（54）发明名称
具有低双折射的三乙酸纤维素膜

（57）摘要
本发明涉及由具有低羟基含量的三乙酸纤维素与特定增塑剂制成的膜。这些膜可以表现出低或零光学延迟值，使它们特别适用于光学用途，如在液晶显示器（LCD）中用作保护膜和补偿膜。
1. 膜，包含：
(a) 具有 2.8～2.95 的乙酰基取代度 (DS_{乙酰基}) 的三乙酸纤维素；和
(b) 该膜总重量的重量分数 5～15% 的增塑剂，所述增塑剂选自山梨糖醇六丙酸酯、木
糖醇五乙酸酯、木糖醇五丙酸酯、聚琥珀酸酯、丁基苯磺酰胺、樟脑、2，2，4-三甲基-1，3-戊
二醇二异丁酸酯、聚己二酸酯、环氧化树脂酸辛酯、聚乙二醇、三(乙二醇)双(2-乙基己酸酯)
及其混合物；
其中该膜已经在 100～140°C 的温度下退火 1 分钟～小于 60 分钟，并且
其中该膜具有在 589nm 的波长下测量并标准化至 60 μm 或更低的厚度时为 -15～+15nm
的在厚度方向上的光学延迟值 (Rth)。
2. 如权利要求 1 所述的膜，其具有 -10～+10 的 Rth。
3. 如权利要求 1 所述的膜，其具有 -5～+5 的 Rth。
4. 如权利要求 1 所述的膜，其中该增塑剂是木糖醇五乙酸酯、丁基苯磺酰胺、樟脑、2，2，4-三甲基-1，3-戊二醇二异丁酸酯、聚己二酸酯、环氧化树脂酸辛酯、聚乙二醇或三(乙二
醇)双(2-乙基己酸酯)。
5. 偏振板，其包含如权利要求 1 所述的膜。
6. 液晶显示器，其包含如权利要求 5 所述的偏振板。
7. 偏振板，其包含如权利要求 4 所述的膜。
8. 液晶显示器，其包含如权利要求 7 所述的偏振板。
9. 制膜的方法，包括：
(a) 形成涂料，其包含：
(i) 具有 2.8～2.95 的乙酰基取代度 (DS_{乙酰基}) 的三乙酸纤维素；
(ii) 选自山梨糖醇六丙酸酯、木糖醇五乙酸酯、木糖醇五丙酸酯、聚琥珀酸酯、丁基苯
磺酰胺、樟脑、2，2，4-三甲基-1，3-戊二醇二异丁酸酯、聚己二酸酯、环氧化树脂酸辛酯、聚
乙二醇、三(乙二醇)双(2-乙基己酸酯) 及其混合物的增塑剂；和
(iii) 溶剂；
(b) 将该涂料浇铸到表面上以形成湿膜；
(c) 从湿膜中蒸发至少一部分溶剂以形成干膜；和
(d) 在 100～140°C 的温度下将该干膜退火 1 分钟～小于 60 分钟以形成最终膜，
其中该最终膜包含该膜总重量的重量分数 5～15% 的该增塑剂，并且
其中该最终膜还具有在 589nm 的波长下测量并标准化至 60 μm 或更低的厚度时为 -15～+15
nm 的在厚度方向上的光学延迟值 (Rth)。
10. 如权利要求 9 所述的方法，其中该最终膜具有 -10～+10 的 Rth。
11. 如权利要求 9 所述的方法，其中该最终膜具有 -5～+5 的 Rth。
12. 如权利要求 9 所述的方法，其中该增塑剂是木糖醇五乙酸酯、丁基苯磺酰胺、樟脑、
2，2，4-三甲基-1，3-戊二醇二异丁酸酯、聚己二酸酯、环氧化树脂酸辛酯、聚乙二醇或三(乙
二醇)双(2-乙基己酸酯)。
具有低双折射的三乙酸纤维素膜

技术领域
[0001] 本发明通常涉及由具有低羟基含量的三乙酸纤维素和特定增塑剂制得的膜，以及制造该膜的方法。这些膜可以表现出低双折射，使它们特别适应用于光学应用，如在显示器(LCD)中作为保护膜和补偿膜。

背景技术
[0002] 液晶显示器(LCD)行业在多种膜中使用纤维素酯，如三乙酸纤维素(CTA或TAC)、乙酸丙酸纤维素(CAP)和乙酸丁酸纤维素(CAB)，最值得注意的是它们与偏光片一起用作保护膜或补偿膜，如在US2009/0068381A1（其部分内容经此引用并入本文）中所述。这些膜通常通过溶剂浇铸制得，随后层压到取向的磷酸酯乙烯膜(PV011或PVA)偏振膜的任一侧上以保护该PV011层防止刮伤和水分进入，同时也提高了结构刚性。或者，如在补偿膜的情况下，它们可以与偏振片叠层层压或以其它方式包含在偏振片与液晶层之间。纤维素酯可具有超过显示器膜中使用的其它材料，如环氧烃、聚碳酸酯、聚醚亚胺等的许多性能优点。
[0003] 除了提供保护作用外，这些膜还可以在提高LCD的对比度、视角和色偏性能方面起作用。对于LCD中使用的一组典型的正交偏振片，沿于对角线存在显著的偏光（导致差的对比度），特别是当视角增大时。已知可以使用各种光学膜组合来纠正或“补偿”这种偏光。这些膜必须具有一定的明确定义的双折射(或延迟)，所述双折射随所用液晶盒的类型而改变，因为液晶盒本身也导致一定程度的必须被纠正的不适当延迟。其中某些补偿膜比其它补偿膜更易制造，所以常常在性能与成本之间进行折衷。同样，虽然补偿膜和保护膜通过溶剂浇铸制得，依然努力争取通过熔体挤出制造更多的膜。
[0004] 补偿膜和光学膜通常在双折射方面变量，双折射涉及折射率n。折射率对一般聚合物来说通常为1.4至1.8，对纤维素酯大致为1.46至1.50。对于给定材料，折射率越高，通过它传播的光的长度越慢。
[0005] 对于未取向的各向同性材料，折射率是相同的，与进入的光的波偏振状态无关。当该材料成为取向的时，或以其它方式称为各向异性时，折射率变得依赖于材料的方向。对本发明来说，存在分别相应于加工方向(MD)、横向(TD)和厚度方向的三种关注的折射率，表示为n_x、n_y和n_z。当材料变得更加各向异性时（例如通过拉伸材料），任意两种折射率之间的差异将增大，这种差异称为“双折射”。
[0006] 因为存在待选择的材料方向的许多组合，存在相应的不同的双折射值。最常见的两种，即平面双折射Δ n_{xy}和厚度双折射Δ n_{th}，定义为：
[0007] (1a) Δ n_{xy} = n_x - n_y ；
[0008] (1b) Δ n_{th} = (n_z - (n_x + n_y))/2 ；
[0009] 双折射Δ n_{xy}是在MD与TD之间相对平面取向的量度，是无量纲的。相反，Δ n_{th}给出了相对于平面取向的厚度方向取向的量度。
[0010] 通常用于表征光学膜的另一术语是光学延迟(R)。R简单地为双折射乘以所述膜的厚度(d)。由此，
说明书

