(12) STANDARD PATENT (11) Application No. AU 2003226281 B2
(19) AUSTRALIAN PATENT OFFICE

(54)

(51)

Title
Method, system and computer product for processing packets with layered headers

International Patent Classification(s)
HO4L 29/06 (2006.01)

Application No: 2003226281 (22) Date of Filing: 2003.04.08
WIPO No: WO03/088616

Priority Data

Number (32) Date (33) Country
10/120,440 2002.04.11 us
Publication Date: 2003.10.27

Publication Journal Date: 2003.12.04

Accepted Journal Date: 2009.03.12

Applicant(s)

HI/FN, INC.

Inventor(s)

Savarda, Raymond

Agent / Attorney
PIZZEYS, ANZ Centre Level 14 324 Queen Street, Brisbane, QLD, 4000

Related Art
WO 2000/052897
WO 2001/010095
US 5793954

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date (10) International Publication Number

23 October 2003 (23.10.2003) PCT WO 03/0886 16 Al
(51) International Patent Classification’: HO041.29/06 (81) Designated States (national): AH, AG, AL, AM, Al, AU,
AZ,BA, BB, BG, BR,BY, BZ, CA, CH, CN, CO, CR, CU,
(21) International Application Number: PCL/US03/10506 CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GII.

GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, L.C,
LK, LR, LS, I'T, L.U, IV, MA, MD, MG, MK, MN, MW,
MX, MZ, NI, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD,
SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ,

(22) International Filing Date: 8 April 2003 (08.04.2003)

(25) Filing Language: English VC, VN, YU, 7ZA, 7M, 7W.
(26) Publication Language: English 24y Designated States (regional): ARTPO patent (GH, GM.
KL, LS, MW, MZ, SD, SL, SZ. TZ, UG, ZM, ZW),
(30) Priority Data: Burasian patent (AM, AZ, BY, KG, KZ, MD, RU, '1J,'TM),
107120,440 L1 April 2002 (11.04.2002) US FEuropean patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
LS, T1, TR, GB, GR, HU, IL, IT, LU, MC, NL, PT, RO,
(71) Applicant: HIFN, INC. [US/US]; 750 University Av- SE, 81, 8K, TR), OAPI patent (BE, BJ, CF, CG, CI, CM,
enue, Los Gatos, CA 95032-7695 (US). GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(72) Inventor: SAVARDA, Raymond; 4224 Sancroft Drive, pyplished:

Apex, NC 27502 (US). with international search report

before the expiration of the time limit for amending the
(74) Agent: MOORE, Scott, D.; Myers Bigel Sibley & claims and to be republished in the event of receipt of
Sajovec, PA., PO. Box 37428, Raleigh, NC 27627 (US). amendments

[Continued on next page]

(54) Title: METHOD, SYSTEM AND COMPUTER PRODUCT FOR PROCESSING PACKETS WITH LAYERED HEADERS

| PACKET OBJECT HEADER

W
o
[}

305
FIRST IP HEADER a

310
SECOND IP HEADER V_

315
IP PAYLOAD/DATA a

(57) Abstract: A first header of a packet is processed to obtain a first protocol. The first protocol is used as a key to read a record
from a data structure in which the first protocol is associated with an offset in a second header of the packet. The second header of
the packet is processed based on the offset in the second header to obtain a second protocol. By positionally relating the position of
the protocol field in the second header of the packet with an offset stored in a data structure, if packet sizes and/or layouts should
B change, then the oftset information in the data structure may be updated without the need to redesign and/or reconfigure hardware
and/or software in a packet processor.

O 03/088616 Al

WO 03/088616 A1 | AN O10 U A

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

10

15

20

WO 03/088616 PCT/US03/10506

METHOD, SYSTEM AND COMPUTER PRODUCT FOR PROCESSING
PACKETS WITH LAYERED HEADERS

BACKGROUND OF THE INVENTION

The present invention relates to packet processing methods, systems, and
computer program products, and, more particularly, to methods, systems, and
computer program products for processing packets with layered headers.

