CONTROLLED RELEASE MUCOADHESIVE SYSTEMS

Inventors: Susan R. Mallery, Columbus, OH (US); Peter E. Larsen, Powell, OH (US); Gary D. Stoner, Worthington, OH (US); Steven P. Schwendeman, Superior Twp., MI (US); Kashappa-Goud Desai, Ann Arbor, MI (US)

Assignees: THE REGENTS OF THE UNIVERSITY OF MICHIGAN, Ann Arbor, MI (US); THE OHIO STATE UNIVERSITY, Columbus, OH (US)

Related U.S. Application Data
Provisional application No. 61/413,982, filed on Nov. 15, 2010.

Publication Classification
Int. Cl.
A61K 47/10 (2006.01)
A61K 47/28 (2006.01)
A61K 47/24 (2006.01)
A61K 9/00 (2006.01)

U.S. Cl.
CPC A61K 47/10 (2013.01); A61K 9/006 (2013.01); A61K 47/28 (2013.01); A61K 47/24 (2013.01)
USPC 424/400; 514/613; 424/54; 424/48

ABSTRACT
Formulations for chemoprevention of oral cancer and precancerous lesions, and for methods for preparing the formulations are described.
Figure 6

- 0 wt% Solubilizer
- 40 wt% Sodium deoxycholate
- 20 wt% Tween 80 + 40 wt% Sodium Deoxycholate

Figure 7

- Fenretinide (MW = 391.6 Da)
- Propylene glycol (MW = 76.10 Da)
- L-Menthol (MW = 156.27 Da)
- Oleic acid (MW = 282.46 Da)
Figure 8

Figure 9
Figure 10A: Fenretinide solubility (μg/mL) over incubation time (Days).

Figure 10B: Incubation time (Days) vs. mass of Fenretinide (mg).
Figures 11A-11C
Figures 12A-12H
CONTROLLED RELEASE MUCOADHESIVE SYSTEMS

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims the benefit of U.S. Provisional Application No. 61/413,982 filed Nov. 15, 2010, the entire disclosures of which are expressly incorporated herein by reference.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH

[0002] This invention was not made with any Government support and the Government has no rights in this invention.

TECHNICAL FIELD AND INDUSTRIAL APPLICABILITY OF THE INVENTION

[0003] This invention is directed to formulations for chemoprevention of oral cancer and precancerous lesions, and for methods for preparing the formulations.

[0004] Specifically, the invention relates to bioadhesive gels containing a hydrophobic formulation (such as fenretinide), formulated for local delivery for the chemoprevention of oral cancer and precancerous lesions. The invention relates also to methods for stabilizing and enhancing the efficacy of chemopreventive components of the formulations.

BACKGROUND OF THE INVENTION

[0005] Head and neck squamous cell carcinoma (HNSCC), which is a worldwide health problem, will affect approximately 36,000 Americans with over 7,000 deaths this year. Despite extensive research and introduction of therapeutic advances such as radiation-intensification, prognosis for persons with HNSCC remains among the lowest of all solid tumors.

[0006] Intervention with effective chemopreventive agents—to prevent progression or induce regression—at the pre-cancerous stage would greatly improve clinical outcomes. Analogous to other surface origin malignancies, initiated head and neck epithelium undergoes progressive growth disturbances (grades of epithelial dysplasia) prior to conversion to overt carcinoma. Furthermore, many of these dysplastic lesions arise in visible mucosa, making topical application and direct clinical monitoring of lesion progression feasible. Despite obtaining complete surgical excision, many of these dysplastic lesions recur; necessitating sequential surgeries and increasing patient anxieties regarding cancer development.

[0007] The buccal mucosa is an attractive site for the localized delivery of therapeutic agents to treat or prevent oral cancer by using a mucoadhesive patch. However, the benefits of this administration route may be limited due to the barrier properties of the buccal mucosa. Since the buccal mucosa is a tissue that is exposed to many foreign agents, the buccal mucosa significant barrier properties may hinder the transport of therapeutically active compounds.

[0008] For example, small lipophilic drug molecules with a log P of 1.6-3.3 are generally believed to permeate well because of greater partitioning into the tissue. However, for highly lipophilic drugs with a log P greater than 3.5, a decrease in permeability is observed due to their limited water solubility. In fact, most agents that are better known for enhancing drug permeability through the skin also improve the transport of compounds across the buccal mucosa.

