
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2005/0091489 A1

US 2005.009 1489A1

PetersOn (43) Pub. Date: Apr. 28, 2005

(54) METHOD AND SYSTEM FOR MULTIPLE Publication Classification
ASYMMETRIC DECRYPTION OF ZIP FILES

(51) Int. Cl. ... H04L 9/00
(75) Inventor: James C. Peterson, Menomonee Falls, (52) U.S. Cl. .. 713/165

WI (US)

Correspondence Address:
MCANDREWS HELD & MALLOY, LTD 57 ABSTRACT
500 WEST MAIDSON STREET (57)
SUTE 3400
CHICAGO, IL 60661 The present invention provides a method of integrating

existing Strong encryption methods into the processing of a
(73) Assignee: PKWare, Inc. .ZIP file to provide a highly secure data container which
(21) Appl. No.: 10/946,250 provides flexibility in the use of Symmetric and asymmetric

encryption technology. The present invention adapts the well
(22) Filed: Sep. 20, 2004 established .7IP file format to support higher levels of

O O Security and multiple methods of data encryption and key Related U.S. Application Dat eae pplication Uata management, thereby producing a highly Secure and flexible
(63) Continuation of application No. 10/620.960, filed on digital container for electronically storing and transferring

Jul. 16, 2003.

Local Record Header for File in

New Decryption Header for File in

Compressed/Encrypted Data for File in

Central Directory Record for File 1

Central Directory Record for Fil

Central Directory Record for File in

Central End Record

confidential data.

NDCEF

e2

Patent Application Publication Apr. 28, 2005 Sheet 1 of 2 US 2005/0091489 A1

Local Record Header for Filen

Decryption Header for File in

Compressed/Encrypted Data for File in

Central Directory Record for File 1

Central Directory Record for File 2

Central Directory Record for Filen

Central End Record

FIG. 1

PRIOR ART

Patent Application Publication Apr. 28, 2005 Sheet 2 of 2 US 2005/0091489 A1

Local Record Header for File in

New Decryption Header for File n

Compressed/Encrypted Data for File in

Central Directory Record for File 1

Central Directory Record for File in

Central End Record

FIG. 2

US 2005/0091489 A1

METHOD AND SYSTEM FOR MULTIPLE
ASYMMETRIC DECRYPTION OF ZIP FILES

BACKGROUND OF THE INVENTION

0001. The present invention relates generally to a method
of using Standard ZIP files and Strong encryption technol
ogy to Securely Store files, and more particularly to a method
of integrating existing Strong encryption methods into the
processing of ZIP files to provide a highly Secure data
container which provides flexibility in the use of symmetric
and asymmetric encryption technology. The present inven
tion adapts the well established and widely used ZIP file
format to Support higher levels of Security and multiple
methods of data encryption and key management, thereby
producing an efficient, highly Secure and flexible digital
container for electronically storing and transferring confi
dential data.

0002 Compression of computer files has been available
for many years. Compressing files can Save large amounts of
disk space, and can reduce transfer time when downloading
files from the Internet or transferring files through email.
Almost any file one downloads from the Internet is com
pressed in Some way. A Standard compressed file or folder as
it is Sometimes called contains one or more files that were
compressed into a single file or folder. Many different
compression formats have been developed over the years.
The ZIP format, created by the assignee of the present
invention, is perhaps the most common compressed file
format for the personal computer. Any file with a ".zip’
extension most likely contains one or more files of data
archived, that is, each either compressed or Stored, in the
.ZIP format. “Zipping” a file has become a commonly used
term meaning to compress the file into the ZIP format
archive So that it occupies leSS disk Space, and Similarly,
“unzipping a file means decompressing a compressed file in
the ZIP format.

0.003 A.ZIP file is generally recognized as a data com
pression and archiving format invented by PKWARE, Inc.
The ZIP format is a file format designed for combining data
compression technology with file archiving techniques.
Many commercially available Software products are avail
able for compressing or "Zipping files or other data into the
ZIP format. These ZIP files can then be used to reconstruct
the original data through the “unzipping process. Data
compression converts the contents of a file into an encoded
format requiring leSS computer Storage Space or in the case
of transmission leSS network bandwidth than the original
uncompressed file.
0004 Archiving, in the context of a ZIP file, is a method
of Storing information about the characteristics of a file in a
catalogue of files, known as the Central Directory, inside the
.ZIP file, allowing each file to be retrieved individually by its
characteristics. This capability is widely used. These char
acteristics include, but are not limited to, file name, file size,
and file creation date and time.

0005 Software programs such as PKZIP(E) written by
PKWARE, Inc. are used to process files in the ZIP format.
Such programs allow one or more files of any type to be
compressed and archived into a file of the ZIP format type
for efficient file Storage and transmission over computer and
communication networks. This format and the Software
programs that process ZIP files have become ubiquitous.