The Internet Protocol (IP) resides within layer three (network layer) of the
Open Systems Interconnection (OSI) model. IP may provide connection or datagram
service between nodes in a network. An IP host may encapsulate data with an IP |
header, which is then passed to the data link layer. The data link protocol may
encapsulate the IP header and data with its own header and then pass the encapsulated
packet to the physical layer, where the packet may be encapsulated with yet another
header, for transmission into the network as a serial bit stream.

The fields used in an IP header for IP Version 4 are shown in FIG. 1. The first
field is the version of IP used to create the header. Networks running an older IP
version may not be able to process packets encapsulated with headers associated with
anewer IP version. An Internet Header Length (THL) field follows the version field
and specifies the length of the IP header in 32-bit words. A type-of-service field
follows the THL field and specifies the quality of service in terms of delay, reliability,
and throughput to be applied to the packet. A total length field follows the type-of-
service field and specifies the length of the IP header and the data, which follow the IP
header. Note that the data may comprise a transport layer header, such as a TCP/UDP
header and/or a security header, such as an IP Security Protocol (IPSec) header, along

with user payload/data.

10

15

20

25

30

WO 03/088616 PCT/US03/10506

An identification (ID) field is used to correlate fragments of a data unit. For
example, when a data unit is fragmented, an ID number may be assigned to the
various fragments to allow the receiver to match the IDs and reassemble the packet.
Three flag bits follow the identification field with one of the bits being hard coded to
zero, one of the bits indicating whether fragmentation is allowed, and one of the bits
indicating whether the present packet is the last fragment. A fragment offset field
follows the flags field and indicates where in the datagram this particular fragment
belongs. The first fragment has an offset of zero.

A time-to-live field indicates the amount of time that the packet may remain in
the system. The time-to-live field is implemented as a hop counter. Each time the
packet traverses through a router, the router decrements this field by one. The packet
is destroyed once the time-to-live field reaches zero. This field may prevent
undeliverable packets from cycling endlessly through the network. A protocol field
follows the time-to-live field and specifies the next level protocol associated with the
user payload/data. The Internet Assigned Numbers Authority (JANA) maintains a list
of recognized protocols and numbers associated therewith at their Web site
www.iana.org. A header checksum follows the protocol field and is a checksum on
only the header portion of the IP packet.

Routers and gateways in a network may use the source and destination IP
addresses to route the IP packet. An options field may be included and may be used
for specific applications, such as network control and/or debugging. A padding field
follows the optional options field to ensure that the IP header ends on a 32-bit
boundary.

When a packet is traversing nodes or stations in a network, it may become
encapsulated with multiple TP headers. Examples of such encapsulation are described
in Internet Erigineering Task Force (IETF) Request for Comment (RFC) document
2003 entitled "IP Encapsulation within IP," by C. Perkins, October, 1996 (hereinafter
"RFC 2003"), IETF RFC document 2004 entitled "Minimal Encapsulation Within IP,"
by C. Perkins, October, 1996 (hereinafter "RFC 2004), IETF RFC document 2406
entitled "IP Encapsulating Security Payload (ESP)," by S. Kent, November 1998
(hereinafter "RFC 2406"), and IETF RFC document 3173 entitled "IP Payload
Compression Protocol (IPComp)" by A. Shacham et al., September 2001 (hereinafter
"REC 3173"), the disclosures of which are hereby incorporated herein by reference. In

23 May 2006

2003226281

10

15

20

25

30

processing IP packets with multiple, layered headers, a conventional packet processor system may
parse down from the outer to the inner IP header (s) to examine the protocol field in an inner IP
header to determine how to process the IP packet. Conventional packet processor systems may be
hard coded in hardware software with offsets used to parse an packet with multiple IP headers.
Likewise, IP Version 6 follows a similar strategy with nested headers at the beginning of the
packet, which constitute different protocol wrappers. Unfortunately, such packet processor
systems may need to be re-designed or reconfigured if packet header sizes and/or layouts change
Throughout the specification reference to any prior art is not, and should not be taken as
an acknowledgement or any form of suggestion that the referenced prior art forms part of the

common general knowledge in Australia.

