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APPARATUS AND METHOD FOR IMAGE PROCESSION

FIELD OF THE INVENTION

The present invention relates to image storage methods generally and to permutations of
pixel storage order in particular.

BACKGROUND OF THE INVENTION

Digitized images are rectangular arrays of pixel data which are usually acquired serially from
a scanning device. Some color scanning devices present acomplete pixel at a time, comprising
three colors, typically cyan, yellow and magenta; other scanning devices present, at one time, a
single row of partial pixels of one of the three colors, and alternate rows among the three colors.

It is known in the prior art to store digitized images in sequential format. The images are typi-
cally stored on magnetic disks, in sequentially written blocks of typically between 512 and 8192
bytes, where one block is the minimum number of bytes which can be read during one disk
access. This block storage structure is only optimal when all the data accessed on each block
is utilized. For data scattered in parts of many blocks, access becomes expensive in thai many more

disk reads are necessary to retrieve the desired information than would be needed if the desired
data were clustered in complete blocks.

Computer memory is random access; sequential access and random access to computer
memory each takes generally the same length of time which is typically much less than disk
access time. Unfortunately, computer memory storage is much smaller than disk storage and thus,
cannot be used to store and to access digitized images of many Mbytes.

Digitized images are usually displayed on Cathode Ray Tube (CRT) devices having a reso-
lution of 75 - 100 pixels perinch. Since most scanners scan at a resolution of about 300 pixels

per inch, displaying a digitized image requires a reduction of the volume of information by a
factor typically varying between 9 and 16.
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SUMMARY OF THE INVENTION

It is an object of the present invention to utilize the properties of both disk storage and com-
puter memory to store digitized images.

Therefore, there is provided in accordance with the present invention, an image processing
system comprising image acquisition apparatus for acquiring pixels of a digital image, permutation
apparatus for receiving the pixels subsequent to their acquisition by the image acquisition apparatus
and for ordering the pixels, thereby to reorder the digital image and storage apparatus for receiving
and for storing the mulfiplicity of abstracted images.

Further, there is provided in accordance with an embodiment of the present invention an image
processing system comprising an image acquisition apparatus for acquiring pixel's of a digital image,
permutation apparatus fer receiving the pixels subsequent to their acquisition by the image acquisi-
tion apparatus and for ordering the pixels thereby to reorder the digital image into a multiplicity
of abstracted images at a reduction factor and storage apparatus for receiving and for storing the
multiplicity of abstractedsimages.

Additionally, there is provided in accordance with an embodiment of the present invention an
image processing system comprising image acquisition apparatus for acquiring pixels of a digital
image, permutation apparatus for receiving the pixels subsequent to their acquisition by the image
acquisition apparatus, for ordering the pixels thereby to reorder the digital image into a plurality of
abstracted images at & relatively large reduction factor and for combining the abstracted images
into a multiplicity of sets of the abstracted images combinable into a plurality of abstracted
images at a plurality of different relatively small reduction factors and storage apparatus for receiv-
ing and for storing the digital image in the multiplicity of sets.

Additionally, in accordance with any of the embodiments of the present invention, the permuta-
tion apparatus may comprise an apparatus for dividing the digital image into a plurality of bands
comprising & predetermined number of rows of the digital image and apparatus for operating on

the plurality of bands in a band by band manner. The apparatus for operating operates separately
on each band.

Further, in accordance with any of the embodiments of the present invention, portions of the

bands are written by the apparatus for operating to the storage apparatus when the portions of the
band fill at least one file system block.

There is provided in accordance with the present invention, an image processing method
including the steps of acquiring pixels of a digital image, receiving the pixels subsequent to their
acquisition in the step of acquiring and ordering the pixels thereby to reorder the digital image into
a muttiplicity of abstracted images and storing the multiplicity of abstracted images.

There is provided in accordance with an embodiment of the present invention an image pro-
cessing method including the steps of acquiring pixels of a digital image, receiving the pixels subse-
quent fo their acquisition in the step of acquiring and ordering the pixels thereby to reorder the digital
image into a plurality of abstracted images at a relatively large reduction factor and combining said
abstracted image into a multiplicity of sets of the abstracted images combinable into a plurality of
abstracted images at a plurality of different relatively small reduction factors and storing the digital
image in the multiplicity of sets.
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There is provided in accordance with an embodiment of the present invention, an image pro-
cessing method including the steps of of sequentially acquiring pixels of a digital image, sequentially
receiving the pixels subsequent to their acquisition in the step of sequentially acquiring and ord-
ering the pixels thereby to reorder the digital image into a multiplicity of abstracted images at a
reduction factor and of storing the multiplicity of abstracted images.

Moreover, there is provided in accordance with the present invention, an image transformation
and rotation method including the steps of receiving an image stored in a permuted format,
transforming the image in a permuted format to a tile format via an inverse transformation of the
permuted format to a sequential format and via a forward transformation from the sequential for-
mat to the tile format, of rotating the tile format image by rotating the location of each tile of the
tile format im: -, utilizing an amount of computer memory less than the image size and retransform-
ing the rotated tile format image to the permuted format via an inverse transformation from the

tile format to the sequential format and via a forward transformation from the sequential format
to the permuted format.

Further, in accordance with the present invention, the step of rotation includes the steps of
receiving and buffering a number of tiles of a source image to be rotated, of writing to a storage
medium a different number of tiles of a destination image that are fully defined by rotations of the

buffered tiles of a source image, and repeating the steps of receiving and writing until the source
image no longer contains tiles.

There is provided in accordance with an embodiment of the present invention an image rota-
tion method including the steps of receiving and buffering a number of tiles of a source image to be
rotatec. and of writing to a storage medium a different number of tiles of a destination image that are
fully defined by rotations of the buffered tiles of a source image, and repeating the steps of receiving
and writing until the source image no longer contains tiles.

There is provided in accordance with the present invention, an image processing system
comprising an image acquisition apparatus for acquiring pixels of a digital image, apparatus for
dividing the digital image into a plurality of bands each comprising a predetermined number of rows,

and permutation apparatus for operating on the plurality of bands in a band by band manner and for
reordering the location of the pixels.

Further, there is provided in accordance with present invention, an image procsssing system
comprising a storage apparatus for receiving and for storing the bands in a band by band manner.
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BRIEF DESCRIPTION OF THE DRAWINGS

The present mventlon will be understood and appreciated more fully from the followmg
detailed description taken in conjunction with the drawings in which:

Fig. 1 is a block diagram illustration of an image storage system using the image storage
~method of Fig. 2B;

Fig. 2A is-a pictorial illustration of a sequentially stored image;

Fig. 2B is a pictorial illustration of a permutation based image storage method‘ con-
structed and operative in accordance with the present invention;

Fig. 2C is a pictorial illustration of an alternative view of the permutation based image
storage method of Fg 2B.

' Fig. 3 is.a Venn dnagram illustration of the regions of overlap between multiple abstractlon
levels useful in an alternate embodiment of Fig. 2;

Fig. 4 is a pictorial illustration of an order for storing the regions of overlap of Fig. 3;

Fig. 5 is a pictorial illustration of an alternative order for storing the regions of overlaﬁ of Fig.
3; , . L |
Fig. -6 is a pictorial illustration of a method for transforming an image stored in one format,
or permutation, to an image stored in another format;

Fig. 7isa piétori;a"l illustration of a tile format permutation useful for rotating stored images;

Fig. 8 isa picta;jal ilustration of a method for rotating images 90° using the tile format of
Fig. 7, : :

Fig. 9 is a pictorial illustration of a method for rotating images 45° usmg the ftile format of
Fig. 7; and

Fig. 10 is a pictorial illustration of a band permutation image storage method useful in
the image storage method of Figs. 2.

DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT :

Reference is now made to Fig, 1 which illustrates an image acquisition and storage system
using the image storage method of the present invention. The system is based on a variation
of standard direct memory address (DMA) techniques and comprises an image acquisition unit 110,
typically a scanner or a CCD camera, for acquiring a digitized image and a scanner acquisition
unit 112, similar in operation to a DMA controller, for receiving pixels of the digitized image, for per-
muting the add‘resse‘s”of the pixels within the digitized image according to the method of the
present invention, and for transmitting the permuted pixels to temporary storage in a computer
memory 114. The system additionally comprises a Central Processing Unit (CPU) 116, such as the
80386 microprocessor from Intel Corp., for directing the scanner acquisition unit 112. Since the
computer memory 114 has a limited size, typically Iess than 10 Megabytes, which is generally
significantly smaller than the size of the digitized |mage typically in the tens of Megabytes, the
memory 114 cannot hold the entirety of the permuted image. Thus, the permuted pixels tem-
porarily stored in memory 114 are typically periodically transferred to a storage medium 118, via a
storage medium DMA controller 119, in parallel with the entering of other permuted pixels into
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memory 114. The storage medium 118 is operative for generally longer term storage. '

Scanner acquisition unit 112 permutes the addresses of the pixels according to a mapping
transformation which typically is chosen to optimize frequent operations on the digitized image,
such as reducing the size of the image in order to display it on a display device.

