DEUTSCHE DEMOKRATISCHE REPUBLIK

(12) Wirtschaftspatent

Erteilt gemäß § 17 Absatz 1 Patentgesetz

PATENTSCHRIFT

(19) DD (11) 253 486 A1

4(51) G 01 N 11/10

AMT FÜR ERFINDUNGS- UND PATENTWESEN

In der vom Anmelder eingereichten Fassung veröffentlicht

(21)	WP G 01 N / 295 366 6	(22)	20.10.86	(44)	20.01.88
(71) (72)	VEB Kombinat Medizin- und Labortechnik Leipzig, Franz-Flemming-Straße 43/45, Leipzig, 7035, DD Hemmecke, Dieter; Vogel, Monika, DD				
(54)	Rotationsviskosimeter zur Bestimmung der Viskosität fließfähiger Medien				

(55) Rotationsviskosimeter, Viskosität, Druckgas, Dichtung, Tauchsonde, Meßzelle, Sicherheitsventil, Kupplungsteile, Lagerteile, Antriebswelle

(57) Die Erfindung betrifft ein Rotationsviskosimeter, das zur Bestimmung der Viskosität fließfähiger Medien in Rohrleitungen und Behältern innerhalb von Produktionsprozessen und in Pilotanlagen Anwendung findet. Mit der Erfindung soll die Anordnung von Kupplungsteilen und Lagerteilen im Druckraum des Viskosimeters vermieden und eine Berührung solcher Teile mit den zu messenden Medien ausgeschlossen werden. Die Lösung der Aufgabe erfolgte, indem oberhalb der Meßzelle des Rotationsviskosimeters in den Mantel der Tauchsonde ein Ausschluß für die Zufuhr von Druckgas vorgesehen worden ist, der über den Innenraum der Tauchsonde und eine Öffnung in der Stützplatte der Tauchsonde und die Führungsbohrung für die Antriebswelle des Rotors mit dem Innenraum der Meßzelle in Verbindung steht und indem der die Antriebswelle aufnehmende Teil des Innenraumes gasdicht gegen den druckgasführenden Teil des Innenraumes abgeschlossen und ein von dem Druckgas beaufschlagtes Sicherheitsventil entweder am Mantel der Tauchsonde oder deren Stützplatte vorgesehen ist.

ISSN 0433-6461

f Seiten

Patentansprüche:

- 1. Rotationsviskosimeter zur Bestimmung der Viskosität fließfähiger Medien, das mit seiner Meßzelle und seinem Rotor in Rohrleitungen und Behälter einsetzbar ist, dadurch gekennzeichnet, daß oberhalb der Meßzelle (3) in den Mantel (14) der Tauchsonde (2) ein Anschluß (15) für die Zufuhr von Druckgas vorgesehen ist, der über den Innenraum (16) der Tauchsonde (2) und eine Bohrung (17) in der Stützplatte (11) der Tauchsonde und die Führungsbohrung (21) für die Antriebswelle (13) des Rotors (12) mit dem Innenraum (16) der Meßzelle (3) verbunden ist.
- 2. Rotationsviskosimeter nach Anspruch 1, dadurch gekennzeichnet, daß der die Antriebswelle (13) aufnehmende Teil des Innenraumes (19) gasdicht gegen den druckgasführenden Teil des Innenraumes (16) abgeschlossen ist.
- 3. Rotationsviskosimeter nach Anspruch 1, dadurch gekennzeichnet, daß ein vom Druckgas beaufschlagtes Sicherheitsventil (22) vorgesehen ist.
- 4. Rotationsviskosimeter nach Anspruch 1 und 3, **gekennzeichnet dadurch**, daß das Sicherheitsventil (22) am Mantel (14) der Tauchsonde (2) oder an deren Stützplatte (11) angeordnet, mit dem Innenraum (23) der Meßzelle (3) verbunden ist.

Hierzu 1 Seite Zeichnung

Anwendungsgebiet der Erfindung

Die Erfindung betrifft ein Rotationsviskosimeter, wie es zur kontinuierlichen Bestimmung der Viskosität fließfähiger Medien in Rohrleitungen und Behältern innerhalb von Produktionsprozessen und in Pilotanlagen Anwendung findet.