存在两种其它非常罕见的材料类别，即“负双折射”和“零双折射”。负双折射聚合物在垂直于拉伸方向（相对于平行方向）表现出更高的折射率，因此具有负的特性双折射。已知某些苯乙烯和丙烯酸树脂因其相当庞大的侧链而具有负双折射行为。相反，零双折射是一种特殊情况，代表在拉伸时不显示双折射并由此具有零的特性双折射的材料。此类材料对光学应用是理想的，因为它们可以模拟、拉伸或在加工过程中以其它方式施加应力，而不表现出任何光学延迟或延迟。此类材料也是极为罕见的。

例如，当背射通过一对具有两个常规三乙酸纤维素（TAC）膜（均具有Re=-0nm和Rd=-40nm）的正交偏振片时，计算出的光透射等量线图中显示沿着偏振片传输轴在45°处存在大约2.2%的漏光。

另一方面，当背射通过一对具有两个零延迟TAC膜（均具有Re=-0nm和Rd=0nm）的正交偏振片时，计算出的光透射等量线图中显示沿着偏振片传输轴在45°处存在大约1.3%的最大漏光。

由此，通过用两个零延迟TAC膜取代两个常规TAC膜，可以将漏光降低差不多一半。

此外，使用纤维素酯基零延迟膜超越非纤维素酯基零延迟膜的优点之一是纤维素酯基膜非常好地粘接到PVA上。因此，目前的偏振片加工程序不会受到影响。

不幸的是，典型的溶剂齐备的三乙酸纤维素膜的Rd值通常为大约-20至-70nm。因此，在本领域需要提供具有更多延迟、优选零或接近零延迟的三乙酸纤维素膜以改善以IPS模式运行的LCD的补偿膜性能。

本发明满足了这种需求以及由下面的说明书和所附权利要求变得显而易见的其它需求。

发明概述

已经令人惊讶地发现可以制备在厚度方向上具有低或零光学延迟的三乙酸纤维素膜，这类膜特别可用作LCD补偿膜。
[0026] 在一方面，本发明提供一种膜，包含：
[0027] （a）具有2.8至2.95的乙酰基取代度（DS_{乙酰基}）的三乙酸纤维素；和
[0028] （b）占该膜总重量的5至15%的增塑剂，所述增塑剂选自山梨糖醇六丙酸酯、木糖醇
五乙酸酯、木糖醇五丙酸酯、三醋精、聚琥珀酸酯、丁基苯磺酰胺、樟脑、2,2,4-三甲基-1,3-
戊二醇和二丁酸酯、聚乙二醇和二乙醇酸酯的混合物。该膜具有在100～140℃的温度下退火1分钟～小于60分钟。此膜在589nm的波长下测量并标准化至60μm或更低的膜厚度为-15～+15nm的在厚度方向上的光学延迟值（R_{th})。
[0029] 在另一方面，本发明提供制造膜的方法。该方法包括以下步骤：
[0030] （a）形成涂料，其包含：
[0031] （i）具有2.8～2.95的乙酰基取代度（DS_{乙酰基}）的三乙酸纤维素；
[0032] （ii）选自山梨糖醇六丙酸酯、木糖醇五乙酸酯、木糖醇五丙酸酯、三醋精、聚琥珀
酸酯、丁基苯磺酰胺、樟脑、2,2,4-三甲基-1,3-戊二醇和二丁酸酯、聚乙二醇和二乙醇酸酯的混合物。该膜具有在100～140℃的温度下退火1分钟～小于60分钟以形成最终膜。该最终膜包含该膜总重量的5至15%的该增塑剂。该最终膜具有在589nm的波长下测量并标准化至60μm或更低的膜厚度为-15～+15nm的在厚度方向上的光学延迟值（R_{th})。
[0033] 发明概述
[0034] 根据本发明，提供了一种膜，包含：
[0035] （a）具有2.8～2.95的乙酰基取代度（DS_{乙酰基}）的三乙酸纤维素；和
[0036] （b）该膜总重量的重量分数5至15%的增塑剂，所述增塑剂选自山梨糖醇六丙酸酯、
五乙酸木糖醇酯、五丙酸木糖醇酯、三醋精、聚琥珀酸酯、丁基苯磺酰胺、樟脑、2,2,4-三甲
基-1,3-戊二醇和二丁酸酯、聚乙二醇和二乙醇酸酯和二乙醇酸酯的混合物。该膜在100～140℃的温度下退火1分钟～小于60分钟。此膜具有在589nm的波长下测量并标准化至60μm或更低的膜厚度为-15～+15nm的在厚度方向上的光学延迟值（R_{th})。
[0037] 在一个实施方案中，该膜具有-10～+10nm的R_{th}值。在一个实施方案中，该膜具有-5～+5nm的R_{th}值。在这些一般范围内的其它R_{th}值范围也预期在本发明的范围内，如-3～+3nm。
[0038] 本发明的膜的厚度可以根据应用而改变。通常，例如对LCD应用而言，膜厚度为40
～100μm。其它膜厚度范围包括40～80μm和40～60μm。
[0039] 用于本发明的膜的三乙酸纤维素（CTA）具有2.8～2.95的乙酰基取代度（DS_{乙酰基}）。该膜可购买自供应商，如Eastman
Chemical Company。
[0040] 该膜通常含有该膜总重量85～95wt%的该CTA。在一些实施方案中，该膜含有85～
90wt%或90～95wt%的CTA。

【0047】本发明的增塑剂选自山梨糖醇六丙酸酯、木糖醇五乙酸酯、木糖醇五丙酸酯、三酯
精、聚琥珀酸酯（如Resoflex®804）、丁基苯磺酰胺、樟脑、2,2,4-三甲基-1,3-戊二醇二异
丁酸酯、聚己二酸酯（如Resoflex®296或Paraplex®G-50）、环氧化树脂酸辛酯（如
Drapex®4,4）、聚乙二醇（如PEG100或600）和三(乙二醇)双(2-乙基己酸酯)。这些增塑剂
是市售的。