The mapping transformation is typically a permutation of the set A=(0,1,2,.N-1) onto itself. A
permutation P is denoted i—p; where i is an element of the set of initial pixel addresses, p; is a
pixel address to which the ith initial pixel is permuted, known as a permuted pixel address, and N

is the number of pixels in the image. Equation 1 presents a representation for the permuta-
tion P.

(1)

The upper row of the notation typically indicates the initial pixel addresses i and is denoted
T(P); the lower row of the notation typically indicates the permuted pixel addresses p;. The nota-
tion specifies that any untransformed pixels i (i.e. any pixels for which p;=i) in the permutation P
are not included in the representation, but they are present in the mapping. Moreover, a per-
mutation P operates on the entire digitized image.

012 -+ N-1
~ (po p1 P2 "t DPN-1

It will be understood that the permutational transformations are invertible and that they
do not perform any compression or expansion of the image.

The smallest set of sequential pixel addresses, known as an interval, that contains TP)is
typically called P's band, b(P). For example, let C be the transformation given in equation 2.

20 35 ‘
C=l35 29 t)
T(C) accordingly contains the addresses {20,35} and the band 5(C) is the interval [20,...,35]. A
further example of a band &(P) is shown in Fig. 10 which illustrates a digitized image, denoted

120, organized into bands, denoted 122a-e. Each band 122, as mentioned hereinabove, is typically

comprised of a predetermined interval of pixel addresses of the image 120. Moreover, the bands
122 do not overlap with each other.

Thus, it is possiblé to define non-overlapping (i.e. having disjoint sets b(P;) ) transformations
P; whose bands, for the example shown in Fig. 10, are 122a-e. It will be appreciated that the
number of non-overlapping transformations depends on the number of bands 122 chosen and is
typically denoted by n,. A transformation P for the entire image 120 is the product of the non-
overlapping transformations P '; as defined in equatio: 3.

P=P,-Py---P,. (3)

The transformations P; are typically related to the transformation P, by the addition of a
base value ;. If P, is defined by i—p,;, then P; is defined by

i'l'(.‘j - pli+cj. (4)

In other words, each transformation P; is the transformation P, shifted by the base value ¢j.
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For example, the permutation

[012345678910-11121314]

4231097865141213 1110 )

can be written as the product of three non-overiapping transformations,

01234} 156789 (10111213 14
E=E1‘E2'E3= . .

423107197865/ (1412131110 (6)

The bands associated with each permutation E; are the intervals

b(E,)=10.4]
b(E;)=1[5.9] )

b(E;)=1[10.14)
The base values c; of each band is just
c1=05;c0=5;¢c3=10 - (8)
The transformation E can then be seen to obey equation (4) which in this case is written:
ite;—ej+c, ()
where ey =4, e 1=2, €, =3, e, 3=1, €, 4=0.

In accordance with a preferred embodiment of the present invention and as mentioned
hereinabove, the scanner acquisition unit 112 receives a pixel value J; from location i of the digi-
tized image 120 and stores the pixel value in permuted location z;=p;+g, of memory 114, where g, is
the starting memory location for band b. The permutation is typically performed according to a
transformation P; by an address generating routine G (P;), described in more detail hereinbelow.
Upon terminatioh of the permutation of the entirety of one band 122, the portion of the permuted
band and any previously unwritten portions of previous bands still stored in memory 114 which
comprise an integral multiple of blocks of data is written to storage medium 118. The remaining
portion of the permuted band is typically written to storage medium 118 only upon termination of
the permutation of the next band 122. It is a feature of the present invention that the system of Fig. 1
writes a block of data to the storage medium 118 typically only when the block of data is full. It is an
additional feature of the present invention that the permutation operation does not significantly slow
down the writing to the storage medium versus writing in a unpermuted manner.

The acquisition and permutation of a second band 122 of pixel values can be performed in

parallel with the write operation for a first already permuted band. This parallel reading and
writing is known as double buffering.

For a double buffering scheme which neglects block size, of storage medium 118, memory
114 is typically divided into two buffers. Each buffer is minimally the size of one permutation P;.
The size of a permutation is defined as the number of elements in a band.

For ;storage medium 118 organized in blocks, typically of a predetermined size B, the
minimum size of memory 114 for a double buffering scheme is typically twice the size of the
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permutations P; plus twice the size B of one block. The addition of 2B is necessary because the
bands may not be block aligned.

it will be appreciated that the maximum data buffer size is principally dependent on the size
of the band 122 and secondarily dependent on both the block size, B, and the anticipated location
of the band on storage medium 118. It is not dependent on the complexity of the transformation.

As mentioned hereinabove, an address generating routine G (P) is defined which generates
the permuted location p; in memory 114 for each pixel as it arrives sequentially. The address
generating routine G (P) is less general than the permutation P in that the address generating rou-
tine G(P) is a routine which produces the permuted addresses sequentially, on successive routine

executions, whereas the permutation P is a transformation which will produce any permuted
address given its address as an argument.

According to a preferred embodiment of the present invention, the definition of the permu-
tation P, and accordingly of permutation P, is typically chosen to reduce the number of Vo opera-
tions necessary to perform common processing operations on the digitized image 120. For exam-
ple, the resolution of a typical CRT monitor is 75 pixels per inch whereas the typical resolution of a
digitized 8 1/2 in. by 11 in. image is 300 pixels per inch. Thus, typically only 1/16 of a stored image
120 can be displayed at one time on an 8 1/2 in. by 11 in. CRT monitor.

In order to display the image 120, it is typically abstracted by a reduction factor r, that is, the

displayed image includes every r th pixel of every r th row. For the abovementioned example, the
reduction factor r is set to 4.

According to a preferred embodiment of the invention, the permutation P is typically defined
such that the full-size image is stored as r? smaller images, known as abstracted images, that each
have 1/r the number of both rows and columns. The full-size image is stored in the band structure
described hereinabove where every band is organized into r2 abstracted bands and where each
abstracted band is written to the storage medium 118 as a continuous whole. An abstracted image
can thus be read by reading only those blocks belonging to the abstracted bands comprising the
abstracted lmage It will be appreciated that the abovementioned embodiment presents a savings

of generally r?, neglecting disk granularity, over reading the entirety of the image and subsequently
abstracting it.

Each abstracted image comprises every rth pixel of every r th row of the full-size image,
but the initial pixel of each abstracted image differs among abstracted images. If the leftmost and
topmost pixel is defined two-dimensionally as pixel (0,0) where the location numbers increase to the
right and down, the initial pixels are chosen from the pixels belonging to the square whose

corners are the pixels (0,0), (0,r-1), (r-1,0) and (~1,r-1). In other words, the abstractions differ
by a two- dimensional phase.

As mentioned hereinabove, each band 122 of the digitized i image 120 is typically divided
into r2 abst:icted bands where an abstracted band comprises only those elements of the band
122 belonging to one of the r? abstractions. Moreover, the number of rows and columns of the
band 12z are typically multiples nr and mr, respectively, of r. The size of the abstracted band
is mn and the size of band 122 is r? times the size of the abstracted band, or mnr2. If enough

memory 114 exists to store the entire image, n can be chosen so the entire image will occupy one
band.
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For each band, the incoming pixels belonging to asingle abstracted band are located, in
order, in a single continuous area of memory 114.

Equations (10a-e) present the permutation equation P, of the first band 122 of image 120.

0.=imodr : (10a)
6, = LJ modr (10b)
| rm
A= im"rd””J (10¢)
=i
==5 (10)
pi=mn(6,+r0,) + A, + mh, (10e)

Where | - - - | is the floor function. In equations (11a-e) 6, is the column geometric phase of pixel i,
6, is the row geometric phase of pixel i, A, is the column within the abstracted band of pixel i, A, is
the row within the abstracted band of pixel i. Equations (11a-e) comprise the inversion formula for
converting permuted indices into sequential indices.

"mOd
8= [” """J (11a)
nm
= | P
A.=p; modm (11¢)
_ p; mod mn
A= [-———m J (11d)
i=0,+mr6, +rA, +r’mk, (11e)

Software for the éddress generating routine, the permutation formula, and the inversion for-
mula, written inthe C++ l‘énguage, are found in Annex A. The address generating routine is called
next and the routine that produces the permutation function is called q. The address inversion
generating routine is called inext and the inversion permutation function is presented in ginv. A
test program, called gatest, to check the the equality of the address generating routines and the
address permutation functions, and code to check that the address inversion permutation function
correctly invert the address permutation function, are also included in Annex A.