Apr. 28, 2005

0006 Data encryption is used by many software pro
grams to provide data privacy. Data encryption is a method
of encoding data So that it cannot be reproduced in its
original form unless an associated key is provided. Decryp
tion uses this key to convert the encrypted data back into its
original State. The key is known only to the perSon encrypt
ing the data or by those other people with whom the perSon
encrypting the data chooses to share the key. The key is used
to “unlock' the data So that it can again be used in its original
form.

0007 Keys are uniquely generated using data known to
the perSon encrypting a file or other data associated with
recipients and users of the file. This data can be a user
defined password or other random data. Several methods are
commonly used for processing the keys used for data
encryption. Encryption using a key generated from a pass
word is an example of Symmetric encryption. Encryption
using a public/private key pair is an example of asymmetric
encryption. An example of one method for processing
encryption keys Supported by this invention uses a public/
private key pair commonly associated with digital certifi
cates as defined by the document Internet X.509 Public Key
Infrastructure Certificate and CRL Profile (RFC 2459). A
digital certificate is a unique digital identifier associating a
public and private key pair to an assigned individual, a
group, or an organization. When used for encrypting data,
the public key of an individual is used to process an
encryption key which only the individual in possession of
the corresponding private key can use for decryption. A
digital certificate is issued to an individual, a group, or an
organization for a fixed period of time and can only be used
during this time period. After the time period has elapsed,
the digital certificate will be considered to have expired and
must be reissued for a new time period.
0008. The strength of a data encryption method is deter
mined at least in part by its key size in bits. The larger the
key size a data encryption method uses, the more resistant it
is to cryptanalysis. Cryptanalysis, or popularly “cracking',
is the unauthorized access to encrypted data. Strong encryp
tion is a type of data encryption that uses key sizes of 128
bits or more. A number of encryption encoding methods are
known today. Examples Supported by the present invention
include but are not limited to Advanced Encryption Standard
(AES), Data Encryption Standard (DES), 2DES, 3DES, and
others. A number of key sizes are commonly used today.
Examples Supported by the present invention include but are
not limited to 128 bits, 192 bits, and 256 bits.

0009. Many software programs available today that pro
ceSS ZIP files use data encryption to encrypt files after
compression as they are written to the ZIP file. The data
encryption method used by these Software programs uses a
key size of 96 bits or less and is considered weak or
moderate encryption by today's Standards. These Software
programs use keys generated using user-defined password
data. Weak data encryption may not provide Sufficient Secu
rity to computer users that Store and transfer their confiden
tial data files using the ZIP format.
0010 Password-based key generation has been a com
monly used method of applying data encryption, however,
known Vulnerabilities to cracking methods Such as "brute
force password cracking make this method of encryption
insufficient to meet today's more advanced Security needs.

US 2005/0091489 A1

Another known limitation of password-based Security is the
lack of non-repudiation. Non-repudiation is the ability to be
certain that the perSon or program that created an encrypted
.ZIP file cannot deny that fact and that their identity is bound
to the ZIP file they created. This cannot be achieved with
Symmetric encryption methods. Today, non-repudiation is an
important aspect of Security related to the implementation of
digital certificates and digital Signatures. It is critically
important to be able to prove that a creator or Sender of an
encrypted file did in fact create the file, i.e. not repudiate
his/her action.

0.011 Therefore, a need exists to extend the options for
levels of Security available to programs that proceSS ZIP
files. This extended of Security capability makes use of the
encryption technologies available today or others that may
gain acceptance in the future.

SUMMARY OF THE INVENTION

0012. The present invention provides a method of inte
grating multiple Strong encryption methods into the proceSS
ing of ZIP files to provide a highly Secure data container
which provides flexibility in the use of symmetric and
asymmetric encryption technology. The present invention
adapts the well established ZIP file format to support higher
levels of Security and multiple methods of data encryption
and key management, thereby producing a highly Secure and
flexible digital container for Storing and transferring confi
dential electronic data.

0013 The present invention provides a method of inte
grating multiple Strong encryption methods into the proceSS
ing of ZIP files to provide a highly Secure data container
which provides flexibility in the use of encryption technol
ogy. The present invention Supports existing weak encryp
tion methods available in ZIP software programs used today
to ensure backward compatibility with existing Software
programs that use the ZIP file format. Strong encryption
methods are made available to computer users as config
urable options to Select when compressing and encrypting
their files or other data into a ZIP file.

0.014. The method of the present invention provides the
capability of using Strong encryption when creating ZIP
files. It is flexible in that it provides that different encryption
methods can be applied to a single ZIP file to meet the
Security needs of a given computer user or application.
Strong encryption algorithms are preferably used in con
junction with either password (Symmetric) or any form of
public/private key (asymmetric) encryption methods. The
Symmetric method preferably includes a password defined
by the user, while the asymmetric method preferably
includes a public/private key associated with digital certifi
cates to proceSS encryption keys. The invention allows one
or more passwords and one or more public keys to be used
individually, or in combination at the same time when
archiving any file of any type of data into a Secure ZIP file.
This capability is useful since secure.ZIP files are frequently
distributed, or otherwise made accessible, to multiple recipi
ents for decryption. Some of those recipients may require
password access while otherS may require certificate access.
0.015 The method of the present invention also supports
the four basic Security functions to be associated with
encrypted files: confidentiality, message authentication,
Sender or creator authentication, and non-repudiation.