【0048】该组合物中增塑剂的量可以根据所用具体增塑剂、采用的退火条件、以及所需的
Rth水平而改变。通常，该增塑剂可以以该膜总重量的5～15%的量存在。该增塑剂还可以以5
～10%或10～15%的量存在。

【0049】除了增塑剂之外，本发明的膜还可以含有添加剂，如稳定剂、UV吸收剂、抗粘连剂、
滑爽剂、润滑剂、固化剂、染料、颜料、延迟改性剂、消光剂、脱模剂等等。

【0050】本发明还提供用于制造膜的方法。该方法包括以下步骤：

【0051】(a)形成涂胶,其包含：

【0052】(i)具有2.8～2.95的乙酰基取代度(DSCf)的三乙酸纤维素；

【0053】(ii)选自山梨糖醇六丙酸酯、木糖醇五乙酸酯、木糖醇五丙酸酯、三酯精、聚琥珀
酸酯、丁基苯磺酰胺、樟脑、2,2,4-三甲基-1,3-戊二醇二异丁酸酯、聚己二酸酯、环氧化树
脂酸辛酯、聚乙二醇、三(乙二醇)双(2-乙基己酸酯)及其混合物的增塑剂；和

【0054】(iii)溶剂；

【0055】(b)将该涂料浇铸到表面上以形成湿膜；

【0056】(c)从湿膜中蒸发至少一部分溶剂以形成干膜；和

【0057】(d)在100～140°C的温度下将该干膜退火1分钟～小于60分钟以形成最终膜。

【0058】该最终膜包含该膜总重量的5～15%的该增塑剂。

【0059】该最终膜还具有在589nm的波长下测量并标准化至60μm或更低的膜厚度时为15
～15nm的在厚度方向上的光学延迟值(Rth)。

【0060】该CTA、该增塑剂以及该溶剂可以以任何方式混合以形成该涂胶。例如，该CTA与该
增塑剂可以在添加到溶剂中之前混合在一起，或者，该CTA与该增塑剂可以分别添加到该溶
剂中。在将成分混合后，混合物应充分混合以确保基本得到均匀的浇铸涂胶。

【0061】其中混合该CTA与该增塑剂的溶剂没有特殊限制。其可以是适于制造涂胶以便通
过浇铸形成CTA膜的任何液体。典型溶剂包括二氯甲烷和醇类。一种此类溶剂是二氯甲烷与
甲醇或乙醇的体积分数为85/15%的混合物。

【0062】所得涂料可以浇铸到典型的涂胶浇铸设备如浇铸带、浇铸鼓或移动塑料模上以形
成湿膜。该浇铸带和浇铸鼓的表面通常由不锈钢或镀铬钢制成。移动塑料膜的表面可以由
PTEE或硅化PET制成。

【0063】在浇铸后，该湿膜经受蒸发步骤以除去至少一部分溶剂，生成干膜。该干膜可以具
有1～50%重量分数的残余溶剂含量。在一些实施方案中，该残余溶剂含量可以为3～40%重
量分数。在其它实施方案中，该干膜的残余溶剂含量可以为3～6%重量分数。

【0064】该蒸发步骤可以在环境条件下进行。或者该蒸发步骤可以在提高的温度，如25°C
～最高100°C、30°C～95°C或40°C～80°C下进行。可以使用各种方法加速蒸发，如间接加热、
辐射加热和/或受控的空气(其任选是加热的或载有溶剂的)流动。
在蒸发步骤后，可以将干膜从浇铸表面上移开并随后续火。或者，该干膜可以在浇铸表面上退火。该退火步骤可以在任何合适设备中（例如在强制通风烘箱中）以一个或多个阶段进行，例如在100℃下最多10分钟，随后在更高温度（例如120℃、130℃或140℃）下最多20分钟。在退火过程中，该膜可以约束在任何合适装置中以防止收缩。

在退火后，该膜通常具有小于重量分数3%的残余溶剂含量。在一些实施方案中，退火的膜具有小于重量分数1.5%的残余溶剂含量。在其它实施方案中，退火的膜具有小于重量分数0.5%的残余溶剂含量。

不希望被理论束缚，退火步骤的主要目的在于提高来自浇铸过程的可能残留在该膜中的残余溶剂的扩散。但是，退火的附加目的还缓和浇铸过程中产生的残余应力。当该膜粘附到浇铸基底上时，该溶剂蒸发到开放表面，在膜中产生内部应力。这些应力取决于材料性质、溶剂混合、对基底的粘附以及溶剂蒸发速率。浇铸方法与速率会导致更高的应力，更高的双折射和更高的延迟。缓和这些工艺导致的应力对制造具有尺寸稳定性和低延迟的膜来说是需要的。

这些退火温度与温度可以根持所用的浇铸技术而改变。例如，如果使用连续溶剂浇铸生产线而不是在试验室中的批次法，可以采用更低的退火温度和更短的时间。

最终的膜可以采用本领域公知的方法进行后处理，所述方法例如电晕处理、等离子体处理、火焰处理等。还可以将该膜皂化以确保与随后的PV0H偏振层的良好粘合。

本发明还提供包含本文中所述膜的偏振板。本发明进一步提供包含此类偏振板的液晶显示器。对于液晶显示器应用来说，本发明的膜最终将用于其它膜和结构结合以形成完整的液晶装置。采用的工艺的实例包括层压和/或涂布。这些结构对本领域技术人员是公知的，并且要理解的是，本发明的膜可以以多种形式使用，取决于制定制造商和液晶盒类型的特定情况。

可以通过下列表格实施例进一步阐述本发明，尽管要理解的是这些实施例仅仅是为了阐述而包括，并且并非意在限制本发明的范围。

实施例

测量程序

使用波长范围为370～1000nm的Woolam偏振光栅圆偏振仪测量范围为2000V测量膜的光学延迟R₀和Rₐ。为了比较，采用589nm的波长下进行测量。并将数据标准化至60μm和40μm的膜厚度。如下计算标准化的延迟：

Rₐ_{th} = 目标厚度*R_{th}/d，和

Rₐ = 目标厚度*R_{th}/d

其中mR_{th}是测得的膜样品的Rₐ，mR_{th}是测得的膜样品的Rₐ，d是以μm为单位的实际膜厚度。目标膜厚度是60μm或40μm。标准化的数据组包括在下面的实施例中。