Note that,- although the address generating routine is complicated, it requires no multiplica-
tion operations, other than of constants which can be precomputed Thus, the address generating

routine is typically fast enough “to‘permute the address for a first pixel before scanner 110 acquires
a second pixel.
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Fig. 2A illustrates a sequentially received image and Fig. 2B illustrates the abovedescribed
permutation definition for some abstractions of one 12x16 band of an image 130 abstracted by 4.
The number of rows nr in a single band is 12, where  is 3, and the number of columns mr is 16,
where m is 4. Thus, the size mn of an abstracted band is 12 pixels.

The band 131 will be abstracted into 16 abstracted bands where each of the 16 abstracted
bands is referred to by two indices X,y representing its initial pixel, or geometric phase. If each

abstracted image is denoted by A, then A(0,0) is the abstracted image which includes the pixels
(0,0), (0.4), (4,0), etc..

Fig. 2B shows some of the 16 abstracted bands. Five of the abstracted bands are labslled
according to the abstracted images A(x, ) to which they belong and the pixels stored in them are
indicated. In the interests of Clarity, the remaining abstracted bands are not filled in nor are they
labelled. Fig. 2B illustrates the storage order of the abstracted bands on the storage medium 118.
Fig 2C illustrates an alternative view of the abstracted bands shown in Fig. 2B wherein each

abstracted band is shown as a rectangle corresponding to the original full scale image shown In Fig.
2A.

As mentioned hereinabove, the pixels belonging to an abstracted band are stored in a con-
tinuous area of memory 114. If the pixel 0, the first pixel of the abstracted band belonging to A(0,0),
is stored in memory location 0 labelled 0, then the second pixel of the abstracted band of A(0,0),
pixel 4, is stored in memory location 1 labelied 1. The memory locations for some indicative pixels
are marked on Fig. 2B. If pixels are stored in more than 1 memory location then the. memory loca-

tions indicated is understood to be multiplied by the number of memory locations needed to store a
pixel in actual memory address caiculations.

The first pixel of the abstracted band of A(1,0), pixel 1, is typically stored in the first location
after the end of the abstracted band belonging to A{(0,0). Since the size of each abstracted band
is 12, the first location of the abstracted band belonging to A(1,0) is location 12. Accordingly, the

abstracted band of A(2,0) begins in location 24, and the abstracted band belonging to A(0,1)
begins in location 48.

As mentioned hereinabove, abstracted images A(x,y) each comprise 1/r2 of the pixels in
image 130 but differ by a two-dimensional phase. It can be seen from Fig. 2B that the pixels of
abstracted band A(0,0) come from the first, fifth, ninth and thirteenth columns of the first, fifth and
ninth rows of band 130 whereas the pixels of abstracted band A{3,2) come from the fourth,
eighth, twelfth and sixteenth columns of the third, seventh and twelfth rows of band 130.

For the example in Fig. 2B, for the pixel 73, i=73. Equations (10a-e) will give the results 6,=1,
6,=0, A.=2, =1 and p;,=18. Pixel 73 is in fact in the abstraction having the phase (1,0) and within
its abstracted it is in column 2, row 1 (see Fig. 3C). Pixel 73 is in the 18th location sequentially from

the first stored pixel stored at location 0. Using the inverse equations (11a-e) with p,=18 we obtain
6.=1, 6,=0, A.=2, A,=1 and i=73.

It will be appreciated that if image 130 comprised more than one band, then the pixels belong-
ing to the other bands would be stored in memory 114 in a manner similar to that described
hereinabove. If double buffering is used, the pixels belonging to a second band are stored in the
second buffer of memory 114 while the pixels already stored in the first buffer are being written to
Storage medium 118. For image 130 of more than one band, A(x,y) comprises more than the
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one abstracted band shown with respect to Fig. 2B.

An alternative émbodiment of the invention defines the permutation P such that the"digié
tized image is organized according to a multiplicity of reduction factors. For example, it may be
desired to be able to abstract an image at a range of small reduction factors 2, 3, 4, 5, and 6,
rather than the fixed factor 4 in the previous embodiment. To do so, a large reduction factor is
found which is the least common multiple of the entirety of small reduction factors. For the example
given, the large reduction factor might be 60 since each of 2, 3, 4, 5,and 6 are factors of 60. If it is
desired to store the image according to the previous embodiment, the image would have to be
stored as 3600 abstracted images. However the abstracted images of the different small reduction
factors are not disjoint with respect to each other. Thus, an alternative embodiment of the present
invention discloses a permutation P which facilitates access to the multiplicity of abstracted images
at the small reduction factors by utilizing regions of overlap beiween them.

The following discussion uses an example of a large reduction factor of 60 but should not
be construed to limit the invention to that example reduction factor.

To design the permutation P, the abstracted images at the smaller reduction factors are
calculated from the 3600 possible abstracted images. An abstraction set S, is defined such that its

elements are ;i"lxels belonging to an abstracted image at reduction tactor r which begins at the (0,0)
pixel.

The intersections of the five abstraction sets S, §s, S4, S5 and S¢ are shown in a Venn
diagram in Fig. 3. A multiplicity of regions or subsets, denoted S,, - - - S, on Fig. 3, are shown.
Subsets S, Sy, S, Sa, S., Sy, S, and S, are regions of overiap and belong to a multiplicity of sets; the
remaining subsets, §;, §; and S;, are independent regions which belong to the sets S5, S5 and
§,, respectively. Subsets S,,, - - - ,S; are defined as follows:

S:=83n8S,nNSs

Sp=(83NSy)-Ss

S:=EsNS4)-8,

Sa=@S4—S85)—-8;
Se=((S2-S4) N Ss5)-S3
S,=((S2—S4)nS3)-S5 (12)
S;=(S3NSs)NS)-8,

Si=(83nS8s5)-8S,

§i=(S3-82)-8s

§j=(S5~55)~Ss



WO 90/15379 “ PCT/US90/02889

"
Se=((82-S4)-S3)-Ss

S1=S1 —S;—S3 -Ss
For example: the subset that is common to all sets is S, which is defined by equation 13,

S.={A(0,0)} (13)
The subset S, is defined in equation 14,

Se = {A(0,20), A(0,40), A(20,0), A(20,20), A(20,40), A(40,0), A(40,20), A(40,40)) (14)

As can be seen from equations 13 and 14, the size of a subset is typically the number of
abstracted images A(x,y) at the large reduction factor which belong to it. It will be appreciated
thatthe ¢ “sets S, - - - ,S; are not of equal size, nor do they as a whole include the entirety of pixels
ofthe in. 2 120. Table 1 presents the sizes of the subsets.

The abstraction sets S,, S3, 54, S5 and S¢ can be written in terms of the subsets of Fig. 3
as follows:

&=&u&u&u&u&u&u&u&
$3=8, USUSUS,US,US;
S4=8,uS,US, US,
&=&u&u&u&u&u% 7 (15)
S6=8 VS USFUS,

S10=S‘,USCUS¢USS

Table 1: Sizes of Subsets

Subset Size | Subset Size
S, 1 Sg 3
S 24 Sy 12
Sc 8 S; 288
Sq 192 S; 96
S, 24 Sy 576

St 72 s 2304
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The subsets S,, - --,S; enable the Venn diagram to be be ordered in a linear fashion to

allow fast access to specific abstraction sets. A variely of permutations utilizing the subsets

Sa, **+,5; can be performed; the optimal one will depend on the expected frequency of access to
the various abstraction sets. One such ordering ensures that abstraction sets at smaller reduction
factors which have ‘more elements to them be less fragmented than the ones at larger reduction
factors.

According to a preferred embodiment of the present invention, the multiplicity of abstraction
sets, S,, - - - ,S¢ in the example, are stored in the band structure described hereinabove. The band
size is typically at least mnr? where r is the least common multiple used to create the abstracted
images A (x,y). o

Fig. 4A illustrates an example permutation of a band 122 which typically enables abstracted
bands of the example abstraction sets §,, Ss, S; and S¢ to be read sequentially. In Figs 4B-
4F the bold lines specify the subsets to be read to create abstracted sets S2, * -+ ,8¢ respectively.
Abstraction set S5 tyﬁical}y cannot be read sequentially. An alternative embodiment of the inven-
tion, shown in Fig. 5, enables abstracted bands of abstraction setSs to be read in one sequen-
tial read. A subset S, is created by replacing the pixels in the set §q = 8, US;USpUS, with pixels
from the set §; which- are located close to the pixels of set §,. For example, the approximation
to the abstracted image A(0,0) is the abstracted image A(1,0) which is in the subset S;.

It will be appreciated that Figs. 4 and 5 are not to scale.

