate vessel 18.
[0033] NaOH solution is added to LiCl solution slowly with a residence time of between about 15 minutes to an hour, for example about half an hour, in a first reaction vessel 20. This causticisation reaction is exothermic, and immediately solids are formed.

[0034] These solids formed in causticisation are filtered in a filtration step 22, and the filtrate passed to another vessel 24. The filtrate consists largely of un-reacted NaOH and LiCl. The reaction is continued for another half an hour in the second reaction vessel 24, and solids formed are removed in a filtration/separation step 26. This process is repeated at least one further time through a third reaction vessel 28 and filtration/separation step 30. The process is ideally repeated three times or more because of the precipitation of LiOH and NaCl during each process which passivates the reaction unless removed.

[0035] The solids thus obtained consist largely of precipitates of LiOH.H₂O, NaCl and some unreacted LiCl, are sent to an indirectly heated kiln 32 to heat the mixture at about 500°C. LiOH is thereby melted at this temperature and the molten salt filtered using ceramic filters 34.

[0036] The melted molten salt which is consists of highly pure lithium hydroxide, having purity exceeding about 99.9% w/w in anhydrous form, is cooled and quenched in a vessel 36 with water 38 to obtain lithium hydroxide monohydrate crystals, in an evaporator/crystalliser 40, of high purity exceeding 99.9%.

[0037] These high purity battery grade lithium hydroxide monohydrate crystals with >99.9% purity are dried at 45°C under vacuum in a drier 42, and packed 44.

[0038] The solids after filtration of LiOH as molten salt consisting largely of NaCl and some unreacted LiCl (the composition of the solid is >90% NaCl and <10% LiCl). These components are separated using standard methods known to the persons skilled in the art, such methods including HCl acid gas sparge crystallisation of the solution of these solids.

[0039] The process of the present invention will now be described, and may be better understood, with reference to the following non-limiting example.
Causticisation of LiCl with NaOH

[0040] LiCl crystals and NaOH solid flakes at stoichiometric ratio are first weighed for use in the process of the present invention. A LiCl solution at a strength of 15% (w/w) and a NaOH solution at strength of 25% (w/w) are prepared in polyvinylidene fluoride (PVDF) lined equipment fitted with stirrer(s).

[0041] In a suitable PVDF lined reaction vessel with both a heat exchanger and stirrer fitted to it, the NaOH solution is slowly added to the LiCl solution. The reaction is highly exothermic and continuous cooling through a heat exchanger is required/provided. The temperature of the reaction is maintained at 80°C. A graphite heat exchanger is preferably utilised. The content of the reaction vessel is continuously stirred at 300 to 500 rpm.

[0042] One by-product of the above reaction is NaCl which has a tendency to passivate the reaction. As such, it is necessary to continuously remove/separate NaCl crystals formed in the reaction vessel, typically after a residence time of about 30 minutes. This separation of solid is performed using press filters having anti-corrosive lining, for example a PVDF lining.

[0043] The filtrate from this separation step is further treated with NaOH solution. After a residence time of about 30 minutes, the step of the addition of NaOH solution to LiCl solution as described above is repeated, as is the filtration/separation step in which NaCl crystals are removed.

[0044] The reaction and filtration steps are repeated till >99% LiCl has reacted with NaOH and has been converted into LiOH. This is confirmed at that time by the chemical analysis of the filtrate.

Separation of LiOH from NaCl by-product

[0045] Solids collected during the filtration/separation steps described above are a mixture of LiOH and NaCl, with traces of LiCl. These solids are transferred to a ceramic heater and heated to a temperature of 500°C, which is above the melting point of LiOH.
After heating the solids, and when the LiOH is now present as a molten salt, the slurry is passed through an alkali resistant open pore ceramic filter. Any solid contaminants are removed by means of a ceramic filter selected from the group consisting of magnesium oxide, aluminium oxide and zirconium oxide ceramic filters. The ceramic filter has a porosity of 20 to 50 pores per inch.

The filtered molten LiOH is cooled and quenched with water. Sufficient water is added to prepare saturated solution of LiOH.