材料

所有实施例使用相同的具有大约2.86的DS的市售三乙酸纤维素(CTA)树脂。

下表列出了一些实施例中使用的增塑剂的缩写。
<table>
<thead>
<tr>
<th>增塑剂</th>
<th>缩写</th>
<th>增塑剂</th>
<th>缩写</th>
</tr>
</thead>
<tbody>
<tr>
<td>山梨糖醇六丙酸酯</td>
<td>SHP</td>
<td>混合的二元酸聚酯</td>
<td>G-31</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Paraplex G-31)</td>
<td></td>
</tr>
<tr>
<td>木糖醇五乙酸酯</td>
<td>XPA</td>
<td>聚己二酸酯 (Paraplex G-50)</td>
<td>G-50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Resoflex 296)</td>
<td></td>
</tr>
<tr>
<td>木糖醇五丙酸酯</td>
<td>XPP</td>
<td>聚己二酸酯</td>
<td>R296</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Resoflex 296)</td>
<td></td>
</tr>
<tr>
<td>磷酸三苯酯</td>
<td>TPP</td>
<td>环氧化树脂酸辛酯</td>
<td>D44</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Drapex 4.4)</td>
<td></td>
</tr>
<tr>
<td>聚琥珀酸酯</td>
<td>R804</td>
<td>环氧化大豆油</td>
<td>D68</td>
</tr>
<tr>
<td>(Resoflex 804)</td>
<td></td>
<td>(Drapex 6.8)</td>
<td></td>
</tr>
<tr>
<td>丁基苯磺酰胺</td>
<td>BSA</td>
<td>聚乙二醇 (MW 600)</td>
<td>PEG 600</td>
</tr>
<tr>
<td>2,2,4-三甲基-1,3-戊二醇二丁酸酯</td>
<td>TXIB</td>
<td>三(乙二醇)双(2-乙基己酸酯)</td>
<td></td>
</tr>
</tbody>
</table>

[0081] 对比例1-16
[0082] 采用下列程序通过溶剂烧铸制备三苯酸纤维素膜：首先，将24克固体（CTA树脂+下表1中确定的增塑剂）添加到176克体积分数85/15%的二氯甲烷/乙醇溶液混合物中。增塑剂以固体总重量的重量分数10%的载量添加。随后将混合物密封，放置在滚筒上并混合24小时以产生均匀的涂料。
[0083] 在混合后，使用调节至40μm目标厚度的刮浆刀将涂料烧铸到玻璃板上。在相对湿度控制为50%的通风橱中进行烧铸。
[0084] 在烧铸后，令该膜与玻璃在盖上的盘下干燥一小时。在初始干燥后，将该膜从玻璃上剥离，并在室温下退火一至数小时。
[0085] 测量该膜的光学延迟作为退火时间的函数。结果显示在表1中。
根据对比例1-16中描述的程序通过溶液浇铸制备三乙酸纤维素膜，除了浇铸溶液含有甲醇而非乙醇，膜目标厚度为60μm，并且退火步骤在100℃下在强制通风烘箱中进行10分钟，随后在120或130℃下进行20分钟。此外，将该膜约束在一对金属框架中进行退火以防止任何进一步的收缩。

测量该膜的光学延迟作为退火时间的函数。结果显示在表1中。

<table>
<thead>
<tr>
<th>实施例号</th>
<th>添加剂</th>
<th>时间 (小时)</th>
<th>时间 (分钟)</th>
<th>温度 (℃)</th>
<th>对60μm标准化的589nm处的延迟</th>
<th>对40μm标准化的589nm处的延迟</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE-1</td>
<td>SHP</td>
<td>1</td>
<td>na</td>
<td>23</td>
<td>0.24</td>
<td>-27.88</td>
</tr>
<tr>
<td>CE-2</td>
<td>SHP</td>
<td>4</td>
<td>na</td>
<td>23</td>
<td>0.21</td>
<td>-38.88</td>
</tr>
<tr>
<td>CE-3</td>
<td>SHP</td>
<td>24</td>
<td>na</td>
<td>23</td>
<td>-0.03</td>
<td>-48.00</td>
</tr>
<tr>
<td>CE-4</td>
<td>SHP</td>
<td>40</td>
<td>na</td>
<td>23</td>
<td>0.42</td>
<td>-47.18</td>
</tr>
</tbody>
</table>

[0091]
<p>| | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CE-5</td>
<td>XPA</td>
<td>10%</td>
<td>1</td>
<td>na</td>
<td>23</td>
<td>0.31</td>
<td>-15.39</td>
<td>0.21</td>
<td>-10.26</td>
<td></td>
</tr>
<tr>
<td>CE-6</td>
<td>XPA</td>
<td>10%</td>
<td>4</td>
<td>na</td>
<td>23</td>
<td>-0.14</td>
<td>-25.57</td>
<td>-0.09</td>
<td>-17.05</td>
<td></td>
</tr>
<tr>
<td>CE-7</td>
<td>XPA</td>
<td>10%</td>
<td>24</td>
<td>na</td>
<td>23</td>
<td>0.10</td>
<td>-37.58</td>
<td>0.06</td>
<td>-25.05</td>
<td></td>
</tr>
<tr>
<td>CE-8</td>
<td>XPA</td>
<td>10%</td>
<td>40</td>
<td>na</td>
<td>23</td>
<td>-0.34</td>
<td>-38.72</td>
<td>-0.23</td>
<td>-25.82</td>
<td></td>
</tr>
<tr>
<td>CE-9</td>
<td>XPP</td>
<td>10%</td>
<td>1</td>
<td>na</td>
<td>23</td>
<td>-0.23</td>
<td>-26.85</td>
<td>-0.15</td>
<td>-17.90</td>
<td></td>
</tr>
<tr>
<td>CE-10</td>
<td>XPP</td>
<td>10%</td>
<td>4</td>
<td>na</td>
<td>23</td>
<td>-0.04</td>
<td>-38.46</td>
<td>-0.03</td>
<td>-25.64</td>
<td></td>
</tr>
<tr>
<td>CE-11</td>
<td>XPP</td>
<td>10%</td>
<td>24</td>
<td>na</td>
<td>23</td>
<td>0.21</td>
<td>-43.24</td>
<td>0.14</td>
<td>-28.83</td>
<td></td>
</tr>
<tr>
<td>CE-12</td>
<td>XPP</td>
<td>10%</td>
<td>40</td>
<td>na</td>
<td>23</td>
<td>0.18</td>
<td>-43.72</td>
<td>0.12</td>
<td>-29.15</td>
<td></td>
</tr>
<tr>
<td>CE-13</td>
<td>三醋酸</td>
<td>10%</td>
<td>1</td>
<td>na</td>
<td>23</td>
<td>-0.22</td>
<td>-12.34</td>
<td>-0.14</td>
<td>-8.23</td>
<td></td>
</tr>
<tr>
<td>CE-14</td>
<td>三醋酸</td>
<td>10%</td>
<td>4</td>
<td>na</td>
<td>23</td>
<td>0.27</td>
<td>-23.78</td>
<td>0.18</td>
<td>-15.85</td>
<td></td>
</tr>
<tr>
<td>CE-15</td>
<td>三醋酸</td>
<td>10%</td>
<td>24</td>
<td>na</td>
<td>23</td>
<td>0.13</td>
<td>-32.84</td>
<td>0.08</td>
<td>-21.89</td>
<td></td>
</tr>
<tr>
<td>CE-16</td>
<td>三醋酸</td>
<td>10%</td>
<td>40</td>
<td>na</td>
<td>23</td>
<td>0.19</td>
<td>-32.04</td>
<td>0.12</td>
<td>-21.36</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>SHP</td>
<td>10%</td>
<td>na</td>
<td>10</td>
<td>120</td>
<td>0.38</td>
<td>-18.66</td>
<td>-0.81</td>
<td>-12.44</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>XPA</td>
<td>10%</td>
<td>na</td>
<td>10</td>
<td>120</td>
<td>0.47</td>
<td>-5.39</td>
<td>-3.47</td>
<td>-3.59</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>XPP</td>
<td>10%</td>
<td>na</td>
<td>10</td>
<td>120</td>
<td>0.45</td>
<td>-15.31</td>
<td>-1.18</td>
<td>-10.21</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>三醋酸</td>
<td>10%</td>
<td>na</td>
<td>10</td>
<td>130</td>
<td>-0.24</td>
<td>2.36</td>
<td>-0.16</td>
<td>1.57</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>三醋酸</td>
<td>10%</td>
<td>na</td>
<td>10</td>
<td>120</td>
<td>-0.01</td>
<td>-2.68</td>
<td>0</td>
<td>-1.79</td>
<td></td>
</tr>
</tbody>
</table>

