DEADT FOR MOISTENING ENVELOPES

March 23, 1935.

F. SCHUH

2,074,811

Device for moistening envelopes

Filed Nov. 18, 1935

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

F. Schuh

Inventor

By: Mascosp Downing Hubbard
DEVICE FOR MOISTENING ENVELOPES
Felix Schuh, Berlin, Germany

Application November 18, 1935, Serial No. 50,433
In Germany November 20, 1934

4 Claims. (Cl. 91—54.4)

This invention relates to devices for moistening and sealing envelopes and it has for its object to provide a simple, strong and compact device which permits an even and regular moistening to be obtained without it being necessary to remove the moistening pad to apply a further supply of water thereto.

According to the present invention, such an envelope moistening and sealing device comprises in combination a base having a smooth underface to be used for pressing down the moistened flap to complete the sealing of the envelope to which base a water container, simultaneously serving as a handle is attached, said container leaving in front between itself and the base a slot into which is introduced the envelope flap, a felt-pad wiper inserted in a recess of the base, a finger, operable air inlet and water discharging valve in the water-container, concentric distributing slots formed in the bottom of the said recess in the base and a longitudinal slot diametrically interconnecting the concentric distributing slots and beginning below the said valve.

In the drawing, an example of an embodiment of the new device, with three different constructions of valve, is shown; wherein:

Fig. 1 shows an end elevation of the device;
Fig. 2 shows the device in longitudinal section with the first construction of the combined air inlet and water outlet valve;
Fig. 3 is a plan of the base;
Fig. 4 shows another air inlet valve; and
Fig. 5 shows a third air inlet valve which at the same time serves as a water outlet.

The water container 2, which is provided with a closing and filling plug 1, is secured to the base 4 by means of screws 3 and is provided with a bead 5 fitting between ribs 6 of the base. A space 6 is provided at the front between the base which also has a rounded edge 7 in front and the water container 2, which space serves as a slot for introducing the envelope flap. Near this slot, the base has a depression 8 for the insertion of the felt disc 10. The base of the recession is provided with concentric furrows 11, which lead into a longitudinal or diametral furrow 12. The water outlet of the water container 2 opens above the inner end of the furrow and said bore is either permanently open, as shown at 22 in Fig. 4, or can be closed by valves, as shown in Figs. 2 and 5. Towards the front the base has, on one side of the depression 8, a raised part 13, the purpose of which is to prevent the envelope flap from striking against the felt disc on insertion into the slot 8. A spring 14 is provided adjacent said slot and said spring presses the envelope flap always with the same pressure on to the felt disc 10. Said spring is held at its rear end between the ribs 6 and extends through a groove 15 to a position adjacent the slot 8 and over the felt disc 10, being somewhat bent up at the end.

The air inlet and water outlet valve shown in Fig. 2 consists of a simple stem 16 which is resiliently pressed-up by conventional means and is provided at the bottom with a conical end. Said stem is guided in a close fitting manner in a top and bottom bore of the water container 2 and has, laterally, grooves 17 and 18 at the top and bottom. If the stem 16 is depressed, the groove 17 admits the external air to the interior of the container 2, whilst the groove 18 enables the water to drip out into the furrow 12 and, consequently, the wetting of the felt disc to be effected. The air inlet valve shown in Fig. 4 consists of a stem 19 which is likewise pressed up resiliently, having a valve-like bottom end, the stem further resting in a bore or in a bush 20 which has, laterally, air inlet holes 21. A simple water-outlet hole 22 is provided in the bottom of the container 2.

The air inlet and water outlet valve shown in Fig. 5 also consists of a stem 23 which is pressed up resiliently and rests in a bush 24. The latter is, in turn, carried from top to bottom through the water container 2 and has at the top, outside the water container, air inlet openings 25, further air inlet openings 26 at the top inside the container, and water outlet openings 27 at the bottom. In addition, the stem is constructed at the top similarly to the stem 19 of Fig. 4 whilst the lower part is of piston-like form and fits tightly into the bush 24. If the stem 23 is depressed, air can pass into the container 2 through the bores 25 and 26 and water can drip into the furrow 12 through the bore 27.

The base 4 is of smooth form so that after the envelope flap has been moistened, it can be pressed down to complete the sealing.

What I claim is:

1. An envelope sealer comprising a base provided at one end with a depression and at the other end with a pair of longitudinally extending and spaced ribs, an absorbent pad in said depression, a water container provided on its underside adjacent one end with a bead fitting between said ribs and cooperating therewith to space the remaining undersurface of the container from the pad and a single means acting to detachably secure the water container to the base and also cooperating with the ribs and bead
in preventing relative rotation between the container and the base.

2. An envelope sealer as claimed in claim 1, wherein said base is also provided with an angular groove between said ribs and further comprises a spring member adapted to fit at one end into said groove and to extend over said pad at its other end to cause an envelope flap to bear against said pad, the bead of said container serving to anchor said spring in said groove when the parts are assembled.

3. An envelope sealer as claimed in claim 1 wherein said single securing means comprises a screw extending through said base and engaging the bead of the water container.

4. An envelope sealer comprising a base provided at one end with a depression having concentric furrows leading into a diametrical furrow and at the other end with a pair of longitudinally extending and spaced ribs, an absorbent pad in said depression, a water container provided on its underside adjacent one end with a bead fitting between said ribs and cooperating therewith to space the remaining undersurface of the container from the pad and a single means acting to detachably secure the water container to the base and also cooperating with the ribs and bead in preventing relative rotation between the container and the base.

FELIX SCHUH.