Apr. 28, 2005

0016 Specifically, the present invention supports non
repudiation to uniquely bind a ZIP file with the identity of
its creator, and prevent that creator from denying the cre
ation of that ZIP file. One method of non-repudiation used
by this invention is the identity support available with digital
Signatures that can be generated using public/private key
technology. The non-repudiation function provided by the
present invention also preferably Supports time-Stamping
methods for fixing the creation of a digital Signature in time,
as well as time-Stamped audit trails providing transaction
history.
0017 AS indicated, the method of the present invention
also Supports message authentication. Message authentica
tion ensures the data has not been altered since being
encrypted. The present invention Supports message authen
tication techniques that employ public/private key forms of
message authentication, as well as other methods of message
authentication that do not require the use of public/private
keys. One example of an alternative method that does not
use a public/private key is a cryptographic checksum.
0018. The method of the present invention further Sup
ports the encryption of file characteristics for each file inside
a .7IP file. Current ZIP software programs encrypt only the
contents of the files in a ZIP file. The additional character
istics for each file, Such as its name, size, etc., remain
unencrypted. To remove the possibility that this unencrypted
data for a file could be made available to an unauthorized
user, this information may preferably also be encrypted as an
option. This additional encryption further increases the level
of security available to ZIP file users.
0019 Public keys such as those associated with digital
certificates used for encrypting ZIP file data preferably
resides on a user's local computer in a file or a database, on
an external device Such as a Smart Card or other removable
device, or in a shared data repository Such as a directory
service served by an LDAP server.
0020. The present invention also provides multiple meth
ods of checking whether a digital certificate is valid for use.
These methods preferably include, but are not limited to
Standard methods of certificate validation, Such as Searching
certificate revocation lists (CRL), certificate trust lists
(CTL), and online checking via the internet using Online
Certificate Status Protocol (OCSP) or Simple Certificate
Validation Protocol (SCVP).
0021. The method of the present invention also prefer
ably defines data Storage locations within the established
.ZIP file format specification for storing information on the
encryption parameters used when a file was encrypted and
on the keys needed when a file is to be decrypted. One Such
example of these data Storage locations includes a field to
identify that a new Strong encryption method has been
applied to a file in the ZIP file. The strong encryption record
will be defined within a Central Directory storage area for
each encrypted file. The Central Directory is a Storage
location defined in the ZIP file format which serves as a
table of contents for the entire ZIP file. An entry is made
into the Central Directory for each file added to a ZIP file.
A decryption record will be defined for storing the informa
tion needed to initialize and Start the decryption process.
This decryption record will be placed immediately ahead of
the encrypted data for each file in a ZIP file. This example
is not the only method of Storing this data as other Storage
methods can be defined.

US 2005/0091489 A1

0022. The present invention provides many advantages
or benefits over the prior art. One benefit is the ability to use
multiple encryption methods instead of Supporting only a
Single encryption method. A Second benefit is the ability to
use a mixture of Symmetric and asymmetric encryption in a
single, secure ZIP file. A third benefit is that the encryption
of individual files using advanced public/private keys pro
vides a Significantly higher level of Security to computer
users. A fourth benefit is that encryption of ZIP file data can
be implemented using a range of commonly available cryp
tographic toolkits. A fifth benefit is that the present invention
Supports using packaged or readily available encryption
algorithms to provide State-of-the-art Security. A sixth ben
efit is the availability of non-repudiation using digital Sig
natures through the use of public/private key technology. A
Seventh benefit is that the invention ensures a high degree of
interoperability and backward compatibility by extending
the current ZIP file format.

0023 Various other features, objects, and advantages of
the invention will be made apparent to those skilled in the art
from the following detailed description, claims, and accom
panying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

0024 FIG. 1 is a record layout of a prior art.ZIP file prior
to the present invention.
0025 FIG. 2 is a record layout of a ZIP file in accor
dance with the present invention.

DETAILED DESCRIPTION OF THE
INVENTION

0.026 Referring now to the drawings, FIG. 1 shows the
file format for the standard ZIP file, in existence prior to the
present invention. FIG. 2 illustrates the preferred general
record layout of a ZIP file in accordance with the present
invention.

0027. The newly modified ZIP file format specification
according to the present invention, as published by
PKWARE, Inc., is described in a document entitled APP
NOTE.TXT, which is attached hereto and incorporated
herein by reference. The new version of the ZIP file format
provides an implementation of the use of Strong encryption
based on a key generated using a password. This implemen
tation constitutes one example of a structure and layout of
the records and fields Suitable for processing Secure ZIP
files as defined by the present invention. The complete
description of the conventional or standard ZIP file format
will not be included here Since this information is generally
well known. Only the portions pertaining to the new records
and fields defined by the new format, capable of Storing data
using Strong encryption, will be discussed in detail.
0028. The present invention extends the original ZIP file
format with the addition of new Storage records to Support
the use of Strong encryption methods including, as described
above, both public/private key, or asymmetric, methods, and
password-based, or Symmetric, methods, and the capability
to use a mixture of Symmetric and asymmetric methods.
0029. An example of implementing a new strong encryp
tion method is discussed below. This example identifies
several new records and fields that must be defined within
the ZIP file format.

