Title: DHEA COMPOSITIONS FOR TREATING MENOPAUSE

Abstract: Novel methods for treating or reducing the likelihood of acquiring symptoms or diseases due to the menopause, in postmenopausal women, particularly osteoporosis, vaginal atrophy and dryness, hypogonadism, diminished libido, skin atrophy, connective tissue disease, urinary incontinence, breast, endometrial, ovarian and uterine cancers, hot flashes, loss of muscle mass, insulin resistance, fatigue, loss of energy, aging, physical symptoms of menopause, in susceptible warm-blooded animals including humans involving administration of a sex steroid precursor are disclosed. Said method comprising novel ways of administering and dosing dehydroepiandrosterone (DHEA) in order to take advantage of positive androgenic effects in the vaginal layers lamina propria and/or the layer muscularis, without undesirably causing systemic estrogenic effects in order to avoid the risk of breast and uterine cancer. Pharmaceutical compositions for delivery of active ingredient(s) useful to the invention are disclosed.
DHEA COMPOSITIONS FOR TREATING MENOPOSE

FIELD OF THE INVENTION

[001]. The present invention provides novel ways of administering and dosing dehydroepiandrosterone (DHEA) in order to take advantage of positive androgenic effects (for example in the vaginal layers lamina propia and/or the layer muscularis), without undesirably causing systemic estrogenic effects. In addition to DHEA, other sex steroid precursors may be used (e.g., dehydroepiandrosterone-sulfate, androst-5-ene-3β,17β-diol, and 4-androstene-3,17-dione).

BACKGROUND OF THE RELATED ART

[002]. Many hormone-related therapies are known. For example, many provide the sex steroids estrogen or androgen systemically and/or to target tissue. In addition to direct administration of androgens and/or estrogens, sex steroid precursors that can be converted to estrogen and/or androgen in a given tissue have also been used for many conditions. Both androgens and estrogens can be beneficial in some contexts and detrimental in others. That depends *inter alia* on the tissue being targeted, the specific needs presented by a patient, and the extent to which non-targeted tissue may be affected. Some therapies, though targeted, can still have undesirable activity elsewhere in the body (e.g. where local administration of the pharmaceutical agent nonetheless results in increased systemic presence of either the pharmaceutical or one of its metabolites. Also, the mechanism of action has not always been fully understood, especially the relative contributions of androgens and estrogens.
SUMMARY OF THE INVENTION

[003]. It is therefore an object of the present invention to utilize specific dosages, formulations and modes of administration to better achieve the beneficial effects of sex steroids and to better avoid their undesirable side effects.

[004]. In one aspect, the invention provides a method of treating and/or reducing the likelihood of acquiring vaginal diseases or conditions related to hormonal imbalance in postmenopausal women, said method comprising administering a sex steroid precursor selected from the group consisting of dehydroepiandrosterone, dehydroepiandrosterone-sulfate, androst-5-ene-3β,17β-diol, and 4-androsten-3,17-dione to a patient in need of said treatment wherein the said sex steroid precursor is administered at a therapeutic amount which increases the level of circulating androgen metabolites without increasing the level of estradiol above the values found in normal postmenopausal women.

[005]. In another aspect, the invention provides a method of treating and/or reducing the likelihood of acquiring symptoms or diseases due to the menopause, in postmenopausal women, said method comprising administering a sex steroid precursor selected from the group consisting of dehydroepiandrosterone, dehydroepiandrosterone-sulfate, androst-5-ene-3β,17β-diol, and 4-androsten-3,17-dione to a patient in need of said treatment wherein the said sex steroid precursor is administered at a therapeutic amount which increases the level of circulating androgen metabolites without increasing the circulating level of estradiol above the values found in normal postmenopausal women in order to avoid the risk of breast and uterine cancer.

[006]. In another aspect, the invention provides a method of treating and/or reducing the likelihood of acquiring symptoms or diseases due to the menopause, in
postmenopausal women, said method comprising administering a sex steroid precursor selected from the group consisting of dehydroepiandrosterone, dehydroepiandrosterone-sulfate, androst-5-ene-3β,17β-diol, and 4-androsten-3,17-dione to a patient in need of said treatment wherein the said sex steroid precursor is administered at a therapeutic amount which increases the level of circulating androgen metabolites and further comprising administering as part of a combination therapy, a therapeutically effective amount of a Selective Estrogen Receptor Modulator in order to avoid the risk of breast and uterine cancer normally present in postmenopausal women and to prevent bone loss, fat accumulation and diabetes type 2.

[007]. In another aspect, the invention provides method of treating vaginal conditions of the layer lamina propia or layer muscularis comprising vaginal administration of DHEA in a daily dose of 3-13 mg.

[008]. In another aspect, the invention provides a pharmaceutical composition comprising a sex steroid precursor selected from the group consisting of dehydroepiandrosterone, dehydroepiandrosterone-sulfate, androst-5-ene-3β,17β-diol, and 4-androsten-3,17-dione and further comprising a pharmaceutically acceptable excipient, diluent or carrier selected from the group consisting of triglycerides of saturated fatty acids C12-C18 with varied portions of the corresponding partial glycerides (hard fat, Witepsol), butter, mixed triglycerides of oleic, palmitic, and stearic acids (cocoa butter), partially hydrogenated cottonseed oil (Cotomar), hydrogenated fatty alcohols and esters (Dehydag Base I, Base II or Base III, may also contains glycerides of saturated fatty acids C12-C16), triglycerides from palm, palm kernel, and coconut oils with self-emulsifying glyceryl monostearate and polyoxyl stearate (Fattibase), Hexaride Base 95, higher melting fractions of coconut and palm kernel oil (Hydrokote), Rearranged hydrogenated vegetable oils (S-70-XX95 and S-070-XXA), eutectic mixture of mono-, di-, triglycerides derived from natural vegetable oils (
Suppocire), Tegester Triglycerides, Tween 61, triglycerides derived from coconut oil (Wecobee), theobroma oil, semi-synthetic glycerides (Japocire, Ovucire), mixture of tri-di- and monoglycerides of saturated fatty acids (Massa Estarinum) and a combination of the foregoing (see Allen et al. 2008). Any vehicle including liquid in which DHEA and other precursors are soluble covers by this invention.

[0009] In another aspect, the invention provides a vaginal suppository comprising 0.25-2.00 percent, more specially 0.5 percent DHEA, by weight relative to the total weight of the suppository, of DHEA, and further comprising a lipophilic excipient. Particularly suitable excipient is witepsol H-15.

[0010] By providing the desired androgenic effects without estrogenic systemic effects, systemic side effects of estrogen such as the increased risk of breast and endometrial cancers found with current estrogen-based local and systemic estrogen replacement therapies (Labrie, Cusan et al. Menopause, in press) can be avoided.

[0011] In addition to other forms of administering precursors, the invention provides vaginal suppositories and vaginal creams formulated with preferred excipients and preferred concentrations of precursor.

[0012] Vaginal administration is preferred because local action may provide the desired androgenic effects on desired vaginal layers at much lower dosages than when otherwise administered. Dosing by other means of administration may also be utilized by altering the foregoing dosages and concentrations for known variation between the methods of administration. The attending clinician should alter dosages appropriately in accordance with individual patient response.

[0013] In preferred embodiments, the sex steroid precursor is DHEA.
BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 shows serum Levels of DHEA and 5-Diol on Day 1 or Day 7 in 40-75 Year-Old Postmenopausal Women Following Daily Administration of Vaginal Suppositories Containing 0%, 0.5%, 1.0% or 1.8% of DHEA. Data are expressed as means ± SEM (n=9 or 10).

Figure 2 shows Serum Levels of Testo and DHT on Day 1 or Day 7 in 40-75 Year-Old Postmenopausal Women Following Daily Administration of Vaginal Suppositories Containing 0%, 0.5%, 1.0% or 1.8% of DHEA (n=8). Data are expressed as means ± SEM (n=8 to 9). Testo levels from one patient in the placebo group were excluded because of unexplained high levels of Testo not reflected in any other steroid.

Figure 3 shows Serum Levels of E1 and E2 on Day 1 or Day 7 in 40-75 Year-Old Postmenopausal Women Following Daily Administration of Vaginal Suppositories Containing 0%, 0.5%, 1.0% or 1.8% of DHEA. Data are expressed as means ± SEM (n=9 or 10).

Figure 4 shows Serum Levels of Ei-S and DHEA-S on Day 1 or Day 7 in 40-75 Year-Old Postmenopausal Women Following Daily Administration of Vaginal Suppositories Containing 0%, 0.5%, 1.0% or 1.8% of DHEA. Data are expressed as means ± SEM (n=9 or 10).

Figure 5 shows Serum Levels of 4-Dione and ADT-G on Day 1 or Day 7 in 40-75 Year-Old Postmenopausal Women Following Daily Administration of Vaginal Suppositories Containing 0%, 0.5%, 1.0% or 1.8% of DHEA. Data are expressed as means ± SEM (n=9 or 10).

Figure 6 shows Serum Levels of 3α-Diol-3G and 3α-Diol-17G on Day 1 or Day 7 in 40-75 Year-Old Postmenopausal Women Following Once Daily Administration of
Vaginal Suppositories Containing 0%, 0.5%, 1.0% or 1.8% of DHEA. Data are expressed as means ± SEM (n=9 or 10).

Figure 7 shows Average 24-Hour Serum Concentration (AUC0-24h/24) of DHEA, 5-Diol, DHEA-S, 4-Dione, Testo and DHT Measured on Day 1 or Day 7 Following Once Daily Administration of Vaginal Suppositories Containing 0%, 0.5%, 1.0% or 1.8% of DHEA. Data are expressed as means ± SEM (n=8 to 10). Testo levels from one patient in the placebo group were excluded (n=8 in that group). Serum steroid concentrations measured in 30-35 year-old premenopausal women are added as reference. Data are expressed as mean (n = 47) while the 5th and 95th centiles are indicated (dashed lines). * p < 0.05, ** p < 0.01, experimental (Day 7) versus placebo (Day 7).

Figure 8 shows Average 24-Hour Serum Concentration (AUC0-24h/24) of ADT-G, 3α-Diol-3G, 3α-Diol-17G, E₁, E₂ and Ei-S Measured on Day 1 or Day 7 Following Daily Administration of Vaginal Suppositories Containing 0%, 0.5%, 1.0% or 1.8% of DHEA. Data are expressed as means ± SEM (n=9 or 10). Serum steroid concentrations measured in 30-35 year-old premenopausal women are added as reference. Data are expressed as mean (n = 47) while the 5th and 95th centiles are indicated (dashed lines). * p < 0.05, ** p < 0.01, experimental (Day 7) versus placebo (Day 7).

Figure 9 shows Changes of the Serum Levels of the Sum of the Androgen Metabolites ADT-G, 3α-Diol-17G in Postmenopausal Women with Vaginal Atrophy Following Intravaginal Administration of Increasing Doses of DHEA. The data are expressed as percentage of the serum levels of the same steroid metabolites observed in young adult (30-35 year-old) cycling premenopausal women. The level of transformation is obtained by dividing the sum of the serum levels of ADT-G, 3α-diol-3G and 3α-diol-17G in women who received the 0.5%, 1.0% and 1.8% DHEA doses by the values found in premenopausal women (data from Labrie et al., 2006). The serum DHEA changes compared to normal premenopausal women are also indicated as comparison to
indicate efficiency of transformation — 0).; and _____ basal levels of androgen metabolites and DHEA, respectively.

Figure 10 shows Maturation Index (A) and Vaginal pH (B) Measured on Day 1 and Day 7 in 40-75 Year-Old Postmenopausal Women Following Daily Administration of Vaginal Suppositories Containing 0%, 0.5%, 1.0% or 1.8% of DHEA. Data are expressed as means ± SEM (n=9 or 10). *, p < 0.05, **, p < 0.01, Data on Day 7 versus Data on Day 1.

Figure 11 shows a time-course of serum dehydroepiandrosterone (DHEA) (A) and androst-5-ene-3β,17β-diol (5-diol) (B) following single oral administration of two 50-mg capsules of DHEA or the application of 4 g of 10% DHEA cream or gel to postmenopausal women.

Figure 12 shows a time-course of serum androstenedione (4-dione) (A) and testosterone (B) following single oral administration of two 50-mg capsules of DHEA or the application of 4 g of 10% DHEA cream or gel to postmenopausal women.

Figure 13 shows a time-course of serum estrone (E1) (A) and 17β-estradiol (E2) (B) following single oral administration of two 50-mg capsules of DHEA or the application of 4 g of 10% DHEA cream or gel to postmenopausal women.

Figure 14 shows a time-course of serum dehydroepiandrosterone sulfate (DHEA-S) (A) and estrone sulfate (E1-S) (B) following single oral administration of two 50-mg capsules of DHEA or the application of 4 g of 10% DHEA cream or gel to postmenopausal women.

Figure 15 shows a time-course of serum androsterone glucuronide (ADT-G) (A) and androstone 3α,17β-diol-glucuronide (3α-diol-G) (B) following daily oral administration of two 50-mg capsules of DHEA or the application of 4 g of 10% DHEA cream or gel to postmenopausal women.
Figure 16 shows a time-course of serum dehydroepiandrosterone (DHEA) (A) and andros-5-ene-3β,17β-diol (5-diol) (B) following daily oral administration of two 50-mg capsules of DHEA or the application of 4 g of 10% DHEA cream or gel to postmenopausal women. Measurements were made on the 14th day of dosing.

Figure 17 shows a time-course of serum androstenedione (4-dione) (A) and testosterone (B) following daily oral administration of two 50-mg capsules of DHEA or the application of 4 g of 10% DHEA cream or gel to postmenopausal women. Measurements were made on the 14th day of dosing.

Figure 18 shows a time-course of serum estrone (E₁) (A) and estradiol (E₂) following daily oral administration of two 50-mg capsules of DHEA or the application of 4 g of 10% DHEA cream or gel to postmenopausal women. Measurements were made on the 14th day of dosing.

Figure 19 shows a time-course of serum dehydroepiandrosterone sulfate (DHEA-S) (A) and estrone sulfate (E₁-S) (B) following daily oral administration of two 50-mg capsules of DHEA or the application of 4 g of 10% DHEA cream or gel to postmenopausal women. Measurements were made on the 14th day of dosing.

Figure 20 shows a time-course of serum androsterone glucuronide (ADT-G) (A) and androstene-3α,17β-diol-G (3α-diol-G) (B) following daily oral administration of two 50-mg capsules of DHEA or the application of 4 g of 10% DHEA cream or gel to postmenopausal women. Measurements were made on the 14th day of dosing.

Figure 21 shows ratios of the AUC₀⁻⁴₄h values of DHEA and its metabolites on the 14th day of dosing compared to the pretreatment basal values. The corresponding numerical values can be found in Table 5.
Figure 22 shows the effect of daily intravaginal application of 0.0%, 0.25%, 0.5% and 1.0% DHEA (Prasterone) for 2, 4, 8 and 12 weeks on the percentage of vaginal parabasal cells in postmenopausal women. Data are expressed as means ± SEM.

Figure 23 shows the effect of daily intravaginal application of 0.0%, 0.25%, 0.5% and 1.0% DHEA (Prasterone) for 2, 4, 8 and 12 weeks on the percentage of vaginal superficial cells in postmenopausal women. Data are expressed as means ± SEM.

Figure 24 shows the effect of daily intravaginal application of 0.0%, 0.25%, 0.5% and 1.0% DHEA (Prasterone) for 2, 4, 8 and 12 weeks on vaginal pH in postmenopausal women. Data are expressed as means ± SEM.

Figure 25 shows the effect of daily intravaginal application of 0.0%, 0.25%, 0.5% and 1.0% DHEA (Prasterone) for 2, 4, 8 and 12 weeks on the change in severity of the symptom of vaginal atrophy judged by women themselves as being the most bothersome. Values are compared to day 1 and are expressed as means ± SEM.

Figure 26 shows the effect of daily intravaginal application of 0.0%, 0.25%, 0.5% and 1.0% DHEA (Prasterone) for 2, 4, 8 and 12 weeks on the change in vaginal secretions evaluated at vaginal examination. Data are expressed as means ± SEM.

Figure 27 shows the effect of daily intravaginal application of 0.0%, 0.25%, 0.5% and 1.0% DHEA (Prasterone) for 2, 4, 8 and 12 weeks on the change in vaginal color evaluated at vaginal examination. Data are expressed as means ± SEM.

Figure 28 shows the effect of daily intravaginal application of 0.0%, 0.25%, 0.5% and 1.0% DHEA (Prasterone) for 2, 4, 8 and 12 weeks on the change in vaginal epithelial integrity evaluated at vaginal examination. Data are expressed as means ± SEM.
Figure 29 shows effect of daily intravaginal application of 0.0%, 0.25%, 0.5% and 1.0% DHEA (Prasterone) for 2, 4, 8 and 12 weeks on the change in vaginal epithelial thickness evaluated at vaginal examination. Data are expressed as means ± SEM.

Figure 30 shows the average 24-hour serum concentrations (AUC_{0-24h}/24) of DHEA, 5-Diol, DHEA-S, E1, E2 and E1-S measured on days 1 and 7 following once daily administration of vaginal ovule containing 0.5% DHEA. Data are expressed as means ± SEM (n=10). Serum steroid concentrations measured in 30-35 year-old premenopausal (n=47) as well as in 55-65 year-old postmenopausal (n=369) women are added as reference data which are expressed as means and 5th and 95th centiles (dashed lines). *p < 0.05, **p < 0.01, experimental versus baseline. (Data are from Labrie, Cusan et al. 2008).

Figure 31 shows the average 24-hour serum concentrations (AUC_{0-24h}/24) of 4-Dione, testosterone, DHT ADT-G, 3α-Diol-3G and 3α-Diol-17G measured on days 1 and 7 following once daily administration of vaginal ovule containing 0.5% DHEA. Data are expressed as means ± SEM (n=10). Serum steroid concentrations measured in 30-35 year-old premenopausal (n=47) and 55-65 year-old postmenopausal (n=369) women are added as reference data which are expressed as means and 5th and 95th centiles (dashed lines). *p < 0.05, experimental versus baseline. (Data are from Labrie, Cusan et al. 2008).

DETAILED DESCRIPTION OF THE INVENTION

[0014]. Set Forth below are a list of articles discussed herein in short form citations:

Labrie, F., V. Luu-The, et al. (2006). "Dehydroepiandrosterone (DHEA) is an anabolic steroid like dihydrotestosterone (DHT), the most potent natural androgen, and tetrahydrogestrinone (THG)." *Steroid Biochem Mol Biol* 100(1-3): 52-8.

Swanson, M., Lorentzon, L., Vandenput, D., Mellström, F., Labrie, A., Rane, J., Jakobsson, C., Ohlsson, UGT2B7 H268Y polymorphism is associated with serum sex steroid levels and cortical bone size in young adult men, JCEM (2007), in press.

Vaginal dryness is found in 75% of postmenopausal women (Wines and Willsteed 2001; N.A.M.S. 2007). For various reasons, especially the fear of complications by estrogens, only 20 to 25% of symptomatic women with vaginal atrophy seek medical treatment (Pandit and Ouslander 1997; N.A.M.S. 2007). There is thus a clear medical need and a major opportunity to improve the quality of life of a large population of women left suffering from vaginal atrophy for a large proportion of their lifetime. In can be mentioned that while hot flashes abate spontaneously with time, vaginal atrophy symptoms, namely vaginal dryness, vulvovaginal irritation/itching and dyspareunia usually increase in severity with time in the absence of treatment.

Based upon the well known fact that estrogen secretion by the ovaries ceases at menopause, systemic and local estrogens have so-far been the exclusive approach for the treatment of vaginal atrophy. However, systemic estrogens + progestin (HRT) and estrogens alone (ERT) have been shown to increase the risk of breast cancer (Steinberg, Thacker et al. 1991; Sillero-Arenas, Delgado-Rodriguez et al. 1992; Colditz, Egn et al. 1993; Colditz, Hankinson et al. 1995; Collaborative Group on Hormonal Factors in Breast Cancer 1997; Hulley 2002; Beral 2003; Chlebowski, Hendrix et al. 2003; Holmberg and Anderson 2004; Lyytinen, Pukkala et al. 2006; Corrao, Zambon et al. 2008;
Holmberg, Iversen et al. 2008; Li, Plummer et al. 2008), ovarian cancer (Garg, Kerlikowske et al. 1998; Coughlin, Giustozzi et al. 2000; Lacey, Mink et al. 2002; Riman, Dickman et al. 2002; Rodriguez, Patel et al. 2002; Rossouw, Anderson et al. 2002; Lyytinen, Pukkala et al. 2006) as well as endometrial cancer (estrogens alone) (Gambrell, Massey et al. 1980; Persson, Adami et al. 1989; Voigt, Weiss et al. 1991; Jick, Walker et al. 1993; Grady, Gebretsadik et al. 1995; Beral, BuU et al. 2005). The publicity which followed the Women's Health Initiative Study (Rossouw, Anderson et al. 2002) had the greatest impact, thus putting in doubt the safety of the available treatments of menopausal symptoms (Archer 2007).