SUMMARY OF THE INVENTION

According to some embodiments of the present invention, a first header of a packet is
processed to obtain first protocol. The first protocol is used as a key to read a record from a data
structure in which the first protocol is associated with an offset in a second header of the packet.
The second header of the packet is processed based on the offset in the second header to obtain a
second protocol. Advantageously, by positionally relating the position of the protocol field in the
second header of the packet with an offset stored in a data structure, if packet sizes and/or layouts
should change, then the offset information in the data structure may be updated without the need
to redesign reconfigure hardware and/or software in a packet processor.

In other embodiments of the present invention, the record read from the data structure may
associate the first protocol with an enable flag. The second header of the packet may be processed
based on the offset in the second header to obtain the second protocol if the enable flag is set. The
enable flag may allow a"base"set of protocols to be stored in non-volatile storage and copied to
volatile storage upon system initialization. Thereafter, certain protocols may be disabled by use of
the enable bit.

In still other embodiments of the present invention, the record read from the data structure
may associate the first protocol with an offset to a portion of the packet.

In still other embodiments of the present invention, the packet may be processed based on

an operation associated with the second protocol, such as a packet transform operation.

23 May 2006

2003226281

10

15

20

25

30

In still further embodiments of the present invention, the record read from the data
structure may associate the first protocol with an operation flag and the packet may be processed
based on an operation associated with the an operation flag.

In still further embodiments of the present invention, the second protocol may be used as a
key to read a second record from the data structure in which the second protocol is associated with
an operation flag. The packet may be processed based on an operation associated with the
operation flag.

Although described primarily above with respect to method embodiments of the present
invention, it will be understood that the present invention may be embodied as methods, systems,
and computer program products.

Throughout the specification the term “comprising” shall be understood to have a broad
meaning similar to the term “including” and will be understood to imply the inclusion of a stated
integer or step or group of integers or steps but not the exclusion of any other integer or step or
group of integers or steps. This definition also applies to variations on the term “comprising”

such as “comprise” and “comprises”.

BRIEF DESCRIPTION OF THE DRAWINGS

Other features of the present invention will be more readily understood from the following
detailed description of specific embodiments thereof when read in conjunction with the
accompanying drawings, in which:

FIG. 1 is a diagram that illustrates a structure of a conventional Internet Protocol (IP)
packet header;

FIG. 2 is a diagram that illustrates a packet processing system in accordance with some
embodiments of the present invention;

FIG. 3 is a diagram that illustrates a packet with layered headers in accordance with some
embodiments of the present invention;

FIG. 4 is a flowchart that illustrates exemplary operations for processing a packet with
layered headers in accordance with some embodiments of the present invention;

FIG. 5 is a diagram that illustrates an IP version 4 protocol data structure in accordance
with some embodiments of the present invention;

FIG. 6 is a flowchart that illustrates further exemplary operations for processing a packet
with layered headers in accordance with some embodiments of the present invention; and

FIG. 7 is a diagram that illustrates an IP version 6 protocol data structure in accordance

with some embodiments of the present invention.

4

10

15

20

25

30

WO 03/088616 PCT/US03/10506

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

While the invention is susceptible to various modifications and alternative
forms, specific embodiments thereof are shown by way of example in the drawings
and will herein be described in detail. It should be understood, however, that there is
no intent to limit the invention to the particular forms disclosed, but on the contrary,
the invention is to cover all modifications, equivalents, and alternatives falling within
the spirit and scope of the invention as defined by the claims. Like reference numbers
signify like elements throughout the description of the figures.

Embodiments of the present invention are described herein in the context of
processing a packet. It will be understood that the term "packet" means a unit of
information that may be transmitted electronically as a whole from one device to
another. Accordingly, as used herein, the term ;‘packet" may encompass such terms of
art as "frame" 6r "message,” which may also be used to refer to a unit of transmission.