Apr. 28, 2005

0030) A new General Purpose Bit Flag having a
hexadecimal value of 0x0040 to be set in both the
Local and Central Record Headers when strongly
encrypting a file.

0031. A new Decryption Header to be located imme
diately ahead of and adjacent to the compressed data
stored for each file.

0032) A new Extra Field record definition with an ID
having a hexadecimal value of 0x0017 to be inserted
into the Central Record Header for each file.

0033. When using these new fields for strongly encrypt
ing files, the following actions are indicated.

0034) 1. If the General Purpose Bit Flag value of
0x0040 is set to indicate strong encryption was
applied to a file, the General Purpose Bit Flag value
of 0x0001 will also generally be set.

0035 2. Files having a size of Zero bytes (an empty
file) should not generally be encrypted. AS indicated,
however, the file characteristics of the archived files
may be encrypted, even if the file is of Zero length
and is not itself encrypted.

0036) 3. The contents of the field labeled Version
Needed to Extract in both the Local and Central
Record Headers should preferably be set to the
decimal value of 50 or greater. If the AES encryption
method is used, the contents of the field labeled
Version Needed to Extract in both the Local and
Central Record Headers should preferably be set to
the decimal value 51 or greater.

0037 4. Data encryption should preferably be
applied after a file is compressed, but encryption can
be applied to a file if compression is not used. If
compression is not applied to a file, it is considered
to be stored in the ZIP file.

0038 5. If encryption is applied using digital cer
tificates, a list of intended recipients will be con
Structed. Each entry in the recipient list identifies a
perSon whose public key has been used in the
encryption process for a file and who is allowed to
decrypt the file contents using their private key.

0039) Record Definitions:

New Decryption Header (NDH

Size
Value (bytes) Description

IV size 2 Size of custom initialization vectorfsalt,
if 0 then CRC32 + 64-bit File Size
should be used to decrypt data.

IV variable Initialization vectorfsalt (file specific)
which should be used in place of
CRC32 + 64-bit Fle Size

Original Size 4 Original (uncompressed) size of the
following data

Decryption Info. variable Decryption Information

US 2005/0091489 A1

Decryption Information (Details)

0040

Size
Value (bytes) Description

Version (3) 2 Version/Format of decryption information.
AlgID 2 Encryption Algorithm ID
BitLen 2 Bit length of the key
Flags 2 Processing flags
ERD size 2 Size of Encrypted Random Data (ERD)
ERD variable Encrypted Random Data
Recipient Count 4 Number of Recipients
Hash Algorithm 2 Hash algorithm to be used to calculate Public

Key hash (absent for password based
encryption)
Size of Public Key hash (absent for
password based encryption)

variable Recipient List Element (absent for
password based encryption)

Password 2 Size of random password validation data
Validation Data (Includes CRC32 of PVD; >4) MUST be
size multiple of encryption block sizes
Password, variable Password Validation Data (PVD)
Validation Data
CRC32 of PVD 4

Hash Size 2

Recipient List
Element

CRC32 of PVD, used for password
verification when decrypting data

0041 Encryption Algorithm ID (Alg|D) identifies which
of Several possible strong encryption algorithms was used
for encrypting a file in the ZIP file. The strong encryption
algorithms that can be used include but are not limited to
AES, 3DES, 2DES, DES, RC2 and RC4. The use of other
unspecified Strong algorithms for encryption is Supported by
the present invention.

0.042 Hash Algorithm identifies which of several pos
Sible hash algorithms was used for the encryption proceSS
for a file in the ZIP file. The algorithms that can be used
include but are not limited to MD5, SHA1-SHA512. The use
of other unspecified algorithms for hashing is Supported by
the present invention.

0043 Flags

0044) The following values are defined for the processing
Flags.

Name Value Description

0x0001 Password is used
0x0002 Recipient List is used
0x0003 Either a password or a Recipient

List can be used to decrypt a file
0x0007 Both password and Recipient List

are required to decrypt a file. ERD
is encrypted twice by 2
separate keys.

0x000f Both a password and a Recipient
List are required to decrypt a file.
File data is encrypted twice using
2 separate keys.