[0017] Although intravaginal formulations were developed to avoid systemic exposure to estrogens, a long series of studies have unanimously demonstrated that all intravaginal estrogen formulations lead to relatively high serum estrogen levels measured directly or through their systemic effects (Englund and Johansson 1978; Rigg, Hermann et al. 1978; Martin, Yen et al. 1979; Furuhjelm, Karlgren et al. 1980; Deutsch, Ossowski et al. 1981; Mandel, Geola et al. 1983; Nilsson and Heimer 1992; Nachtigall 1995; Ayton, Darling et al. 1996; Dugal, Hesla et al. 2000; Rioux, Devlin et al. 2000; Manonai, Theppisai et al. 2001; Notelovitz, Funk et al. 2002; Ponzone, Biglia et al. 2005; Weisberg, Ayton et al. 2005; Galhardo, Soares et al. 2006; Kendall, Dowsett et al. 2006; Long, Liu et al. 2006; Bachmann, Lobo et al. 2008). These data showing a significant increase in serum estrogen levels clearly indicate that the use of intravaginal estrogen formulations is also potentially associated with an increased risk of breast and uterine cancer (Kvorning and Jensen 1986; Mattson, Culberg et al. 1989; Rosenberg, Magnusson et al. 2006; N.A.M.S. 2007). Concerns have in fact been officially raised about the stimulatory effects of vaginal estrogen formulations on the endometrium ((N.A.M.S. 2007).
Most previous measurements of the serum estradiol (E$_2$) levels after intravaginal administration of estrogens used radioimmunoassays, a technology lacking specificity, accuracy, reliability and sensitivity (Rinaldi, Dechaud et al. 2001). We have measured serum estrogens using GLP (Good Laboratory Practice)-validated mass spectrometry assays following intravaginal administration of the two most commonly used estrogen formulations (Labrie, Cusan et al. 2008). This study could definitively show that both the E$_2$ pill (25 µg E$_2$/day) and conjugated estrogens cream (1 g of 0.625 mg conjugated estrogens/ day), after one-week of daily treatment, cause an approximately 5-fold increase in serum E$_2$ in postmenopausal women. Such data indicate that the effects of estrogens applied locally in the vagina are unlikely to be limited to the vagina and that systemic action is expected as previously suggested (Englund and Johansson 1978; Rigg, Hermann et al. 1978; Martin, Yen et al. 1979; Furuhjelm, Karlgren et al. 1980; Deutsch, Ossowski et al. 1981; Mandel, Geola et al. 1983; Nilsson and Heimer 1992; Nachrigall 1995; Ayton, Darling et al. 1996; Dugal, Hesla et al. 2000; Rioux, Devlin et al. 2000; Manonai, Theppisai et al. 2001; Notelovitz, Funk et al. 2002; Ponzone, Biglia et al. 2005; Weisberg, Ayton et al. 2005; Galhardo, Soares et al. 2006; Kendall, Dowsett et al. 2006; Long, Liu et al. 2006; Bachmann, Lobo et al. 2008).

In addition to the above-indicated safety concerns of estrogens administered both systemically and locally, recent data have clearly demonstrated that women are not only deficient in estrogens at time of menopause but that they have also been progressively deprived, starting in the thirties, from the androgens made in specific peripheral target tissues by the intracrine transformation of dehydroepiandrosterone (DHEA) into androgens and/or estrogens (Labrie, Belanger et al. 1988; Labrie 1991; Labrie, Luu-The et al. 2003; Labrie, Luu-The et al. 2005). In fact, serum DHEA and DHEA-sulfate progressively decrease from the peak seen at the age of 30 years (Orentreich, Brind et al. 1984; Labrie, Belanger et al. 1997; Labrie, Luu-The et al. 2003) to a value 60% lower at time of menopause (Labrie, Belanger et al. 2006).
Concerning the role of androgens in women, it is important to mention that women secrete 50% as much androgens as observed in men (Labrie, Belanger et al. 1997; Labrie, Luu-The et al. 2005). Since serum DHEA is the predominant source of androgens which play a series of physiological roles in women (Labrie, Luu-The et al. 2003; Labrie 2007), the 60% decrease in circulating DHEA already found at time of menopause leads to a similar 60% decrease in the total androgen pool (Labrie, Belanger et al. 2006) with the resulting potential signs and symptoms of hypoandrogenicity in the bone, muscle, skin, mammary gland, vagina, brain as well as on glucose, insulin and lipid metabolism (Labrie, Luu-The et al. 2003; Labrie 2007). Among the androgen target tissues, recent data have shown that the vagina is sensitive to androgens following DHEA administration in the rat with beneficial effects, not only on the superficial epithelial layer of the vagina but also on collagen fibers in the lamina propria and on the muscularis (Berger, El-Alfy et al. 2005).

Based upon the data of our preclinical (Sourla, Flamand et al. 1998; Berger, El-Alfy et al. 2005) and clinical (Labrie, Diamond et al. 1997; Labrie, Cusan et al. 2008) studies showing beneficial effects on the vagina of DHEA administered percutaneously or locally, the present clinical trial is a prospective, randomized and placebo-controlled study of the effect of three doses of intravaginal DHEA administered daily for 12 weeks on the changes in superficial and parabasal cells, vaginal pH and the most bothersome symptom of vaginal atrophy as primary objectives. The data clearly show that locally administered DHEA is very efficient and rapid in correcting all the signs and symptoms of vaginal atrophy, a near maximal effect being already achieved at 2 weeks at a DHEA dose causing no significant change in serum estrogens or androgens while all other steroids remain unchanged or well within the range found in normal postmenopausal women.
[0022]. When DHEA is administered locally in the vagina, the beneficial effects of estrogens and androgens made locally in the vagina are achieved without any significant release of estradiol or testosterone into the blood (Labrie, Cusan et al. J. Ster. Biochem. Mol. Biol. In press). In the formation of androgens and/or estrogens from DHEA by the process of intracrinology, any tissue is unpredictable because the response depends upon the activity of the enzymatic machinery specifically present in each cell of each tissue. Thus, it is not possible to predict, from the androgens and estrogens that are produced from DHEA in one tissue, the extent to which similar androgens and estrogens may be produced in another tissue.

[0023]. The results of the clinical trial ERC-210 (Example 3) clearly demonstrate for the first time that the local administration of DHEA as hormone precursor replacement therapy (HPRT) is highly efficient and rapid in correcting all the symptoms and signs of vaginal atrophy in postmenopausal women. Most importantly, this is achieved at a dose (0.5%) of DHEA which does not increase the serum levels of active estrogens or androgens and with no or minimal changes in serum DHEA and any of its metabolites which all remain well within the range of values found in normal postmenopausal women (Labrie, Cusan et al. 2008).

[0024]. While 75% of postmenopausal women suffer from vaginal atrophy (Wines and Willsteed 2001; N.A.M.S. 2007), thus affecting their quality of life during a major part of their lifetime, only 20% seek treatment (Pandit and Ouslander 1997). The fear of breast cancer related to increased blood levels of estrogens is the main reason involved. Since estrogen secretion into the systemic circulation is exclusively of ovarian origin and ceases at menopause, administration of estrogens to postmenopausal women does not appear to be physiological. In the aftermath of WHI, the scientific challenge is to explore alternative hormonal therapy types and formulations that would provide all the menopausal advantages of estrogens while improving women's quality of life,
minimizing risks and maximizing benefits (Archer 2007). Since the non-estrogen based treatments have not shown convincing efficacy (Nelson, Vesco et al. 2006; Suckling, Lethaby et al. 2006), women and their physicians are left with no safe treatment for vaginal atrophy.

[0025] Various forms of estrogens are an efficient treatment for vulvovaginal atrophy (Pandit and Ouslander 1997; Utian, Shoupe et al. 2001). In fact, the vaginal E₂ tablet has shown an efficacy similar to the E₂ ring (Weisberg, Ayton et al. 2005) as well as to the conjugated estrogen cream (Rioux, Devlin et al. 2000; Manonai, Theppisai et al. 2001).

[0026] This novel HPRT is in marked contrast with the 5-fold increase in serum E₂ measured by mass spectrometry after treatment with intravaginal E₂ or conjugated estrogens (Labrie, Cusan et al. 2008). These recent data on the changes in serum estrogens confirm a long series of studies showing that all intravaginal estrogen formulations lead to elevated serum estrogen concentrations measured directly by radioimmunoassays or through their systemic effects (Englund and Johansson 1978; Rigg, Hermann et al. 1978; Martin, Yen et al. 1979; Furuhjelm, Karlgren et al. 1980; Deutsch, Ossowski et al. 1981; Mandel, Geola et al. 1983; Nilsson and Heimer 1992; Nachtigall 1995; Ayton, Darling et al. 1996; Dugal, Hesla et al. 2000; Rioux, Devlin et al. 2000; Manonai, Theppisai et al. 2001; Notelovitz, Funk et al. 2002; Ponzone, Biglia et al. 2005; Weisberg, Ayton et al. 2005; Galhardo, Soares et al. 2006; Kendall, Dowsett et al. 2006; Long, Liu et al. 2006; Bachmann, Lobo et al. 2008).

[0027] The most common adverse events reported with vaginal estrogens are vaginal bleeding and breast pain, both secondary to increased serum estrogens (Suckling, Lethaby et al. 2006). These side effects have been reported for the E₂ ring, conjugated estrogens cream as well as E₂ tablet (Ayton, Darling et al. 1996; Weisberg, Ayton et al. 2005). As mentioned above, concerns also exist about the stimulatory effects of vaginal
estrogens on the endometrium (N.A.M.S. 2007). Uterine bleeding, breast pain and perineal pain were reported in 9% of women who took the vaginal tablet for 24 weeks while 34% complained of the same symptoms in the vaginal conjugated estrogen cream group (Rioux, Devlin et al. 2000). (Suckling, Lethaby et al. 2006) reported no difference between the different vaginal estrogen preparations.

[0028] It is well known that atrophic vaginitis in postmenopausal women can be worsened or induced by the use of aromatase inhibitors for the treatment of breast cancer. In fact, these drugs exert their benefits on breast cancer by decreasing E_2 biosynthesis in all tissues, thus increasing the frequency and severity of menopausal symptoms (Fallowfield, Cella et al. 2004; Morales, Neven et al. 2004). In a recent study where seven breast cancer patients treated with aromatase inhibitors received Vagifem at a daily dose of 25 μg for 2 weeks and then, thereafter, twice weekly, serum E_2 rose from a median of 3 pmol/l to 72 pmol/l, at 2 weeks (range 3 to 232) (Kendall, Dowsett et al. 2006). Serum E_2 levels generally decreased thereafter to values of 40 pmol/l or less although values of 137 and 219 pmol/l were found at weeks 7-10. A patient who received Premarin cream had serum E_2 levels of 83 pmol/l at 2 weeks. It should be mentioned that blood sampling for E_2 measurement was performed at time of patient's visit, a timing not likely to correspond to the highest serum E_2 levels after Vagifem administration. It is thus more than likely that the values reported in (Kendall, Dowsett et al. 2006) underestimate, up to an unknown extent, the true elevation of serum E_2 after intravaginal Vagifem pill or Premarin cream administration. The authors concluded that the use of Vagifem with aromatase inhibitors is contraindicated. These findings obtained in breast cancer women treated with aromatase inhibitors raise a serious issue about the use of any vaginal as well as any oral or transdermal estrogen preparation in postmenopausal women.
The relatively high elevation of serum E₂ following treatment with various vaginal estrogen preparations leading to increased risk of breast cancer is a well recognized issue (Rosenberg, Magnusson et al. 2006). Although a study having a small number of events and a short follow-up (a 4.7% subgroup among 1472 women) did not find a statistically significant difference in disease-free survival in the subgroup of women who used vaginal estrogen (Dew, Wren et al. 2003), it does not appear reasonable or acceptable to increase the serum E₂ levels during breast cancer therapy when the objective of treatment with aromatase inhibitors is precisely to achieve the maximal inhibition of E₂ biosynthesis.

In an early study with Vagifem, a E₂ tablet, when administered at the 25 µg dose, led to serum E₂ levels of 80 pmol/l with values below 50 pmol/l at 14h and later (Kvorning and Jensen 1986). In a more recent study with Vagifem, maximal and mean 24 h serum E₂ concentrations were measured at 180 ± 99 pmol/l and 84 pmol/l for the 25 µg dose while values of 81 ± 62 pmol/l and 40 pmol/l, respectively, were found for the 10 µg dose (Notelovitz, Funk et al. 2002). Other vaginal estrogen tablets and creams have led to even higher serum estrogen levels (Schiff, Tulchinsky et al. 1977; Rioux, Devlin et al. 2000).

With the 10 µg and 25 µg E₂ vaginal tablets, serum E₂ was found to increase to maximal values of approximately 90 and 160 pmol/l, respectively, from basal values of approximately 35 pmol/l (Nilsson and Heimer 1992). Serum E₂ with Vagifem has been reported at a Cmax of 51 ± 34 pg/ml on day 1, this value being practically unchanged on days 14 (47 ± 21 pg/ml) and 84 (49 ± 27 pg/ml) (Vagifem, Physician Package Insert 1999).

In another study, after 52 weeks of treatment with 25 µg Vagifem, the serum levels of E₂ were reported to have remained unchanged from 10.3 ± 21.5 pg/ml to
9.9 pg/ml (Bachmann, Lobo et al. 2008). Such data can be explained by the fact that blood sampling was most likely performed 3 or 4 days after Vagifem application. It is also important to mention that the elevated pretreatment serum E₂ levels in that study most likely relate to the lack of specificity of the immuno-based assays used since normal E₂ serum levels measured by mass spectrometry in postmenopausal women are two to three times lower (Labrie, Belanger et al. 2006).

[0033] In an early study, the oral and vaginal administration of 1.25 mg Premarin led to serum levels of E₂ and estrone up to at least 100 pg/ml and 1000 pg/ml respectively, during the 24h following administration, the levels being somewhat higher after vaginal application. Serum gonadotropin levels were decreased in most subjects (Englund and Johansson 1978). Similar data were reported by (Rigg, Hermann et al. 1978). In a recent study, following 3 months of daily oral or intravaginal administration of 0.625 mg Premarin, the serum E₂ levels increased to 83.1 and 58.6 pg/ml respectively (Long, Liu et al. 2006), thus illustrating the very important systemic exposure after both intravaginal and oral estrogen administration since serum E₂ was only 36% lower after intravaginal compared to oral administration of conjugated estrogens. In a 12-week study with Premarin vaginal cream at the daily 2 g dose, three times a week, 21% of women experienced bleeding after a progestogen test (Nachtingall 1995). Moreover, of these women, 12% showed an increase in endometrial thickness at echography.

[0034] No increase in serum E₁, E₂ or EiS levels have been reported with the use of the vaginal ring (Nachtingall 1995; Gupta, Ozel et al. 2008) although significant increases in EiS and E₂ have been observed in women older than 60 years (Naessen, Rodriguez-Macias et al. 2001). In the ESTRING group of a recent study, serum E₂ increased from 16 ± 22 pmol/l to 49 ± 64 pmol/l at week 24 (Weisberg, Ayton et al. 2005). In the Vagifem group, on the other hand, serum E₂ increased from 15 ± 33 pmol/l to 36 ± 51 pmol/l. These authors, nevertheless, reported that serum E₂ remained within or near
the values found in normal postmenopausal women. At 48 weeks of treatment with ESTRing or Vagifem, 30-32% of women had complaints of urinary frequency, 36-39% of urinary urgency and 18-33% complained of dyspareunia (Weisberg, Ayton et al. 2005).

[0035] Three studies have documented that the E$_2$ vaginal ring permits low serum E$_2$ during the 90-day period except for the burst in serum estrogen that reaches the lower region of those seen in normal cycling women or 100 to 200 pmoles/L during the first 0.5 - 8h after insertion of the ring (Holmgren, Lindskog et al. 1989; Schmidt, Andersson et al. 1994) (Baker and Jaffe 1996). That the daily delivery of 7.5 µg of E$_2$ by the intravaginal route has systemic effects is shown by the observation of a significant increase in bone mineral density of total hip and lumbar spine after 2 years of treatment with such an intravaginal dose of E$_2$ (Salminen, Saaf et al. 2007).

[0036] As mentioned above, concerns exist about the stimulatory effects of vaginal estrogens on the endometrium (N.A.M.S. 2007). After 12 weeks of treatment of 32 women with 25 µg of intravaginal E$_2$ (Vagifem), one patient had simple hyperplasia without atypia (Bachmann, Lobo et al. 2008). In a 24-week study involving 80 women, one case of proliferative endometrium was found (Rioux, Devlin et al. 2000) and in another 52-week study of 31 women, two had a proliferative endometrium (Mettler and Olsen 1991).

[0037] In a 12-week study with Premarin vaginal cream at the dose of 2 g, three times a week, 21% of women experienced bleeding after a progestogen test (Nachtigall 1995). Of these, 12% showed an increase in endometrial thickness by echography. The use of a 0.3 mg dose of conjugated estrogens administered intravaginally, three times a week, may induce endometrial proliferation, albeit rarely, since endometrial proliferation was seen in only one of twenty cases (Nachtigall 1995).
The sustained-release estradiol ring (ESTring) induced endometrial proliferation similar to the 0.625 mg Premarin cream (Ayton, Darling et al. 1996) but less than the 1.25 mg Premarin cream (Nachtigall 1995). In fact, both the vaginal ring (ESTring) and conjugated estrogen cream (Premarin cream) have been shown to induce endometrial proliferation (Nachtigall 1995; Ayton, Darling et al. 1996). Two cases of moderate endometrial proliferation or hyperplasia in an endometrial polyp were found with the E_2 ring (Nachtigall 1995), while two cases of hyperplasia (one simple and one complex, without atypia) were found with the conjugated estrogen cream in a trial of conjugated estrogen cream versus E_2 tablet (Rioux, Devlin et al. 2000). The E_2 vaginal tablet has been associated with endometrial hyperplasia similar to the estriol vaginal tablet (Dugal, Hesla et al. 2000; Manonai, Theppisai et al. 2001) but less than the conjugated estrogens cream (Manonai, Theppisai et al. 2001).

Although serum estrogen levels are increased to a lower degree following local intravaginal application compared to oral or percutaneous HRT or ERT, the risk of breast cancer remains an issue and the safety of the intravaginal estrogens is in doubt (Suckling, Lethaby et al. 2006; N.A.M.S. 2007). In fact, although the increase in serum estrogens is lower after the intravaginal compared to the oral or percutaneous route of administration, it is significantly elevated above normal postmenopausal levels for all intravaginal estrogen formulations (Ponzone, Biglia et al. 2005).

In addition to the increased breast cancer risk associated with the administration of estrogens, it is important to remember that the true hormonal difference between the postmenopausal women who do not suffer from vaginal atrophy (estimated at 25% of the postmenopausal population) and the remaining 75% of postmenopausal women who suffer from vaginal atrophy (Wines and Willsteed 2001; N.A.M.S. 2007), is not related to the secretion of estrogens in the systemic circulation since ovarian estrogen secretion has ceased in all women at time of menopause. Consequently, a deficit in
estrogen secretion is not a valid explanation for the occurrence of symptoms of vaginal atrophy in the majority of postmenopausal women.

[0041]. Sex steroid formation, however, does not stop with the cessation of ovarian function at menopause. The recent progress in our understanding of the endocrine physiology in women show that after menopause, DHEA secreted by the adrenals is the only source of sex steroids made exclusively in target tissues (Labrie 1991). Contrary to the estrogens of ovarian origin which are secreted in the general circulation where they can be measured, DHEA is an inactive precursor which is transformed in the peripheral tissues at various rates according the level of expression of the steroidogenic enzymes in each tissue. The process of intracrinology permits local intratissular formation of active sex steroids with no significant release of the active steroids in the circulation (Labrie, Dupont et al. 1985; Labrie, Belanger et al. 1988; Labrie 1991; Labrie, Luu-The et al. 2005).