Charakteristik des bekannten Standes der Technik

In der DD-PS 47814 ist ein Rotationsviskosimeter beschrieben, dessen Meßfühler von einem rotierenden Innenzylinder gebildet wird, welcher von einem dazu koaxialen ortsfesten Außenzylinder umgeben ist. Das zu untersuchende Meßgut befindet sich in einem zwischen beiden Zylindern befindlichen Ringspalt. Der meßprinzipbedingten Rotationsströmung, bekannt als Searle-Couette-Strömung, ist zum Austausch des Meßgutes im Meßfühler eine Axialströmung überlagert. Die Übertragung des Drehmomentes und der Drehbewegung aus dem drucklosen Raum in den Druckraum (Außenzylinder, Ringspalt) auf den Innenzylinder erfolgt durch eine Dauermagnet-Stern- bzw. Zentraldrehkupplung.

Diese Rotationsviskosimeter haben den Nachteil, daß die Lagerungen des rotierenden Meßzylinders im Druckraum und die Lagerungen des Kupplungsteiles im drucklosen Raum (Meßkopf) durch die Kupplungskräfte bedingt, große Axial- bzw. Radialkräfte aufnehmen müssen, die unerwünscht hohe Lagerreibungsmomente zur Folge haben, welche als Fehler in das Meßergebnis eingehen.

Ziel der Erfindung

Das Rotationsviskosimeter soll so gestaltet werden, daß dessen Betrieb mit einem der Stand der Technik gegenüber reduzierten Aufwand im Druckraum möglich ist.

Darlegung des Wesens der Erfindung

Der Erfindung lag die Aufgabe zugrunde, ein Rotationsviskosimeter zu entwickeln, bei dem Kupplungsteile und Lagerteile im Druckraum nicht erforderlich sind und zudem mit dem Medium nicht in Berührung kommen.

Erfindungsgemäß ist die Aufgabe gelöst worden, indem oberhalb der Meßzelle des Rotationsviskosimeters in den Mantel der Tauchsonde ein Anschluß für die Zufuhr von Druckgas vorgesehen ist, der über den Innenraum der Tauchsonde und eine Öffnung in der Stützplatte der Tauchsonde und die Führungsbohrung für die Antriebswelle des Rotors mit dem Innenraum der Meßzelle in Verbindung steht und indem der die Antriebswelle aufnehmende Teil des Innenraumes gasdicht gegen den druckgasführenden Teil des Innenraumes abgeschlossen und ein von dem Druckgas beaufschlagtes Sicherheitsventil, vorzugsweise am Mantel der Tauchsonde oder deren Stützplatte, vorgesehen ist.