The present invention may be embodied as systems, methods, and/or computer
program products. Accordingly, the present invention may be embodied in hardware
and/or in software (including firmware, resident software, micro-code, efc.).
Furthermore, the present invention may take the form of a computer program product
on a computer-usable or computer-readable storage medium having computer-usable
or computer-readable program code embodied in the medium for use by or in
connection with an instruction execution system. In the context of this document, a
computer-usable or computer-readable medium may be any medium that can contain,
store, communicate, propagate, or transport the program for use by or in connection
with the instruction execution system, apparatus, or device.

The computer-usable or computer-readable medium may be, for example but
not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or
semiconductor system, apparatus, device, or propagation medium. More specific
examples (a nonexhaustive list) of the computer-readable medium would include the
following: an electrical connection having one or more wires, a portable computer
diskette, a random access memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash memory), an optical fiber, and a
portable compact disc read-only memory (CD-ROM). Note that the computer-usable
or computer-readable medium could even be paper or another suitable medium upon

which the program is printed, as the program can be electronically captured, via, for

10

15

20

25

30

WO 03/088616 PCT/US03/10506

instance, optical scanning of the paper or other medium, then compiled, interpreted, or-
otherwise processed in a suitable manner, if necessary, and then stored in a computer
nemory.

The present invention is described herein with reference to flowchart and/or
block diagram illustrations of methods, systems, and computer program products in
accordance with exemplary embodiments of the invention. It will be understood that
each block of the flowchart and/or block diagram illustrations, and combinations of
blocks in the flowchart and/or block diagram illustrations, may be implemented by
computer program instructions and/or hardware operations. These computer program
instructions may be provided to a processor of a general purpose computer, a special
purpose computer, or other programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the processor of the computer
or other programmable data processing apparatus, create means for implementing the
functions specified in the flowchart and/or block diagram block or blocks.

These computer program instructions may also be stored in a computer usable
or computer-readable memory that may direct a computer or other programmable data
processing apparatus to function in a particular manner, such that the instructions
stored in the computer usable or computer-readable memory produce an article of
manufacture including instructions that implement the function specified in the
flowchart and/or block diagram block or blocks.

The computer program instructions may also be loaded onto a computer or
other programmable data processing apparatus to cause a series of operational steps to
be performed on the computer or other programmable apparatus to produce a
computer implemented process such that the instructions that execute on the computer
or other programmable apparatus provide steps for implementing the functions
specified in the flowchart and/or block diagram block or blocks.

Referring now to FIG. 2, a packet processing system 200 is illustrated that
comprises a processor 205 and a memory 210, in accordance with some embodiments
of the present invention. The processor 205 communicates with the memory 210 via
an address/data bus 215. The processor 205 may be, for example, a commercially
available or custom microprocessor. In some embodiments, the processor may be
implemented as a packet processing state machine. The memory 210 is representative

of one or more memory devices containing the software and data used by the

10

15

20

25

30

WO 03/088616 PCT/US03/10506

processor 205 to process a packet, in accordance with some embodiments of the
present invention. The memory 210 may include, but is not limited to, the following
types of devices: cache, ROM, PROM, EPROM, EEPROM, flash, SRAM, and
DRAM. To allow the packet processing system 200 to be updated with new software
and/or data, particularly in field settings, writeable memory devices may be used. As
shown in FIG. 2, the memory 210 comprises a protocol data structure 220 that may
facilitate processing of packets with layered headers as will be described in detail
hereafter, in accordance with some embodiments of the present invention.

Although FIG. 2 illustrates an exemplary packet processing system
architecture that may facilitate processing of packets with layered headers in
accordance with some embodiments of the present invention, it will be understood
that the present invention is not limited to such a configuration but is intended to
encompass any configuration capable of carrying out operations described herein.
Moreover, it will be further appreciated that the functionality of the packet processing
system 200 may also be implemented using discrete hardware components, one or
more application specific integrated circuits (ASICs), or a programmed digital signal
processor or microcontroller. As mentioned above with respect to the memory 210,
however, a programmable packet processing system 200 may allow the protocol data
structure 220 to be updated, even in field settings, when changes are made to packet
sizes and/or formats.