[0042]. The secretion of DHEA, however, decreases with age, a 60% decrease being already observed at time of menopause (Labrie, Luu-The et al. 2003; Labrie, Belanger et al. 2005; Labrie, Luu-The et al. 2005; Labrie, Belanger et al. 2006; Labrie, Luu-The et al. 2006; Labrie 2007). The only difference between the symptomatic and the asymptomatic postmenopausal women is the amount of DHEA secreted by the adrenals or the sensitivity of the vaginal tissue to DHEA. The difference of sensitivity of different women is likely to be related up, to an unknown extent, to the level of activity of the enzymatic machinery specific to each cell type in each tissue (Labrie 1991; Labrie, Belanger et al. 2005). With this knowledge, DHEA and not estrogens is a physiological hormonal replacement therapy for postmenopausal women.

[0043]. As well demonstrated in our previous studies (Labrie 1991; Labrie, Luu-The et al. 2003; Labrie, Luu-The et al. 2005; Labrie, Belanger et al. 2007), supplementation with physiological amounts of exogeneous DHEA permits the biosynthesis of androgens
and/or estrogens only in the appropriate target tissues which contain the required steroidogenic enzymes of intracrinology (Labrie, Luu-The et al. 2005). The active androgens and estrogens synthesized locally from DHEA in peripheral target tissues exert their action in the same cells where their formation takes place. Most importantly, very little leakage of the active sex steroids into the circulation takes place, thus explaining the marked beneficial effects observed in the vagina with no significant change in circulating estrogens or androgens (Labrie, Cusan et al. 2008). This local biosynthesis, action and inactivation of estrogens and androgens in target tissues eliminates the exposure of other tissues to excess sex steroids and thus eliminates the increased risks of undesirable side effects from elevated estrogen exposure, including breast, ovarian and uterine cancer (Gambrell, Massey et al. 1980; Persson, Adami et al. 1989; Steinberg, Thacker et al. 1991; Voigt, Weiss et al. 1991; Sillero-Arenas, Delgado-Rodriguez et al. 1992; Colditz, Egn et al. 1993; Jick, Walker et al. 1993; Colditz, Hankinson et al. 1995; Grady, Gebretsadik et al. 1995; Collaborative Group on Hormonal Factors in Breast Cancer 1997; Garg, Kerlikowske et al. 1998; Coughlin, Giustozzi et al. 2000; Hulley 2002; Lacey, Mink et al. 2002; Riman, Dickman et al. 2002; Rodriguez, Patel et al. 2002; Rossouw, Anderson et al. 2002; Beral 2003; Chlebowski, Hendrix et al. 2003; Holmberg and Anderson 2004; Beral, Bull et al. 2005; Lyytinen, Pukkala et al. 2006; Corrao, Zambon et al. 2008; Holmberg, Iversen et al. 2008; Li, Plummer et al. 2008).

Change in pH is now recognized as a valid parameter which reflects the beneficial effect of vaginal atrophy therapy. After 12 weeks of intravaginal treatment with 25 µg E2, the percentage of patients having a pH less than 5.0 was 51% compared to 21% in the placebo group (Bachmann, Lobo et al. 2008). At baseline, however, 11.2% and 13% of women had a pH below 5.0 in the two corresponding groups. In the clinical trial ERC-210 (Example 3), no patient had a pH below 5.0 at start of therapy and 12%,
36%, 46% and 48% had pH values below 5.0 at 12 weeks in the 0%, 0.25%, 0.5% and 1.0% DHEA groups, respectively.

[0045] In clinical trial ERC-210 (Example 3), the effect of DHEA on the maturation of the vaginal epithelial cells is particularly rapid: with the 0.5% DHEA ovule, 79% of the maximal effect on parabasal cells was already observed at 2 weeks while 48% of the maximal stimulatory effect exerted on superficial cells was observed at the same time interval. On the other hand, 85% of the maximal effect of 0.5% DHEA on the percentage of superficial cells was achieved at 4 weeks. Similarly, 63% of the maximal effect of 0.5% DHEA on the most bothersome symptom was observed at 2 weeks and 87% was reached at 4 weeks. Moreover, only 17.8% of women reported no change in their most bothersome symptom at 12 weeks in the 0.5% DHEA group compared to 48.8% in the placebo group.

[0046] The effect of DHEA on parabasal cells is rapid since the % of parabasal cells was decreased to less than 20% at one month with the three DHEA doses used. The effect on the % of superficial cells is also very rapid with 100% of the effect being seen at 2 weeks with the high (1%) DHEA dose. In a study with vaginal estrogen cream or tablet, approximately 50% of the effect measured at 12 weeks was observed at 2 weeks (Rioux, Devlin et al. 2000). Such data indicate that the rapidity of the effect of DHEA is not inferior and possibly superior to the effect of the vaginal E2 and conjugated estrogen formulations.

[0047] In a study of the effect of oral estrogens in 71 postmenopausal women, daily administration of 0.3 mg oral synthetic conjugated estrogens decreased parabasal cells from 23% to 2.3% while superficial cells increased from 2.1% to 15.9% (Marx, Schade et al. 2004). In a study comparing the 0.3 mg and 0.625 mg doses of conjugated equine
estrogens (Utian, Shoupe et al. 2001), the 0.625 mg dose has shown a greater effect on the % of superficial cells.

[0048] In a recent study, the vaginal maturation value (VMV) increased from 27.45 at baseline to 56.85 (p<0.0001) in the estrogen-treated group (Simon, Reape et al. 2007). The percentage of superficial cells increased by 17.15 from baseline while the percentage of parabasal cells decreased by 41.66% in the estrogen-treated group. In the same study, the vaginal pH decreased from 6.74 at baseline to 5.05 (decrease of 1.69 or 24%) in the estrogen group). The severity of the most bothersome symptoms decreased from 2.58 to 1.04 (-1.54) in the estrogen group compared to a decrease from 2.59 to 1.84 (-0.75) in the placebo group. Such data observed with estrogens are comparable to the 1.56 decrease in severity of the most bothersome symptoms at 12 weeks in the 0.5% DHEA group and the 0.67 decrease in the placebo group observed in clinical trial ERC-210 (Example 3).

[0049] At week 12, 11% of ESTRING subjects and 24% of Vagifem subjects had persistent atrophic epithelium. At week 48, the respective values were 8% and 14% (Weisberg, Ayton et al. 2005). At 48 weeks of treatment with Vagifem or ESTRING, vaginal dryness was still present in 33% of women (Weisberg, Ayton et al. 2005). Pruritus vulvae, on the other hand, remained present in 15% and 20% of women after treatment with ESTRING and Vagifem, respectively while 33% and 28% of women still had dyspareunia after treatment with ESTRING and Vagifem, respectively. Bleeding after the progestogen test was 7% in the Vagifem group and 0% in the ESTRING group.

[0050] After 3 months of daily administration of 0.625 mg Premarin orally or intravaginally (cream), respective 70.6% and 75% improvements of dyspareunia were observed (Long, Liu et al. 2006). It was concluded in that study that 1 g of 0.625 mg Premarin was the minimal dose for the treatment of sexual dysfunction.
[0051]. In women who received 25 µg E₂ intravaginally, dyspareunia persisted in 12.4% of cases after 12 months of treatment (Simunic, Banovic et al. 2003). The success rate of therapy of local E₂ tablets was 84.5% as judged by patients and 86.1% as judged by doctors (Simunic, Banovic et al. 2003). Bachman et al. 1992 (Bachmann, Notelovitz et al. 1992) have reported that 40-50% of women on oral estrogen replacement therapy had persistent complaints of vaginal dryness.

[0052]. As reported previously after 12 months of treatment with DHEA (Labrie, Diamond et al. 1997), the clinical trial ERC-210 (Example 3) shows no effect on endometrial histology after 3 months of intravaginal administration of the hormone precursor DHEA as shown by histopathological examination of the endometrial biopsies obtained before and after 12 weeks of treatment. These findings are in agreement with the absence of aromatase activity in the human endometrium (Baxendale, Reed et al. 1981; Bulun, Lin et al. 2005). These findings are also strongly supported by the well recognized clinical observation that endometrial atrophy is characteristic of postmenopause despite the continuous secretion of DHEA throughout life (Labrie, Luu-The et al. 2005; Labrie, Belanger et al. 2006). The absence in the human endometrium of the steroidogenic enzymes necessary to transform DHEA into estrogens is in agreement with the physiological role of the endometrium which is active exclusively during the reproductive years when its function is essentially controlled by hormones of ovarian and placental origins. There is no physiological role of the endometrium after menopause which would justify any continued action of estrogens after cessation of estrogen secretion by the ovaries. Accordingly, the enzymes required for the synthesis of estrogens from DHEA are not expressed in the endometrium which a tissue fully dependent upon estrogens of ovarian origin.

[0053]. Estrogens administered alone have long been known to stimulate endometrial proliferation (Smith, Prentice et al. 1975) while progestins administered in combination
with estrogens inhibit the stimulatory effect of estrogens (Feeley and Wells 2001). Since androgen receptors are expressed in the human endometrium and stroma (Mertens, Heineman et al. 1996), it is of interest to mention that a clinical study which investigated the effect of androgens showed no effect on the endometrium of a relatively high dose of testosterone in postmenopausal women (testosterone undecanoate, 40 mg every second day) (Zang, Sahlin et al. 2007). In women who received estradiol valerate (2 mg/day), Ki labeling increased by 50% at 3 months of treatment while simultaneous administration of testosterone decreased proliferation to 28%. Ki67 labeling was increased only in the two groups receiving estrogen but it was decreased by the addition of testosterone in the stroma. While having no stimulatory effect on endometrial proliferation in women, testosterone appears to exert some antiestrogenic effect in the endometrium.

While the FDA guidance encourages sponsors to develop the lowest doses and exposures for both estrogens and progestins, we must recognize that although estrogens are efficient in correcting the symptoms of vaginal atrophy and vasomotor symptoms, systemic estrogens are not the physiological hormones that permit 25% of postmenopausal women to avoid the moderate to severe symptoms of vaginal atrophy. These women remain relatively asymptomatic throughout all their postmenopausal years. Since the only source of sex steroids in postmenopausal women, both symptomatic and asymptomatic, is local estrogen and androgen biosynthesis from adrenal DHEA, by the mechanisms of intracrinology. Replacement with DHEA is the only physiological approach which permits to provide women suffering from postmenopausal symptoms the missing amount of DHEA responsible for their symptoms. With the approach called hormone precursor replacement therapy (HPRT), vaginal atrophy and vasomotor symptoms should be corrected with no more risk than that of the fellow postmenopausal women who have no symptoms of vaginal atrophy because of a higher
exposure to DHEA and the sex steroids made intracellularly by the process of intracrinology.

[0055]. Sex steroid precursors administered in accordance with the invention are preferably administered in a dosage range (1) between 0.5 to 100 mg per day, (preferably 3 to 50 mg per day, and most preferably between 3 and 13 mg per day), when intravaginally administered; (2) in a dosage range between 15 to 200 mg per day (preferably 30 mg to 100 mg per day), when administered on the skin; (3) in a dosage range between 10 to 200 mg per day (preferably 25 mg to 100 mg per day), e.g., 75 mg per day, when orally administered; or (4) in a dosage range between 1.0 to 25 mg per day (preferably 3.25 to 20 mg per day), when parentally administered (i.e. intramuscular, or subcutaneous).

[0056]. In a pharmaceutical composition for vaginal administration, DHEA or other precursor is preferably present in a concentration between 0.1 and 10% by weight relative to total weight of the composition more preferably between 0.2 and 3.0 percent, especially between 0.25 and 2.0 percent. For example, a 1.3 milliliter (mL) vaginal suppository having a 0.5% DHEA (by weight of total composition), administered once daily, desirably provides 6.5 mg/day of DHEA. Larger or smaller suppositories may be used, as may different concentrations, while maintaining dosage in the desired range.

[0057]. In a pharmaceutical composition for administration on skin, DHEA or other precursor is preferably present in a concentration between 0.1 and 10% by weight relative to total weight of the composition more preferably between 0.2 and 2.0 percent, especially between 0.3 and 1.5 percent.

[0058]. In a pharmaceutical composition for oral administration, DHEA or other precursor is preferably present in a concentration between 5 and 98% by weight relative to total weight of the composition more preferably between 10 and 50 percent, especially between 15 and 40 percent.
[0059]. In a pharmaceutical composition for parental administration (i.e. intramuscular, or subcutaneous), DHEA or other precursor is preferably present in a concentration between 0.2 mg/mL and 25 mg/mL, more preferably between 0.65 and 15 mg/mL, especially between 2 mg/mL and 10 mg/mL.
EXAMPLE OF EFFICACY OF THE INVENTION

Example 1
Clinical Trail ERC-213

DHEA Bioavailability following administration of Vaginal Suppositories in Post Menopausal Women with vaginal atrophy Phase I randomized, Placebo-Controlled

Pharmacokinetics and Local Action of Daily Administration of DHEA Suppositories for One Week

[0060]. The primary objective of that study was the evaluation of the systemic bioavailability of DHEA and its metabolites following daily intravaginal application of suppositories at four different DHEA concentrations. This study was a randomized, placebo-controlled and double-blind trial of 10-subjects per arm. Forty postmenopausal women were thus randomized to receive a daily dose of one suppository of the following DHEA concentrations: 0.0%, 0.5% (6.5 mg of DHEA/suppository), 1.0% (13 mg of DHEA/suppository) or 1.8% (23.4 mg of DHEA/suppository).

[0061]. The maturation index as well as the vaginal pH were measured at pretreatment as well as after 7 days of treatment in order to obtain an indication of the local effect of DHEA during that short time period.

[0062]. As illustrated in Figure IB, Table 1 and Table 2, daily intravaginal application of a 1.3 ml suppository containing 0.5%, 1.0% and 1.8% DHEA led to a progressive increase of serum DHEA with AUC \(0^{-24h}\) values of 24.8 ± 4.8 ng.h/ml, 56.2 ± 8.9 ng.h/ml (\(p < 0.05\)), 76.2 ± 10.3 ng.h/ml (\(p < 0.01\)) and 114.3 ± 9.97 ng.h/ml (\(p < 0.01\)), respectively. There was thus 127%, 207% and 361% increases over control at the 0.5%, 1.0% and 1.8% doses of DHEA, respectively. As observed for all other steroids, similar values of the AUC \(0^{-24h}\) were observed on days 1 and 7.
In fact, the average serum value of 4.76 ± 0.42 ng/ml of DHEA following treatment with the highest dose (Table 2) is similar to the value of 4.47 ± 2.19 ng/ml found in forty-seven (47) 30-35 year-old premenopausal normal women (Labrie, Belanger et al. 2006). That serum DHEA following any of the doses of DHEA used remains within the limits of normal premenopausal women is well illustrated in Figure 7A.

As observed previously following oral or percutaneous administration of DHEA (Labrie, Belanger et al. 2007), serum 5-diol follows a pattern almost superimposable to that of DHEA, although much lower concentrations are seen. In fact, the AUC $0-4$ h value goes from 5.60 ± 0.60 ng.h/ml in the placebo group on day 7 to 9.83 ± 1.14 (p < 0.05), 13.8 ± 1.87 (p < 0.01) and 21.0 ± 1.66 (p < 0.01) at the 0.5%, 1.0% and 1.8% DHEA doses, respectively (ID, Table 1). Such changes correspond to 75%, 147% and 276% increases over control. Only the 1.8% DHEA dose causes increases in serum 5-diol exceeding the values found in normal premenopausal women (Figure 7B) during the 24 h following daily intravaginal administration of DHEA on day 7.

The AUC $0-24$ h value of serum Testo showed no significant change at the 0.5% dose (2.79 ± 0.30 ng.h/ml versus 2.58 ± 0.33 ng.h/ml in the placebo group) (Figure 2B). At the 1.0% and 1.8% doses, AUC $0-24$ h values of 4.54 ± 0.91 ng.h/ml (p < 0.05) and 5.97 ± 0.69 ng.h/ml (p < 0.01) were found (Table 1). These values translate into average serum Testo levels of 0.11 ± 0.01 (N.S.), 0.12 ± 0.01 (N.S.), 0.19 ± 0.04 (p < 0.05) and 0.25 ± 0.03 (p < 0.01) ng/ml, respectively. Even at the highest 1.8% DHEA dose used, serum Testo levels remained within the normal range of premenopausal women measured at 0.18 ± 0.07 ng/ml (0.06 - 0.31, 5th - 95th centiles) (Labrie, Belanger et al. 2006) (Figure 7E). The 1.0% dose (0.18 ± 0.07 ng/ml), on the other hand, corresponds exactly to the values found in normal premenopausal women, namely 0.19 ± 0.4 (Figure 7E).
Figure 2C and D, serum DHT increased from an AUC 0-24h value of 0.58 ± 0.07 ng.h/ml in the placebo group on day 7 to 0.93 ± 0.11 (N.S.), 1.31 ± 0.2b (p < 0.05) and 1.93 ± 0.23 (p < 0.01) ng.h/ml in the 0.5%, 1.0% and 1.8% DHEA groups, respectively (Table 2). These values correspond to average serum DHT levels of 0.02 ± 0.01, 0.04 ± 0.01, 0.05 ± 0.01 and 0.08 ± 0.01 ng/ml (Table 2), thus reaching, at the highest DHEA dose, the normal serum DHT levels of 0.07 ± 0.03 ng/ml observed in premenopausal women (Labrie, Belanger et al. 2006) (Figure 7F).

The average serum Ei levels were measured at 12.6 ± 1.41 ng/ml in the placebo group on day 7 (Table 2) while there was no significant change at the 0.5% DHEA dose (15.4 ± 2.04 ng/ml). An increase to 24.1 ± 3.54 ng/ml (p < 0.01) and 25.0 ± 2.85 ng/ml (p < 0.01) was observed at the 1.0% and 1.5% DHEA doses, respectively. The corresponding AUC 0-24h values are illustrated in Figure 3B and are indicated in Table 1.

Average serum E2 levels were measured at 2.77 ± 0.29 pg/ml and 4.04 ± 0.69 pg/ml (N.S.) in the placebo and 0.5% DHEA groups, respectively (Table 2). Average serum E2 concentrations of 6.01 ± 1.31 pg/ml (p < 0.05) and 5.68 ± 0.84 pg/ml (p < 0.05) were found on day 7 in women who received the 1.0% and 1.8% DHEA doses for absolute increases of 3.18 and 2.85 pg/ml over placebo, respectively. Comparable findings were observed for serum Ei-S with average serum levels of 0.12 ± 0.02 ng/ml and 0.13 ng/ml (N.S.) in the placebo and 0.5% DHEA groups, respectively (Table 2). Values of 0.18 ± 0.03 ng/ml and 0.25 ± 0.25 ng/ml were measured in the 1.0% and 1.8% DHEA groups, respectively. Only the 1.8% DHEA group shows a statistical difference (p < 0.01) with the placebo group.

As can be seen in 4B and D, a comparable pattern is seen for both Ei-S and DHEA-S. The AUC 0-24 value of serum DHEA-S was measured at 8.35 ± 2.22 ng.h/ml in the placebo group and 13.3 ± 3.16 ng.h/ml in the 0.5% DHEA group (N.S.). With the two higher DHEA doses, the AUC 0-24h values were measured at 16.5 ± 2.71 ng.h/ml
(N.S.) and 19.3 ± 3.59 ng.h/ml (p < 0.05), respectively (Figure 4D, Table 1). These values of DHEA-S at all doses of DHEA remain below the serum DHEA-S levels observed in premenopausal women which show an average of 1.27 ± 0.62 ng/ml (7C).

[0070]. As illustrated in Figure 5B, the AUC o-24 h values of serum 4-dione following DHEA administration on day 7 were measured at 6.34 ± 0.80 and 8.71 ± 0.84 ng.h/ml (N.S.) in the placebo and 0.5% DHEA groups, respectively. At the two higher DHEA doses, the AUC o-24 h values of 4-dione increased slightly to 11.1 ± 1.51 (p < 0.01) and 11.9 ± 0.81 (p < 0.01) ng.h/ml, respectively. As can be seen in 7D and Table 2, all these values of serum 4-dione remained well below the average serum 4-dione concentrations observed in normal premenopausal women. In fact, the highest DHEA dose led to average serum 4-dione concentrations of 0.50 ± 0.03 ng/ml while the average value in 30-35 year old cycling women is 0.96 ± 0.35 ng/ml (Labrie, Belanger et al. 2006) (Appendix T), thus reaching only 50% of the serum 4-dione levels observed in premenopausal women.