SUMMARY OF THE INVENTION

[0009] To increase the permeation of drugs, chemical approaches such as the utilization of chemical permeation enhancers (e.g., surfactants, bile salts, and fatty acids) might be only applicable to patch preparations. There is still a need, however, for formulations that can readily cross the buccal mucosa barriers.

[0010] In a first broad aspect, there is provided herein a formulation, comprising: at least one mucoadhesive material; at least one retinoid composition or a pharmaceutically acceptable salt thereof; and, at least one transmucosal permeation enhancer agent selected for enhancing permeation of the retinoid composition across a mucosa; and, optionally, at least one solubilizer agent for enhancing release of the retinoid composition from the mucoadhesive material.

[0011] In another broad aspect, there is provided herein a formulation, comprising: at least one mucoadhesive material; at least one retinoid therapeutic agent; and, at least one transmucosal permeation enhancer agent selected from one or more of: propylene glycol (PG) and a terpene or terpenoid composition; and, optionally, at least one solubilizer agent.

[0012] In another broad aspect, there is provided herein a formulation, comprising: at least an effective amount of a pharmaceutically active fenretinide composition, and at least one transmucosal permeation enhancer agent selected from propylene glycol (PG) and menthol.

[0013] In another broad aspect, there is provided herein a formulation, comprising: at least an effective amount of a pharmaceutically active fenretinide composition, and transmucosal permeation enhancer agents comprising propylene glycol (PG) and menthol.

[0014] In certain embodiments, the formulation comprises from about 1 wt % to about 2.5 wt % PG, and from 1 wt % to about 5 wt % menthol.

[0015] In certain embodiments, the formulation comprises from about 1 wt % to about 2.5 wt % PG, and about 5 wt % menthol.

[0016] In certain embodiments, the formulation comprises about 1 wt % PG and about 5 wt % menthol.

[0017] In certain embodiments, the formulation comprises about 2.5 wt % PG and about 5 wt % menthol.

[0018] In certain embodiments, the pharmaceutically active fenretinide composition and the at least one permeation enhancer agent are adapted to be in contact with at least on common mucosal membrane.

[0019] In certain embodiments, the mucosal membrane is the buccal mucosa.

[0020] In another broad aspect, there is provided herein a transmucosal system comprising at least drug release layer comprised of the formulation generally described herein, at least one bioadhesive material, and at least one backing material.

[0021] In another broad aspect, there is provided herein a method, comprising: i) providing a transmucosal system comprising the formulation generally described herein, applying the transmucosal system to a mucosal membrane of a subject; and, keeping the transmucosal system in contact with the mucosal membrane for a therapeutically effective period of time; and, optionally removing the transmucosal system when a desired therapeutic effect has been achieved.
In certain embodiments, the transmucosal system includes a bioadhesive material.

In certain embodiments, the formulation and the bioadhesive material are present in separate compartments.

In another broad aspect, there is provided herein a method of treatment and prophylaxis of a disease, comprising: administering to a subject in need of such treatment the formulation generally described herein.

In another broad aspect, there is provided herein a formulation for application to the oral mucosa, comprising: at least an effective amount of a pharmaceutically active fenretinide composition, and at least one transmucosal permeation enhancer agent selected from propylene glycol (PG) and menthol.

In another broad aspect, there is provided herein a method for treating or preventing head and neck squamous cell carcinoma (HNSCC), comprising administering to a subject an effective amount of a formulation generally described herein.

In another broad aspect, there is provided herein a drug dosage form for oral transmucosal administration, comprising the formulation generally described herein. In certain embodiments, the drug dosage form further includes a bioadhesive material, the bioadhesive material providing for adherence to the oral mucosal membrane of a subject. In certain embodiments, the oral mucosal membrane is a buccal membrane.

In another broad aspect, there is provided herein a drug dosage form for oral transmucosal administration, comprising a formulation comprised of: at least an effective amount of a pharmaceutically active fenretinide composition, and at least one transmucosal permeation enhancer agent selected from propylene glycol (PG) and menthol; and, a bioadhesive material, the bioadhesive material providing for adherence to the oral mucosal membrane.

In certain embodiments, the formulation contains a predetermined amount of pharmaceutically active fenretinide composition in an amount selected from the group consisting of 10 µg, 15 µg, 25 µg, 50 µg, 100 µg, 500 µg, 1 mg, 2 mg, 3 mg, 4 mg, 5 mg, 6 mg, 7 mg, 8 mg, 9 mg and 10 mg and a bioadhesive material, the bioadhesive material providing for adherence to the oral mucosal membrane of a subject.