Ox4000 Specifies 3DES algorithm
is used for MSK

PASSWORD KEY
CERTIFICATE KEY
COMBO KEY

DOUBLE SEED KEY

DOUBLE DATA KEY

MASTER KEY 3DES

Apr. 28, 2005

0045 Recipient List Element

Size
Value (bytes) Description

Combined size of Hash of Public
Key and Simple Key Blob
Hash of Public Key
Simple Key Blob

Recipient Element size 2

Hash Hash Size
Simple key Blob variable

New Decryption Central Record Extra Field
(NDCEF)

0046)

Size
Value (bytes) Description

OxOO17 2 Signature of NDCEF
Data Size 2 Size of the following data (at least 12 bytes)
Version (2) 2 Version/Format of this extra field.
AlgID 2 Encryption Algorithm ID.
BitLen 2 Bit length of the key
Flags 2 Processing flags
Recipient Count 4 Number of Recipients
Hash Algorithm 2 Hash algorithm to be used to calculate Public

Key hash (absent for password based
encryption)

Hash Size 2 Size of Public Key hash (absent for
password based encryption)

Simplified variable Simplified Recipient List Element (absent
Recipient List for password based encryption)
Element

0047 Simplified Recipient List Element

Size
Value (bytes) Description

Hash Hash Hash of Public Key
Size

0048. A simplified recipient list element is defined as a
Subset of a recipient list element and is Stored to provide
redundancy of the recipient list data for the purposes of data
recovery.

0049) Process Flow:
0050. The following is a description of the most preferred
encryption/decryption process for a single file using the
Storage format defined by this example. Any programs,
Software or other processes available to Suitably perform the
encryption/decryption process may be used.
0051 Encryption:

0.052 1. Validate public/private key

0053 2. Calculate file digital signature and time-stamp

0054 3. Compress or Store uncompressed file data

0055 4. Generate a File Session Key (FSK) (see
below)

US 2005/0091489 A1

0056 5. Calculate Decryption Information size
0057 6. Adjust Compressed Size to accommodate
Decryption Information and padding

0.058 7. Save Decryption Information to ZIP file
0059) 8. Encrypt Compressed or Stored File Data

0060) 9. Encrypt file characteristics
0061 Decryption:

0062)
0063)
0.064
0065
0066 5. If Decryption Information is valid, then
decrypt Compressed or Stored File Data

1. Decrypt file characteristics

2. Read Decryption Information from ZIP file

3. Generate FSK (see below)
4. Verify Decryption Information (see below)

0067 6. Decompress compressed data

0068 7. Validate file time-stamp and digital signature

0069 Generating Master Session Key (MSK)
0070) 1. If MASTER KEY 3DES is set, use 3DES
3-key as MSK algorithm, otherwise use Specified algo
rithm.

0071 2. If encrypting or decrypting with a password.

0072)

0073)
0074 2.1.3. Pass calculated hash as argument into a
cryptographic key derivation function or its equivalent.

2.1.1. Prompt user for password

2.1.2. Calculate hash of the password

0075 3. When encrypting using a public key(s).
0076 3.1.1. Call a cryptographic key generation func
tion or its equivalent to generate random key

0077 4. When decrypting using a private key(s).

0078 4.1. Using Recipient List information, locate
private key, which corresponds to one of the public
keys used to encrypt MSK.

0079 4.2. Decrypt MSK

0080 Salt and/or Initialization Vector (IV)
0081) 1. For algorithms that use both Salt and IV,
Salt=IV

0082) 2. IV can be completely random data and placed
in front of Decryption Information

0083) 3. Otherwise IV=CRC32+64-bit File Size
0084 Adjusting Keys

0085 1. Determine Salt and/or Initialization Vector
Size of the key for the encryption algorithm specified.
Usually salt is compliment to 128 bits, so for 40-bit key
Salt size will be 11 bytes. Initialization Vector is usually
used by block algorithms and its size corresponds to the
block size.

Apr. 28, 2005

0.086 2. If Salt size>0 or Initialization Vector size is >0
then set IV to be used by the specified encryption
algorithm.
* When adjusting MSK, if IV is smaller then required Initialization
Vector (or Salt) size it is complimented with 0, if it is larger it is
truncated. For all other operations IV is used as is without any
modifications.

0.087 Generating File Session Key (FSK)
0088 1. FSK<-SHA1(MSKCIV)). Adjust MSK with
IV, and decrypt ERD (Encrypted Random Data). Cal
culate hash of IV+Random Data. Pass calculated hash
as argument into a cryptographic key derivation func
tion or its equivalent to obtain FSK

0089 Verifying Decryption Information
0090) 1. Decryption Information contains variable
length Password Validation Data (PVD).

0091) 2. First Password Validation Data Size-4 bytes
are random data, and last 4 bytes are CRC32 of that
random data This allows verification that the correct
key is used and deters plain text attacks.

0092. The following modifications are used for encrypt
ing and decrypting multiple files.
0093 Multi-File Encryption:

0094) 1.. Generate MSK
0.095 2. For each file follow Encryption steps.