[0071]. Considering the crucial role of measurements of the serum levels of ADT-G, 3α-diol-3G and 3α-diol-17G (Labrie, Belanger et al. 2006) it is of interest to see in 5D and Table 2 that serum levels of ADT-G increased from an average value of 6.97 ± 1.20 ng/ml in the placebo group to 19.2 ± 3.99 ng.h/ml in the 0.5% DHEA group (p < 0.01). Values of 19.7 ± 2.48 and 25.7 ± 2.88 ng.h/ml were measured in the 1.0% and 1.8% DHEA groups, respectively (p < 0.01 vs placebo for both DHEA-treated groups). Similar changes can be seen for the minor androgen metabolites 3α-diol-3G and 3α-diol-17G (6B, 6D, 8B and 8C, Table 1 and Table 2). It is important to indicate, as illustrated in Figure 8, that even at the highest dose of DHEA used, the average serum levels of ADT-G 3α-diol-3G and 3α-diol-17G remained 36%, 11% and 6% below the average serum levels found in premenopausal women.
As shown in Table 2, the sum of the androgen metabolite glucuronides measured over a 24 h period on day 7 of the administration of a 1.3 ml suppository containing 1.8% DHEA (23.4 mg DHEA) is only 28.2 ng/ml while the mean serum concentration of the same metabolite in 30-35 year-old premenopausal women is 42.8 ng/ml (Labrie, Belanger et al. 2006) (Appendix 2). Accordingly, the highest DHEA dose used leads to only 65.7% of the value corresponding to the total androgen metabolites found in normal cycling young women. The 0.5% and 1.0% DHEA doses, on the other hand, lead to sums of androgen metabolites of 21.02 ng and 21.53 ng/ml, respectively, thus corresponding to only 49.0% and 50.2% of the values observed in premenopausal women (Figure 9). We have previously found that daily oral administration of 100 mg of DHEA leads to 74% of the levels found in premenopausal women (Labrie, Belanger et al. 2007).

We have previously observed that following oral or percutaneous administration of DHEA, the changes in serum DHEA are an approximately 100% overestimate of the changes in steroid formation reflected by changes in serum ADT-G, 3α-diol-3G and 3α-diol-17G (Labrie, Belanger et al. 2007). As can be seen in Figure 9, average serum DHEA levels went from 23% of the value observed in premenopausal women of the placebo group to 52%, 71% and 106% in women who received the 0.5%, 1.0% and 1.8% DHEA doses, respectively. The data of Figure 9 indicate that changes in serum DHEA following intravaginal DHEA administration are also an overestimate of the changes in androgen formation and probably even more in estrogen formation as illustrated by the even smaller changes in serum Ei-S (Table 1). In fact, at the 1.0% dose, serum androgen metabolites increased by 31.6% of the value found in premenopausal women while serum DHEA increased by 49.1% (55% overestimate). At the highest DHEA dose, serum androgen metabolites increased by 47.1% while serum DHEA increased by 83.5% (77% overestimate).
Table 1: Areas Under the Curve (AUCo-24h) Values of DHEA and Eleven of its Metabolites on Days 1 and 7 of Daily Administration of Intravaginal DHEA Suppositories to 40-75 Year-Old Postmenopausal Women with Vaginal Atrophy.

<table>
<thead>
<tr>
<th>GROUP</th>
<th>VALUE</th>
<th>DHEA</th>
<th>5-DIOL</th>
<th>TESTO</th>
<th>DHT</th>
<th>E1</th>
<th>E2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>DAY 1</td>
<td>DAY 7</td>
<td>DAY 1</td>
<td>DAY 7</td>
<td>DAY 1</td>
<td>DAY 7</td>
</tr>
<tr>
<td>PLACEBO</td>
<td>MEAN</td>
<td>24.47</td>
<td>4.69</td>
<td>24.82</td>
<td>4.77</td>
<td>5.55</td>
<td>0.59</td>
</tr>
<tr>
<td></td>
<td>SEM</td>
<td>7.60</td>
<td>0.94</td>
<td>6.71</td>
<td>0.44</td>
<td>8.94</td>
<td>0.74</td>
</tr>
<tr>
<td>DHEA 0.5%</td>
<td>MEAN</td>
<td>74.82</td>
<td>9.43</td>
<td>76.22</td>
<td>11.43</td>
<td>12.09</td>
<td>1.66</td>
</tr>
<tr>
<td></td>
<td>SEM</td>
<td>6.71</td>
<td>0.71</td>
<td>10.28</td>
<td>0.66</td>
<td>16.67</td>
<td>1.67</td>
</tr>
<tr>
<td>DHEA 1.0%</td>
<td>MEAN</td>
<td>123.52</td>
<td>9.43</td>
<td>114.30</td>
<td>9.96</td>
<td>18.98</td>
<td>1.05</td>
</tr>
<tr>
<td></td>
<td>SEM</td>
<td>9.43</td>
<td>0.66</td>
<td>9.96</td>
<td>0.72</td>
<td>1.05</td>
<td>0.72</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GROUP</th>
<th>VALUE</th>
<th>E1-S</th>
<th>DHEA-S</th>
<th>4 DIONE</th>
<th>ADT-G</th>
<th>3α-DIOL-3G</th>
<th>3α-DIOL-17G</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>DAY 1</td>
<td>DAY 1</td>
<td>DAY 1</td>
<td>DAY 1</td>
<td>DAY 1</td>
<td>DAY 1</td>
</tr>
<tr>
<td>PLACEBO</td>
<td>3.15</td>
<td>0.62</td>
<td>2.93</td>
<td>0.47</td>
<td>8.71</td>
<td>2.41</td>
<td>8.35</td>
</tr>
<tr>
<td>DHEA 0.5%</td>
<td>3.19</td>
<td>0.60</td>
<td>3.24</td>
<td>0.63</td>
<td>13.59</td>
<td>3.42</td>
<td>13.29</td>
</tr>
<tr>
<td>DHEA 1.0%</td>
<td>3.14</td>
<td>0.44</td>
<td>4.37</td>
<td>0.60</td>
<td>14.42</td>
<td>3.07</td>
<td>16.49</td>
</tr>
<tr>
<td>DHEA 1.8%</td>
<td>4.23</td>
<td>0.76</td>
<td>5.93</td>
<td>1.11</td>
<td>14.99</td>
<td>2.62</td>
<td>19.33</td>
</tr>
</tbody>
</table>

a Data from one patient were excluded
Table 2: Average Serum Steroid Levels of DHEA and Eleven of its Metabolites on Day 1 and 7 of Daily Administration of Intravaginal DHEA Suppositories to 40-75 Year-Old Postmenopausal Women with Vaginal Atrophy.

The values were obtained by dividing the AUC 0-24 h values measured on days 1 and 7 by 24 thus yielding the average serum concentration of each steroid over a 24-h period. Serum steroid concentrations measured in 30-35 year-old premenopausal women are added as reference.

![Table 2](image)

(Labpe, Belanger et al. 2006)
[0074]. It should be mentioned, however, as shown in Table 3, that there was a strong tendency for lower pre-treatment values of many steroids in the placebo group. This is related to particularly low values in the placebo group for DHEA, DHEA-S, 4-dione, Testo, DHT, E₂, ADT-G and 3α-diol-17G. Since all the average serum steroid values observed after administration of the 0.5% and 1.0% doses of DHEA remain within or well below the values found in normal premenopausal women, no attempt was made to correct this apparent bias. It is of interest to mention that the average 24 h serum levels of all steroids measured on day 7 of daily administration of a 0.5% DHEA suppository correspond almost exactly to the values measured in normal 55- to 65-year-old women while the 1.0% DHEA suppository leads to values within the range observed in 55- to 65-year old normal women (Labrie, Belanger et al. 2006).

[0075]. Since the androgen metabolites are the most reliable measure of transformation of exogeneous DHEA into active androgens, the present data indicate that even the highest dose of DHEA used in the present study meet the FDA requirements of serum steroid levels which remain within the normal range found in normal premenopausal women.
Table 3 Basal Serum Steroid Levels on Days 1 and 7 of Daily Administration of Intravaginal Increasing Doses of DHEA Data are Expressed in ng/ml Except for E1 and E2 (pg/ml) and DHEA-S (µg/ml)

<table>
<thead>
<tr>
<th>Steroid</th>
<th>Placebo</th>
<th>DHEA 0.5%</th>
<th>DHEA 1.0%</th>
<th>DHEA 1.8%</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHEA</td>
<td>Day 1</td>
<td>0.72 ± 0.14</td>
<td>1.09 ± 0.24</td>
<td>0.94 ± 0.19</td>
</tr>
<tr>
<td></td>
<td>Day 7</td>
<td>0.69 ± 0.14</td>
<td>1.29 ± 0.26</td>
<td>1.43 ± 0.19</td>
</tr>
<tr>
<td>5-diol</td>
<td>Day 1</td>
<td>0.22 ± 0.02</td>
<td>0.26 ± 0.03</td>
<td>0.26 ± 0.05</td>
</tr>
<tr>
<td></td>
<td>Day 7</td>
<td>0.22 ± 0.02</td>
<td>0.31 ± 0.05</td>
<td>0.36 ± 0.05</td>
</tr>
<tr>
<td>DHEA-S</td>
<td>Day 1</td>
<td>0.372 ± 0.102</td>
<td>0.543 ± 0.157</td>
<td>0.572 ± 0.144</td>
</tr>
<tr>
<td></td>
<td>Day 7</td>
<td>0.368 ± 0.100</td>
<td>0.592 ± 0.160</td>
<td>0.717 ± 0.125</td>
</tr>
<tr>
<td>4-dione</td>
<td>Day 1</td>
<td>0.18 ± 0.02</td>
<td>0.21 ± 0.03</td>
<td>0.23 ± 0.04</td>
</tr>
<tr>
<td></td>
<td>Day 7</td>
<td>0.16 ± 0.02</td>
<td>0.25 ± 0.03</td>
<td>0.34 ± 0.06</td>
</tr>
<tr>
<td>Testo</td>
<td>Day 1</td>
<td>0.10 ± 0.01</td>
<td>0.09 ± 0.01</td>
<td>0.12 ± 0.03</td>
</tr>
<tr>
<td></td>
<td>Day 7</td>
<td>0.09 ± 0.01</td>
<td>0.10 ± 0.01</td>
<td>0.18 ± 0.03</td>
</tr>
<tr>
<td>DHT</td>
<td>Day 1</td>
<td>0.024 ± 0.003</td>
<td>0.026 ± 0.003</td>
<td>0.037 ± 0.010</td>
</tr>
<tr>
<td></td>
<td>Day 7</td>
<td>0.023 ± 0.002</td>
<td>0.035 ± 0.004</td>
<td>0.047 ± 0.010</td>
</tr>
<tr>
<td>E1</td>
<td>Day 1</td>
<td>11.98 ± 1.65</td>
<td>11.83 ± 1.28</td>
<td>14.72 ± 2.79</td>
</tr>
<tr>
<td></td>
<td>Day 7</td>
<td>11.71 ± 1.19</td>
<td>13.53 ± 1.66</td>
<td>22.15 ± 3.21</td>
</tr>
<tr>
<td>E2</td>
<td>Day 1</td>
<td>3.00 ± 0.44</td>
<td>3.13 ± 0.37</td>
<td>4.30 ± 1.38</td>
</tr>
<tr>
<td></td>
<td>Day 7</td>
<td>2.75 ± 0.28</td>
<td>3.94 ± 0.65</td>
<td>5.98 ± 1.26</td>
</tr>
<tr>
<td>E1S</td>
<td>Day 1</td>
<td>0.137 ± 0.024</td>
<td>0.133 ± 0.029</td>
<td>0.117 ± 0.016</td>
</tr>
<tr>
<td></td>
<td>Day 7</td>
<td>0.143 ± 0.025</td>
<td>0.151 ± 0.034</td>
<td>0.203 ± 0.016</td>
</tr>
<tr>
<td>ADT-G</td>
<td>Day 1</td>
<td>7.42 ± 1.48</td>
<td>13.65 ± 3.71</td>
<td>11.49 ± 2.10</td>
</tr>
<tr>
<td></td>
<td>Day 7</td>
<td>6.72 ± 1.17</td>
<td>17.02 ± 4.39</td>
<td>16.34 ± 2.30</td>
</tr>
<tr>
<td>3α-diol-3G</td>
<td>Day 1</td>
<td>0.50±</td>
<td>0.61 ± 0.07</td>
<td>0.71 ± 0.14</td>
</tr>
<tr>
<td></td>
<td>Day 7</td>
<td>0.50±</td>
<td>0.75 ± 0.11</td>
<td>0.96 ± 0.25</td>
</tr>
<tr>
<td>3α-diol-17G</td>
<td>Day 1</td>
<td>0.50></td>
<td>0.84 ± 0.16</td>
<td>0.85 ± 0.22</td>
</tr>
<tr>
<td></td>
<td>Day 7</td>
<td>0.50-</td>
<td>0.95 ± 0.16</td>
<td>1.18 ± 0.30</td>
</tr>
</tbody>
</table>

a Steroid levels are below the limit of quantification for all subjects (limit of quantification=0 50 ng/mL)

[0076] After only one week of daily administration of the DHEA suppositories, the maturation index increased by 107% (p < 0.01), 75% (p < 0.05) and 150% (p < 0.01) in the
0.5%, 1.0% and 1.8% DHEA groups, respectively (Figure 10A). No change was observed in the placebo group between day 1 and day 7. Vaginal pH, on the other hand, decreased from 6.29 ± 0.21 to 5.75 ± 0.27 (p < 0.05), 6.47 ± 0.23 to 5.76 ± 0.22 (p < 0.01) and 6.53 ± 0.25 to 5.86 ± 0.28 (p < 0.05), respectively in the 0.5%, 1.0% and 1.8% DHEA groups (Figure 10B). No change of vaginal pH was observed in the placebo group.
Bioavailability and metabolism of oral and percutaneous dehydroepiandrosterone in postmenopausal women

1. Introduction

[0077]. Humans, along with the other primates, are unique among animal species in having adrenals that secrete large amounts of the inactive precursor steroids DHEA and especially DHEA-S, which are converted into active androgens and/or estrogens in peripheral tissues (Labrie, 1991; Labrie, Belanger et al., 1995; Labrie, Luu-The et al., 1997; Labrie, Simard et al., 1996; Labrie, Luu-The et al., 2005; Labrie, Poulin et al., 2006 and Simpson 2000). In fact, plasma DHEA-S levels in adult men and women are 100-500 times higher than those of testosterone and 1000-10,000 times higher than those of estradiol, thus providing a large reservoir of substrate for conversion into androgens and/or estrogens in the peripheral intracrine tissues which possess the enzymatic machinery necessary to transform DHEA into active sex steroids (Labrie 1991, and Labrie, Luu-The et al., 2005). In fact, the term intracrinology was first coined in 1988 (Labrie, Belanger et al., 1988) to describe the synthesis of the active steroids made in the same cells where they exert their action with no or minimal release into the extracellular space and general circulation before being inactivated (Labrie, 1991).

[0078]. The marked reduction in the formation of DHEA-S by the adrenals during aging (Belanger et al., 1994; Vermeulen and Verdonck, 1976; and Migeon et al., 1957) results in a dramatic fall in the formation of androgens and estrogens in peripheral target tissues, a situation potentially associated with age-related diseases such as insulin resistance (Schriock et al. 1988 and Coleman et al. 1982) and obesity (Nestler et al. 1988; MacEwen and Kurman, 1991, and Tchernof et al. 1995). Moreover, much attention has
been given to the benefits of DHEA administered to postmenopausal women, especially on the bone, skin, vagina, glucose and insulin metabolism, fat mass, as well as well-being after oral (Villareal and Holloszy, 2004; Baulieu et al., 2000; Morales, et al. 1994; and Kawano et al. 2003) and percutaneous (Diamond et al., 1996 and Labrie Diamond et al. 1997) administration. It thus becomes of particular importance to obtain more precise knowledge about the bioavailability, pharmacokinetics and metabolism of DHEA following these two routes of administration.

Since we have already shown, using a pharmacological dose of DHEA administered percutaneously for 2 weeks, that measurements of serum testosterone (testo) and estradiol (E₂) levels do not provide a reliable assessment of the true intracellular pool of androgens and estrogens (Labrie, Belanger et al., 1997; Labrie, Belanger, et al., 2006 and Labrie, Belanger, et al, 2007b) we have compared the serum levels of DHEA and nine steroids known to be most closely associated with active androgens and estrogens and their metabolites. A detailed analysis of the 24 h changes of serum steroid levels was performed on the first day and after 2 weeks of daily administration of DHEA by the oral route as well as percutaneously using a DHEA cream or gel.

2. Subjects and methods

Thirty-six healthy 60-70-year-old postmenopausal women participated in the study after IRB approval and having given their written informed consent. Body weight was within ±20% of normal body weight according to Metropolitan Life Tables.

No subject suffered from a significant metabolic or endocrine disorder, coronary artery disease or hypertension. No women had treatment with androgens or anabolic steroids within 6 months prior to the screening visit. All participants had a medical history, complete physical examination and serum biochemistry profile
including lipids, complete blood count, urine analysis and detailed serum hormone
determinations during the screening phase of the protocol.

3. Study design, treatment and measurements

[0082]. This study was a randomized open-label trial of 12 subjects per arm. After
written informed consent was obtained and women were found eligible, each subject
was randomized to receive DHEA by cream, gel or orally. Daily, before breakfast, for 14
days, subjects received, at the research clinic, either 4 g of 10% DHEA gel or 4 g of 10%
DHEA cream applied on a total 30 cm x 30 cm area of the thighs or two 50 mg capsules
of DHEA orally before breakfast.

[0083]. Blood sampling was performed at 08:00-09:00 h at screening and before
application of DHEA, on the first day of dosing, as well as on days 2, 4, 7, 10 and 14. On
the 1st and 14th days, blood samples were obtained at 0.5 h, 1 h, 1.5 h, 2 h, 3 h, 4 h, 5 h,
6 h, 7 h, 8 h, 12 h and 24 h following DHEA administration.

4. Serum steroid analysis

[0084]. DHEA, DHEA-S, androst-5-ene-3 β,17β-diol (5-diol), testosterone,
androstenedione (4-dione), 17β-estradiol (E2), estrone (Ei), estrone sulfate (Ei-S),
androsterone glucuronide (ADT-G), and androstane-3*,17 β-diol glucuronide (3 α-diol-
G) were measured by gas chromatography/ mass spectrometry (DHEA, 5-diol, 4-dione,
testosterone, Ei and E2) using electron impact or chemical ionization and by liquid
chromatography/ tandem mass spectrometry using turboionspray (DHEA-S, Ei-S, ADT-
G and 3 α-diol-G) as described (Labrie, Belanger et al., 2006; Labrie, Belanger, et al,
2007b and Swanson et al. 2007).

5. Calculations and statistical analysis

[0085]. On days 1 and 14, the area under the curve of the serum concentration of each
steroid was measured between Oh and 24 h (AUC 0-24 h). The areas under the curves
were calculated by a linear trapezoidal method (model-independent). The relative bioavailability of the DHEA gel, DHEA cream and DHEA capsules was based on the mean difference in the log-transformed AUC values. All calculations were performed with the SAS software (SAS Institute, Cary, NC USA).

6. Results

[0086] The oral administration of two capsules of 50 mg of DHEA led to an increase of serum DHEA from 2.3 ± 0.3 ng/ml to a maximal value of 15.6 ± 2.5 ng/ml at 1 h with a progressive decrease thereafter to 5.7 ± 0.5 ng/ml at 6 h followed by a plateau up to 24 h (Fig. 11A). When 4 g of a 10% DHEA gel or cream were applied on a 30 cm x 30 cm area of the skin of the thighs, serum DHEA levels only started to increase at 12 h to reach values of 8.2 ± 2.0 and 8.0 ± 1.2 nmol/l, respectively, at 24 h (Fig. 11A). There was no significant difference between the cream or gel in the serum levels of DHEA at any of the time intervals studied up to 24 h after first application of the precursor steroid on the skin.

[0087] When serum 5-diol was measured after oral first administration of DHEA, the concentration of 5-diol increased from a pretreatment concentration of 0.31 ± 0.03 ng/ml to a maximal value of 1.19 ± 0.13 ng/ml at 1 h with a slow and progressive decrease thereafter to reach 0.79 ± 0.05 ng/ml at 24 h (Fig. 11B). It can be seen in the same figure that the serum levels of 5-diol increased much more slowly after administration of DHEA percutaneously by cream or gel to reach the first statistically significant different values of 1.00 ± 0.14 ng/ml for the cream and 0.72 ± 0.14 ng/ml for the gel at 24 h.