LiOH monohydrate crystals are crystallised using an evaporative crystallisation process. After crystallisation the LiOH monohydrate crystals are dried at <45°C under vacuum, and packed.

The solids containing predominantly NaCl, with some LiOH and LiCl (<5%), are passed to a process in which lithium salt is separated and removed from NaCl by an HCl acid gas sparging method.

Removal of Li compounds from NaCl

A clear solution of NaCl, with any remaining LiOH and LiCl, is first prepared.

HCl acid gas is sparged into the solution as to increase the HCl acid concentration to about 36% (w/w). This process is carried out in glass lined or graphite equipment.

Due to the common ion effect, and NaCl having nearly zero solubility at 36% HCl acid strength, all NaCl is precipitated. The LiCl present remains in solution. It should be noted that any LiOH present in the steps immediately above is converted into LiCl by HCl acid gas.

A resulting slurry is filtered using press filters with anti-corrosive lining, for example a PVDF lining. NaCl as solid is filtered out whilst the LiCl remains in the filtrate.

HCl acid is distilled off using graphite equipment available for acid recovery...
similar to acid recovery from iron pickling units. The resulting pure LiCl residue is recycled for causticisation with NaOH to produce LiOH as described initially above.

[0055] The process of the present invention is understood by the Applicant to be distinct to prior art processes, at least in part, as it utilises inexpensive NaOH to causticise LiCl, which is a commercially available raw material product of high purity. The separation of high purity LiOH is performed using an innovative molten salt technology utilising the principles of lower melting point of LiOH as compared to other constituents of the mixture, such as NaCl.

[0056] Modifications and variations such as would be apparent to the skilled addressee are considered to fall within the scope of the present invention.
CLAIMS

1. A process for the production of lithium hydroxide, the process comprising the steps of:

 (i) Causticising lithium chloride with sodium hydroxide to produce a lithium hydroxide product;

 (ii) Collecting the solids resulting from the causticisation of step (i) and filtering same;

 (iii) The filtered solids from step (ii) are passed to a heating step in which anhydrous lithium hydroxide is produced;

 (iv) Filtering the anhydrous lithium hydroxide product of step (iii); and

 (v) Quenching the anhydrous lithium hydroxide of step (iv) with water to produce lithium hydroxide monohydrate crystals.

2. The process according to claim 1, wherein the lithium chloride of step (i) is a purified lithium chloride.

3. The process according to claim 1 or 2, wherein the lithium chloride of step (i) is obtained from either a brine or spodumene source.

4. The process according to any one of the preceding claims, wherein the causticising step (i) employs a stoichiometric ratio of lithium chloride and sodium hydroxide.

5. The process according to any one of the preceding claims, wherein the causticising step (i) is conducted in a series of three or more reaction vessels.

6. The process according to claim 5, wherein the residence time in each reaction vessel is between about 15 and 60 minutes.
7. The process according to claim 5, wherein the residence time in each reaction vessel is about 30 minutes.

8. The process according to any one of the preceding claims, wherein after the relevant residence time of step (i) the product is filtered, producing a filtrate comprising precipitated lithium hydroxide monohydrate, sodium chloride and some un-reacted lithium chloride.

9. The process according to claim 8, wherein the remaining solution from filtration, containing both lithium chloride and sodium hydroxide, is recycled to the first of the series of reaction vessels.

10. The process according to any one of the preceding claims, wherein the heating step (iii) is conducted at about 500°C in a closed nitrogen atmosphere.

11. The process according to any one of the preceding claims, wherein the filtering step (iv) utilises ceramic filters.

12. The process according to any one of the preceding claims, wherein the lithium hydroxide monohydrate crystals produced in step (v) are dried at about 45°C under vacuum.

13. The process according to any one of the preceding claims, wherein the lithium hydroxide monohydrate product is of a purity of greater than 99.9% by weight.