In some embodiments of the present invention, the packet processing system
200 may be used to implement one or more packet transform modules that comprise
all or part of a plurality of transform modules that are coupled to each other in a series
or pipelined configuration to perform packet transforms and/or cryptographic
operations associated, for example, with the IPSec protocol as described in U. S.
Patent Application No. , filed concurrently herewith, and entitled Methods,
Systems, and Computer Program Products for Processing a Packet-Object Using
Mulriple Pipelined Processing Modules, the disclosure of which is hereby
incorporated herein by reference.

Referring now to FIG. 3, a packet 300 comprising multiple layered headers, in
accordance with some embodiments of the present invention, is illustrated. The
packet 300 may be an IP packet, for example, and comprises a first (outer) IP header

305 that encapsulates a second (inner) IP header 310 and an IP payload/data portion

10

15

20

25

30

WO 03/088616 PCT/US03/10506

315. Optionally, a packet-object header 320 may be used, which encapsulates the
entire packet 300. The packet-object header 320 may comprise information for
processing the packet 300 in a pipelined processing system as described in U. S.
Patent Application No. ____, entitled Methods, Systems, and Computer Program
Products for Processing a Packet-Object Using Multiple Pipelined Processing
Modules. Although only two layered IP headers 305 and 310 are shown, the packet
300 may comprise additional IP headers as described in RFC 2003, RFC 2004, RFC
2406, and/or RFC 3173. The IP payload/data 315 may comprise a user payload/data,
such as a UDP or TCP payload, and, in some embodiments, may include
cryptographic header(s)/information for IPSec processing, such as, but not limited to,
an authentication header (AH), an encapsulating security payload (ESP), AH
authentication data, and/or ESP authentication data.

Referring now to FIG. 4, exemplary operations for processing a packet with
layered headers, in accordance with some embodiments of the present invention,
begin at block 400 where a first packet header (e.g., first IP header 305 of FIG. 3) is
processed to obtain a first protocol (e.g., protocol field of FIG. 1). Some networks
may process packets differently based on the protocol associated with the packet. For
example, a network may reject packets associated with Web traffic, but may accept
packets associated with e-mail traffic. Thus, it may be desirable to parse a packet with
layered headers to evaluate the underlying protocol(s) associated with the packet.

In accordance with some embodiments of the present invention, the first
protocol is used as a key to read a record from the protocol data structure 220 at block
405 to obtain an offset to a second packet header (e.g., second IP header 310 of FIG.
3). This is illustrated, for example, in FIG. 5 where an exemplary data structure 500
is shown that may be used as the protocol data structure 220, in accordance with some
embodiments of the present invention. As shown in FIG. 5, the data structure 500
comprises a table of records with each record comprising a protocol field, an enable
field, and offset in next header field, an offset to payload field, and a flag field. The
protocol field corresponds to the protocol field in a packet header. The enable field
may be implemented as a binary, "yes" or "no" field that indicates whether to parse a
packet for encapsulated headers/protocols. The offset in next header field indicates a
location of a protocol field in an encapsulated header. The offset to payload field
indicates a location of a payload/data portion of the packet (e.g., IP payload/data 315

10

15

20

25

30

WO 03/088616 PCT/US03/10506

of FIG. 3). The flag field may indicate operations to be performed on the packet for a
particular protocol. For example, such operations may include packet-processing
operations for extracting the source and/or destination port addresses. The protocol
data structure 220 is not limited to these fields and may comprise additional fields or
may exclude one or more of the fields illustrated in FIG. 5, in accordance with
various embodiments of the present invention. Moreover, although a table is shown
in FIG. 5, other data structure types may be used without departing from the
principles of the present invention.

Returning to the description of FIG. 4, a record from the protocol data
structure is read at block 405 using the first protocol as a key to obtain an offset in a
second (inner) packet header. Based on the example shown in FIG. 5, the offset to
the protocol field in the second packet header for protocol 4 as the first (outer) packet
header protocol is nine bytes. Thus, at block 410, the second packet header may be
processed based on the offset in the next header obtained from the protocol data
structure 220 to obtain a second protocol. The packet may then be processed based on
one or more operations associated with the first and/or second protocol, such as packet
transform operations and/or extraction of source and/or destination port addresses.