[0088] Following oral DHEA, serum 4-dione increased from 0.6 ± 0.1 ng/ml to a maximal value of 9.5 ± 2.2 ng/ml at 1 h followed by a rapid decrease thereafter to values which remained on a plateau of about 1.2 ng/ml between 8 h and 24 h (Fig. 12A). Following administration of DHEA by cream or gel, on the other hand, the first
significant increase of serum 4-dione was only observed at 24 h at values of 0.9 ± 0.1 and 0.8 ± 0.1 ng/ml for the cream and gel, respectively.

[0089] A comparable pattern was observed for serum testosterone. In fact, after oral administration of two 50 mg capsules of DHEA, serum testosterone increased from 0.38 ± 0.03 ng/ml to a maximal value of 0.79 ± 0.14 ng/ml at 1 h. This rise was followed by a rapid decrease to 0.30 ± 0.08 ng/ml at 6 h followed by a plateau thereafter until 24 h (Fig. 12B). When DHEA was applied as cream or gel, the first increase was observed at 24 h at a value of approximately 0.45 ng/ml. As can be seen in Fig. 13A and B, the first administration of DHEA by the oral or percutaneous route had no statistically significant effect on the serum levels of E1 or E2 during the first 24 h.

[0090] Serum DHEA-S on the other hand followed a pattern similar, although slightly delayed, compared to DHEA and 5-diol following oral administration of two capsules of 50 mg DHEA (Fig. 14A). Thus, serum DHEA-S increased from 0.4 ± 0.1 µg/ml to 7.7 ± 1.0 µg/ml at 1 h to a maximal value of 8.4 ± 0.6 µg/ml at 2 h with a progressive decrease to 2.7 ± 0.3 µg/ml at 24 h. No significant change of serum DHEA-S was observed during the first 24 h after administration of DHEA in a cream or gel. Serum E1-S, on the other hand, did not change significantly during the first 24 h following the first

[0091] Serum ADT-G, the main metabolite of androgens, increased from 14 ± 3 ng/ml to 760 ± 150 ng/ml at 1 h and 790 ± 140 ng/ml at 2 h to then decrease progressively to 92 ± 5 ng/ml at 12 h and 70 ± 5 ng/ml at 24 h (Fig. 15A). Serum 3 α-diol-G, on the other hand, increased from 2.2 ± 0.5 ng/ml to 14.5 ± 2.0 ng/ml at 2 h (Fig. 15B). The decrease observed thereafter for 3 α-diol-G was however much slower than that of ADT-G, a decrease of only about 40% being observed between 2 h and 24 h after oral administration of DHEA. Following application of 4 g of 10% DHEA on the skin, there was no significant change of serum ADT-G or 3 α-diol-G up to 24 h (Fig. 15B).
When the measurements of the same kinetic parameters were repeated on the 14th day of daily dosing, it could be seen that the administration of two capsules of 50 mg of DHEA led, from a predosing value of 4.2 ± 0.4 ng/ml, to a maximal concentration of 14.8 ± 4.4 ng DHEA/ml at 1 h followed by a progressive decrease thereafter to 4.5 ± 0.4 ng/ml at 24 h (Fig. 16A). On the other hand, when DHEA was administered by cream or gel, no significant change was observed during the 24-h period and serum DHEA remained between 10 ng/ml and 15 ng/ml following application of the cream and between 7 ng/ml and 11 ng/ml following application of the gel.

Similarly, when serum 5-diol was measured on the 14th day of treatment, the serum concentration of this steroid increased from 0.46 ± 0.04 ng/ml to 1.37 ± 0.21 ng/ml at 1 h with a slow decrease thereafter to reach 0.64 ± 0.06 ng/ml at 24 h (Fig. 16B). As observed for DHEA, serum 5-diol remained approximately constant during the 24-h period at about 1.5-1.9 ng/ml following application of the cream and 1.0-1.3 ng/ml following application of the gel.

When serum 4-dione was measured on the 14th day of dosing, the serum concentration of this steroid increased from 1.3 ± 0.2 ng/ml to a maximal value of 9.8 ± 1.7 ng/ml at 1 h followed by a rapid decrease to 1.5 ± 0.1 ng/ml at 6 h with a value of 1.2 ± 0.1 ng/ml measured at 24 h (Fig. 17A). Following application of DHEA on the skin as a cream or gel, there was a non-significant increase of serum 4-dione to approximately 2.5 ng/ml at 2 h with values, thereafter, remaining on a plateau at 1.0-1.6 ng/ml up to 24 h (Fig. 17A).

Serum testosterone increased on the 14th day of dosing following oral administration of 100 mg of DHEA from 0.31 ± 0.04 ng/ml to a maximal value of 0.83 ± 0.11 ng/ml at 1 h followed by a progressive decrease to a value of 0.37 ± 0.04 ng/ml at 24 h (Fig. 17B). Following DHEA application as a cream or a gel,
serum levels of testosterone remained unchanged during the 24-h period at approximately 0.3 ng/ml, this value being not significantly different from pretreatment. As observed on the first day, there was no significant change in the serum levels of E1 (Fig. 18A) or E2 (Fig. 18B) during the 24 h which followed the 14th daily administration of DHEA by the oral or percutaneous route.

[0096] From a predosing level of 1.95 ± 0.15 µg/ml, serum DHEA-S increased to 8.3 ± 0.4 µg/ml at 1 h to decrease progressively to 2.6 ± 0.3 µg/ml at 24 h (Fig. 19A). No significant change in serum DHEA-S was observed after application of DHEA on the skin. Serum E1-S, on the other hand, did not change during the 24 h following the 14th daily administration of DHEA by the oral or percutaneous route (Fig. 19B).

[0097] While starting at a higher level on day 14 than on day 1, serum ADT-G increased rapidly from 66 ± 1 ng/ml to 996 ± 105 ng/ml at 1 h to decrease progressively thereafter to 116 ng/ml at 12 h and 91 ± 15 ng/ml at 24 h (Fig. 20A). No significant change in serum ADT-G levels occurred following the application of DHEA on the skin. Serum 3α-diol-G, on the other hand, increased from 12 ± 2.5 ng/ml to 29.4 ± 5.5 ng/ml at 2 h to decrease slowly thereafter to reach 13 ± 3.0 ng/ml at 24 h following 14th daily oral administration of 100 mg DHEA. No significant change was observed on serum 3α-diol-G after percutaneous administration of DHEA (Fig. 20B).

[0098] In order to obtain a more precise measure of the accumulation of DHEA and its metabolites, we next compared the areas under the curves of the serum steroid concentrations (AUCo-24h values) measured on the 1st and 14th days of dosing. As can be predicted from Fig. 11, Fig. 12, Fig. 13, Fig. 14, Fig. 15, Fig. 16, Fig. 17, Fig. 18, and Fig. 19, the AUCo-24h values of all steroids, except the metabolites of estrogens (E1-S) and androgens (ADT-G and 3α-diol-G), due to some accumulation of these steroids, are similar on the 1st and 14th days of administration of DHEA by the oral route (Table 4). Following percutaneous administration of DHEA, on the other hand, due to the
slower absorption of DHEA following administration in a cream or gel, 155% and 86% higher values of the DHEA AUCo-24h values are observed on the 14th day compared to the first day of dosing, respectively. Higher values are also observed for all the other steroids, except for E1, E2 and testosterone which showed no Table 4.

AUCo-24h values measured on the 1st and 14th days of dosing as well as their ratio

<table>
<thead>
<tr>
<th>Steroid</th>
<th>DHEA (ng h/ml)</th>
<th>5 Diol (ng h/ml)</th>
<th>4-Dione (ng h/ml)</th>
<th>Testosterone (ng h/ml)</th>
<th>E1 (pg h/ml)</th>
<th>E2 (pg h/ml)</th>
<th>DHEA-S (µg h/ml)</th>
<th>3α-Diol-G (ng h/ml)</th>
<th>ADT G (ng h/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2x 50 mg capsules</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st dosing</td>
<td>153 (19)</td>
<td>190 (20)</td>
<td>402 (39)</td>
<td>9.47 (31)</td>
<td>745 (30)</td>
<td>136 (20)</td>
<td>108 (20)</td>
<td>4.81 (39)</td>
<td>4112 (24)</td>
</tr>
<tr>
<td>14th dosing</td>
<td>144 (26)</td>
<td>204 (25)</td>
<td>436 (27)</td>
<td>9.72 (23)</td>
<td>910 (23)</td>
<td>165 (25)</td>
<td>950 (16)</td>
<td>7.44 (36)</td>
<td>5607 (28)</td>
</tr>
<tr>
<td>14th/1st</td>
<td>0.94</td>
<td>1.07</td>
<td>1.08</td>
<td>1.03</td>
<td>1.22</td>
<td>1.21</td>
<td>0.88</td>
<td>1.55</td>
<td>1.36</td>
</tr>
<tr>
<td>4 g 10% cream</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st dosing</td>
<td>107 (33)</td>
<td>137 (31)</td>
<td>123 (43)</td>
<td>835 (16)</td>
<td>680 (48)</td>
<td>147 (50)</td>
<td>107 (45)</td>
<td>4.83 (58)</td>
<td>404 (62)</td>
</tr>
<tr>
<td>14th dosing</td>
<td>273 (36)</td>
<td>397 (31)</td>
<td>228 (33)</td>
<td>877 (16)</td>
<td>847 (22)</td>
<td>175 (27)</td>
<td>199 (34)</td>
<td>7.96 (39)</td>
<td>977 (66)</td>
</tr>
<tr>
<td>14th/1st</td>
<td>2.55</td>
<td>2.90</td>
<td>1.85</td>
<td>1.00</td>
<td>1.24</td>
<td>1.19</td>
<td>1.86</td>
<td>1.65</td>
<td>2.42</td>
</tr>
<tr>
<td>4 g 10% gel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st dosing</td>
<td>101 (49)</td>
<td>103 (55)</td>
<td>133 (45)</td>
<td>876 (11)</td>
<td>620 (31)</td>
<td>214 (137)</td>
<td>112 (35)</td>
<td>5.53 (84)</td>
<td>254 (30)</td>
</tr>
<tr>
<td>14th dosing</td>
<td>188 (30)</td>
<td>272 (32)</td>
<td>213 (51)</td>
<td>804 (22)</td>
<td>785 (40)</td>
<td>152 (24)</td>
<td>18.6 (34)</td>
<td>9.11 (106)</td>
<td>455 (23)</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
DHEA was administered by the oral route (2 × 50 mg capsules) or following application on the skin of 4 g of 10% DHEA cream or 4 g of 10% gel.

As can be clearly seen in Table 5 and Fig. 21, there was no significant change in the serum E$_1$, E$_2$ or testosterone AUCo-24h values measured on the 14th day of dosing compared to the predosing levels. Significant increases, however, were observed for all two other steroids. Thus, following daily oral dosing with 100 mg DHEA for 2 weeks, the area under the concentration curve of DHEA measured during the 24 h following administration of the steroid increased 167% over the pretreatment value while for 5-diol, 4-dione, DHEA-S, E$_1$-S, ADT-G and 3 α-diol-G, respective increases of 138%, 238%, 873%, 60%, 1820% and 874% were observed.

Table 5

Pretreatment and 14th day AUCo-24h values of DHEA and its metabolites

<table>
<thead>
<tr>
<th>Steroid</th>
<th>DHEA (ng h/ml)</th>
<th>5 Diol (ng h/ml)</th>
<th>4-Dione (ng h/ml)</th>
<th>Testosterone (pg h/ml)</th>
<th>E$_1$ (pg h/ml)</th>
<th>E$_2$ (pg h/ml)</th>
<th>DHEA-S (pg h/ml)</th>
<th>El S (pg h/ml)</th>
<th>ADT G (ng h/ml)</th>
<th>3α-Diol G (ng h/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basal (pretreatment)</td>
<td>53</td>
<td>5.6</td>
<td>129</td>
<td>872</td>
<td>717</td>
<td>135</td>
<td>9.76</td>
<td>4.64</td>
<td>292</td>
<td>46.6</td>
</tr>
</tbody>
</table>

14th/basal

(A) 2 × 50 mg capsules

<table>
<thead>
<tr>
<th></th>
<th>14th day</th>
<th>14th/basal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basal (pretreatment)</td>
<td>144</td>
<td>20.4</td>
</tr>
<tr>
<td>2.67</td>
<td>2.38</td>
<td>3.38</td>
</tr>
</tbody>
</table>
DHEA was administered by the oral route or percutaneously by cream or gel. Basal AUCo-24 h values were calculated by multiplying the pretreatment basal serum steroid levels including screening by 24 h.

[00100]. Except for DHEA and 5-diol, lower increases were observed following administration of DHEA cream or gel. In fact, following application of the DHEA cream, the DHEA-S AUCo-24 h value increased by only 104% while the 4-dione, E1-S, ADT-G and 3α-diol-G AUCo-24 h values increased by 77%, 72%, 234% and 145% over control, respectively. The AUC values for DHEA and 5-diol, on the other hand, increased by 406% and 363%, respectively (Table 5, Fig. 21). Comparable but somewhat lower increases were observed with the DHEA gel where the serum 4-dione, DHEA-S, E1-S, ADT-G and 3α-diol-G AUCo-24 h values increased by 65%, 91%, 96%, 56% and 30% over control while the AUCo-24h values for DHEA and 5-diol increased by 249% and 238%, respectively.

[00101]. Our recent findings (Labrie, Belanger et al., 2007b) have shown that the serum DHEA changes observed following exogenous DHEA administration are at least a 100% overestimate of the true changes in sex steroid formation. In support of these

<table>
<thead>
<tr>
<th>Steroid</th>
<th>DHEA</th>
<th>5-Diol</th>
<th>4-Dione</th>
<th>Testosterone</th>
<th>E1</th>
<th>E2</th>
<th>DHEA-S</th>
<th>E1-S</th>
<th>ADT-G</th>
<th>3α-Diol-G</th>
<th>3P</th>
<th>Diol-G</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ng h/ml)</td>
<td>(ng h/ml)</td>
<td>(ng h/ml)</td>
<td>(ng h/ml)</td>
<td>(pg h/ml)</td>
<td>(pg h/ml)</td>
<td>(ng h/ml)</td>
<td>(pg h/ml)</td>
<td>(ng h/ml)</td>
<td>(pg h/ml)</td>
<td>(ng h/ml)</td>
<td>(ng h/ml)</td>
<td></td>
</tr>
<tr>
<td>14th day</td>
<td>273</td>
<td>397</td>
<td>1228</td>
<td>877</td>
<td>847</td>
<td>175</td>
<td>199</td>
<td>796</td>
<td>977</td>
<td>114</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14th/basal</td>
<td>506</td>
<td>463</td>
<td>177</td>
<td>101</td>
<td>118</td>
<td>130</td>
<td>204</td>
<td>172</td>
<td>334</td>
<td>245</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C) 4 g 10% gel</td>
<td></td>
</tr>
<tr>
<td>14th day</td>
<td>188</td>
<td>272</td>
<td>213</td>
<td>804</td>
<td>785</td>
<td>152</td>
<td>186</td>
<td>911</td>
<td>455</td>
<td>603</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14th/basal</td>
<td>349</td>
<td>318</td>
<td>165</td>
<td>092</td>
<td>109</td>
<td>113</td>
<td>191</td>
<td>196</td>
<td>156</td>
<td>130</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
data, Fig. 21 shows that following DHEA administration by cream or gel, the changes in serum DHEA are a marked overestimate of the changes in serum levels of all the steroids measured except for 5-diol, the immediate metabolite of DHEA. For the DHEA cream, the changes in the AUC\textsubscript{0-4h} values of serum 4-dione, DHEA-S, El-S, ADT-G and 3 α-diol-G are only 77%, 104%, 72%, 234% and 145% compared to the 406% increase over pretreatment levels observed for serum DHEA.

[00102]. For the androgens, it is now well established that uridine glucuronosyl transferase 2B7 (UGT 2B7), UGT 2B15 and UGT 2B17 are the three enzymes responsible for the glucuronidation of all androgens and their metabolites in the human (Belanger et al. 2003). This recent completion of the identification and characterization of all the human UDT-glucuronosyl transferases makes possible the use of the glucuronide derivatives of androgens as markers of total androgenic activity in both women and men (Labrie, Belanger et al., 2006; Labrie, Belanger, et al, 2007b and Swanson et al. 2007). Accordingly, since all androgens are metabolized into ADT-G and 3 α-diol-G, the estimate of the percentage of efficacy of percutaneous DHEA for transformation into active androgens is thus estimated at 52% when adding the changes in ADT-G and 3 α-δiol-F (a weighted 211% value compared to the DHEA changes of 406%). Similarly, following DHEA gel administration, the 249% increase in serum DHEA translates into only 65%, 91%, 96%, 56% and 30% increases in the AUC\textsubscript{0-24h} values of serum 4-dione, DHEA-S, El-Si, ADT-G and 3 α-diol-G, respectively.

[00103]. Since the high level of glucuronidation in the intestine and liver explains the high serum level of ADT-G and 3 α-diol-G (Belanger et al. 2003) following oral administration of DHEA, the relatively small increase in serum El-S (60%) compared to the 167% increase in serum DHEA after oral DHEA indicates a 36% relative efficacy of transformation into estrogens. As shown earlier (Labrie, Belanger et al., 1997; Labrie, Belanger et al., 2006; Labrie, Belanger, et al, 2007b), the present data indicate that DHEA
administrated to postmenopausal women is predominantly transformed into androgens rather than into estrogens.

Discussion

[00104]. The present data clearly show that during chronic treatment with DHEA by cream or gel, the concentration of all the steroids rapidly reaches a plateau with no detectable change in the serum concentration of any of the steroids measured during daily application of DHEA on the skin. Accordingly, from 24 h after first administration of DHEA percutaneously, the concentration of all steroids remains at the same level, thus showing that daily application of DHEA on the skin maintains constant serum levels of DHEA and all its metabolites. In postmenopausal women, it is already known that the circadian variation of serum DHEA is relatively small compared to the situation in normally cycling premenopausal women (Lui and Laughlin, 1990).

[00105]. The present data also show that following daily oral administration of DHEA, there is no significant accumulation of DHEA or of its metabolites. Moreover, the metabolism of DHEA following its administration by the oral or percutaneous route is quantitatively similar, the quantitative differences being explained by the entero-hepatic metabolism following oral administration.

[00106]. The higher AUC_{0-24h} values of serum DHEA-S, ADT-G and 3α-diol-G combined with the lower AUC_{0-24h} values of DHEA and 5-diol following oral versus percutaneous administration indicate that metabolism through the gastrointestinal tract and/ or first passage through the liver leads not only to a higher level of transformation of DHEA into DHEA-S through the activity of DHEA-sulfotransferase (Luu-The et al., 1995) but also to an increased metabolism of DHEA into androgens and their inactivation through the activity of liver glucuronosyltransferases (Belanger et al. 2003; Turgeon et al., 2001 and Hum et al., 1999). In fact, as shown in Table 1, the exposure to DHEA of 144 ng h/ml (AUC_{0-24h}) on the 14th day of oral administration of 100 mg of
DHEA leads to AUCo-24h values of 5607 ng h/ml and 453 ng h/ml for ADT-G and 3α-diol-G, respectively. On the other hand, after percutaneous administration with the 10% DHEA cream, the AUC values for DHEA, ADT-G and 3α -diol-G are 273 ng h/ml, 977 ng h/ml and 114 ng h/ml, respectively. Thus, after oral administration, 1 ng h/ml of DHEA corresponds to an AUC value of 42.1 ng h/ml for the combination of the two metabolites of androgens (ADT-G + 3α-diol-G) while following application of the DHEA cream, 1 ng h/ml of DHEA exposure corresponds to 4.0 ng h/ml for the sum of the two androgen metabolites. Such data indicate that administration of DHEA by the oral route leads to an approximately 10-fold higher level of transformation of DHEA into ADT-G and 3α-diol-G than after percutaneous administration, at least at the doses used. When the same calculations are made for the data obtained after administration of DHEA by gel, an exposure to DHEA of 1 ng h/ml is accompanied by an AUCo-24h value of 2.7 ng h/ml for ADT-G + 3α-diol-G, thus indicating an even higher ratio between oral and percutaneous DHEA administration.

[00107] As shown in Table 4 while a DHEA AUCo-24h value of 1 ng h/ml leads to an AUCo-24h value of 660 ng h/ml for DHEA-S following oral administration of DHEA, corresponding values of 73 ng h/l and 99 ng h/l are observed after application of the precursor steroid by cream or gel. There is thus a 6.7-9.0-fold higher amount of DHEA-S in the circulation following the same exposure to circulating DHEA (serum AUCo-24h value) after oral compared to percutaneous administration of DHEA under the conditions tested. The present data show a comparable influence of the passage of DHEA through the gastro-intestinal tract and the liver on serum DHEA-S, ADT-G and 3α-diol-G levels.