0096) Multi-File Decryption:
0097. 1. Generate MSK from the file Decryption Infor
mation

0.098 2. For each file follow Decryption steps
0099 3. If Decryption Information verification fails go
to Step 1

0100 Alternate storage formats can be defined for imple
menting the flexible security support within ZIP files. One
Such alternative is to use other fields, either existing or
newly defined to denote that a strong encryption method was
applied to a ZIP archive. Another alternative could be to use
additional Storage fields in addition to those defined in the
above example, or to use the fields as defined, but ordered
differently within each record. Still other implementations
may use fewer, or more, records or fields than are defined by
the above example or the records and fields may be placed
in other physical locations within the ZIP file.
0101 Alternate processing methods can also be defined
for implementing the flexible security support within ZIP
files. One Such alternative is to implement the encryption
process for each file using another public/private key tech
nology such as that defined by the OpenPGP Message
Format as documented in RFC 2440. Another alternative
could be to use a more direct form of encryption key
generation where the file Session key is directly used for
encrypting each file. This method would not use the indirect
form described in the above example where the file session
key is derived from a master key.
0102) While the invention has been described with ref
erence to preferred embodiments, it is to be understood that
the invention is not intended to be limited to the specific
embodiments Set forth above. Thus, it is recognized that

US 2005/0091489 A1

those skilled in the art will appreciate that certain Substitu
tions, alterations, modifications, and omissions may be made
without departing from the Spirit or intent of the invention.
Accordingly, the foregoing description is meant to be exem
plary only, the invention is to be taken as including all
reasonable equivalents to the Subject matter of the invention,
and should not limit the scope of the invention set forth in
the following claims.

1. A method of providing access to data in a Zip file
format data container, Said method including:

receiving a data container constructed in accordance with
a Zip file format, Said data container including a first
Set of encrypted data and a Second Set of encrypted
data;

decrypting at least one of Said first Set of encrypted data
and Said Second Set of encrypted data to form decrypted
data, wherein Said decrypting includes decrypting Said
encrypted data using asymmetric decryption; and

providing access to Said decrypted data.
2. The method of claim 1 wherein said first set of

encrypted data is associated with a first data file included in
Said data container and Said Second Set of encrypted data is
asSociated with a Second data file included in Said data
container.

3. The method of claim 1 wherein both said first set of
encrypted data and Said Second Set of encrypted data are
associated with a single data file included in Said data
container.

4. The method of claim 1 wherein said first set of
encrypted data includes first asymmetric key data and Said
Second Set of encrypted data includes Second asymmetric
key data.

5. The method of claim 3 wherein said first set of
encrypted data includes first asymmetric key data and Said
Second Set of encrypted data includes a data file.

6. The method of claim 4 wherein said first asymmetric
key data is not identical to Said Second asymmetric key data.

7. The method of claim 5 wherein at least one of said first
asymmetric key data and Said Second asymmetric key data
is used to decrypt Said data file.

8. The method of claim 1 wherein at least one of said first
asymmetric key data and Said Second asymmetric key data
are derived from a Symmetric key used to decrypt a data file.

9. The method of claim 8 wherein said symmetric key has
a key length of at least 128 bits.

10. The method of claim 8 wherein said symmetric key
has a key length of at least 192 bits.

11. The method of claim 8 wherein said symmetric key
has a key length of at least 256 bits.

12. The method of claim 8 wherein said symmetric key is
Symmetrically decrypted using an AES decryption decoding.

13. The method of claim 8 wherein said symmetric key is
Symmetrically decrypted using a 3DES decryption decod
Ing.

14. The method of claim 8 further including decompress
ing Said data file after decrypting Said data file.

15. The method of claim 14 wherein said data file is
decompressed using a Lempel–Ziv (LZ)-type data decom
pression algorithm.

16. The method of claim 14 wherein said data file is
decompressed using a Deflate-type data decompression
algorithm.

Apr. 28, 2005

17. The method of claim 14 wherein said data file is
decompressed using a Burrows-Wheeler Transform (BWT)-
type data decompression algorithm.

18. The method of claim 8 wherein said data file is not
decompressed.

19. A method of providing access to data in a Zip file
format data container, Said method including:

receiving a data container including first asymmetric key
data, Second asymmetric key data, and an encrypted
data file,

wherein both Said first asymmetric key data and Said
Second asymmetric key data are associated with Said
encrypted data file,

wherein Said data container is constructed in accordance
with a Zip file format;

receiving decryption key input;
combining Said decryption key input with one of Said first

asymmetric key data and Said Second asymmetric key
data to form a decryption key when Said decryption key
input matches an input expected by one of Said first
asymmetric key data and Said Second asymmetric key
data; and

decrypting Said encrypted data file using Said decryption
key to provide access to Said data file.

20. The method of claim 19 wherein said first asymmetric
key data is not identical to said second asymmetric key data.

21. The method of claim 19 further including using said
decryption key input in decrypting Said asymmetric key data
to provide an input into a decryption operation to decrypt
Said encrypted data file.

22. The method of claim 19 wherein said decryption key
input is a private key.

23. The method of claim 19 wherein at least one of Said
first asymmetric key data and Said Second asymmetric key
data are derived from a Symmetric key used to decrypt Said
encrypted data file.