14. A process for the treatment of lithium chloride obtained from either spodumene or brine source to produce a lithium hydroxide monohydrate product, the process comprising the steps of:

 (i) Passing the purified lithium chloride product obtained through either a brine or spodumene source to react with sodium hydroxide solution thereby producing lithium hydroxide;

 (ii) A stoichiometric ratio of the solutions of LiCl and NaOH are allowed to react in series of reaction vessels (minimum of three) for a residence
time of fifteen minutes to an hour in each vessel, preferably half an hour, this reaction being exothermic;

(iii) After completion of residence time of the stoichiometric solutions of LiCl and NaOH in each reaction vessel, the mass is filtered which consists of precipitated lithium hydroxide monohydrate, sodium chloride and in part un-reacted LiCl;

(iv) All solids thus formed in all the three or more reaction vessels are collected, whereas spent mixture of solution of LiCl and NaOH is recycled to the first reaction vessel;

(v) The solids of step (iv) are heated at about 500°C in closed nitrogen atmosphere, thereby melting lithium hydroxide which is in turn filtered using, optionally, ceramic filters; and

(vi) Lithium hydroxide anhydrous thus obtained is quenched with water to form lithium hydroxide monohydrate crystals which are dried at 45°C under vacuum, and packaged.

15. The process according to claim 14, wherein the lithium hydroxide monohydrate obtained is of a quality suitable for use as high purity battery grade cathode material.

16. The process according to claim 14 or 15, wherein the solid product of the filters of step (v), which consists of predominantly NaCl, but also some LiCl, are sent to re-leaching where LiCl is separated.
INTERNATIONAL SEARCH REPORT

International application No.
PCT/AU2014/001142

A. CLASSIFICATION OF SUBJECT MATTER

C01D 1/04 (2006.01) C01D 15/02 (2006.01) C01D 1/28 (2006.01)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

STN CAPLUS, WPI/EPODOC. Search terms: CAS Registry numbers 13 10-65-2, 13 10-66-3, preparation, production, manufacture, melt, molten, ceramic filter, filtration, sodium hydroxide, caustic, lithium hydroxide, lithium chloride, battery grade, Yatendra Sharma, Reed Advanced Materials, C01D 15/02 and like terms.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The documents are listed in the continuation of Box C</td>
<td></td>
</tr>
</tbody>
</table>

X Further documents are listed in the continuation of Box C

X See patent family annex

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier application or patent but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 "&" document member of the same patent family

Date of the actual completion of the international search
6 February 2015

Date of mailing of the international search report
06 February 2015

Name and mailing address of the ISA/AU

AUSTRALIAN PATENT OFFICE
PO BOX 200, WODEN ACT 2606, AUSTRALIA
Email address: pct@ipaustralia.gov.au

Authorised officer

Andrew Matthews
AUSTRALIAN PATENT OFFICE
(ISO 9001 Quality Certified Service)
Telephone No. 0262632693

Form PCT/ISA/210 (fifth sheet) (July 2009)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 4207297 A (BROWN et al) 10 June 1980 See whole of the document but particularly the Abstract.</td>
<td>1-16</td>
</tr>
<tr>
<td>A</td>
<td>US 3597340 A (HONEYCUTT et al) 03 August 1971 See whole of the document but particularly the Abstract.</td>
<td>1-16</td>
</tr>
<tr>
<td>A</td>
<td>CN 102701239 A (JIANGXI GANFENG LITHIUM CO LTD) 03 October 2012 See whole of the document but particularly the Abstract.</td>
<td>1-16</td>
</tr>
<tr>
<td>A</td>
<td>US 6555078 B1 (MEHTA) 29 April 2003 See whole of the document but particularly the Abstract.</td>
<td>1-16</td>
</tr>
</tbody>
</table>
INTERNATIONAL SEARCH REPORT
Information on patent family members

International application No.
PCT/AU2014/001142

This Annex lists known patent family members relating to the patent documents cited in the above-mentioned international search report. The Australian Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Publication Number</td>
<td>Publication Date</td>
</tr>
<tr>
<td>US 4207297 A</td>
<td>10 June 1980</td>
</tr>
<tr>
<td>CN 102701239 A</td>
<td>03 October 2012</td>
</tr>
<tr>
<td>US 6555078 B1</td>
<td>29 April 2003</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

End of Annex

Due to data integration issues this family listing may not include 10 digit Australian applications filed since May 2001.
Form PCT/ISA/210 (Family Annex)(July 2009)