[00108] Although a lower difference is seen, relatively higher levels of serum 4-dione are observed after oral administration of DHEA compared to percutaneous administration of the precursor steroid. Thus, after oral administration of DHEA, a 1 ng h/ml value of the DHEA AUCo-24h leads to a 0.3 ng h/ml 4-dione AUCo-24h value
while values of 0.08 ng h/ml and 0.11 ng h/ml are observed after administration of DHEA by cream and gel, respectively. As measured in the circulation, the transformation of DHEA into 4-dione is thus 2.70-3.76 times higher following oral compared to percutaneous administration of DHEA.

[00109]. The data of Table 5 show that the DHEA AUCo-24h value is increased by 167% over control following the daily oral administration of 100 mg DHEA compared to pretreatment basal levels while the daily percutaneous administration of 4 g of 10% DHEA cream and gel increases the serum DHEA levels by 406% and 249%, respectively. Since 400 mg of DHEA were applied on the skin compared to 100 mg by the oral route, and assuming linearity, the present data indicate that the oral route is 2.9- and 4.8-fold more efficient compared to the formulation used for the DHEA cream and gel, respectively.

[00110]. In a study also performed in postmenopausal women, the oral administration of 150 mg and 300 mg of micronized DHEA resulted in maximal serum DHEA-S, DHEA and testosterone of approximately 1.5 mg/ml, 15 ng/ml and 2.75 ng/ml after the 300 mg dose and 10 µg/ml, 12 µg/ml and 1.6 ng/ml after the 150 mg DHEA dose, respectively (Buster et al. 1992). Examination of these early results shows that a 20-fold increase in serum DHEA-S led to only a 6.9-fold increase in serum testosterone while serum DHEA was increased to 11.6-fold. Moreover, when the measured serum testosterone values are adjusted to one-third to take into account the two-thirds non-specific binding in the radioimmunoassay, the serum testosterone levels remained within the physiological levels during the 12 h which follow the administration of the 150 mg DHEA dose (Buster et al. 1992).

[00111]. Similar differences observed between the oral and percutaneous routes for serum DHEA are seen for 5-diol which is transformed directly from DHEA by 17β-hydroxy steroid dehydrogenase (Labrie, Luu-The, et al. 2000). In fact, while the 5-diol
AUCo-4h value is increased by approximately 138% over control after oral administration of 100 mg of DHEA, increases of 363% and 18% are measured after application of 400 mg of DHEA cream and gel, respectively.

[00112] As mentioned above, man is unique, with some other primates, in having adrenals that secrete large amounts of the precursor steroids DHEA and DHEA-S, which are converted into 4-dione and then into potent androgens and/or estrogens in peripheral intracrme tissues (Labrie, 1991; Labrie, Belanger, et al, 1995; Labrie et al. 1996; Labrie, Luu-The, et al, 1997; Simpson, 2000; Labrie, Luu-the, et al. 2005; Labrie, Poulin, et al., 2006 and Labrie, Belanger, et al., 1998). It is thus remarkable that man, in addition to possessing very sophisticated endocrine and paracrine systems, has largely vested in sex steroid formation in peripheral tissues (Labrie, 1991) and (Belanger, et al., 1998). In fact, while the ovaries and testes are the exclusive sources of androgens and estrogens in lower mammals, the situation is very different in man and higher primates, where active sex steroids are in large part or wholly synthesized locally in peripheral tissues, thus providing target tissues with controls which adjust the formation and metabolism of sex steroids to local requirements.

[00113] Adrenal secretion of DHEA and DHEA-S increases during adrenarche in children at the age of 6-8 years, and maximal values of circulating DHEA-S are reached between the ages of 20 and 30 years. Thereafter, serum DHEA and DHEA-S levels decrease markedly (Belanger et al. 1994). In fact, at 70 years of age, serum DHEA-S levels are decreased to approximately 20% of their peak values, while they can decrease by 95% by the age of 85-90 years (Belanger et al. 1994) and (Migeon et al., 1957). The 70-95% reduction in the formation of DHEA and DHEA-S by the adrenals during aging results in a dramatic reduction in the formation of androgens and estrogens in peripheral target tissues (Labrie, Belanger et al., 2006). Such a marked decrease in the formation of sex steroids in peripheral tissues could well be involved in the pathogenesis of a series diseases associated with aging.
As mentioned earlier, transformation of DHEA and DHEA-S into active androgens and/or estrogens in peripheral target tissues depends upon the level of expression of the various steroidogenic and metabolizing enzymes in each cell type (Labrie, 1991). Elucidation of the structure of most of the tissue-specific genes that encode the steroidogenic enzymes responsible for the transformation of DHEA and DHEA-S into androgens and/or estrogens has permitted rapid progress in this area (Labrie, Belanger et al., 1995; Labrie, Luu-The et al., 1997; Labrie, Simard et al., 1996; Labrie, Luu-The et al., 2005; Labrie, Poulin et al., Labrie, Luu-The, et al. 2000, Labrie, Sugimoto, et al. 1992, Labrie, Simard et al, 1992; Luu-The, et al. 1995; and Labrie, Durocher et al. 1995).

The data showing the presence of relatively high levels of androgen metabolites in normal women (Labrie, Belanger, et al. 1997; Labrie, Belanger et al., 2006; Labrie, and Belanger, et al, 2007b) strongly suggest that the androgens play a major physiological but still underestimated role in women. The 44.5% fall which occurs in serum DHEA from 20 to 30 years of age to the age of 40-50 years in women (Belanger et al., 2006) could well explain the bone loss which precedes menopause. In fact, age-related bone loss has been reported to begin in the fourth decade and changes in bone turnover have been found well before menopause (Mazess 1982; Riggs, et al. 1981, and Johnston et al. 1985). In agreement with these findings, bone density was lower at all sites examined in women classified as perimenopausal compared to premenopausal (Steinberg, et al., 1989). In agreement with these findings, the changes in precursor androgen secretion by the adrenals precede by 10-20 years the decrease in ovarian estrogen secretion which abruptly stops at menopause (Labrie, Belanger, et al. 2006).

It is important to realize that not only serum DHEA and DHEA-S decrease by 50% between the ages of 21 years and 50 years but that a similar decrease is observed for serum testosterone (Zumoff et al. 1995). Such data could well suggest that hormone replacement therapy with androgens or their precursor(s) should start early at
menopause in order to compensate for this early fall in the secretion of androgen precursors by the adrenals and the parallel decrease in serum testosterone (Labrie, 2006).

[00117]. The active androgens and estrogens synthesized in peripheral target tissues exert their activity in the cells of origin and very little diffusion of the active sex steroids occurs, thus resulting in very low levels in the circulation. In fact, as observed previously (Labrie, Belanger et al., 1997) and confirmed in the present study, the most striking effects of DHEA administration are seen on the circulating levels of the glucuronide derivatives of the metabolites of DHT, namely ADT-G and 3α-diol-G while no significant or only minor changes are seen in the serum levels of testosterone, E1 or E2. These active steroids are produced locally in the peripheral intracrine tissues which possess the appropriate steroidogenic enzymes to synthesize DHT from the adrenal precursors DHEA and DHEA-S as well as the enzymes that transform DHT into the inactive metabolites ADT and 3α-diol which are further modified by glucuronidation (Belanger et al. 2003).

[00118]. In a recent study, daily oral administration of 50 mg of DHEA had no significant effect on serum testosterone or DHT while DHEA and ADT-G were increased to a similar extent (80-90%) (ArIt et al. 2001). In another study, predosing serum levels of DHEA-S in postmenopausal women were increased from 0.55 µg/ml to about 1.4 µg/ml (Casson et al. 1998), after daily oral administration of 25 mg of DHEA for 6 months. Serum DHEA and testosterone levels, however, measured 23 h after last administration of DHEA, were not changed significantly. Another study has indicated that the 50 mg daily oral dose of DHEA leads to serum androgen levels in the premenopausal range (Buster et al. 1992).

[00119]. The present data clearly demonstrate that DHEA and DHEA-S are converted in specific peripheral intracrine tissues into active androgens and/ or
estrogens which can exert their biological effects at their site of synthesis with no or only small release of active steroids in the circulation. Accordingly, changes in serum levels of testosterone, E1 or E2 cannot be used as parameters of transformation of DHEA into androgens or estrogens (Labrie, Belanger et al., 2006). In fact, the active steroids are metabolized in the same cells where they have been synthesized and exerted their action into inactive glucuronidated and sulfated metabolites which finally diffuse in the extracellular compartment and can be measured in the circulation (Labrie, Belanger et al., 2006; Labrie, Belanger et al., 1997 and Labrie, Belanger et al. 2007). Measurement of the conjugated metabolites of androgens is the only approach that permits an accurate estimate of the total androgen pool in women. It is most likely that a similar situation exists for estrogens, although a precise evaluation of the pharmacokinetics of estrogen metabolism and identification of their metabolites remains to be established.
Example 3
Clinical Trial ERC-210
Intravaginal DHEA, the physiological treatment of vaginal atrophy

SUBJECTS AND METHODS

[00120]. This study is a phase III, prospective, multicenter, randomized, placebo-controlled, and double-blind trial of 50 subjects per arm (for a total of 200 subjects). Two hundred postmenopausal women were thus randomized to receive a daily ovule of the following DHEA concentrations: 0.0%, 0.25% (3.25 mg DHEA), 0.5% (6.5 mg DHEA) or 1.0% (13 mg DHEA) applied intravaginally with an applicator. The study was divided into two phases, namely screening followed by a treatment period of 12-week duration.

[00121]. The inclusion criteria were the following:

- Postmenopausal women who satisfy either a or b or c:
 a. No menses for at least one year, or;
 b. FSH levels ≥ 40 mIU/mL (within 60 days prior to Day 1) in women with no menses ≥6 months but < 12 months, or hysterectomized women who were premenopausal at the time of hysterectomy or;
 c. Six weeks or more (of screening visit) following bilateral oophorectomy.
- Women who have self-identified at least one moderate to severe of the following symptoms:
 • Vaginal dryness (none, mild, moderate or severe).
 • Vaginal and/or vulvar irritation/itching (none, mild, moderate or severe).
 • Vaginal pain associated with sexual activity (none, mild, moderate or severe).

Women should identify which symptom is the most bothersome to her at start of treatment. The change of this symptom will be followed and will serve to evaluate the effect of treatment.
Women between 40 and 75 years of age.
- Willing to participate in the study and sign an informed consent.
- Women having a low maturation index (no greater part of guidance than 5% of superficial cells on vaginal smear).
- Women having a vaginal pH above 5.
- Normal mammography within 9 months of study start.
- Normal breast examination.
- A normal PAP smear (which includes inflammatory changes) within the last 12 months (of Day 1). For hysterectomized women, the PAP smear will consist of at least one slide.
- No former or present narcotic addiction or alcoholism.
- Body weight within the range of 18.5 to 35 of ideal body weight according to body mass index (BMI) (WHO).
- No hepatic or renal impairment or condition known to affect drug or steroid metabolism.
- Normal baseline hematology, clinical chemistry, and urinalysis.
- Negative serology for HIV1/HIV2 and hepatitis B and C.

The exclusion criteria were:
- Undiagnosed abnormal genital bleeding.
- Previous diagnosis of cancer, except skin cancer (non melanoma).
- Endometrial hyperplasia at biopsy performed at screening or endometrial cancer.
- Active or history of thromboembolic disease.
- Significant metabolic or endocrine disease.
- Clinically significant gastrointestinal, liver or gallbladder disease.
- Recurrent migraine headache not controlled by conventional therapy.
- Diabetes mellitus not controlled by conventional therapy.
- Significant complication on previous hormonal therapy.
- Use of estrogen alone injectable drug therapy or progestin implant within 3 months prior to study entry (screening visit).
- Use of estrogen pellet or progestin injectable drug within six months prior to study entry.
- Oral estrogen, progestin or DHEA exposure or intrauterine progestin therapy in the eight weeks prior to baseline assessments.
- Vaginal hormonal products (rings, creams or gels) or transdermal estrogen alone or estrogen/progestin products in the 4 weeks prior to baseline assessments.

Patients can washout as follows, but the questionnaire on vaginal atrophy must be answered after the required washout period:

- At least an eight-week washout period for prior oral estrogen, DHEA and/or progestin therapy.
- At least a four-week washout period for prior transdermal hormone therapy
- At least a four-week washout period for locally delivered hormone replacement therapy for vaginal dryness.
- At least 6 months for prior estrogen pellet therapy or progestin injectable drug therapy.
- Eight weeks or longer for prior intrauterine progestin therapy.
- Six months or longer for prior progestin implants and estrogen alone injectable drug therapy.
- Previous treatment with androgens or anabolic steroids within 3 months prior to screening visit.
- Oral corticosteroid treatment within six weeks of study start.
- No chronic use of corticosteroid allowed (intermittent nasal spray or topical on skin, eyes or ears is permitted).
- Cardiac failure or manifest coronary heart disease.
- Hypertension equal to or above 160/95 mm Hg or not controlled by standard therapy.
- Confirmed clinically significant depression or confirmed history of severe psychiatric disturbance.
- The administration of any investigational drug within 30 days of screening visit.
- Clinically relevant abnormal serum biochemistry or haematology.
- Baseline cervical cytology showing low-grade squamous intraepithelial lesion (LGISIL) or worse.
- Smoking more than 10 cigarettes a day.
- Drugs that interfere with the metabolism of estrogens (eg, ketoconazole, steroid formation or action inhibitors).
- SERMs or drug interacting with steroid receptors.
- Known presence of uterine fibroma or palpable at gynecological exam.
- Coagulation disorders or on anticoagulant drug therapy.

Laboratory tests

[00122] The usual laboratory tests, namely hematology (including complete blood count and coagulation), blood chemistry and urinalysis were performed at all visits. Serum FSH had to be measured only in women who had no menses for ≥ 6 months but < 12 months or who were premenopausal at the time of hysterectomy. Serum steroid levels of DHEA, DHEA-S, androst-5-ene-3β, 17β-diol (5-diol), dihydrotestosterone (DHT), testosterone (testo), androstenedione (4-dione), estrone (E1), estradiol (E2), E1-S, androsterone glucuronide (ADT-G), androstane-3α, 17β-diol-3G (3α-diol-3G) and 3α-diol-17G were measured at the Laboratory of Molecular Endocrinology, CHUL Research Center by mass spectrometry as described (Labrie, Belanger et al. 2006; Labrie, Belanger et al. 2007; Labrie, Cusan et al. 2008).

Vaginal pH and cytology

[00123] For the maturation index and Papanicolaou (PAP) smear, all samples were examined by the same cytopathologist (Dr. Robert Dube, Department of cytology-
pathology, Enfant-Jesus Hospital, Quebec City, Canada) blinded to the treatment regimens. A 100-cell count was performed to classify cells as superficial (S), intermediate (I) and parabasal (P) squamous cell types (Meisels 1967; Wied 1993).

[00124] Vaginal smears were obtained by scraping the middle third of the side wall of the vagina with the rounded end of an Ayre spatula. The material was then applied to a glass slide and immediately fixed with Spray-Cyte. These samples were sent to the central laboratory for determination of the maturation index.

[00125] Vaginal pH was measured by applying a pH indicator strip directly to the lateral wall of the vagina with a forceps. For the Papanicolaou smear - if not done in the last 12 months, specimens were obtained from the endocervix, exocervix and vaginal vault and immediately fixed with cytospray. The specimens were collected with an Ayre spatula.

Endometrial Biopsy

[00126] Endometrial biopsy was performed at screening and at month 3 at end of study. All biopsies were examined by the same pathologist at the central laboratory (Dr. Robert Dube, Department of cytology-pathology, Enfant-Jesus Hospital, Quebec City, Canada).

Vaginal examination

[00127] At the same time intervals of 2, 4, 8 and 12 weeks, the gynaecologist or physician in charge of the study at each site performed a vaginal exam to evaluate the degree of severity (none, mild, moderate or severe, analyzed using values of 0, 1, 2 and 3, respectively) for the main signs of vaginal atrophy, namely vaginal secretions, vaginal color, vaginal epithelial integrity and vaginal epithelial surface thickness. As can be seen in Figs 26 to 29, a time-dependent dose-related and statistically significant improvement of all four signs of vaginal atrophy was seen. In fact, the beneficial effects
observed by the gynaecologist and or physician are almost superimposable to those self-reported by women on their most bothersome symptoms.

[00128]. Vaginal examination was performed at screening and then at day 1 and at 2, 4, 8 and 12 weeks. Vaginal secretions, vaginal color, vaginal epithelial integrity and vaginal epithelial surface thickness were evaluated according to the following degrees of severity: none, mild, moderate or severe. The definitions of severity were as follows:

a) Vaginal secretions

 No atrophy: Normal clear secretions noted on vaginal walls.
 Mild: Superficial coating of secretions, difficulty with speculum insertion.
 Moderate: Scant not covering the entire vaginal vault, may need lubrication with speculum insertion to prevent pain.
 Severe: None, inflamed, ulceration noted, need lubrication with speculum insertion to prevent pain.

b) Vaginal epithelial integrity

 No atrophy: Normal.
 Mild: Vaginal surface bleeds with scraping.
 Moderate: Vaginal surface bleeds with light contact.
 Severe: Vaginal surface has petechiae before contact and bleeds with light contact.

c) Vaginal epithelial surface thickness

 No atrophy: Rugation and elasticity of vault.
 Mild: Poor rogation with some elasticity noted of vaginal vault.
 Moderate: Smooth, some elasticity of vaginal vault.
 Severe: Smooth, no elasticity, constricts of the upper 1/3 of vagina or loss of vaginal tone (cystocele and rectocele).

d) Vaginal color

 No atrophy: Pink.
Mild: Lighter in color.
Moderate: Pale in color.
Severe: Transparent, either no color or inflamed.

STATISTICS

[00129]. Summary tabulations will be prepared that will display the number of observations, mean or geometric mean as appropriate, standard deviation, standard error of the mean, 95% two-sided confidence interval (CI), median, minimum, and maximum for continuous variables, and the number and percent per category for categorical data. Statistical analyses will be performed at the two-sided significance level of 0.05 unless otherwise stated. The categories for summarization will in general consist of the dose levels of the DHEA treatments, 0% (placebo), 0.25%, 0.5% and 1.0% DHEA.

[00130]. The primary endpoints for analysis will consist of the following:

[00131]. Statistically significant improvement in the moderate to severe symptom identified by the subject as most bothersome to her. The symptom severity is based on symptoms of increasing severity: none, mild, moderate or severe. These ratings will be analyzed using the values 0, 1, 2 and 3, respectively; all subjects must have at least one baseline symptom that is graded as 2 or 3. The symptoms of interest are vaginal dryness, vaginal and/or vulvar irritation/itching, and vaginal pain associated with sexual activity.

[00132]. Statistically significant decrease in parabasal cells and a statistically significant increase in superficial cells. The data is measured in percentage. The maturation value will also be calculated.

[00133]. Statistically significant lowering of vaginal pH.
Analysis Populations

[00134]. The Intent-to-Treat (ITT) Population will consist of the treated subjects with a baseline and at least one post-baseline efficacy assessment. Subjects who may have received the wrong treatment will be analyzed as randomized. This analysis population is to be considered the primary analysis population. Subjects in this population who are missing observations post-baseline will have the last value carried forward for efficacy analyses.

[00135]. The Per Protocol (PP) Population consists of the subset of the treated population that completes the study through the time point of 12 weeks with no major protocol violations considered to compromise efficacy data. Major protocol violations will be determined before the study blind is broken, based on review of data listings and monitoring reports of protocol deviations. Subjects in the PP population must have received at least 90% of the required number of applications of study treatment in the protocol-specified duration for that subject, based on the subject diary data. Subjects in the PP population must be compliant with the visit window schedule: ± 3 days for Day 14, and ± 7 days for Weeks 4, 8 and 12. Subjects who received the wrong treatment, but for whom the treatment received can be unequivocally confirmed, will be analyzed in the PP Population as treated, provided they have no other violations that compromise their data. The PP population will be a supportive population for efficacy data analysis.

[00136]. The Safety Population will be defined as all subjects who receive an administration of either test article (DHEA at any dose or Placebo), and who have any safety information available. AU safety data analyses will be based on this population. Analysis will be based on the treatment actually received.