24. The method of claim 23 wherein said symmetric key
has a key length of at least 128 bits.

25. The method of claim 23 wherein said symmetric key
has a key length of at least 192 bits.

26. The method of claim 23 wherein said symmetric key
has a key length of at least 256 bits.

27. The method of claim 23 wherein said symmetric key
is Symmetrically decrypted using an AES decryption decod
Ing.

28. The method of claim 23 wherein said symmetric key
is Symmetrically decrypted using a 3DES decryption decod
Ing.

29. The method of claim 23 further including decom
pressing Said encrypted data file after decrypting Said data
file.

30. The method of claim 29 wherein said data file is
decompressed using a Lempel–Ziv (LZ)-type data decom
pression algorithm.

31. The method of claim 29 wherein said data file is
decompressed using a Deflate-type data decompression
algorithm.

32. The method of claim 29 wherein said data file is
decompressed using a Burrows-Wheeler Transform (BWT)-
type data decompression algorithm.

US 2005/0091489 A1

33. The method of claim 23 wherein said data file is not
decompressed.

34. A method of providing access to data in a Zip file
format data container, Said method including:

receiving a data container including:
first asymmetric key data;
Second asymmetric key data; and
an encrypted data file,
wherein Said first asymmetric key data is derived from

an asymmetric encryption, using a first asymmetric
key, of Symmetric key data formed from a Symmetric
key used to encrypt said encrypted data file,

wherein Said Second asymmetric key data is derived
from an asymmetric encryption, using a Second
asymmetric key, of Said Symmetric key data formed
from Said Symmetric key used to encrypt Said
encrypted data file

wherein Said data container is constructed in accordance
with a Zip file format; and

providing the option of:

using Said first asymmetric key data to recover Said
Symmetric key to decrypt Said encrypted data file when
a first desired input is received; and

using Said Second asymmetric key data to recover Said
Symmetric key to decrypt Said encrypted data file when
a Second desired input is received.

35. The method of claim 34 wherein said decryption key
input is a private key.

36. The method of claim 34 wherein said first asymmetric
key data is not identical to Said Second asymmetric key data.

37. The method of claim 34 wherein said symmetric key
has a key length of at least 128 bits.

38. The method of claim 34 wherein said symmetric key
has a key length of at least 192 bits.

39. The method of claim 34 wherein said symmetric key
has a key length of at least 256 bits.

40. The method of claim 34 wherein said symmetric key
is Symmetrically decrypted using an AES decryption decod
Ing.

41. The method of claim 34 wherein said symmetric key
is Symmetrically decrypted using a 3DES decryption decod
Ing.

42. The method of claim 34 further including decom
pressing Said data file after Said data file is decrypted.

43. The method of claim 42 wherein said data file is
decompressed using a Lempel–Ziv (LZ)-type data decom
pression algorithm.

44. The method of claim 42 wherein said data file is
decompressed using a Deflate-type data decompression
algorithm.

45. The method of claim 42 wherein said data file is
decompressed using a Burrows-Wheeler Transform (BWT)-
type data decompression algorithm.

46. The method of claim 34 wherein said data file is not
decompressed.

47. A method of providing access to data in a data
container, Said method including:

Apr. 28, 2005

receiving a data container designed for containing com
pressed files, Said data container including a first Set of
encrypted data and a Second set of encrypted data;

decrypting at least one of Said first Set of encrypted data
and Said Second Set of encrypted data to form decrypted
data, wherein Said decrypting includes decrypting Said
encrypted data using asymmetric decryption; and

providing access to Said decrypted data.
48. The method of claim 47 wherein said first set of

encrypted data is associated with a first data file included in
Said data container and Said Second Set of encrypted data is
asSociated with a Second data file included in Said data
container.

49. The method of claim 47 wherein both said first set of
encrypted data and Said Second Set of encrypted data are
asSociated with a single data file included in Said data
container.

50. The method of claim 47 wherein said first set of
encrypted data includes first asymmetric key data and Said
Second Set of encrypted data includes Second asymmetric
key data.

51. The method of claim 49 wherein said first set of
encrypted data includes first asymmetric key data and Said
Second Set of encrypted data includes a data file.

52. The method of claim 50 wherein said first asymmetric
key data is not identical to Said Second asymmetric key data.

53. The method of claim 51 wherein at least one of Said
first asymmetric key data and said second asymmetric key
data is used to decrypt Said data file.

54. The method of claim 47 wherein at least one of Said
first asymmetric key data and Said Second asymmetric key
data are derived from a symmetric key used to decrypt a data
file.

55. The method of claim 54 wherein said symmetric key
has a key length of at least 128 bits.

56. The method of claim 54 wherein said symmetric key
has a key length of at least 192 bits.

57. The method of claim 54 wherein said symmetric key
has a key length of at least 256 bits.

58. The method of claim 54 wherein said symmetric key
is Symmetrically decrypted using an AES decryption decod
Ing.

59. The method of claim 54 wherein said symmetric key
is Symmetrically decrypted using a 3DES decryption decod
Ing.

60. The method of claim 54 further including decom
pressing Said data file after decrypting Said data file.

61. The method of claim 60 wherein said data file is
decompressed using a Lempel–Ziv (LZ)-type data decom
pression algorithm.