The entirety of the image 120 is stored in bands 122. Thus, the abstracted band belonging to
subset S; for each band 122 is typically stored in an area of both a buffer of memory 114 and of the
storage medium 118 after the abstracted bands of subsets S, - - - , ;. Alternatively, the abstracted
band of subset S; can be used to block align the abstracted bands of subsets Sas "+ 8. In the
alternative embodiment, elements in one abstracted band of subset S, are located before and after
the elements of the abstracted band subsets S,, - - - ,S,, located according to either of Figs. 4 or 5,

such that at least one frequently accessed abstracted band begins at the beginning of a storage
medium block.

The image typically contains a multiple of r rows and r columns. An image that does not con-
form to these constraints typically is expanded to conform.

For an image which is 8.5 inches wide, scanned at 300 pixels per inch where each pixel is 32
bits, the minimal number of rows for the example given herein needed to make a band is 60 rows.
The resultant band typically occupies 597K bytes. The maximal expansion of the image due to the

abovementioned constraint is 1/5 inch (60 pixels) in height and width and the average expansion is
half this amount.

In accordance with the alternative embodiment of the invention, an abstracted image with
reduction factor n, where nis a product of at least two of the factors r,canbe read by reading the
subsets which are common to the factors which make up n. Thus, the abstracted image at reduction
factor 10 comprises the subsets S,, S_, S,, and Sg-

If n is a multiple of one of the factors r, its abstracted image can be read by reading the
abstraction set S, of which n is an integral multiple and further abstracting S,. For example, the
abstracted image with reduction factor 9 is read by reading the abstracted image S, and further

P

-y
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abstracting it by a factor of 3.

An abstracted image with a reduction factor of n, where n is relatively prime with reference to
the factors r or is not an integral scale factor, can be obtained by reading an abstracted
image with a smaller reduction factor and the resampling the lower order abstracted image to
obtain the desired abstracted image. For example, the abstracted image with a reduction factor of
7 can be obtained by reading the abstracted image S, interpolating by 7/4.

It will be appreciated that the abovedescribed subset ordering and its inverse can be
precomputed and stored in the scanner acquisition unit 112 in a lookup table. The lookup table will
enable a fast calculation of the locations of the permuted pixels. Annex B contains a program to
generate the permutation and its inverse for the multiple abstracted image permutation
described hereinabove. This program makes use of the base class GABS defined in Annex A.

Another example of a multiplicity of reduction sizes that is possible with the abovedescribed
embodiment is fixed power reductions. Typically a set of reductions that are successive powers of 2
are needed, that is multiple reductions of order 2,4,8,16,32,... For example, if r is 64 the
2,4,8,16,32,64 order reductions can be read from the storage medium in one access. Reduction
factors of powers of 2 are useful in the pyramid transformation. The pyramid transformation and its
use is described in detail in the book, A. Rosenfeld, ed. Multiresolution Image Processing and Analysis.
Springer-Verlag, Berlin, 1984. It should be noted that, in general, each pixel in the reduced order
image of the pyramid transformation may be a complex mathematical transformation of the full reso-

lution image data. The abovedescribed embodiment derives the reduced image pixels from a simple
subsampling of the original image.

The permutation equations for the abovedescribed transformation are slightly different than the
equations (10e) and (11e). Since the r? abstracted bands are not stored in a simple order dictated
by the geometric phase, a mapping M (8,,6.) of each abstracted band is needed in order to compute
the transformation. This mapping returns the sequential index of the location of the abstracted band
A(6,,8;) within the subset ordering as illustrated in Fig. 4A. Equation (10e) is then replaced by
equation (16) for :is transformation.

Pi =m"M-l(9cver)+lc +mlr (16)
Equation (11e) for the inverse is replaced by three new equations (17a-c).
Ye =M (8,,6,) mod r (17a)
M(®,,0
Y= [———)J (17b)
r
i=Y +mry, +rh, +rm), (17¢)

If the digitized image 120 is stored in a format defined by either of the permutations dis-
closed hereinabove, orin any other non-sequential format, it typically can be transformed to
another, more common, format for additional processing. A typical processing format is the
sequential format. For instance, the image 120 may be stored as abstracted images of reduction
factor 4 and it may be desired to perform a convolution on the entirety of the image 120. The
sequential format is the natural format for this calculation. Thus, the stored abstracted image is
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typically transformed into the sequential format. This can be accomplished by simply transforming
the data read from the storage medium 118 via the inverse of the transformation by which it was
stored, as shown in equation 18.

=P -3 - PR | (18)
P! is typically performed on a first band of data in parallel with the reading of a subsequent band
of stored data from the storage medium 118. Since the time to transform the data is typically
less than the time to read the stored data from the storage medium 118, the conversion from one
format to the other generally does not take longer than reading the stored data without any format

conversion. The size of memory 114 needed to transform the data for a double buffering scheme
is bounded by twice the size of the largest band of the transformed image.

According to another embodiment of the invention, an image can be transformed from one

band structure format F, to another band structure format F,. The method comprises the fol-
lowing steps: -

a. Read as many bands of stored image data stored in the F, format as necessary 1o produce
enough data to ﬁW a bandin format F,.

b.  Convert the data in format F, to sequential format.

c.  Convert the data in sequential format to format F,. Convert only as much data as necessary
to produce an integral number of bands of format F .

d.  Store the integral number of bands of F, on storage medium 118.
e. Free the memory 114 of the integral number of bands in format F,.
f.  Return to step a. and continue until no more data is available.

Fig. 6 Mlustrates -an example of the method of transforming between two formats as
described hereinabove An image 150 is stored in format F, whose band structure comprises
equal bands of 100K pixels each. An image 152 is stored in format F, whose band structure

comprises equal bands of 150K pixels each. To transform image 150 to image 152, the following
steps are typically followed.

1. Read the first two bands B, and B,, of image 150 and transform them into sequential format.

2.  Transform the entirety of band B, and half of band B, into band B, from sequential format to
format F,.

3.  Wirite band B, to image 152.

4.  Free the space in memory 114 currently occupied by band B, and by the first half of band B,.

5. Read inband B, of image 150 and convert to sequential format. ,

6. Transform the second half of band B, and the entirety of band B, into band B, from
sequential format to format F,.

7. Wirite band B, to image 152.

Free up the space in memory 114 currently occupied by the second half of band B, and by the
entirety of band B,.
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9. Repeat until no more data remains in image 150.

The maximum space in memory 114 required for the method of converting between two for-
mats described hereinabove, when using a double buffering scheme, is typically twice the sum of
the band size required for each of the formats. It is a feature of the invention that the pixels of
image 150 are read only once.

If the band structure of the two formats F, and F, are equivalent, the data can be easily
transformed without first transforming the data into the sequential format. The permutation is
P,?‘z -Pp, where P;‘2 is the transformation from format F, to sequential format and Py, is the transfor-
mation from sequential format to format F,. Alternatively, if the transformation between the two for-
mats F, and F, is frequent, the permutation can be precomputed, thus reducing the complexity
of the transformation and the time needed to execute the transformation. The maximum space in

memory 114 required for this alternative method when using a double buffering scheme is typ-
ically twice the size of the band.

According to an embodiment of the present invention, the image data can be rotated at an
arbitrary angle using a tile transformation which is well known in the art. The tile transformation
is described in the Pixar™ manual, Scope, Release 1.1, Genera 7.1 by The Graphics Division of Symbol-
ics Inc., p. TU 2, which is incorporated herein by reference. The ftile transformation consecu-
tively stores pixels which are elements of a square section of the image in a single block on the
storage medium 118. A tile of size u? comprises u rows of pixels each having u columns. Typically,

a tile will occupy a block. For a block size of 4096 bytes and pixels of 4 bytes each, a 32x32 file is
typically chosen. :

Fig. 7 illustrates the transformation for sequential format image 130 of Fig. 2A. Shown are 5
of the 12 4x4 tiles in which the first 192 pixels are stored. The first ile 160, comprising the first four
pixels of the first four rows, is stored consecutively in an area of memory 114. The second tile
162, comprising the second four pixels of the first four rows, is stored after the end of the first tile
160. Thus, if first tile 160 begins at memory location 0, then second tile 162 begins at memory loca-
tion 16. If pixels are stored in more than 1 memory location then the memory locations indicated is

understood to be multiplied by the number of memory locations needed to store a pixel in actual
memory address calculations.

The permutation P for the abovementioned example is given in equation 19.

]

Where m is the number of tiles in a row of the image.

pi=imod u + u?