[0092] 对比例17-24和实施例6-10

[0093] 根据对比例1-16中描述的程序通过溶液浇铸制备三乙酸纤维素膜,除了浇铸溶液含有甲醇而非乙醇;增塑剂负载水平为重量分数5%、7.5%和10%不等;膜目标厚度为60μm,并且退火步骤在100℃下在强制通风烘箱中进行10分钟,随后在120℃进行20分钟。此外,将该膜约束在一对金属框架中进行退火以防止任何进一步的收缩。

[0094] 在退火后,测量膜的光学延迟,结果显示在表2中。

[0095] 表2

[0096]
<table>
<thead>
<tr>
<th>实施例号</th>
<th>添加剂</th>
<th>Wt%</th>
<th>温度(℃)</th>
<th>时间(分钟)</th>
<th>Re(nm)</th>
<th>Rth(nm)</th>
<th>Re(nm)</th>
<th>Rth(nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE-17</td>
<td>TPP</td>
<td>10</td>
<td>120</td>
<td>20</td>
<td>0.34</td>
<td>-49.29</td>
<td>-0.27</td>
<td>-32.86</td>
</tr>
<tr>
<td>CE-18</td>
<td>SHP</td>
<td>5</td>
<td>120</td>
<td>20</td>
<td>0.16</td>
<td>-44.01</td>
<td>-0.14</td>
<td>-29.34</td>
</tr>
<tr>
<td>CE-19</td>
<td>SHP</td>
<td>7.5</td>
<td>120</td>
<td>20</td>
<td>0.21</td>
<td>-26.98</td>
<td>-0.32</td>
<td>-17.99</td>
</tr>
<tr>
<td>6</td>
<td>SHP</td>
<td>10</td>
<td>120</td>
<td>20</td>
<td>0.38</td>
<td>-18.66</td>
<td>-0.81</td>
<td>-12.44</td>
</tr>
<tr>
<td>CE-20</td>
<td>XPA</td>
<td>5</td>
<td>120</td>
<td>20</td>
<td>0.06</td>
<td>-35.15</td>
<td>-0.07</td>
<td>-23.44</td>
</tr>
<tr>
<td>7</td>
<td>XPA</td>
<td>7.5</td>
<td>120</td>
<td>20</td>
<td>-0.09</td>
<td>-22.8</td>
<td>0.16</td>
<td>-15.2</td>
</tr>
<tr>
<td>8</td>
<td>XPA</td>
<td>10</td>
<td>120</td>
<td>20</td>
<td>0.47</td>
<td>-5.39</td>
<td>-3.47</td>
<td>-3.59</td>
</tr>
<tr>
<td>CE-21</td>
<td>XPP</td>
<td>5</td>
<td>120</td>
<td>20</td>
<td>0.46</td>
<td>-38.95</td>
<td>-0.47</td>
<td>-25.97</td>
</tr>
<tr>
<td>CE-22</td>
<td>XPP</td>
<td>7.5</td>
<td>120</td>
<td>20</td>
<td>0.04</td>
<td>-24.43</td>
<td>-0.07</td>
<td>-16.28</td>
</tr>
<tr>
<td>9</td>
<td>XPP</td>
<td>10</td>
<td>120</td>
<td>20</td>
<td>0.45</td>
<td>-15.31</td>
<td>-1.18</td>
<td>-10.21</td>
</tr>
<tr>
<td>CE-23</td>
<td>R804</td>
<td>5</td>
<td>120</td>
<td>20</td>
<td>-0.03</td>
<td>-36.24</td>
<td>0.03</td>
<td>-24.16</td>
</tr>
<tr>
<td>CE-24</td>
<td>R804</td>
<td>7.5</td>
<td>120</td>
<td>20</td>
<td>-0.07</td>
<td>-27.66</td>
<td>0.11</td>
<td>-18.44</td>
</tr>
<tr>
<td>10</td>
<td>R804</td>
<td>10</td>
<td>120</td>
<td>20</td>
<td>0.22</td>
<td>-16.28</td>
<td>-0.54</td>
<td>-10.85</td>
</tr>
</tbody>
</table>

[0097] 实施例11-14

[0098] 根据对比例1-16中描述的程序通过溶液浇铸制备三乙酸纤维素膜，除了退火步骤在100℃下在强制通风烘箱中进行10分钟，随后在120℃或130℃下进行10分钟。此外，将该膜约束在一对金属框架中进行退火以防止任何进一步的收缩。