62. The method of claim 60 wherein said data file is
decompressed using a Deflate-type data decompression
algorithm.

63. The method of claim 60 wherein said data file is
decompressed using a Burrows-Wheeler Transform (BWT)-
type data decompression algorithm.

64. The method of claim 54 wherein said data file is not
decompressed.

65. The method of claim 47 wherein said data container
is constructed in accordance with a Zip file format.

66. A method of providing access to data in a data
container, Said method including:

US 2005/0091489 A1

receiving a data container including first asymmetric key
data, Second asymmetric key data, and an encrypted
data file,

wherein both Said first asymmetric key data and Said
Second asymmetric key data are associated with Said
encrypted data file,

wherein Said data container is designed for containing
compressed files, and

receiving decryption key input;
combining Said decryption key input with one of Said first

asymmetric key data and Said Second asymmetric key
data to form a decryption key when Said decryption key
input matches an input expected by one of Said first
asymmetric key data and Said Second asymmetric key
data; and

decrypting Said encrypted data file using Said decryption
key to provide access to Said data file.

67. The method of claim 66 wherein said first asymmetric
key data is not identical to Said Second asymmetric key data.

68. The method of claim 66 further including using said
decryption key input in decrypting Said asymmetric key data
to provide an input into a decryption operation to decrypt
Said encrypted data file.

69. The method of claim 66 wherein said decryption key
input is a private key.

70. The method of claim 66 wherein at least one of Said
first asymmetric key data and said second asymmetric key
data are derived from a Symmetric key used to decrypt said
encrypted data file.

71. The method of claim 70 wherein said symmetric key
has a key length of at least 128 bits.

72. The method of claim 70 wherein said symmetric key
has a key length of at least 192 bits.

73. The method of claim 70 wherein said symmetric key
has a key length of at least 256 bits.

74. The method of claim 70 wherein said symmetric key
is Symmetrically decrypted using an AES decryption decod
Ing.

75. The method of claim 70 wherein said symmetric key
is Symmetrically decrypted using a 3DES decryption decod
Ing.

76. The method of claim 70 further including decom
pressing Said encrypted data file after decrypting Said data
file.

77. The method of claim 76 wherein said data file is
decompressed using a Lempel–Ziv (LZ)-type data decom
pression algorithm.

78. The method of claim 76 wherein said data file is
decompressed using a Deflate-type data decompression
algorithm.

79. The method of claim 76 wherein said data file is
decompressed using a Burrows-Wheeler Transform (BWT)-
type data decompression algorithm.

80. The method of claim 70 wherein said data file is not
decompressed.

81. The method of claim 66 wherein said data container
is constructed in accordance with a Zip file format.

82. A method of providing access to data in a data
container, Said method including:

Apr. 28, 2005

receiving a data container including:
first asymmetric key data;
Second asymmetric key data; and
an encrypted data file,
wherein Said first asymmetric key data is derived from

an asymmetric encryption, using a first asymmetric
key, of Symmetric key data formed from a Symmetric
key used to encrypt Said encrypted data file,

wherein Said Second asymmetric key data is derived
from an asymmetric encryption, using a Second
asymmetric key, of Said Symmetric key data formed
from Said Symmetric key used to encrypt Said
encrypted data file

wherein Said data container is designed for containing
compressed files, and

providing the option of:

using Said first asymmetric key data to recover Said
Symmetric key to decrypt Said encrypted data file when
a first desired input is received; and

using Said Second asymmetric key data to recover Said
Symmetric key to decrypt Said encrypted data file when
a Second desired input is received.

83. The method of claim 82 wherein said decryption key
input is a private key.

84. The method of claim 82 wherein said first asymmetric
key data is not identical to Said Second asymmetric key data.

85. The method of claim 82 wherein said symmetric key
has a key length of at least 128 bits.

86. The method of claim 82 wherein said symmetric key
has a key length of at least 192 bits.

87. The method of claim 82 wherein said symmetric key
has a key length of at least 256 bits.

88. The method of claim 82 wherein said symmetric key
is Symmetrically decrypted using an AES decryption decod
Ing.

89. The method of claim 82 wherein said symmetric key
is Symmetrically decrypted using a 3DES decryption decod
Ing.

90. The method of claim 82 further including decom
pressing Said data file after Said data file is decrypted.

91. The method of claim 90 wherein said data file is
decompressed using a Lempel–Ziv (LZ)-type data decom
pression algorithm.

92. The method of claim 90 wherein said data file is
decompressed using a Deflate-type data decompression
algorithm.

93. The method of claim 90 wherein said data file is
decompressed using a Burrows-Wheeler Transform (BWT)-
type data decompression algorithm.

94. The method of claim 82 wherein said data file is not
decompressed.

95. The method of claim 82 wherein said data container
is constructed in accordance with a Zip file format.

k k k k k