In certain embodiments, at least 80% of the drug is absorbed via the oral mucosa is selected from the group consisting of at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 98% and at least 99% of the drug in the dosage form.

In certain embodiments, a single or repeated oral transmucosal administration to a subject results in a bioavailability of greater than 70%, greater than 75%, greater than 80%, greater than 85%, greater than 90%, or greater than 94%.

In certain embodiments, a single or repeated oral transmucosal administration to a subject results in a bioavailability with a coefficient of variation of less than 30%, or less than 40%.

In certain embodiments, a single oral transmucosal administration of the drug dosage form to a subject results in a T_{max} of from about 6 hours to about 12 hours.

In certain embodiments, a single oral transmucosal administration of the drug dosage form to a subject results in a T_{max} of from about 6 hours to about 8 hours.

In another broad aspect, there is provided herein a method of treating a subject exhibiting a symptomatic medical condition, comprising, administering the formulation generally described herein in a pharmaceutically active amount of a drug effective to reduce or eliminate the symptoms in the subject. In certain embodiments, the symptomatic medical condition is an oral cancer or pre-cancerous condition.

In another broad aspect, there is provided herein a method of treating an oral cancer or a pre-cancerous condition in a subject comprising, administering the formulation generally described herein.

In another broad aspect, there is provided herein a method for making the formulation generally described herein, comprising: i) mixing a quantity of at least one solubilizer and at least one permeation enhancer agent in a solvent to form a solvent mixture; ii) adding a quantity of fenretinide to the solvent mixture of step i; and, optionally adjusting a volume thereof to 10 ml with the solvent mixture of step i; iii) forming a layer of the fenretinide mixture of step ii; and, iv) drying the layer of step iii).

In certain embodiments, the solubilizer comprises one or more of: polysorbate 80 (brand names include Alkast®, Canarcel® and Tween® 80 (a registered trademark of ICI Americas, Inc)) which is a nonionic surfactant and emulsifier derived from polyoxyethylated sorbitan and oleic acid, and sodium deoxycholate.

In certain embodiments, the permeation enhancer comprises propylene glycol and menthol.

In another broad aspect, there is provided herein a method for chemoprevention of an oral cancer or pre-cancerous condition, comprising topically administering to a subject in need of such chemoprevention the formulation generally described herein.

In certain embodiments, the formulation is administered to an interior of an oral cavity of the subject.

In still further aspects, there is described herein is a mucoadhesive system useful for intraoral administration and slow release of a highly hydrophobic formulation, comprising a co-solvent system that enhances oral mucosal permeation of a hydrophobic formulation.

In certain embodiments, the formulation comprises a highly hydrophobic chemopreventive agent. In certain embodiments, the formulation comprises a retinide composition, such as fenretinide.

Described herein is a method for enhancing oral mucosal permeation of a hydrophobic formulation, comprising co- incorporation of a co-solvent in a hydrogel-based controlled release system.

In certain embodiments, the method includes forming a drug layer comprising fenretinide, mucoadhesive material Eudragit® RL, PO films containing mixed nonionic surfactants and deoxycholate solubilizers. In certain embodiments, the drug layer comprises one or more of: nonionic surfactants, bile salts, phospholipids, and polymeric solubilizers.

Described herein is a formulation for chemoprevention of an oral cancer or pre-cancerous condition, comprising a hydrogel-based controlled release mucoadhesive system.

In certain embodiments, the formulation comprises at least one therapeutic agent in an amount effective for chemoprevention.
[0048] In certain embodiments, the adhesive carrier is a
mucoadhesive gel adapted for transmucosal delivery of fen-
retinide.

[0049] Described herein is a method for chemoprevention
of an oral cancer or precancerous condition, comprising topi-
cally administering to a subject in need of such chemopre-
vention a solubilized fenretinide preparation admixed with a
permeation enhancer agent.

[0050] In certain embodiments, the fenretinide preparation
admixed with the permeation enhancer agent is administered
to an interior of an oral cavity of the subject.

[0051] In certain embodiments, the permeation enhancers
comprise a mixture of propylene glycol, L-menthol and oleic
acid.