[0099] 在退火后，测量膜的光学延迟。结果显示在表3中。为方便起见，来自实施例4和5的结果也复制在表3中。

[0100] 表3

[0101]
<table>
<thead>
<tr>
<th>实施例号</th>
<th>添加剂</th>
<th>Wt%</th>
<th>温度(℃)</th>
<th>时间(分钟)</th>
<th>对 60μm 标准化的 589nm 处的延迟</th>
<th>对 40μm 标准化的 589nm 处的延迟</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>类型</td>
<td></td>
<td></td>
<td></td>
<td>Re (nm)</td>
<td>Rth (nm)</td>
</tr>
<tr>
<td>11</td>
<td>BSA</td>
<td>10%</td>
<td>130</td>
<td>10</td>
<td>-0.04</td>
<td>-4.27</td>
</tr>
<tr>
<td>12</td>
<td>BSA</td>
<td>10%</td>
<td>120</td>
<td>10</td>
<td>0.12</td>
<td>-15.32</td>
</tr>
<tr>
<td>13</td>
<td>植脑</td>
<td>10%</td>
<td>130</td>
<td>10</td>
<td>0.01</td>
<td>9.36</td>
</tr>
<tr>
<td>14</td>
<td>植脑</td>
<td>10%</td>
<td>120</td>
<td>10</td>
<td>-0.06</td>
<td>1.74</td>
</tr>
<tr>
<td>4</td>
<td>三醋精</td>
<td>10%</td>
<td>130</td>
<td>10</td>
<td>-0.24</td>
<td>2.36</td>
</tr>
<tr>
<td>5</td>
<td>三醋精</td>
<td>10%</td>
<td>120</td>
<td>10</td>
<td>-0.01</td>
<td>-2.68</td>
</tr>
</tbody>
</table>

[0102] 实施例15-24和对比例25-28

[0103] 根据对比例1-16中描述的程序通过溶液浇铸制备三乙酸纤维素膜，除了增塑剂负载水平为重量分数5～15%不等；并且退火步骤在100℃下在强制通风烘箱中进行10分钟并随后在110、120、130或140℃下进行10分钟。此外，将该膜约束在一对金属框架中进行退火以防止任何进一步的收缩。

[0104] 在退火后，测量膜的光学延迟。结果显示在表4中。

[0105] 表4

[0106]
<table>
<thead>
<tr>
<th>实施例号</th>
<th>添加剂</th>
<th>退火条件</th>
<th>对 60μm 标准化的 589nm 处的延迟</th>
<th>对 40μm 标准化的 589nm 处的延迟</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>类型</td>
<td>Wt%</td>
<td>温度 (℃)</td>
<td>时间 (分钟)</td>
</tr>
<tr>
<td>CE-25</td>
<td>TXIB</td>
<td>5%</td>
<td>110</td>
<td>10</td>
</tr>
<tr>
<td>CE-26</td>
<td>TXIB</td>
<td>5%</td>
<td>120</td>
<td>10</td>
</tr>
<tr>
<td>15</td>
<td>TXIB</td>
<td>5%</td>
<td>130</td>
<td>10</td>
</tr>
<tr>
<td>16</td>
<td>TXIB</td>
<td>10%</td>
<td>110</td>
<td>10</td>
</tr>
<tr>
<td>17</td>
<td>TXIB</td>
<td>10%</td>
<td>120</td>
<td>10</td>
</tr>
<tr>
<td>18</td>
<td>TXIB</td>
<td>10%</td>
<td>130</td>
<td>10</td>
</tr>
<tr>
<td>19</td>
<td>TXIB</td>
<td>12.50%</td>
<td>120</td>
<td>10</td>
</tr>
<tr>
<td>20</td>
<td>TXIB</td>
<td>12.50%</td>
<td>130</td>
<td>10</td>
</tr>
<tr>
<td>21</td>
<td>TXIB</td>
<td>12.50%</td>
<td>140</td>
<td>10</td>
</tr>
<tr>
<td>22</td>
<td>TXIB</td>
<td>15%</td>
<td>120</td>
<td>10</td>
</tr>
<tr>
<td>23</td>
<td>TXIB</td>
<td>15%</td>
<td>130</td>
<td>10</td>
</tr>
<tr>
<td>24</td>
<td>TXIB</td>
<td>15%</td>
<td>140</td>
<td>10</td>
</tr>
<tr>
<td>CE-27</td>
<td>G-31</td>
<td>5%</td>
<td>130</td>
<td>10</td>
</tr>
<tr>
<td>CE-28</td>
<td>G-31</td>
<td>10%</td>
<td>130</td>
<td>10</td>
</tr>
</tbody>
</table>

[0107] 实施例25-60和对比例29-64

[0108] 根据对比例1-16中描述的程序通过溶液浇铸制备三乙酸纤维素膜，除了增塑剂负载水平为重量分数5～15%不等；并且退火步骤在100℃下在强制通风烘箱中进行10分钟并随后在110、120、130或140℃下进行10分钟。此外，将该膜约束在一对金属框架中进行退火以防止任何进一步的收缩。