Efficacy Evaluation
[00137]. Efficacy analyses will be performed primarily on the ITT Population, and the Per-Protocol population will provide supportive efficacy analyses. The primary study objective is to evaluate the dose-response of vaginal mucosal parameters to the local action of DHEA in postmenopausal women suffering from vaginal atrophy, specifically by determination of the minimal dose of DHEA that produces maximal effect on the vaginal mucosa. The co-primary efficacy endpoints to address this objective are decrease in parabasal cells, decrease in vaginal pH, increase in superficial cells (collectively, these endpoints will be denoted as physiological parameters) and subject self-reported most bothersome symptom including vaginal dryness, vaginal and/or vulvar itching/irritation, and vaginal pain associated with sexual activity (collectively, these endpoints will be denoted as symptom score parameters). In addition to these primary endpoints, the maturation value will also be calculated. The self-reported symptom scores take the following values: none, mild, moderate or severe to be analyzed using values of 0, 1, 2 or 3, respectively. All endpoints must demonstrate statistically significant effects relative to placebo, therefore no statistical adjustment is required for multiple endpoints.

[00138]. The primary timepoint for analysis will be the 12-week assessment, with additional presentations of the data for 2, 4 and 8 weeks. The change from baseline to post-baseline assessment will be used for analysis as well as the difference with placebo.

RESULTS

[00139]. Since parabasal cells are usually the predominant category in the vaginal smear of postmenopausal women suffering from at least one moderate to severe symptom of vaginal atrophy, it can be seen in Fig. 22 and Table 6 that already at 2 weeks of treatment, the lowest dose of DHEA (0.25%) decreased the % of parabasal cells by $29.5 \pm 0.51\%$ from 56.0 to 26.5% while decreases of $37.8 \pm 0.46\%$ and 36.6% were observed, respectively, with the 0.5% and 1.0% DHEA doses at the same time interval.
At the standard duration of 12 weeks of treatment, decreases of 39.5 ± 0.57% (p<0.000001), 45.6 ± 0.55% (p<0.000001) and 45.2 ± 0.53% (p<0.000001) were observed with the 0.25%, 0.5% and 1.0% DHEA doses, respectively, while no significant effect was observed in the placebo group at any time interval.

[00140]. While no significant effect was seen at 12 weeks in the placebo group on the % change in superficial cells (Table 6), increases of 3.96 ± 0.10% (p=0.0002), 6.71 ± 0.14% (p=0.00001) and 5.92 ± 0.12% (p=0.00001) were measured in the 0.25%, 0.5% and 1.0% DHEA groups, respectively. It can also be seen that at the 0.5% DHEA dose, 48.0% of the maximal effect was reached at 2 weeks while at 4 and 8 weeks, 84.8% and 99.0% of the maximal effect were achieved. At the 1.0% DHEA dose, the maximal effect was already reached at 2 weeks. Fig. 23 illustrates the absolute values of the % of superficial cells at the different DHEA doses and time intervals.

[00141]. Vaginal pH was decreased at 12 weeks by 0.47 ± 0.11 from 6.52 ± 0.13 units in the placebo group (Table 6, Fig. 24) while decreases of 1.12 ± 0.11 (p=0.0005) from 6.49 ± 0.12 units, 1.35 ± 0.3 from 6.56 ± 0.13 pH units, 1.35 ± 0.13 from 6.56 ± 0.13 pH units and of 1.39 ± 0.14 from 6.34 ± 0.3 pH units were observed in the 0.25%, 0.50% and 1.0% DHEA-treated groups, respectively (Table 7). It can be seen in the same table that at the 0.5% DHEA dose, 70.6% and 94.1% of the maximal effect on pH (reduction of 1.36 pH units) was achieved at 2 and 4 weeks of treatment, respectively. The low 0.25% DHEA dose, on the other hand, reached only 83.0% of the maximal effect of 0.5% DHEA at 12 weeks. No significant difference in the change of pH was observed between the 0.50% and 1.0% DHEA doses at 4, 8 and 12 weeks (Table 7). Fig. 24 illustrates the absolute pH values at the different DHEA doses and time intervals.

[00142]. All women needed to have at entry one or more of the following symptoms of vaginal atrophy evaluated by herself as moderate to severe: dryness, vaginal or vulval
irritation/ itching or vaginal pain at sexual activity. The self-identified symptoms reported as none, mild, moderate or severe were analysed using values of 0, 1, 2 and 3, respectively. As illustrated in Table 8, at the 12-week interval, the severity of the most bothersome symptom was reduced by 0.67 ± 0.15 in the placebo group, 1.27 ± 0.16 in the 0.25% DHEA group (p=0.004 vs placebo), 1.56 ± 0.15 in the group receiving 0.5% DHEA (p<0.0001 vs placebo) and 1.37 ± 0.14 in the group receiving the higher 1.0 DHEA dose (p=0.0008 vs placebo). Fig. 25 illustrates the degree of improvement of the most bothersome symptom at the different DHEA doses and time intervals. Vaginal dryness, pain associated with sexual activity and vaginal and/or vulvar irritation/ itching were identified at baseline as the most bothersome symptom. In the placebo group, vaginal dryness accounted for % of the improvements noted by the participants.

[00143] As illustrated in Fig. 25, the improvement of the most bothersome symptom was already highly significantly different (p=0.004) at the 0.25% DHEA dose. The percentage of women with no change or a worsening of a score of 1 at 12 weeks went from 53.5% in the placebo group to 27.5%, 17.8% and 19.6% in the 0.25%, 0.5% and 1.0% groups, respectively (Table 9). The improvements by 2 or 3 categories of severity were observed in 21.8% of women treated with placebo while 50.0%, 53.3% and 47.9% of women who received the 0.25%, 0.5% and 1.0% DHEA formulations reported such an important improvement. Only 4.6% of women indicated a decrease from severe to none in the placebo group compared with 7.5%, 20% and 10.9% in the same DHEA-treated groups.

[00144] At the same time intervals of 2, 4, 8 and 12 weeks, the gynecologist or physician in charge of the clinical trial at each study site performed a vaginal exam to evaluate the degree of severity (none, mild, moderate or severe analyzed using values of 0, 1, 2, and 3, respectively) for the main signs of vaginal atrophy, namely vaginal secretions, vaginal color, vaginal epithelial integrity and vaginal epithelial surface thickness. As
can be seen in Figs 26 to 29, a time-dependent and dose-related as well as highly statistically significant improvement of all four signs of vaginal atrophy was seen. In fact, the beneficial effects observed by the gynecologist or physician are almost superimposable to those self-reported by women on their most bothersome symptoms as well as to the effects on vaginal parabasal and superficial cells and pH which are objective parameters of DHEA action.

[00145]. Figs 30 and 31 illustrate the average 24h (calculated from AUC_{0-24h} values measured on days 1 and 7 of treatment) serum steroid levels of DHEA and eleven of its metabolites taken from a recent study (Labrie, Cusan et al. 2008). It can be seen that only serum DHEA and 5-diol (and 4-dione at day 1) are increased significantly but well within the limits of values found in postmenopausal women (Labrie, Belanger et al. 2006). Serum estrogens (E_1, E_2 and EiS) as well as serum androgens (testo and DHT) are not significantly affected.
Table 6

Change from day 1 in % parabasal and superficial cells during local treatment with increasing doses of DHEA*

<table>
<thead>
<tr>
<th></th>
<th>2 weeks</th>
<th>4 weeks</th>
<th>8 weeks</th>
<th>12 weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parabasal cells</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0% DHEA</td>
<td>+3.6 ± 0.32</td>
<td>+0.02 ± 0.32</td>
<td>+1.17 ± 0.37</td>
<td>+1.04 ± 0.35</td>
</tr>
<tr>
<td>0.25%</td>
<td>-29.5 ± 0.51</td>
<td>-38.4 ± 0.51</td>
<td>-40.3 ± 0.55</td>
<td>-39.5 ± 0.57</td>
</tr>
<tr>
<td>0.50%</td>
<td>-37.8 ± 0.46</td>
<td>-43.4 ± 0.50</td>
<td>-47.8 ± 0.49</td>
<td>-45.6 ± 0.55</td>
</tr>
<tr>
<td>1.0%</td>
<td>-36.6 ± 0.50</td>
<td>-42.5 ± 0.51</td>
<td>-43.7 ± 0.50</td>
<td>-45.2 ± 0.53</td>
</tr>
<tr>
<td>Superficial cells</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0% DHEA</td>
<td>0.10 ± 0.03</td>
<td>0.37 ± 0.03</td>
<td>0.40 ± 0.03</td>
<td>0.53 ± 0.05</td>
</tr>
<tr>
<td>0.25%</td>
<td>2.32 ± 0.07</td>
<td>3.38 ± 0.08</td>
<td>3.42 ± 0.09</td>
<td>3.96 ± 0.10</td>
</tr>
<tr>
<td>0.50%</td>
<td>3.22 ± 0.05</td>
<td>5.69 ± 0.09</td>
<td>6.64 ± 0.11</td>
<td>6.71 ± 0.14</td>
</tr>
<tr>
<td>1.0%</td>
<td>6.26 ± 0.16</td>
<td>6.64 ± 0.14</td>
<td>6.88 ± 0.16</td>
<td>5.92 ± 0.12</td>
</tr>
</tbody>
</table>

*mean ± SEM

FL270608 1
Table 7

Change from day 1 in vaginal pH during local treatment with increasing doses of DHEA*

<table>
<thead>
<tr>
<th>DHEA dose</th>
<th>2 weeks</th>
<th>4 weeks</th>
<th>8 weeks</th>
<th>12 weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0% DHEA</td>
<td>-0.23 ± 0.08</td>
<td>-0.37 ± 0.09</td>
<td>-0.51 ± 0.10</td>
<td>-0.47 ± 0.11</td>
</tr>
<tr>
<td>0.25%</td>
<td>-0.76 ± 0.12</td>
<td>-0.93 ± 0.12</td>
<td>-1.09 ± 0.10</td>
<td>-1.12 ± 0.11</td>
</tr>
<tr>
<td>0.50%</td>
<td>-0.96 ± 0.14</td>
<td>-1.28 ± 0.12</td>
<td>-1.36 ± 0.12</td>
<td>-1.35 ± 0.13</td>
</tr>
<tr>
<td>1.0%</td>
<td>-1.13 ± 0.12</td>
<td>-1.30 ± 0.12</td>
<td>-1.41 ± 0.12</td>
<td>-1.39 ± 0.14</td>
</tr>
</tbody>
</table>

* mean ± SEM
Table 8

Change from day 1 in the most bothersome symptoms of vaginal atrophy during local treatment with increasing doses of DHEA*

<table>
<thead>
<tr>
<th>DHEA dose</th>
<th>2 weeks</th>
<th>4 weeks</th>
<th>8 weeks</th>
<th>12 weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0% DHEA</td>
<td>-0.49 ± 0.16</td>
<td>-0.79 ± 0.16</td>
<td>-0.61 ± 0.16</td>
<td>-0.67 ± 0.15</td>
</tr>
<tr>
<td>0.25%</td>
<td>-0.70 ± 0.17</td>
<td>-1.11 ± 0.16</td>
<td>-1.19 ± 0.16</td>
<td>-1.27 ± 0.16</td>
</tr>
<tr>
<td>0.50%</td>
<td>-0.98 ± 0.15</td>
<td>-1.36 ± 0.15</td>
<td>-1.37 ± 0.17</td>
<td>-1.56 ± 0.15</td>
</tr>
<tr>
<td>1.0%</td>
<td>-1.00 ± 0.15</td>
<td>-1.29 ± 0.14</td>
<td>-1.38 ± 0.17</td>
<td>-1.37 ± 0.14</td>
</tr>
</tbody>
</table>

* mean ± SEM
Table 9

Change from day 1 in the most bothersome symptoms at 12 weeks of treatment with 0% (placebo), 0.25%, 0.50% and 1.0% DHEA. Change from one category (Severe → moderate → mild → none) was taken as -1 while a change of 2 categories was -2, etc...

<table>
<thead>
<tr>
<th>Category change</th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>+1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Doses</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0% DHEA</td>
<td>4.65</td>
<td>16.3</td>
<td>25.6</td>
<td>48.8</td>
<td>4.65</td>
</tr>
<tr>
<td>0.25%</td>
<td>7.50</td>
<td>42.5</td>
<td>22.5</td>
<td>25.0</td>
<td>2.50</td>
</tr>
<tr>
<td>0.50%</td>
<td>20.0</td>
<td>33.3</td>
<td>28.9</td>
<td>17.8</td>
<td>0.0</td>
</tr>
<tr>
<td>1.0%</td>
<td>19.9</td>
<td>37.0</td>
<td>32.6</td>
<td>17.4</td>
<td>2.17</td>
</tr>
</tbody>
</table>
PHARMACEUTICAL COMPOSITION EXAMPLES

[00146]. Set forth below, by way of example and not of limitation, are several pharmaceutical compositions utilizing preferred active sex steroid precursor DHEA. The concentration of active ingredient may be varied over a wide range as discussed herein. The amounts and types of other ingredients that may be included are well known in the art.

Example A
Vaginal or oral Tablet

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Weight % (by weight of total composition)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHEA</td>
<td>5.0</td>
</tr>
<tr>
<td>Gelatin</td>
<td>6.5</td>
</tr>
<tr>
<td>Lactose</td>
<td>70.5</td>
</tr>
<tr>
<td>Starch</td>
<td>18.0</td>
</tr>
</tbody>
</table>

Example B
1.3 ml Vaginal suppository

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Weight % (by weight of total composition)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHEA</td>
<td>0.50</td>
</tr>
<tr>
<td>Whitepsol H-15 base</td>
<td>99.50</td>
</tr>
</tbody>
</table>
DHEA suppositories were prepared using Whitepsol H-15 base (available from Medisca, Montreal, Canada). Any other lipophilic base such as but non limited to butter, cocoa butter, Cotomar, Dehydag Base, Fattibase, Hexadex Base 95, Hydrokote, Suppocire, Wecobee, theobroma oil, Japocire, Ovcire, Massa Estarinum or other combinations of the foregoing could used.

Example C

Vaginal or topical cream

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Weight % (by weight of total composition)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHEA</td>
<td>10</td>
</tr>
<tr>
<td>Emulsifying Wax, NF</td>
<td>18.0</td>
</tr>
<tr>
<td>Light mineral oil, NF</td>
<td>12.0</td>
</tr>
<tr>
<td>Benzyl alcohol</td>
<td>1.0</td>
</tr>
<tr>
<td>Ethanol 95% USP</td>
<td>34.0</td>
</tr>
<tr>
<td>Purified water, USP</td>
<td>34.0</td>
</tr>
</tbody>
</table>

Vaginal or oral Gelatin capsule

[00147] Other sex steroid precursors may be substituted for DHEA in the above formulations. More than one precursor may be included in which case the combined weight percentage is preferably that of the weight percentage for the single precursor given in the examples above.

[00148] The invention has been described in terms of preferred embodiments and examples, but is not limited thereby. Those of skill in the art will readily recognize the broader applicability and scope of the invention which is limited only by the patent claims herein.
WHAT IS CLAIMED IS:

1. A method of treating and/or reducing the likelihood of acquiring symptoms or diseases due to the menopause, in postmenopausal women, said method comprising administering a sex steroid precursor selected from the group consisting of dehydroepiandrosterone, dehydroepiandrosterone-sulfate, androst-5-ene-3β,17β-diol, and 4-androsten-3,17-dione to a patient in need of said treatment wherein the said sex steroid precursor is administered at a therapeutic amount which increases the level of circulating androgen metabolites without increasing the circulating level of estradiol above the values found in normal postmenopausal women in order to avoid the risk of breast and uterine cancer.

2. The method of claim 1 wherein the sex steroid precursor is administered on the skin.

3. The method of claim 1 wherein the sex steroid precursor is administered intravaginally.

4. The method of claim 1 wherein the sex steroid precursor is administered orally.

5. The method of claim 2 wherein the therapeutic amount of sex steroid precursor is 200 mg per day or less.

6. The method of claim 2 wherein the therapeutic amount of sex steroid precursor is 100 mg per day or less.
7. The method of claim 2 wherein the therapeutic amount of sex steroid precursor is 30 mg per day or less.

8. The method of claim 2 wherein the therapeutic amount of sex steroid precursor is 15 mg per day or less.

9. The method of claim 3 wherein the therapeutic amount of sex steroid precursor is 50 mg per day or less.

10. The method of claim 3 wherein the therapeutic amount of sex steroid precursor is 25 mg per day or less.

11. The method of claim 3 wherein the therapeutic amount of sex steroid precursor is 13 mg per day or less.

12. The method of claim 3 wherein the therapeutic amount of sex steroid precursor is 6.5 mg per day or less.

13. The method of claim 4 wherein the therapeutic amount of sex steroid precursor is 200 mg per day or less.

14. The method of claim 4 wherein the therapeutic amount of sex steroid precursor is 100 mg per day or less.

15. The method of claim 4 wherein the therapeutic amount of sex steroid precursor is 50 mg per day or less.
16. The method of claims 1, 2, 3, and 4 wherein the average 24h-level of circulating estradiol is below 10 pg/mL.

17. The method of claim 2 wherein the therapeutic amount of sex steroid precursor is administered by means of a topical formulation selected from the group consisting of cream, lotion, gel, ointment, sustained release patch, and the like, and wherein said formulation contains 10% of sex steroid precursor or less.

18. The method of claim 2 wherein the therapeutic amount of sex steroid precursor is administered by means of a topical formulation selected from the group consisting of cream, lotion, gel, ointment, sustained release patch, and the like, and wherein said formulation contains 2.0% of sex steroid precursor or less.

19. The method of claim 3 wherein the therapeutic amount of sex steroid precursor is administered by means of an intravaginal formulation selected from the group consisting of cream, lotion, gel, ointment, ovule, suppository, ring, and the like, and wherein said formulation contains 10% of sex steroid precursor or less.

20. The method of claim 3 wherein the therapeutic amount of sex steroid precursor is administered by means of an intravaginal formulation selected from the group consisting of cream, lotion, gel, ointment, ovule, suppository, ring, and the like, and wherein said formulation contains 2.0% of sex steroid precursor or less.

21. The method of claim 4 wherein the therapeutic amount of sex steroid precursor is administered by means of an oral formulation selected from the group consisting of capsules, plug capsules, pills, tablets, syrups.
22. The method of claim 1, further comprising administering as part of a combination therapy, a therapeutically effective amount of a Selective Estrogen Receptor Modulator.

23. A method of treating and/or reducing the likelihood of acquiring symptoms or diseases due to the menopause, in postmenopausal women, said method comprising administering a sex steroid precursor selected from the group consisting of dehydroepiandrosterone, dehydroepiandrosterone-sulfate, androst-5-ene-3β,17β-diol, and 4-androsten-3,17-dione to a patient in need of said treatment wherein the said sex steroid precursor is administered at a therapeutic amount which increases the level of circulating androgen metabolites and further comprising administering as part of a combination therapy, a therapeutically effective amount of a Selective Estrogen Receptor Modulator in order to decrease the risk of breast and uterine cancer normally present in postmenopausal women and to prevent bone loss, fat accumulation and diabetes type 2.

24. The method of claims 21 and 22 wherein the Selective Estrogen Receptor Modulator has the following chemical structure.

Acolbifene (EM-652.HCl; EM-1538)

25. The method of claims 1 and 23 wherein the symptoms or diseases due to the menopause are selected from the group of diseases consisting of Osteoporosis, vaginal atrophy, vulvo-vaginal dryness, hypogonadism, diminished libido, skin atrophy,
connective tissue disease, urinary incontinence, breast, endometrial, ovarian and uterine cancers, hot flashes, loss of muscle mass, insulin resistance, fatigue, loss of energy, aging, and physical symptoms and signs of menopause.

26. A method of treating and/or reducing the likelihood of acquiring vaginal diseases or problems in postmenopausal women, said method comprising administering a sex steroid precursor selected from the group consisting of dehydroepiandrosterone, dehydroepiandrosterone-sulfate, androst-5-ene-3β,17β-diol, and 4-androsten-3,17-dione to a patient in need of said treatment wherein the said sex steroid precursor is administered at a therapeutic amount which increases the level of circulating androgen metabolites without increasing the level of estradiol above the values found in normal postmenopausal women.

27. The method of claim 26 wherein the sex steroid precursor is intra-vaginally administered.

28. The method of claim 27 wherein the therapeutic amount of sex steroid precursor is 25 mg per day or less.

29. The method of claim 27 wherein the therapeutic amount of sex steroid precursor is 13 mg per day or less.

30. The method of claim 27 wherein the therapeutic amount of sex steroid precursor is 6.5 mg per day or less.

31. The method of claim 26 wherein the vaginal diseases are selected from the group of diseases consisting of vaginal dryness, vulvo-vaginal dryness, vaginal pruritus, vaginal atrophy, atrophic vaginitis, dyspareunia, vaginal bleeding at sexual
activity, sexual dysfunction, loss of libido, loss of compactness of collagen fibers of the vaginal wall, and low muscularis thickness of the vaginal wall.