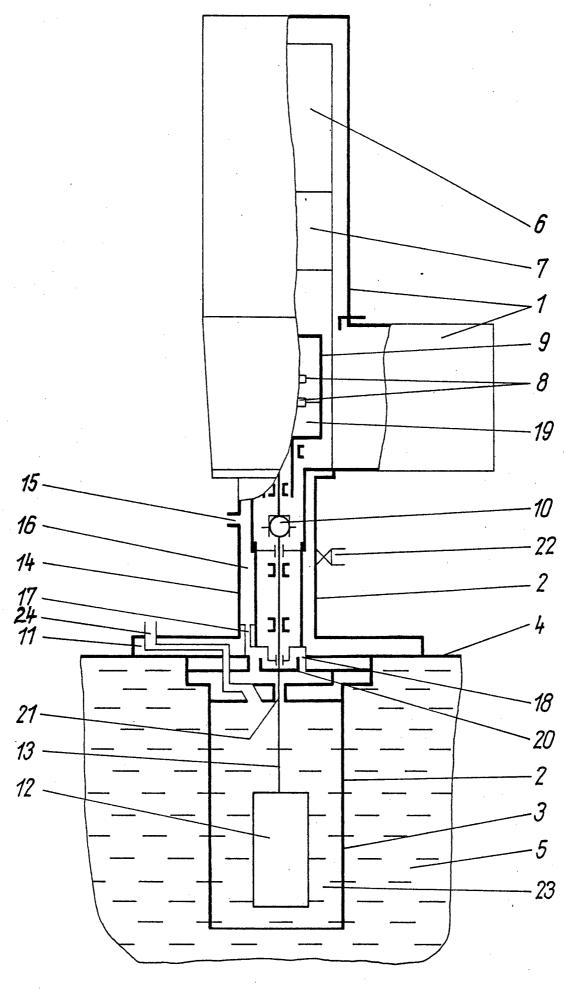
Ausführungsbeispiel

Anhand einer Zeichnung soll ein Ausführungsbeispiel die Erfindung näher erläutern.

Die Zeichnung zeigt das Rotationsviskosimeter im Teilschnitt.

Das Rotationsviskosimeter besteht im wesentlichen aus dem Meßkopf 1 und der Tauchsonde 2 und ist mit der zur Tauchsonde 2 gehörenden Meßzelle 3 in den Behälter 4 eingetaucht, der von dem zu messenden Medium 5 durchströmt wird. Im Meßkopf 1 sind der Motor 6, das Getriebe 7 und das Meßwerk 8 mit dem Gehäuse 9 untergebracht.

Die am Meßkopf 1 angeflanschte Tauchsonde 2 nimmt einen Teil des Gehäuses 9 auf, in welchem sich die Kupplung 10 befindet. Das Mittelteil der Tauchsonde 2 wird von der Stützplatte 11 gebildet, an das sich die ebenfalls zur Tauchsonde 2 gehörende "Meßzelle 3 anschließt. In der vom Medium 5 angefüllten Meßzelle 3 befindet sich der Rotor 12, der über die Antriebswellen 13, die Kupplung 10 und das Getriebe 7 mit dem Motor 6 verbunden ist.


Am Mantel 14 der Tauchsonde 2 ist der Anschluß 15 vorgesehen, der an eine nicht dargestellte Druckgasquelle angeschlossen ist. Von diesem Anschluß 15 ausgehend, besteht über den Innenraum 16 der Tauchsonde 2 und die in der Stützplatte 11 oberhalb der Meßzelle 3 angebrachten Bohrung 17 eine Verbindung zum Innenraum 23 der Meßzelle 3.

In die Stützplatte 11 ist aus der der Meßzelle 3 zugewandten Seite eine Kammer 18 eingearbeitet, in der sich die die Antriebswelle 13 umgebende und den drucklosen Innenraum 19 des Gehäuses 9 gegen die unter Druck stehende Meßzelle 3 gasdicht verschließende Labyrinthdichtung 20 befindet.

Bei Inbetriebnahme des Rotationsviskosimeters bewegt der Rotor 12 das im Behälter 4 befindliche Medium 5. Dabei würde dieses auch allmählich an der Antriebswelle 13 entlang in den Innenraum 19 aufsteigen und die Kupplung 10 sowie das Meßwerk 8 verschmutzen, was insbesondere bei Zuckerlösungen der Fall ist. Durch Einleiten des Druckgases in die Meßzelle 3 wird jedoch die Labyrinthdichtung 20 fest gegen die zentrisch in der Stützplatte 11 zur Hindurchführung der Antriebswelle 13 angebrachten Bohrung 21 gedrückt, so daß ein Eindringen des Mediums 5 in den Innenraum 19 verhindert wird. Gleichzeitig drückt das Gas ständig auf die Oberfläche des in der Meßzelle 3 befindlichen Mediums 5 und hindert dieses am Aufsteigen.

Zur Verhütung eines unzulässig hohen Druckes in der Meßzelle 3 und im Behälter 4 ist am Mantel 14 der Tauchsonde 2 das Sicherheitsventil 22 angeordnet.

Zur Reinigung der Meßzelle 3 und des Rotors 12, die insbesondere bei adhäsiven Medien erforderlich ist, befindet sich an der Stützplatte 11 ein Anschlußstutzen 24 für die Zufuhr von Wasser oder Dampf in die Meßzelle 3 über die Bohrungen 17, 21.

201086-381090