Referring now to FIG. 6, exemplary operations for processing a packet with
layered headers, in accordance with some embodiments of the present invention, will
now be described. Operations begin at block 600 where a base pointer is obtained to a
first (outer) packet header (e.g., first [P header 305 of FIG. 3). In some embodiments,
it may be desirable to process packets differently based on a particular protocol
version, such as different IP version. Thus, at block 605, a determination may be
made whether the packet is an IP version 6 packet. If the packet is an IP version 6
packet, then operations continue at block 610 where the packet is processed to obtain
a first protocol from the first packet header. In the context of IPSec, a set of
"selectors" may be extracted from a packet for processing. These selectors may
include the "transport" protocol and the TCP/UDP source and/or destination port
addresses. Accordingly, at block 610, pointers may be set to the source and
destination port addresses in the first packet header. Finally, based on the size of the
first packet header (e.g., the IHL field of FIG. 1), the base pointer may be set to point
to the end of the first packet header (i.e., the beginning of information following the

10

15

20

25

30

WO 03/088616 PCT/US03/10506

first packet header). If the packet is not an IP version 6 packet, then the operations of
block 610 are performed at block 615 for the non-IPv6 packet.

At block 620, a determination is made whether the first protocol is in the
protocol data structure 220 (e.g., the table of FIG. 5). In various embodiments of the
present invention, separate protocol data structures 220 may be defined for different
packet protocol versions or formats. For example, different protocol data structures
220 may be defined for IP version 6 environments and IP version 4 environments.
FIG. 5 illustrates an exemplary protocol data structure 220 for an IP version 4
environment while FIG. 7 illustrates an exemplary protocol data structure 220 for an
IP version 6 environment. If the first protocol is not in the protocol data structure 220,
then the protocol, source port address, and/or destination port address may be returned
at block 630. If the first protocol is in the protocol data structure 220, however, then
operations continue at block 640 where a determination is made whether an enable
flag is set in the protocol data structure 220 for the first protocol. Advantageously, the
enable flag may allow a "base" set of protocols to be stored in non-volatile storage and
copied to volatile storage upon system initialization. Thereafter, certain protocols
may be disabled by use of the enable bit. If the enable flag is not set, then an
encapsulated header is not processed and operations conclude at block 630 as
discussed above.

If, however, the enable flag is set (e.g., the enable flag is set for protocols 55,
51, and 108 in FIG. 5), then the flag field from the protocol data structure 220 is
examined at block 650 to determine which set of packet processing operations to
perform. As shown in FIG. 5, each protocol is associated with a different flag value.
In some embodiments, however, protocols may share a common flag value as
encapsulated headers for those protocols may be processed similarly. At block 660, a
second (inner) packet header may be processed to obtain a second prdtocol bascd on
the offset in the next header from the protocol data structure 220, Using a first
protocol value of 51 as an example, FIG. 5 shows the offset to the protocol field in
the second packet header as being zero bytes. In addition, the protocol data structure
220 may also be used to process the payload/data field and/or other fields in the
second packet header. Again, using a first protocol value of 51 as an example, FIG. 5

shows the offset to the payload as being 24 bytes. In some embodiments, the offset to

10

10

15

20

25

WO 03/088616 PCT/US03/10506

payload field in the protocol data structure 220 may contain an offset that facilitates
the extraction of the source and/or destination port addresses. Thus, at block 660,
pointers may be set to the source and/or destination port addresses. Finally, in some
embodiments, the base pointer may be set to the end of the second packet header (i.e.,
the beginning of information following the second packet header) if it is possible to
have one or more additional encapsulated headers.