To rotate, by 90°, the image which is stored in tile format a block size tile is read into a buffer
of memory 114, moved to the block it will occupy when it is rotated, and then rotated. The
operation is shown in Fig. 8. The operation can alternatively be performed in one read/write pass
of the image by reading a file is read into a buffer of memory 114 and directly writing it to the
corresponding destination rotated by 90°. This alternative method typically requires enough space
in memory 114 to hold two tiles, the tile read in and the rotated tile. If double buffering is
desired, to increase the speed of the computation, four buffers are typically allocated.
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According to a preferred embodiment of the invention, rotation at an arbitrary angle using a
tile transformation can be performed. Rotation by 45°, being the rotation which typically uses the
most buffer space in memory 114, is illustrated in Fig. 9 for an image organized into a 5x5 tile for-
mat.

The fact that the resultant rotated image is non-rectangular is irrelevant to the current discus-
sion. Well know techniques can be used to convert the rotated image to a rectangular form. For

example, the rotated image can either be clipped to rectangular form, or expanded to contain the
rotated image.

For the example in Fig 9, the rotation operation takes a 5x5 image 172, shown rotated in
Fig. 9, rotates it and writes it to storage 118 as a 5x5 image 174. The tiles of .source image 172
are denoted with the double capital letters AA-YY, those of destination image 174 are denoted with
the double small letters aa—yy. Image 172 is organized into bands 176, 178, 180, 182 and 184
where each band comprises five tiles.

Typically a source image 172 tile affects number of destination image 174 tiles. This depen-
dency is denoted by 8D (c), where § is a set of destination image 174 tiles and o is a set of source
image 172 tiles. For example, D ({AA))={cc} and D ({BB))={cc,dd,ii}. The function D is dependent
on the details of the calculation of each destination pixel since each destination pixel typically is
dependent on a m’ultiplicity of source image pixels.

According to a preferred embodiment of the rotation operation tiles of source image 172 are
buffered as follows.

1. Read into memory 114 the first two rows of tiles from the source image 172.
2. Read into memory 114 the next row of tiles from source image 172.

3. Calculate and write to destination image 174 all destination tiles that only dependent on the
current three rows of source image 172 tile.

4.  Free the memory occupied by the last recently read row of source image 172 tiles.
Repeat steps 2-4 until the entirety of the image has been written.

An exdample of the abovementioned embodiment reads from the storage medium 118 bands of
tiles labelled 176, 178, 180 from image 172 and writes out all rotated tiles that are fully defined by
the tiles of image 172 currently in memory 114, being tiles ee, dd, Ji» cc, ii, 0o, bb, hh, nn, and 1t. The
buffers for the first band of tiles 176 can then be freed and the band 182 read from the storage
medium 118 into the location previously occupied by band 176. All previously unwritten rotated tiles
that are fully defined by the unrotated tiles currently in memory 114, being tiles aa, gg, mm, ss and yy,
are written to storage medium 118. The last recently unrotated band 178 is freed and the next unro-
tated band 184 is read in from storage medium 118. All previously unwritten rotated tiles that are
fully defined by the unrotated tiles currently in memory 114, being tiles f, I, rr, xx, kk, qq, ww, pp, Vv,
and uu, are written to storage medium 118.

This procedure is-summarized in Table 2.

It should be appreéiated that the only 3 bands of unrotated tiles need be stored in memory at
any one time for any size image that is to be rotated and for any angle of rotation. This is because
any destination file' can only be dependent on source tiles which span three sequential rows of tiles.
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Table 2. _
Read and buffer tiles Discard tiles Write tiles
AA,BB,CC,DD.EE
FF,GG,HH IIJT
KK ,LLMMNN,00
eedd, jj,cc,ii,00
bb,hh,nn, it
AABB,CC,DD,EE
PP,Q0O,RR,SS,TT
aa,g g,mm,ss,yy
FF,GG,HH,IIJJ
uuv,ww xx,yy
Thllrrxx, kk
qqsww,pp,vv,uu

The total memory 114 requirements for this method is 3 bands of tiles, to buffer the unrotated tiles,
plus one tile to hold the rotated tile. If double buffering is to be used the total memory 114 require-
ments is 4 bands of tiles to buffer the unrotated tiles, plus 2 tiles for the space to store rotated tiles
before they are written to storage medium 118.

An alternative embodiment of the rotation operation utilizes virtual memory to store the
entirety of the rotated image 174. A Least Recently Used (LRU) page replacement policy
causes the last three bands to remain resident in memory 114. If there are at least enough pages
available to store 4 bands concurrently, on the order of O(f) page faults typically occur, where fis
the number of pages in the rotated image 172. Upon termination of the rotation of rotated image
172, the entirety of the rotated image 172 is written to storage medium 118. Alternatively, if the
operating system of CPU 116 supports direct memory mapped disk files, the rotated image can be
directly mapped to the virtual memory of CPU 116 and the rotated image written to storage
medium 118 via standard virtual memory mechanisms. This alternative embodiment saves system
swap area and the final writing of the image from virtual memory to the storage medium 118.

According to an embodiment of the present invention, images stored in any band format can
be rotated. The steps 1-6 are as follows.

1. Read in and convert to tile format a sufficient number of bands 122 of the image so that after
conversion to tile format at least two bands of tiles are in memory.
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2. Read in and convert to tile format a sufficient number of bands 122 of the image so that aiter
conversion an additional band of tiles is present in memory

3.  Calculate the entirety of rotated tiles that are only dependent on the converted three bands of
unrotated tiles. Write these tiles to a disk file in tile format.

Free the storage for the least recently read band of unrotated tiles.

Repeat steps 2, 3 and 4 until the entirety of image 120 has been read in and converted to tile
format.

6.  Use the method mentioned hereinabove to convert the rotated image currently stored on disk
intile format to a rotated image in the original band format.

It should be noted that in the abovementioned rotation methods the image 120 is rotated by
reading and writing the entirety of two image-sized files.

Reference is now made back to Fig. 1. The scanner 110 is connected to the scanner acquisi-
tion unit 112 via a parallel interface, such as a Digital Equipment Corporation (DEC) DR11 interface
defined by DEC and documented in the reference Microcomputer Interface Handbook, Digital Equip-
ment Corporation, 1980. The CPU 116, memory 114 and scanner acquisition unit 112 are con-
nected together on a CPU data and address buses 202. A similar CPU bus structure and DMA
scheme is described in Intel technical manual 82380 High Performance 32-bit DMA Controller with
Integrated System Support Peripherals, Intel Corp 1988. As mentioned hereinabove, the system illus-
trated in Fig. 1 isa variant of standard DMA architectures.

The system operates as follows: A NEW_DATA_READY line of the scanner 110 strobes,
indicating to the scanner acquisition unit 112 that a valid pixel value I; (or a color separated
pixel value representing one color of a color separated pixel) is available on the DATA lines of the
scanner 110. Since there is typically no handshake between the scanner 110 and the ‘scanner
acquisition unit 112, the acquisition unit 112 must be able to receive the pixel value at a rate
greater than or equal to 'th_e rate that the scanner 110 acquires the pixel value.

Upon pulsation of the NEW_DATA_READY line, the HOLD control line typically is asserted,
thus requesting control of the data and address buses 202 from the CPU 116, or other permanent
bus master. ‘ ‘

When CPU 116 relinquishes control of the data and the address buses 202, it asserts the
HLDA control line and enters a hold-state until the scanner acquisition unit 112 drives the HOLD
signal false.

With the HLDA signal asserted, the scanner acquisition unit 112 places an address on the
address bus and the valid pixel value on the data bus 202. The address is the permuted memory
location z; for the pixel value and is calculated according to any of the methods of the present
invention. The scanner acquisition unit 112 generates a memory write signal and the pixel value
1; Is written to the proper-address in memory 114.

According to a preferred embodiment of the present invention, the permutations described
hereinabove are implemented as address generator routines typically stored in the scanner
acquisition unit 112 as microcode programs. The programs in Annex A and B are typically compiled
into microcode to implement an address generator routine G (P).
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In an altemative embodiment of the present invention the permutations are generated by
precomputed lookup tables stored in ROM (read only memory) or lookup tables computed just prior
to the image acquisition. The lookup tables are computed by the address generator routine G (P).

It will be appreciated that the address generator routine G (P) of the present invention is
significantly different from those of standard DMA controllers which merely generate a new address
by incrementing the previous address by a predetermined value.

Once the pixel value is written to its location in memory 114, the scanner acquisition unit
112 deasserts the HOLD signal.

Subsequently, the CPU 116 deasserts the HLDA signal and continues processing. The above
described process is repeated for each new pixel value I;. After a band 122 has been completely
written into a first buffer of memory 114, the scanner acquisition unit 112 signals this fact to the
CPU 116 via the EOP signal which typically causes a CPU 116 interupt. The CPU 116 then
instructs the scanner acquisition unit 112, by writing to ¥o or memory mapped registers on the
scanner acquisition unit 112, to switch the base address to a second buffer of memory 114, contain-
ing the location of the next buffer. The band of data stored in the first buffer is transferred to
storage medium 118 via the storage medium DMA controller 119, which may typically contain an
82380 DMA controller from Intel corporation. The storage medium DMA controller 119 and the
storage medium 118 are typically chosen to transfer the band of data at a faster rate than that by

which the scanner 110 acquires image data. Thus, the first buffer will be emptied before the
second buffer is completely filled.