32. A pharmaceutical composition comprising a sex steroid precursor selected from the group consisting of dehydroepiandrosterone, dehydroepiandrosterone-sulfate, androst-5-ene-3β, 17β-diol, and 4-androstene-3,17-dione and further comprising a pharmaceutically acceptable excipient, diluent or carrier selected from the group consisting of pure or mixed natural or semi-synthetic tri-, di-, or monoglycerides of saturated, unsaturated or hydrogenated fatty acids; butter; palm, palm kernel, partially hydrogenated cottonseed, and coconut oils and its triglyceride derivatives; hydrogenated fatty alcohols and esters; polyoxyl stearate; rearranged hydrogenated vegetable oils; eutectic mixture of mono-, di-, triglycerides derived from natural vegetable oils; triglyceride esters; Tween 61; theobroma oil; and a combination of the foregoing.

33. The pharmaceutical composition of claim 31 wherein the pharmaceutical composition is a suppository or an ovule and wherein the pharmaceutically acceptable excipient, diluent or carrier is Witepsol H-15.

34. The pharmaceutical composition of claim 33 wherein the precursor is DHEA.

35. A method of treating vaginal conditions of the layer lamina propia or layer muscularis comprising vaginal administration of DHEA in a daily dose of 3-13 mg.

36. A vaginal suppository comprising 0.25-2.00 percent, by weight relative to the total weight of the suppository, of DHEA, and further comprising a lipophilic excipient.
37. A vaginal suppository comprising about 0.5 percent DHEA (by weight relative to the total weight of the suppository) and further comprising saturated fatty acid esters.

38. A vaginal suppository comprising 0.5 percent DHEA (by weight relative to total weight of the suppository, and witepsol H-15
FIGURE 1

DHEA

A- Day 1

PLACEBO
DHEA 0.5%
DHEA 1.0%
DHEA 1.8%

B- Day 7

5-Diol

C- Day 1

D- Day 7
FIGURE 2

TESTO

A- Day 1

-PLACEBO
- DHEA 0.5%
- DHEA 1.0%
- DHEA 1.8%

TIME POST-DOSSING (HOURS)

DHT

C- Day 1

TIME POST-DOSSING (HOURS)

D- Day 7

-PLACEBO
- DHEA 0.5%
- DHEA 1.0%
- DHEA 1.8%
FIGURE 3

A- Day 1

- PLACEBO
- DHEA 0.5%
- DHEA 1.0%
- DHEA 1.8%

B- Day 7

E1

TIME POST-DOSING (HOURS)

(pg/ml)

C- Day 1

D- Day 7

E2

TIME POST-DOSING (HOURS)

(pg/ml)
FIGURE 4

E1-S

A - Day 1

- PLACEBO
- DHEA 0.5%
- DHEA 1.0%
- DHEA 1.8%

B - Day 7

TIME POST-DOsing (HOURS)

DHEA-S

C - Day 1

(ng/ml)

D - Day 7

TIME POST-DOsing (HOURS)

SUBSTITUTE SHEET (RULE 26)
FIGURE 5

4-Dione

A - Day 1

B - Day 7

ADT-G

C - Day 1

D - Day 7
FIGURE 6

3α-Diol-3G

A- Day 1

B- Day 7

3α-Diol-17G

C- Day 1

D- Day 7

TIME POST-DOSING (HOURS)
FIGURE 11

A Serum DHEA (ng/mL)
1st day
- O - 2 x 50mg DHEA Capsules
- □ - 4g 10% DHEA Cream
- △ - 4g 10% DHEA Gel

B Serum 5-diol (ng/mL)

0 6 12 18 24
0.0 0.5 1.0 1.5 2.0

Hours
FIGURE 12

A Serum 4-dione (ng/mL)
 1st day
 -O- 2 x 50mg DHEA Capsules
 -□- 4g 10% DHEA Cream
 -△- 4g 10% DHEA Gel

B Serum Testosterone
 (ng/mL)

Hours
FIGURE 14

A Serum DHEA-S (μg/mL)
1st day

- 2 x 50mg DHEA Capsules
- 4g 10% DHEA Cream
- ∆ 4g 10% DHEA Gel

B Serum E₁-S (pg/mL)

- 2 x 50mg DHEA Capsules
- 4g 10% DHEA Cream
- ∆ 4g 10% DHEA Gel

Hours

0 6 12 18 24

0 100 200 300 400
FIGURE 20

A Serum ADT-G (ng/mL)
14th day

-○- 2 x 50mg DHEA Capsules
-□- 4g 10% DHEA Cream
-△- 4g 10% DHEA Gel

B Serum 3α-diol-G
(ng/mL)

-○- 2 x 50mg DHEA Capsules
-□- 4g 10% DHEA Cream
-△- 4g 10% DHEA Gel

Hours

0 6 12 18 24

0 5 10 15 20 25 30 35
FIGURE 23

The figure shows the effect of DHEA dose on the percentage of superficial cells, with data points for Day 1, 2 weeks, 4 weeks, 8 weeks, and 12 weeks. The y-axis represents the percentage of superficial cells, ranging from 0% to 10%. The x-axis represents different DHEA doses: 0%, 0.25%, 0.5%, and 1.0%. Significant differences are indicated by the p-values: p=0.000003, p=0.000006, and p=0.00001. The bars indicate the mean values with error bars for each condition.
FIGURE 24

pH

Day 1
2 weeks
4 "
8 "
12 "

0% | 0.25% | 0.5% | 1.0%

DHEA dose

p=0.0005
p<0.000001
p<0.000001
p<0.000001
FIGURE 25

Mean Change from Baseline (Day 1)
By Treatment in Most Bothersome Symptom

FL130668-15

SUBSTITUTE SHEET (RULE 26)
FIGURE 26

Mean change (+/- Std error) by treatment in vaginal secretions

Visit
- 2 weeks
- 4
- 8
- 12

Mean change from baseline

DHEA dose

0% 0.25% 0.5% 1.0%
FIGURE 27

Mean change (+/- Std error) over time in vaginal color

Visit
- 2 weeks
- 4 ~
- 8 ~
- 12 ~

Mean change from baseline

<table>
<thead>
<tr>
<th>DHEA dose</th>
<th>0%</th>
<th>0.25%</th>
<th>0.5%</th>
<th>1.0%</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FL010708-7
FIGURE 28

Mean change (+/- Std error) by treatment in vaginal epithelial integrity

Visit
- 2 weeks
- 4 weeks
- 8 weeks
- 12 weeks

Mean change from baseline

DHEA dose

SUBSTITUTE SHEET (RULE 26)
FIGURE 29

Mean change (+/- Std error) by treatment in vaginal epithelial surface thickness

Visit
- 2 weeks
- 4 "
- 8 "
- 12 "

Mean change from baseline

DHEA dose

0% 0.25% 0.5% 1.0%
FIGURE 30

AVERAGE 24-HOUR SERUM STEROID LEVELS

A DHEA

B 5-DIOL

C DHEA-S

D E₁

E E₂

F E₁-S

CM250680-13B

SUBSTITUTE SHEET (RULE 26)
INTERNATIONAL SEARCH REPORT

International application No.
PCT/CA2008/001444

A. CLASSIFICATION OF SUBJECT MATTER
IPC: A61K 31/5685 (2006.01) , A61K 31/453 (2006.01) , A61K 31/56 (2006.01) , A61P 15/12 (2006.01) ,
A61P 5/26 (2006.01) , A61P 5/32 (2006.01)
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)
IPC: A61K31/5685 (2006.01) , A61K31/453 (2006.01) , A61K31/56 (2006.01) , A61P15/12 (2006.01) ,
A61P5/26 (2006.01) , A61P5/32 (2006.01)
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
A61K 31/5*

Electronic database(s) consulted during the international search (name of database(s) and, where practicable, search terms used)
CPD, Pubmed, Delphion

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>CA 1320132, (ROBERTS, E.), 1993-07-13, see claims 5, 6</td>
<td>1-21, 25-34, 36-38</td>
</tr>
<tr>
<td>X</td>
<td>CA 2154161, (ENDORECHERCHE INC), 1994-08-04, see claims</td>
<td>1-21, 25-38</td>
</tr>
<tr>
<td>X</td>
<td>CA 2334577, (ENDORECHERCHE INC), 1999-12-16, see claims</td>
<td>22-25</td>
</tr>
<tr>
<td>X</td>
<td>CA 2515426, (ANTARES PHARMA IPL AG), 2004-09-23, see page 8, line 5, claim 55</td>
<td>1-21, 24-38</td>
</tr>
<tr>
<td>X</td>
<td>CA 2584524, (ENDORECHERCHE INC), 2006-04-27, see claims</td>
<td>1-38</td>
</tr>
</tbody>
</table>

[X] Further documents are listed in the continuation of Box C. [X] See patent family annex.

Date of the actual completion of the international search 8 October 2008 (08-10-2008)

Date of mailing of the international search report 24 October 2008 (24-10-2008)

Name and mailing address of the ISA/CA Canadian Intellectual Property Office
Place du Portage I, C1 14 - 1st Floor, Box PCT
50 Victoria Street
Gatineau, Quebec K1A 0C9
Facsimile No.: 001-819-953-2476

Authorized officer Karol Gajewski 819- 934-6734
Observations where certain claims were found unsearchable (Continuation of item 2 of the first sheet)

<table>
<thead>
<tr>
<th>Box No. II</th>
<th>Observations where certain claims were found unsearchable</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons</td>
</tr>
<tr>
<td>1</td>
<td>[X] Claim Nos 1-31, 35 because they relate to subject matter not required to be searched by this Authority, namely</td>
</tr>
<tr>
<td></td>
<td>Claims 1-31, 35 is directed to a method for treatment of the human or animal body by surgery or therapy which the International Search Authority is not required to search. However, this Authority has carried out a search based on the alleged effect or purpose/use of the product defined in claim 32</td>
</tr>
<tr>
<td>2</td>
<td>[] Claim Nos because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically</td>
</tr>
<tr>
<td>3</td>
<td>[] Claim Nos because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 64(a)</td>
</tr>
</tbody>
</table>

Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

<table>
<thead>
<tr>
<th>Box No. III</th>
<th>Observations where unity of invention is lacking</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>This International Searching Authority found multiple inventions in this international application, as follows</td>
</tr>
<tr>
<td>1</td>
<td>[] As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims</td>
</tr>
<tr>
<td>2</td>
<td>[] As all searchable claims could be searched without effort justifying additional fees, this Authority did not invite payment of additional fees</td>
</tr>
<tr>
<td>3</td>
<td>[] As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claim Nos</td>
</tr>
<tr>
<td>4</td>
<td>[] No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims, it is covered by claim Nos</td>
</tr>
</tbody>
</table>

Remark on Protest [] The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee
[] The additional search fees were accompanied by the applicant’s protest but the applicable protest fee was not paid within the time limit specified in the invitation
[] No protest accompanied the payment of additional search fees
<table>
<thead>
<tr>
<th>Patent Document</th>
<th>Publication Date</th>
<th>Patent Family</th>
<th>Publication Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>GB2204490 A</td>
<td>16-1-1988</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US4835147 A</td>
<td>30-05-1989</td>
</tr>
<tr>
<td>CA2154161</td>
<td>04-08-1994</td>
<td>AT275957T T</td>
<td>15-10-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT322271T T</td>
<td>15-04-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU686120B B2</td>
<td>05-02-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AUS388494 A</td>
<td>28-07-1994</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AUS5855794 A</td>
<td>15-08-1994</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN1100541C C</td>
<td>05-02-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN1259365C C</td>
<td>14-06-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN1954804 A</td>
<td>02-05-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CZA97860 B6</td>
<td>16-04-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE69433994D D</td>
<td>21-10-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE69433994T T2</td>
<td>22-09-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE69434697D D</td>
<td>18-05-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE69434697T T2</td>
<td>29-03-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK680327T T3</td>
<td>03-01-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK1382340 T3</td>
<td>14-08-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP0680327 A1</td>
<td>08-1-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP1382340 A1</td>
<td>21-01-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES227523T T3</td>
<td>01-04-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES2261836T T3</td>
<td>16-1-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FI953017 A</td>
<td>19-06-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HU73241 A2</td>
<td>29-07-1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IL108371 D D0</td>
<td>12-04-1994</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP34417308B B2</td>
<td>02-09-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO314067B B1</td>
<td>27-01-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO314656B B1</td>
<td>28-04-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO315690B B1</td>
<td>13-10-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO321846B B1</td>
<td>10-07-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO952417 A</td>
<td>16-06-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO20003546 A</td>
<td>16-06-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NZ250712 A</td>
<td>26-1-1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NZ2512334 A</td>
<td>27-05-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PT680327T T3</td>
<td>31-12-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PT1382340 T3</td>
<td>31-07-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SK77995 A3</td>
<td>09-04-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UA7391 1 C2</td>
<td>15-12-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US5728688 A</td>
<td>17-03-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US5776923 A</td>
<td>07-07-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US5780460 A</td>
<td>14-07-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US5798347 A</td>
<td>25-08-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US5807849 A</td>
<td>15-09-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US5824671 A</td>
<td>20-10-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US5837700 A</td>
<td>17-1-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US5843932 A</td>
<td>01-12-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US5854229 A</td>
<td>29-12-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US587214 A</td>
<td>16-02-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US5922700 A</td>
<td>13-07-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US5948434 A</td>
<td>07-09-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US5955455 A</td>
<td>21-09-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO9416709 A2</td>
<td>04-08-1994</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZA9400372 A</td>
<td>19-07-1995</td>
</tr>
<tr>
<td>CA2334577</td>
<td>16-12-1999</td>
<td>AT308326T T</td>
<td>15-1-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU4253099 A</td>
<td>30-12-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR991 1 116 A</td>
<td>25-02-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA6263567 A1</td>
<td>16-12-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN1240388C C</td>
<td>08-02-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN163666 A</td>
<td>13-07-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE69928104D D</td>
<td>08-12-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE69928104T T2</td>
<td>24-08-2006</td>
</tr>
<tr>
<td>Application Number</td>
<td>Filing Date</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td>-------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DK1083905T T3</td>
<td>20-03-2006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EP1083905 A2</td>
<td>21-03-2001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EP1623712 A2</td>
<td>08-02-2006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ES225922T T3</td>
<td>01-08-2006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HK1040367 A1</td>
<td>29-09-2006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HU0103345 A2</td>
<td>28-02-2002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID28696 A</td>
<td>28-06-2001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL140178D D0</td>
<td>10-02-2002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JP2002517483T T</td>
<td>18-06-2002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JP2007191484 A</td>
<td>02-08-2007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MXPA0012306 A</td>
<td>28-07-2003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO20006254 A</td>
<td>01-02-2001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NZ508801 A</td>
<td>29-08-2003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PL195772B B1</td>
<td>31-10-2007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PL345887 A1</td>
<td>14-01-2002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RU2246947 C2</td>
<td>27-02-2005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TR200100551T T2</td>
<td>23-07-2001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TR200103453T T2</td>
<td>21-06-2002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TR200103454T T2</td>
<td>21-06-2002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TR200103455T T2</td>
<td>21-06-2002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TR200103456T T2</td>
<td>21-06-2002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TW258369B B</td>
<td>21-07-2006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US6465445 B1</td>
<td>15-10-2002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US6670346 B1</td>
<td>30-02-2006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US749576 B2</td>
<td>30-09-2008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US2005137178 A1</td>
<td>23-06-2005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US2007027122 A1</td>
<td>01-02-2007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US2007027123 A1</td>
<td>01-02-2007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US2007027124 A1</td>
<td>01-02-2007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WO9963974 A2</td>
<td>16-12-1999</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZA200007297 A</td>
<td>08-02-2002</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CA25154256

<table>
<thead>
<tr>
<th>Application Number</th>
<th>Filing Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR030312 A1</td>
<td>20-08-2003</td>
</tr>
<tr>
<td>AT35854T T</td>
<td>15-03-2007</td>
</tr>
<tr>
<td>AT356636T T</td>
<td>15-04-2007</td>
</tr>
<tr>
<td>AU8206401 A</td>
<td>18-02-2002</td>
</tr>
<tr>
<td>AU2001282664B B2</td>
<td>01-02-2007</td>
</tr>
<tr>
<td>AU2004220488 A1</td>
<td>23-09-2004</td>
</tr>
<tr>
<td>AU2004289343 A1</td>
<td>06-05-2005</td>
</tr>
<tr>
<td>BRP10408153 A</td>
<td>04-04-2006</td>
</tr>
<tr>
<td>BRP10414551 A</td>
<td>31-10-2006</td>
</tr>
<tr>
<td>CA2418135 A</td>
<td>14-02-2002</td>
</tr>
<tr>
<td>CA2538856 A1</td>
<td>06-05-2005</td>
</tr>
<tr>
<td>CN1997357 A</td>
<td>11-07-2007</td>
</tr>
<tr>
<td>DE60127134D D1</td>
<td>19-04-2007</td>
</tr>
<tr>
<td>DE60127134T T2</td>
<td>08-1-2007</td>
</tr>
<tr>
<td>DE60127277D D1</td>
<td>26-04-2007</td>
</tr>
<tr>
<td>DE60127277T T2</td>
<td>29-11-2007</td>
</tr>
<tr>
<td>EP1323430 A2</td>
<td>02-07-2003</td>
</tr>
<tr>
<td>EP1323431 A2</td>
<td>02-07-2003</td>
</tr>
<tr>
<td>EP1325752 A2</td>
<td>09-07-2003</td>
</tr>
<tr>
<td>EP1648406 A2</td>
<td>28-04-2006</td>
</tr>
<tr>
<td>ES2283425T T3</td>
<td>01-1-2007</td>
</tr>
<tr>
<td>ES2283665T T3</td>
<td>01-1-2007</td>
</tr>
<tr>
<td>JP2004505531T T</td>
<td>26-02-2004</td>
</tr>
<tr>
<td>JP2007508261T T</td>
<td>05-04-2007</td>
</tr>
<tr>
<td>JP2007524889T T</td>
<td>30-08-2007</td>
</tr>
<tr>
<td>KR2005010650A</td>
<td>09-1-2005</td>
</tr>
<tr>
<td>MXPA050008648 A</td>
<td>10-02-2006</td>
</tr>
<tr>
<td>MXPA0600316 A</td>
<td>08-06-2006</td>
</tr>
<tr>
<td>NZ524423 A</td>
<td>30-04-2004</td>
</tr>
<tr>
<td>NZ541854 A</td>
<td>30-05-2008</td>
</tr>
<tr>
<td>US7198801 B2</td>
<td>03-04-2007</td>
</tr>
<tr>
<td>US7335379 B2</td>
<td>26-02-2008</td>
</tr>
<tr>
<td>US7387788 B1</td>
<td>17-06-2008</td>
</tr>
<tr>
<td>Patent Number</td>
<td>Date</td>
</tr>
<tr>
<td>---------------</td>
<td>------------</td>
</tr>
<tr>
<td>US7404965 B2</td>
<td>29-07-2008</td>
</tr>
<tr>
<td>US2004198706 A1</td>
<td>07-10-2004</td>
</tr>
<tr>
<td>US2007225379 A1</td>
<td>27-09-2007</td>
</tr>
<tr>
<td>WO201 1768 A1</td>
<td>14-02-2002</td>
</tr>
<tr>
<td>WO2004040804 13 A2</td>
<td>23-09-2004</td>
</tr>
<tr>
<td>WO2005039531 A1</td>
<td>06-05-2005</td>
</tr>
<tr>
<td>WO20080 12071 A2</td>
<td>31-01-2008</td>
</tr>
<tr>
<td>ZA200505985 A</td>
<td>31-05-2006</td>
</tr>
<tr>
<td>CA2584524 27-04-2006</td>
<td>AP2007039700 DO 30-04-2007</td>
</tr>
<tr>
<td>AU2005297367 A1</td>
<td>27-04-2006</td>
</tr>
<tr>
<td>BRP10516243 A</td>
<td>26-06-2008</td>
</tr>
<tr>
<td>CN101 108999 A</td>
<td>16-01-2008</td>
</tr>
<tr>
<td>HR20070169 A2</td>
<td>30-09-2007</td>
</tr>
<tr>
<td>JP20085 16995T T</td>
<td>22-05-2008</td>
</tr>
<tr>
<td>NO200725188 B</td>
<td>19-07-2007</td>
</tr>
<tr>
<td>US2007270394 A1</td>
<td>22-11-2007</td>
</tr>
<tr>
<td>WO2006042409 A1</td>
<td>27-04-2006</td>
</tr>
</tbody>
</table>