Operations continue at block 620 where a determination is made whether there
is an additional encapsulated protocol that is in the protocol data structure. The loop
may repeat until all encapsulated headers that are in the protocol data structure 220 are
processed. It will be understood that the protocols illustrated in FIG. 5, IP mobility
(55), authentication header (51), IP in IP (4), and IP payload compression protocol
(108), and the protocols illustrated in FIG. 6, IPv6 hop by hop option (0), routing
header for IPv6 (43), destination options for IPv6 (60), and authentication header (51)
are merely exemplary and that other protocols may be used in accordance with various
embodiments of the present invention.

The flowcharts of FIGS. 4 and 6 illustrate the architecture, functionality, and
operations of some embodiments of the packet processing system 200. In this regard,
each block represents a module, segment, or portion of code, which comprises one or
more executable instructions for implementing the specified logical function(s). It
should also be noted that in other implementations, the function(s) noted in the blocks
may occur out of the order noted in FIGS. 4 and 6. For example, two blocks shown in
succession may, in fact, be executed substantially concurrently or the blocks may
sometimes be executed in the reverse order, depending on the functionality involved.

Many variations and modifications can be made to the preferred embodiments
without substantially departing from the principles of the present invention. All such
variations and modifications are intended to be included herein within the scope of the

present invention, as set forth in the following claims.

11

23 May 2006

2003226281

10

15

20

25

30

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A method of processing a packet, comprising:

processing a first header of the packet to obtain a first protocol;

reading a record from a data structure using the first protocol as a key, the record
associating the first protocol with an offset in a second header of the packet; and

processing a second header of the packet based on the offset in the second header to

obtain a second protocol.

2. The method of Claim 1, wherein the record associates the first protocol with an enable
flag, and wherein processing the second header of the packet comprises:
processing the second header of the packet based on the offset in the second header to

obtain the second protocol if the enable flag is set.

3. The method of Claim 2, wherein the record associates the first protocol with an offset
to a payload of the packet, the method further comprising:
processing the payload of the packet based on the offset to the payload if the enable

flag is set.

4, The method of Claim 1, further comprising:

processing the packet based on an operation associated with the second protocol.

5. The method of Claim 4, wherein the operation associated with the second protocol

comprises a packet transform operation.

6. The method of Claim 1, wherein the record associates the first protocol with an
operation flag, the method further comprising:

processing the packet based on an operation associated with the operation flag.

7. The method of Claim 1, wherein the record is a first record, the method further
comprising:
reading a second record from the data structure using the second protocol as a key, the

second record associating the second protocol with an operation flag; and

12

23 Feb 2009

2003226281

5

10

15

20

25

30

processing the packet based on an operation associated with the operation flag.

8. The method of any on of Claims 1 to 7, wherein the packet is a cryptographic packet.

9. The method of any one of Claims 1 to 7, wherein the packet comprises a packet-object

header containing information for processing the packet in a pipelined processing system.

10. A computer program product for processing a packet, comprising:

a computer readable program medium having computer readable program code
embodied therein, the computer readable program code comprising: computer readable
program code configured to process a first header of the packet to obtain a first protocol;

computer readable program code configured to read a record from a data structure
using the first protocol as a key, the record associating the first protocol with an offset in a
second header of the packet; and

computer readable program code configured to process a second header of the packet

based on the offset in the second header to obtain a second protocol.

11. A computer program product, comprising:

a computer readable program medium having a computer readable data structure
embodied therein, the computer readable data structure comprising;:

a table that associates a protocol from a first header of a packet with an offset in a

second header of a packet.

12. A method of processing an Internet Protocol Security (IPSec) packet, comprising:

processing a first header of the packet to obtain a first IPSec protocol;

reading a record from a data structure using the first protocol as a key, the record
associating the first IPSec protocol with an offset in a second header of the packet and an
offset to a payload of the packet;

processing a second header of the packet based on the offset in the second header to
obtain a second IPSec protocol; and

processing the packet based on the offset to the payload of the packet to obtain at least

one of a source and a destination port address.

13

23 Feb 2009

2003226281

10

15

20

25

30

13. The method of Claim 12, wherein the IPSec packet is an IP version 4 packet, and the
first IPSec protocol is one of IP mobility, authentication header, IP in IP, and IP payload

compression protocol.