[0109] 在退火后，测量膜的光学延迟，结果显示在表5A、5B和5C中。

[0110] 表5A
<table>
<thead>
<tr>
<th>实施例号</th>
<th>添加剂</th>
<th>增量</th>
<th>退火条件</th>
<th>对 60μm 标准化的 589nm 处的延迟</th>
<th>对 40μm 标准化的 589nm 处的延迟</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>类型</td>
<td></td>
<td>温度 (℃)</td>
<td>时间 (分钟)</td>
<td>Re (nm)</td>
</tr>
<tr>
<td>CE-29</td>
<td>G-50</td>
<td>5%</td>
<td>110</td>
<td>10</td>
<td>0.31</td>
</tr>
<tr>
<td>CE-30</td>
<td>G-50</td>
<td>5%</td>
<td>120</td>
<td>10</td>
<td>-0.17</td>
</tr>
<tr>
<td>CE-31</td>
<td>G-50</td>
<td>5%</td>
<td>130</td>
<td>10</td>
<td>-0.17</td>
</tr>
<tr>
<td>CE-32</td>
<td>G-50</td>
<td>5%</td>
<td>140</td>
<td>10</td>
<td>0.20</td>
</tr>
<tr>
<td>CE-33</td>
<td>G-50</td>
<td>10%</td>
<td>110</td>
<td>10</td>
<td>0.33</td>
</tr>
<tr>
<td>CE-34</td>
<td>G-50</td>
<td>10%</td>
<td>120</td>
<td>10</td>
<td>0.01</td>
</tr>
<tr>
<td>CE-35</td>
<td>G-50</td>
<td>10%</td>
<td>130</td>
<td>10</td>
<td>0.00</td>
</tr>
<tr>
<td>25</td>
<td>G-50</td>
<td>10%</td>
<td>140</td>
<td>10</td>
<td>0.16</td>
</tr>
<tr>
<td>26</td>
<td>G-50</td>
<td>15%</td>
<td>110</td>
<td>10</td>
<td>-0.05</td>
</tr>
<tr>
<td>27</td>
<td>G-50</td>
<td>15%</td>
<td>120</td>
<td>10</td>
<td>0.14</td>
</tr>
<tr>
<td>28</td>
<td>G-50</td>
<td>15%</td>
<td>130</td>
<td>10</td>
<td>0.22</td>
</tr>
<tr>
<td>29</td>
<td>G-50</td>
<td>15%</td>
<td>140</td>
<td>10</td>
<td>0.18</td>
</tr>
<tr>
<td>CE-36</td>
<td>R296</td>
<td>5%</td>
<td>110</td>
<td>10</td>
<td>0.16</td>
</tr>
<tr>
<td>CE-37</td>
<td>R296</td>
<td>5%</td>
<td>120</td>
<td>10</td>
<td>-0.24</td>
</tr>
<tr>
<td>CE-38</td>
<td>R296</td>
<td>5%</td>
<td>130</td>
<td>10</td>
<td>-0.25</td>
</tr>
<tr>
<td>CE-39</td>
<td>R296</td>
<td>5%</td>
<td>140</td>
<td>10</td>
<td>-0.04</td>
</tr>
<tr>
<td>CE-40</td>
<td>R296</td>
<td>10%</td>
<td>110</td>
<td>10</td>
<td>-0.11</td>
</tr>
<tr>
<td>30</td>
<td>R296</td>
<td>10%</td>
<td>120</td>
<td>10</td>
<td>-0.21</td>
</tr>
<tr>
<td>31</td>
<td>R296</td>
<td>10%</td>
<td>130</td>
<td>10</td>
<td>-0.15</td>
</tr>
<tr>
<td>32</td>
<td>R296</td>
<td>10%</td>
<td>140</td>
<td>10</td>
<td>0.00</td>
</tr>
<tr>
<td>33</td>
<td>R296</td>
<td>15%</td>
<td>110</td>
<td>10</td>
<td>0.03</td>
</tr>
<tr>
<td>34</td>
<td>R296</td>
<td>15%</td>
<td>120</td>
<td>10</td>
<td>0.15</td>
</tr>
<tr>
<td>35</td>
<td>R296</td>
<td>15%</td>
<td>130</td>
<td>10</td>
<td>-0.15</td>
</tr>
<tr>
<td>36</td>
<td>R296</td>
<td>15%</td>
<td>140</td>
<td>10</td>
<td>-0.04</td>
</tr>
</tbody>
</table>

[0112] 表5B
[0113]
<table>
<thead>
<tr>
<th>实施例号</th>
<th>添加剂类型</th>
<th>Wt%</th>
<th>温度(℃)</th>
<th>时间(分钟)</th>
<th>对60μm标准化的R_th(589nm)处的延迟</th>
<th>对40μm标准化的R_th(589nm)处的延迟</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE-41</td>
<td>D44</td>
<td>5%</td>
<td>110</td>
<td>10</td>
<td>0.18</td>
<td>-46.64</td>
</tr>
<tr>
<td>CE-42</td>
<td>D44</td>
<td>5%</td>
<td>120</td>
<td>10</td>
<td>-0.03</td>
<td>-39.64</td>
</tr>
<tr>
<td>CE-43</td>
<td>D44</td>
<td>5%</td>
<td>130</td>
<td>10</td>
<td>0.02</td>
<td>-38.54</td>
</tr>
<tr>
<td>CE-44</td>
<td>D44</td>
<td>5%</td>
<td>140</td>
<td>10</td>
<td>0.19</td>
<td>-31.54</td>
</tr>
<tr>
<td>CE-45</td>
<td>D44</td>
<td>10%</td>
<td>110</td>
<td>10</td>
<td>-0.04</td>
<td>-26.46</td>
</tr>
<tr>
<td>37</td>
<td>D44</td>
<td>10%</td>
<td>120</td>
<td>10</td>
<td>-0.13</td>
<td>-18.65</td>
</tr>
<tr>
<td>38</td>
<td>D44</td>
<td>10%</td>
<td>130</td>
<td>10</td>
<td>0.13</td>
<td>-13.18</td>
</tr>
<tr>
<td>39</td>
<td>D44</td>
<td>10%</td>
<td>140</td>
<td>10</td>
<td>-0.16</td>
<td>-5.04</td>
</tr>
<tr>
<td>CE-46</td>
<td>D44</td>
<td>15%</td>
<td>110</td>
<td>10</td>
<td>-0.12</td>
<td>-25.63</td>
</tr>
<tr>
<td>40</td>
<td>D44</td>
<td>15%</td>
<td>120</td>
<td>10</td>
<td>0.24</td>
<td>-23.96</td>
</tr>
<tr>
<td>41</td>
<td>D44</td>
<td>15%</td>
<td>130</td>
<td>10</td>
<td>0.12</td>
<td>-21.03</td>
</tr>
<tr>
<td>42</td>
<td>D44</td>
<td>15%</td>
<td>140</td>
<td>10</td>
<td>0.46</td>
<td>-19.76</td>
</tr>
<tr>
<td>CE-47</td>
<td>D68</td>
<td>5%</td>
<td>110</td>
<td>10</td>
<td>0.19</td>
<td>-57.37</td>
</tr>
<tr>
<td>CE-48</td>
<td>D68</td>
<td>5%</td>
<td>120</td>
<td>10</td>
<td>0.20</td>
<td>-57.78</td>
</tr>
<tr>
<td>CE-49</td>
<td>D68</td>
<td>5%</td>
<td>130</td>
<td>10</td>
<td>-0.23</td>
<td>-51.58</td>
</tr>
<tr>
<td>CE-50</td>
<td>D68</td>
<td>5%</td>
<td>140</td>
<td>10</td>
<td>-0.11</td>
<td>-44.58</td>
</tr>
<tr>
<td>CE-51</td>
<td>D68</td>
<td>10%</td>
<td>110</td>
<td>10</td>
<td>0.31</td>
<td>-44.36</td>
</tr>
<tr>
<td>CE-52</td>
<td>D68</td>
<td>10%</td>
<td>120</td>
<td>10</td>
<td>0.29</td>
<td>-40.66</td>
</tr>
<tr>
<td>CE-53</td>
<td>D68</td>
<td>10%</td>
<td>130</td>
<td>10</td>
<td>0.03</td>
<td>-36.45</td>
</tr>
<tr>
<td>CE-54</td>
<td>D68</td>
<td>10%</td>
<td>140</td>
<td>10</td>
<td>0.21</td>
<td>-31.25</td>
</tr>
<tr>
<td>CE-55</td>
<td>D68</td>
<td>15%</td>
<td>110</td>
<td>10</td>
<td>0.05</td>
<td>-34.02</td>
</tr>
<tr>
<td>CE-56</td>
<td>D68</td>
<td>15%</td>
<td>120</td>
<td>10</td>
<td>0.08</td>
<td>-31.35</td>
</tr>
<tr>
<td>CE-57</td>
<td>D68</td>
<td>15%</td>
<td>130</td>
<td>10</td>
<td>-0.06</td>
<td>-28.92</td>
</tr>
<tr>
<td>CE-58</td>
<td>D68</td>
<td>15%</td>
<td>140</td>
<td>10</td>
<td>-0.07</td>
<td>-26.30</td>
</tr>
</tbody>
</table>