It should be noted that this technique must be slightly modified for systems with more more
than one DMA unit on the system bus. A bus arbitration protocol (for example, daisy chaining or
priority resolution) must be instituted for the HOLD signal. These well known techniques are

desciibed in Microprocessor System Design Concepts, Nikitas A, Alexandridis, Computer Science Press,
1984, specifically sections 9.7.3 and 9.8.3.

It will be appreciated by persons skilled in the art that the present invention is not limited
by what has been particularly shown and described hereinabove. The scope of the present
invention is defined only by the claims which follow:
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ANNEX A

amed gabs.cc defines a base class GaBS that is used in both Annex A

// “The C++ programming Language” by Bjarne Stroustrup,

// The abstract class for reduction permutations

The pointer to the begining of the last
abstracted block.
The column in the image.
A flag to indicate when to go back to
the first abstraction.
Addressing within an abstracted band.
Flag to signify when to start a new
row in the abstracted band, i.e.
after r image rows. .
Addressing for inverse transformation
Counter to keep track of abstracted band
Counter to keep track of which row we are in.
The index of the current abstracted band.
n, number of rows in each abstracted band.
m, number of columns in each abstracted band.
r,2 order of the abstraction.
r
nmr<, size of band in pixels
The phase column.
Lookup table for abstract block addresses.
Lookup table for inverse abstract block addresses.

2

GABS(int nn, int mm, int rr) // A constructor for the GABS class.

// The table size is r2.

iabs_bases= new pixel*[r2]; // The table sizeis r2.

and Annex B. SRS
1 // Thisfileis called gabs.cc
2 // ILtiswriten in the C++ language as describled in the book:
3
4 // 1986, Addison-Wesley.
5 class GABS {
6 protected: ; o
7 int last_ptr; = //
8 ; //
9 int columm; * //
10 int row_in_abs_image; //
11 : o //
12 int  ad; //
13 int grow; -/
14 //
15 //
16 int inv_ad; //
17 int inv_count; //
18 int inv_rowcount; //
19 int inv_ptr; //
20 int n; //
21 int m; //
22 int r; //
23 int r2; .. //
24 int b_size; o //
25 int phase; //
26 pixel** abs bases; //
27  .pixel** iabs bases; //
28 public:
- 29
30 {
31 n= nn;
32 m= mm;
33 r= rr;
34 r2= r*r; :
35 b_size= n*m*r2;
36 abs_bases= new pixel*[r2];
37
38 init ();
39 }
40 // This is the part of the initialization that is repeated
41 // For eachband,"
42 void init ()
43 {
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inv_ad= -r;
inv_count= 0;
inv_rowcount= 0;
inv_ptr= 0;
last_ptr= -1;
column= -1;
phase= ~1;
row_in abs image= 0;
ad= 0;
grow=0;
}
inline int band_size() // Returnband size.
{
return(b_size);
}
// The next function is called to generate the next
// address when the next pixel value is presented
// by the scanner.
pixel* next () {
column++; // Increment the current column.
phase++; // Increment the current phase.
last_ptr++; // Increment to the next abstract block. ,
if (phase >= r) // The variance of phase within a row is r.
{
ad++;
phase= 0; // Reset the phase.
last_ptr-= r; // Jump back r abstracted blocks.
}
if (column >= (r*m)) // Are we at the end of a scanner row.
{
column= 0; // Reset column.
last_ptr+= r; // Jump forward r abstracted blocks.

row_in_abs_image++; // We are now in the next row of abstracted blocks.

//
//
if(row_in_abs _image >= r)
{
row_in abs_image= 0;
last_ptr= 0; //
}
growt+; //
/7
//
if (grow >= r)
{
grow=0; //

We have only nr rows of abstracted blocks.
After each r scanner row jump the next row.

Start again at abstract block zero.
Keep track of rows.

If we have read r rows go.
to next row in the abstract image.

Go to the next row in the next abstracted band.
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}
else
{
ad-=m; // Continue on the same row in the next abstracted band.
}

}
// Return the sum of the abstract block pointer
// and the addressing within the block.
return(abs_bases[last_ptr] + ad);

}

pixel* inext() {
inv_ad+= x;
if (inv_rowcount++ >= m)
{
inv_ad+= m*r*r — m*r;
inv_rowcount= 1;
}
if (inv_count++ >= m*n)
{
inv_ptr++;
inv_ad= 0;
inv_count= 1;

}

return (iabs_bases[inv_ptr] + inv_ad):
}

// qa isthe routine to compute the
// addressing within an abstracted band
int ga(int abs_col, int abs_row)
{
return(abs_col + abs_row*m); // Map pixels to sequential positions.
}

// qinvabs is the routine to compute the
// inverse addressing within an abstracted band
int gainv(int abs_col, int abs_row)
{
return (r*abs_col + r2*m*abs_row);

}

// This routine computes the location of the abstracted band
// having the phase (phase_row,phase col)

// This routine is overridden in the actual class.

// Itisan error to call the gabs routine from

// theclass GABS.

virtual int qabs(int phase col, int phase_row)
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{

cerr << "Shouldn’t get here";

}

// This routine computes the base location of first pixel of the abstracted
// band having the phase (phase_row,phase_col).
// This routine is overridden in the actual class.
// Itisan error to call the ginvabs routine from
// the class GABS.
virtual int ginvabs(int phase_col, int phase_row)
{
cerr << "Shouldn’t get here";
}

// Compute the mapping to abstracted format given a scanner row index.
int g(int scanner_row_index)
{

// phase_col is the column phase of the pixel.

// phase_row is the row phase of the pixel.

// abs_col is the column number within the abstracted band.

// abs_row isthe row number within the abstracted band.

int phase_col, phase_ row, abs_col, abs_row;

phase_col= scanner_row_index%r;

phase_row= (scanner_row_index/ (r*m))%x;

abs_col= scanner_row_index% (r*m)/x;

abs_row= scanner_row_index/ (r2*m);

// The mapping is the sum of the location of the abstracted band (gabs)

// and the location with that abstracted band (qa) .

return (m*n*gabs(phase col, phase row) + ga(abs_col, abs_row));
}

// Compute the mapping to scanner row index given a abstracted format index
int ginv(int abs_format_index)
{
int phase_col, phase_row, abs_col, abs row;
phase_col= abs_format_index% (r*m*n)/ (m*n);
phase_row= abs_format_index/ (r*m*n) ;
abs_col= abs_format_index%m;
abs_row= (abs_format_index% (m*n))/m;
return (qginvabs (phase_col, phase row) + gainv(abs_col, abs _row));
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The following file named ga.cc defines a derived class of GaBS called Ga that implements
the fixed size reduction embodiment.

// This fileis called ga.cc
#include <stream.h>
#include "gabs.cc" // the file that defines class GABS

1
2
3

[ N

W W ~J

11
12
13
14
15
16
17
18
19

20
21

22
23
24
25
26
27

28
29
30
31
32
33

// Class GA is derived from class GABS it defines an ordering
// of the abstracted bands

class GA: public GABS {
public:

// Initialize an instance of class GA
// The array abs_bases is a table that gives the
// starting location of each abstracted band
// Thearray iabs bases is a table that gives the
// upper left hand corner of the abstracted band in the original band
GA(pixel* offset, int nn, int mm, int rr) : GABS(nn,mm,rr)
{
for (int i=0;i<r2;i++)
{
abs_bases[i]= offset + i*m*n;
iabs_bases[i]= offset + i%r + r*m* (i/x);

}

// Note: the base address of the band in memory should be added to abs_bases.
}

// This defines the Iocation of each abstracted band
int gabs(int phase col, int phase_row)
{

return (phase col + r*phase_row);

}

// This defines the location of the first pixel of the indicated abstracted band
int ginvabs (int phase_col, int phase_row)
{

return (phase col + m*r*phase row);

}

b
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The following file named gatest.cc tests the class Ga. -

1 typedef char pixel; // Use an example 32 bits per pixel
#include "ga.cc"

38

pixel* offset; // Should point to the begining of the band buffer
main ()

{

//

}

GA ga(offset, 3, 4, 4); //Createaninstanceofamappinghavingn=3,m=3,r=4
int j, i:

// Check that the address generator and the mapping function return the
// same address. The multiplication by the size of a pixel is because

// the generator returns addresses while the mapping functions returns
// the permutation

for(i= 0; i < ga.band_size(); i++)

{
if(ga.next () != offset + ga.qg(i))
{
cout << "Error in assertion: " << i;
}
}

// Reinitialize the instance of the mapping-generator

ga.init ();

// Check that the inverse address generator and the inverse mapping function
// return the same address.

for(i= 0; i < ga.band_size(); i++)

{
cout << int(ga.inext()) << " " << ga.qginv(i) << "Q;
if(ga.inext () != offset + ga.qginv(i))
{
cout << "Error in inverse assertion: " << i
}
}

// Reinitialize the instance of the mapping-generator

ga.init ();

// Check that the mapping function and the inverse mapping function
// arein fact inverses of each other.

for(i=0;i < ga.band size(); i++)

{
int j;
if(i != ga.qinv(ga.q(i))) // Check thati=g'(4(i))
-cout << "Inversion error: " << i;
}
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ANNEX B

The following file named gm.cc defines a derived class of GaBs called GM that implements
the multiple size reduction embodiment.