14. The method of Claim 12, wherein the IPSec packet is an IP version 6 packet, and the
first IPSec protocol is one of IPv6 hop by hop option, routing header for IPv6, destination

options for IPv6, and authentication header.

15. A computer program product, comprising:

a computer readable program medium having computer readable program code
embodied therein, the computer readable program code comprising:

computer readable program code .conﬁgured to process a first header of the packet to
obtain a first [PSec protocol;

computer readable program code configured to read a record from a data structure
using the first protocol as a key, the record associating the first IPSec protocol with an offset
in a second header of the packet and an offset to a payload of the packet;

computer readable program code configured to process a second header of the packet
based on the offset in the second header to obtain a second IPSec protocol; and

computer readable program code configured to process the packet based on the offset

to the payload of the packet to obtain at least one of a source and a destination port address.

16. A method of processing a packet substantially as hereinbefore described with

reference to the accompanying drawings.

17. A method of relating packet headers in a data structure substantially as hereinbefore

described with reference to the accompanying drawings.

18. A system for processing a packet substantially as hereinbefore described with

reference to the accompanying drawings.

19. A computer program product for processing a packet substantially as hereinbefore

described with reference to the accompanying drawings.

14

WO 03/088616 PCT/US03/10506

177
Version IHL Type of Service)
(31:28) | (27:24) (23:16) Total Length (15:0)
I) Flags)
Identification (31:16) (15:13) Fragment Offset (12:0)
Time to Live (31:24) | Protocol (23:16) Header Checksum (15:0)

Source IP Address (31:0)

Destination IP Address (31:0)

(\(/):rti:\)ase) Padding (Variable)

FIG. 1
(PRIOR ART)

200

'e

Memory
210
Processor/State
Machine 215 Protocol Data
205 Structure
220

FIG. 2

L/C

919880/€£0 OM

90S01/£0S0/1.Dd

WO 03/088616 PCT/US03/10506

3/7
/300

|- T T T T T T T T T T 320

| Packet Object Header V_
305

First IP Header /_
310

Second IP Header /—_
315

IP Payload/Data /

FIG. 3

WO 03/088616

PCT/US03/10506
47

(Begin)

y

Process first (outer) packet header to obtain a 400
first protocol

y

Read record from the protocol data structure /—405
using the first protocol as a key to obtain offset

in second (inner) packet header

4

Process second (inner) packet header based /——41 0
on the offset obtained from the data structure

to obtain a second protocol

End

FIG. 4

500

rs
Protocol Enable Offls_le;;ge[\:ext gg;s;g Flag
55 Yes 0 (bytes) 8 (bytes) 1
51 Yes 0 24 2
4 No 9 0 3
108 Yes 0 4 4
® ® @ ® [

FIG. 5

LIS

919880/€£0 OM

90S01/£0S0/1.Dd

600
l Obtain base pointer to first (outer) packet header /_

605

Yes
/—-6 10 +

IPve? No

j /—615

Obtain first protocol from first packet
header, set pointers to source port,

of first packet header

destination port, and set base pointer to end

Obtain first protocol from first packet
header, set pointers to source port,
destination port, and set base pointer to end
of first packet header

\
63 Return protocaol,
O_\ source, and
destination ports

640

Yes
) J

Select operations based on flag - 650
assaociated with protocol

|
Flag 1

Flag 2 Flag N

¥ /%0 Y

Obtain second protocal from second packet header based on offset from table, set

@ pointers to source port and destination port based on offset to payload from table, ®

and, for some protocols, set base pointer to end of second packet header

FIG. 6 |

L9

919880/€0 OM

90S01/£0S0/1.Dd

Offset in Next

Offset to

Protocol Enable Header Payload Flag
0 Yes 0 (bytes) 0 (bytes) 5
43 Yes 0 0 5
60 Yes 0 0 5
51 Yes 0 0 5
® @ o @ ®

FIG. 7

L/t

919880/€£0 OM

90S01/£0S0/1.Dd

	Abstract
	Description
	Claims
	Drawings