[0114] 表5C
<table>
<thead>
<tr>
<th>实施例号</th>
<th>添加剂</th>
<th>Wt%</th>
<th>温度(℃)</th>
<th>时间(分钟)</th>
<th>对60μm标准化的589nm处的延迟</th>
<th>对40μm标准化的589nm处的延迟</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE-59</td>
<td>PEG 600</td>
<td>5%</td>
<td>110</td>
<td>10</td>
<td>0.14</td>
<td>-54.78</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-45.78</td>
<td>0.09</td>
</tr>
<tr>
<td>CE-60</td>
<td>PEG 600</td>
<td>5%</td>
<td>120</td>
<td>10</td>
<td>-0.25</td>
<td>-48.54</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.17</td>
<td>-32.36</td>
</tr>
<tr>
<td>CE-61</td>
<td>PEG 600</td>
<td>5%</td>
<td>130</td>
<td>10</td>
<td>0.16</td>
<td>-45.57</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.11</td>
<td>-30.38</td>
</tr>
<tr>
<td>CE-62</td>
<td>PEG 600</td>
<td>5%</td>
<td>140</td>
<td>10</td>
<td>-0.08</td>
<td>-37.12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.06</td>
<td>-24.74</td>
</tr>
<tr>
<td>43</td>
<td>PEG 600</td>
<td>10%</td>
<td>110</td>
<td>10</td>
<td>-0.54</td>
<td>-18.55</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.36</td>
<td>-12.37</td>
</tr>
<tr>
<td>44</td>
<td>PEG 600</td>
<td>10%</td>
<td>120</td>
<td>10</td>
<td>-0.23</td>
<td>-9.07</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.16</td>
<td>-6.05</td>
</tr>
<tr>
<td>45</td>
<td>PEG 600</td>
<td>10%</td>
<td>130</td>
<td>10</td>
<td>0.38</td>
<td>-3.64</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.25</td>
<td>-2.43</td>
</tr>
<tr>
<td>46</td>
<td>PEG 600</td>
<td>10%</td>
<td>140</td>
<td>10</td>
<td>0.24</td>
<td>3.08</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.16</td>
<td>2.05</td>
</tr>
<tr>
<td>47</td>
<td>PEG 600</td>
<td>15%</td>
<td>110</td>
<td>10</td>
<td>-0.14</td>
<td>8.54</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.09</td>
<td>5.69</td>
</tr>
<tr>
<td>48</td>
<td>PEG 600</td>
<td>15%</td>
<td>120</td>
<td>10</td>
<td>-0.26</td>
<td>12.26</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.17</td>
<td>8.17</td>
</tr>
<tr>
<td>49</td>
<td>PEG 600</td>
<td>15%</td>
<td>130</td>
<td>10</td>
<td>-0.11</td>
<td>14.41</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.08</td>
<td>9.61</td>
</tr>
<tr>
<td>50</td>
<td>PEG 600</td>
<td>15%</td>
<td>140</td>
<td>10</td>
<td>-0.02</td>
<td>15.43</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.02</td>
<td>10.28</td>
</tr>
<tr>
<td>CE-63</td>
<td>TEG-EH</td>
<td>5%</td>
<td>110</td>
<td>10</td>
<td>0.05</td>
<td>-29.90</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.04</td>
<td>-19.93</td>
</tr>
<tr>
<td>CE-64</td>
<td>TEG-EH</td>
<td>5%</td>
<td>120</td>
<td>10</td>
<td>-0.16</td>
<td>-26.78</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.10</td>
<td>-17.85</td>
</tr>
<tr>
<td>51</td>
<td>TEG-EH</td>
<td>5%</td>
<td>130</td>
<td>10</td>
<td>0.07</td>
<td>-21.71</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.05</td>
<td>-14.47</td>
</tr>
<tr>
<td>52</td>
<td>TEG-EH</td>
<td>5%</td>
<td>140</td>
<td>10</td>
<td>-0.01</td>
<td>-16.94</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.01</td>
<td>-11.29</td>
</tr>
<tr>
<td>53</td>
<td>TEG-EH</td>
<td>10%</td>
<td>110</td>
<td>10</td>
<td>0.02</td>
<td>-21.32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.01</td>
<td>-14.21</td>
</tr>
<tr>
<td>54</td>
<td>TEG-EH</td>
<td>10%</td>
<td>120</td>
<td>10</td>
<td>0.09</td>
<td>-18.12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.06</td>
<td>-12.08</td>
</tr>
<tr>
<td>55</td>
<td>TEG-EH</td>
<td>10%</td>
<td>130</td>
<td>10</td>
<td>0.14</td>
<td>-15.89</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.10</td>
<td>-10.60</td>
</tr>
<tr>
<td>56</td>
<td>TEG-EH</td>
<td>10%</td>
<td>140</td>
<td>10</td>
<td>0.09</td>
<td>-12.76</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.06</td>
<td>-8.51</td>
</tr>
<tr>
<td>57</td>
<td>TEG-EH</td>
<td>15%</td>
<td>110</td>
<td>10</td>
<td>0.21</td>
<td>-7.57</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.14</td>
<td>-5.05</td>
</tr>
<tr>
<td>58</td>
<td>TEG-EH</td>
<td>15%</td>
<td>120</td>
<td>10</td>
<td>-0.31</td>
<td>-9.13</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.21</td>
<td>-6.09</td>
</tr>
<tr>
<td>59</td>
<td>TEG-EH</td>
<td>15%</td>
<td>130</td>
<td>10</td>
<td>-0.34</td>
<td>-6.34</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.22</td>
<td>-4.22</td>
</tr>
<tr>
<td>60</td>
<td>TEG-EH</td>
<td>15%</td>
<td>140</td>
<td>10</td>
<td>-0.04</td>
<td>-7.33</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.03</td>
<td>-4.89</td>
</tr>
</tbody>
</table>

[0116] 已经特别参照其优选实施方案对本发明进行了详细描述，但是要理解的是，可以
在本发明的精神与范围内进行变动和修改。