WO JodxwhKH

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
217
28
29
30

31
32
33
34
35
36
37
38

39
40
41

// This file is called gm.cc

#include <stream.h>

#include "gabs.cc™ // the file that defines class GABS
#include "cluster.hh"

extern int mapping(]:;

static int* imapping;

// Class GMis derived from class GABS it defines an ordering
// of the abstracted bands

// This is the multiple order abstraction format.

class GM: public GABS {
public:
// Initialize an instance of class GM
// Thearray abs_bases is a table that gives the
// starting location of each abstracted band
// Thearray iabs_bases is a table that gives the
// upper left hand corner of the abstracted band in the original band
// 'We here take the specific case of r=60 and we execute the function
// ma() which defines the array mapping.
GM(pixel* offset, int nn, int mm) : GABS(nn,mm, 60)
{
if(ca.starting location == 0)
ma(); ,
imapping= new int [60%60]; // The inverse mapping
for(int i=0;i<r2;i++)
{
abs_bases[mapping[i]]= offset + i*m*n; ;
iabs_bases[i]= offset + mapping[i]%r + r*m* (mapping([i]/r);
imapping[mapping[i]]= i; // Createinverse mapping array
}
}

// The function gabs and ginvabs are used in the generating functions.

// qabs defines the location of each abstracted band
int gabs(int phase_col, int phase_ row)
{
return imapping[(phase_col + r*phase row)];

}

// This defines the location of the first pixel of the indicated abstracted band
int ginvabs(int phase_col, int phase row)

{
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43
44
45
46
47

}:

27

int mapped abs_band= m.>ping[phase_col + r*phase row]:;
int true_phase_col= mapped abs_band % r;

int true phase row= mapped abs band / r;

return (true_phase_col + m*r*true _phase_row);
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The following file named set,hh defines the basic operations on sets.

1

U W N

10
11
12
13
14
15
16
17
18

20
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27
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30
31
32

33
34
35
36
37
38

40
41

42

// This File contains support routines for the class 2bsSet .
// It uses the BitSet class as described in the manual

// “User’s Guide to the GNU C++ Library” by Doug Lea.

// Copyright 1988 Free Software Foundation. .

// This library and the C++ compiler can be obtained from the

PCT/US90/02889

// Free Software Foundation, Inc., 675 Mass AVE, Cambridge, MA 02139.

#include <BitSet.h>

const int n= 60;

// the function rc2can converts row, column coordinates to
// canonical form.

inline int rc2can(int r, int ¢) { return r + n * ¢; }

class AbsSet

{
BitSet* bs; // This provides the basic Set functionality.
int* ref count;

public:

AbsSet () ; .

AbsSet (int,int =0, int =0);
AbsSet: :AbsSet (BitSet&) ;
“AbsSet () ;

void operator = (AbsSet&):
AbsSet operator & (AbsSetg x);
AbsSet operator | (AbsSets x):
AbsSet operator - (AbsSets& x);
void operator |= (RAbsSet& x):
int operator == (AbsSet& x);
int operator != (AbsSet& x);
int operator <= (AbsSet& x):;

void set(int r, int c¢) { bs->set(rc2can(r, cly:}

int count() { return bs->count (1);}
cluster append(int*g);
}:

AbsSet::AbsSet (int s, int r, int c)
{

bs= new BitSet;

ref count= new int;

*ref count= 1;

for (int i=0;i<60;i+=s)

for (int 3j=0:3<60; j+=s8)
set (i+r, j+c);:

AbsSet: :AbsSet ()
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54
55
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60

61
62
63
64
65
66
67
68
69
70
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75
76
717
78

79
80
81
82

83
84

29
{

bs= new BitSet;
ref_ count= new int;
*ref count= 1;

}

AbsSet: :AbsSet (BitSet& b)
{
bs= new BitSet(b);;
ref_count= new int;
*ref count= 1;

}

AbsSet::~AbsSet ()
{
if (*ref_count == 1)
delete bs;
. else
(*ref_count)--;

}

void AbsSet::operator = (AbsSet& x)
{
if(*ref_count == 1)
{
delete bs;

*ref_ count--;
}
(*x.ref_count)++;
ref count= x.ref count;
bs= x.bs;

}

AbsSet AbsSet::operator & (AbsSeté&
{

return(AbsSet ((*bs) & *(x.bs))):;
}

AbsSet AbsSet::operator | (AbsSets
{

return (AbsSet ((*bs) | *(x.bs))):;
}

AbsSet AbsSet::operator — (AbsSeteg
{

X)

X)

X)
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return(AbsSet ((*bs) - *(x.bs))):;
}

int AbsSet::operator == (AbsSet& x)
{

return((*bs) == *(x.bs));

}

int AbsSet::operator != (AbsSet& x)

{
return((*bs) != *(x.bs));
}
int AbsSet::operator <= (AbsSet& x)

{

return((*bs) <= *(x.bs));

}

void AbsSet::operator |= (AbsSets x)
{
*bs |= *x.bs;

}

cluster AbsSet::append(int*s ip)
{
cluster cl;
cl.size of set= 0;
cl.starting location= cl.total_size of_ sets:;
for(int i= bs—>first(); i >= 0; i=bs—>next(i))
{
*ip++= i;
cl.size of set++;
}
cl.total size_of_sets+= cl.size of_set;
return cl;

PCT/US90/02889
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The following file named cluster.hnh defines the data structure that allows the program to
access the linear ordering of the sets S, - - - ,S;.

1 // This defines the clustering of each set within the linear ordering of sets.

2 struct cluster

3 { ,

4 static total size_of_sets; // How bigis the mapping so far.
5 int starting location; // Where does this cluster start.
6 int size of_set: // How big is the set.

7

}:

8 extern cluster ca, cb, cc, cd, ce, cf, cg, ch, ci, cj, ck, cspl;
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The following file named ma . cc calculates the subsets S, - - - ,S;.

#include "cluster.hh"
#include "set.hh"

// This function creates the sets a—k. I also clusters the sets in the
// order detailed in the example.
int mapping[3600];
cluster ca, cb, cc, cd, ce, cf, cg, ch, ci, cj, ck, cspl;
ma ()

1

W ooJ0n oW

{

int *i

P’

// Create the set S;.

AbsSet
AbsSet
AbsSet
AbsSet
AbsSet
AbsSet
AbsSet

AbsSet
AbsSet
AbsSet
AbsSet
AbsSet
AbsSet
AbsSet
AbsSet
AbsSet
AbsSet
AbsSet

sl(l);
s82(2);
s3(3);
s4(4);
s5(5):
s6(6);

spl(((sl - s2) - s3) - s5);

a= 83 & s4 & s5;

b= (s3 & s4) - s5;
c= (s5 & s4) - s83;
d= (84 - s5) - s3;
e= ((s2 - s4) & s5)
f= ((s2 - s4) & s3)
g= ((s3 & 85) & s2)
h= (83 & s5) - s2;
i= (83 ~ s2) - 85;
j= (85 - s82) - 83;
k= ((s2 - s4) - s3)

|

s3;
s5;

s4;

s5;

// 8
/] Sy
/1 Ss3
/] Ss
// Ss
/! Ss
/1 8

// ThesetS,

// The order of the sets a—k are as outlined in Fig. 4

ip=mapping:;

cj= j.append(ip);
ce= e.append(ip);
ck= k.append(ip);
cd= d.append(ip);
cc= c.append(ip):
ca= a.append(ip):
cb= b.append(ip):
cf= f.append(ip);
cg= g.append(ip):
ch= h.append(ip);
ci= i.append(ip):
cspl= spl.append(ip):

PCT/US90/02889
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The following file named gmtest.cc tests the class &m.

1

2
3
4

41
42

typedef int pixel; // Use an example 32 bits per pixel
#include “"gm.cc"
const int nn= 1;
const int mm= 9;

pixel* offset; // Should point to the begining of the band buffer
void is_scaled image(pixel*, cluster**, int, int, int);

main ()

{

int j, i;

GM gm(offset, nn, mm); //Createan instance of a mapping having n=1,m=9,r=60
#ifdef NOCHECK

// Check that the address generator and the mapping function return the
// same address. The multiplication by the size of a pixel is because
// the generator returns addresses while the mapping functions returns
// the permutation
for(i= 0; i < gm.band_size(); i++)
{

if(gm.next () != offset + gm.q(i))

{

cout << "Error in assertion: " << i;

}

}

// Reinitialize the instance of the mapping-generator
gm.init () ;
// Check that the inverse address generator and the inverse mapping function
// return the same address.
for(i= 0; i < gm.band size(); i++)
{
if(gm.inext () != offset + gm.ginv(i))
{
cout << "Error in inverse assertion: " << i ;
}
}

// Reinitialize the instance of the mapping-generator
gm.init ():
// Check that the mapping function and the inverse mapping function
// arein fact inverses of each other.
for(i=0;i < gm.band_size(); i++)
{
int j;
if(i != gm.qinv(gm.q(i))) // Check thati=g~!(q())
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43 cout << "Inversion error: " << i;
44 }
45 #endif NOCHECK
46 // Allocate room for a band
47 pixel* image= new pixel[60*60*nn*mm];
48 GM gt (image, nn, mm); // Create an instance of a mapping with the base address image
49
50 for(i=0;1i < gt.band size(); i++)
51 *gt.next ()= i; // Write into the mapped band the pixel values
52 // in order to know what pixel it is take as the
53 // pixel value its sequential location in the band

54 // The following are the subset makeup of each abstraction.
55 // Ttis used to check that we can pull out an specific abstraction
56 // from the band. See equation (7).

57 cluster *cl[]= { &ca, &cb, &cc, &cd, s&ce, &cf, &cg, &ch,

58 &ci, &cj, &ck, &cspl, 0};

59 cluster *c2[]= { &ca, &cb, &cc, &cd, &ce, &cf, &cg, &ck, 0};
60 cluster *c3[]= { &ca, &cb, &cf, &cg, &ch, &ci, 0};

61 cluster *c4[]= { &ca, &cb, &cc, &cd, 0};

62 cluster *c5[]= { &ca, &cc, &ce, &cg, &ch, &cj, 0};

63 cluster *c6[]= { &ca, &cb, &cf, &cg, 0};

64 cluster *cl0[]= { &ca, &cc, &ce, &cg, 0};

65 // Check if the subset construction is correct.

66 is_scaled image(image, ¢l, 1, nn, mm);
67 is_scaled image (image, ¢2, 2, nn, mm);
68 is_scaled image (image, ¢3, 3, nn, mm);
69 is_scaled image(image, c4, 4, nn, mm);
70 is_scaled_imagg(image, ¢5, 5, nn, mm);
71 is_scaled image (image, ¢6, 6, nn, mm);
72 is_scaled_image (image, ¢10, 10, nn, mm);
73 '}

74 // Check that the proper abstracted image can be extracted properly
75 void is_scaled_image(pixel* pimage, cluster** pclusters, int divisor,

76 int height, int width)
77 |

78 int i;

79 int image_size=0;

80 pixel* pp;
81 while (*pcluste:s)

82 {

83 cluster* pc= *pclusters;

84 image_size+= pc->size_of_ set;

85 pp= pimage + width * height * pc->starting location;

86 for(i=0; i < pc->size_of_set * height * width; i++)



87
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94
95
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{
if((*pp++ % divisor) != 0)

cerr << "out of order " << divisor ;
}
pclusters++;
}
if (image size != 60*60/ (divisor*divisor))

cerr << "Bad total size " << divisor;

PCT/US90/02889
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CLAIMS

An image processing system comprising:

image acquisition means for acquiring pixels of a digital image;

permutation means for receiving said pixels subsequent to their acquisition by said
image acquisition means and for ordering said pixels thereby to reorder said digital
image; and

storage means for receiving and for storing said multiplicity of abstracted images.
An image processing system comprising:

image acquisition means for acquiring pixels of a digital image;

permutation means for receiving said pixels éubsequent to their acquisition by said
image acquisition means and for ordering said pixels thereby to reorder said digital
image into a multiplicity of abstracted images at a reduction factor; and

storage means for receiving and for storing said multiplicity of abstracted images.
Animage procesSing system comprising:

image acquisition means for acquiring pixels of a digital image;

permutation means for receiving said pixels subsequent to their acquisition by said
image acquisition rReans, for ordering said pixels thereby to reorder said digital i image into a
plurality of abstracted images at a relatively large reduction factor and for combining said
abstracted images into a multiplicity of sets of said abstracted i images combinable into a plural-
ity of abstracted images at a plurality of different relatively small reduction factors; and

storage means for receiving and for storing said digital image in said multiplicity of
sets.

An image processing system according to claim 1 and wherein said permutation means
comprise means for dividing said digital image into a plurality of bands comprising a
predetermined number of rows of said digital image and means for operating on said plurality
of bands in a band by band manner.

An image processing system according to claim 2 and wherein said permutation means
comprise means for dividi ing said digital image into a plurality of bands comprising a
predetermined number of rows of said digital image and means for operating on said plurality
of bands in a band by band manner.

An image processing system according to claim 3 and wherein said permutation means
comprise means for dividing said digital image into a plurality of bands comprising a

predetermined number of rows of said digital image and means for operating on said plurality
of bands in a band by band manner.

An image processing system according to claim 4 and wherein said means for operating
operate separately on each band.

An image processing system according to claim 5 and wherein said means for operating
operate separately on each band.

An image processing system according io claim 6 and wherein said means for operating
operate separately on each band.
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An image processing system according to claim 7 and wherein portions of said bands are

written by said means for operating to said storage means when said portions of said band fill
at least one file system block.

An image processing system according to claim 8 and wherein portions of said bands are

written by said means for operating to said storage means when said portions of said band fill
at least one file system block.

An image processing system according to claim 9 and wherein portions of said bands are
written by said means for operating to said storage means when said portions of said band fill
at least one file system block.

An image processing method including the steps of:

acquiring pixels of a digital image;

receiving said pixels subsequent to their acquisition in said step of acquiring and ord-
ering said pixels thereby to reorder said digital image into a multiplicity of abstracted images;
and

storing said multiplicity of abstracted images.

Animage processing method including the steps of:

acquiring pixels of a digital image;

receiving said pixels subsequent to their acquisition in said step of acquiring and order-
ing said pixels thereby to reorder said digital image into a plurality of abstracted images at a
relatively large reduction factor and combining said abstracted images into a multiplicity of
sets of said abstracted images combinable into a plurality of abstracted images at a plurality
of different relatively small reduction factors; and

storing said digital image in said multiplicity of sets.

An image processing method including the steps of:

acquiring pixels of a digital image;

ordering said pixels thereby to reorder said digital image into a multiplicity of abstracted
images at a single reduction factor; and

storing said multiplicity of abstracted images.

An image transformation and rotation method including the steps of:

receiving an image of a given image size stored in a permuted format;

transforming said image to a tile format image via an inverse transformation of said per-
muted format to a sequential format and via a forward transformation from said sequential
format to said tile format;

rotating said file format image into a rotated tile format image by rotating the location
of each tile of said image in said tile format, utilizing an amount of computer memory less than
said image size;

retransforming said rotated tile format image to a rotated permuted format image via
an inverse transformation from said tile format to said sequential format and via a for-
ward transformation from said sequential format to said permuted format; and

storing said rotated permuted format image.

An image transformation and rotation method according to claim 16 and wherein said step of
rotation includes the steps of:
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receiving and buffering a first number of tiles of a source image to be rotated;

writing to a storage medium a second number of tiles of a destination image, said
second number of tiles being different from said first number of tiles, which second number of
tiles are fully defined by rotations of said first number of tiles of a source image; and repeating
said steps of receiving and writing until said source image no longer contains tiles.

An image processing rotation method including the steps of:

receiving and buffering a first number of tiles of a source image to be rotated:

writing to a storage medium a second number of tiles of a destination image, said
second number of tiles being different from said first number of tiles, which second number of
tiles are fully defined by rotations of said first number of tiles of a source image; and

repeating said steps of receiving and writing until said source image no longer contains
tiles.
An image processing system comprising:

image acquisition means for acquiring pixeis of a digital image;

means for dividing said digital image into a plurality of bands each comprising a
predetermined number of rows; and

permutation means for operating on said plurality of bands in a band by band manner
and for reordering the location of said pixels;

A system according to claim 19 and also comprising storage means for receiving and for stor-
ing said bands in a band by band manner.
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