[0052] Described herein is a method for increasing the con-
centration of a hydrophobic therapeutic agent in a bodily
tissue or fluid of a subject at risk of an oral cancer or precan-
erous condition, comprising applying a preparation contain-
ing the therapeutic agent to an interior of an oral cavity of the
subject.

[0053] In certain embodiments, the bodily tissue or fluid is
selected from the group consisting of a mucosal tissue, an oral
mucosa tissue, oral tissue, peripheral blood, serum, and
saliva.

[0054] Described herein is a method for preparing a formula-
tion for chemoprevention of an oral cancer or precancerous
condition.

[0055] Described herein is a method for improving the
efficacy of a formulation for chemoprevention of an oral
cancer or precancerous condition, comprising: providing a
fenretinide preparation; admixing the fenretinide preparation
with a permeation enhancer formulation to form a mixture;
and, applying the mixture to an oral cavity of a subject in
need of chemoprevention.

[0056] Described herein is a method for making a buccal
drug delivery system, comprising: preparing a drug-release
layer comprised of the formulation; preparing an adhesive
layer; and, assembling the drug layer and the adhesive layers
onto a backing layer.

[0057] Described herein is a formulation comprising a
solubilizer agent for enhancing release of fenretinide from the
patch; and, a permeation enhancer agent for improving per-
meation of fenretinide across a mucosa.

[0058] Described herein is a method for increasing release
of a retinide composition from a drug-release layer, compris-
ing: admixing a retinide composition with a solubilizer, and
forming the admixture into a drug-release layer.

[0059] Described herein is a method for increasing perme-
ation of a retinide composition from into a mucosa of a
subject in need thereof, comprising: admixing a retinide com-
position with a permeation enhancer agent comprised of one
or more of propylene glycol and menthol, and forming the
admixture into a drug-release layer.

[0060] Described herein is a method for increasing release
of a retinide composition from a drug-release layer and for
increasing permeation of the retinide composition into a
mucosa of a subject in need thereof, comprising: admixing a
retinide composition with a solubilizer and a permeation
enhancer agent, and forming the admixture into a drug-re-
lease layer.

[0061] Described herein is a method of treatment and pro-
phylaxis of a disease comprising administering to a subject in
need of such treatment the formulation.

[0062] Described herein is a method for increasing the con-
centration of a retinide composition in a bodily tissue or fluid
of a subject at risk of an oral cancer or precancerous condi-
tion, comprising applying the formulation to an interior of an
oral cavity of the subject. In certain embodiments, the bodily
tissue or fluid is selected from the a mucosal tissue, an oral
mucosa tissue and oral tissue.

[0063] Other systems, methods, features, and advantages
of the present invention will be or will become apparent to one
with skill in the art upon examination of the following draw-
ings and detailed description. It is intended that all such addi-
tional systems, methods, features, and advantages be
included within this description, be within the scope of the
present invention, and be protected by the accompanying
claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0064] The patent or application file contains one or more
drawings executed in color and/or one or more photographs.
Copies of this patent or patent application publication with
color drawing(s) and/or photograph(s) will be provided by the
Patent Office upon request and payment of the necessary fee.

[0065] FIGS. 1A-C: Schematic diagrams (FIG. 1A), pho-
tographic image (FIG. 1B), and schematic cross-sectional
diagram (FIG. 1C) of a mucoadhesive patch comprising drug
(fenretinide-mucoadhesive material (Eudragit® RL PO) with
or w/o solubilizer), adhesive (hydroxypropyl methylcellulose
(HPMC) 4KMP: polyvinyl alcohol (3:1)), and backing (Tegad-
err™ dressing) layers.

[0066] FIG. 1D: Photographs of the fenretinide/Eudragit®
(drug release) layer loaded with 5 wt % menthol (photograph
A), 10% menthol (photograph B), and 1 wt % PG+5 wt %
menthol (photograph C).

[0067] FIGS. 2A-C: Graphs showing solubilization of
fenretinide in simulated saliva (buffer, pH 6.8). Effect of addition
of bile salt/lecithin (FIG. 2A), surfactant (FIG. 2B), and
hydrophilic polymer (FIG. 2C) on the solubility of fenretinide
in simulated saliva. Solubility of fenretinide in simulated saliva
in the presence of 0.5, 1, 2, and 5% w/v solubilizers at
37°C. Values represent mean±SE, n=3.

[0068] FIG. 3: Graph showing effect of addition of sodium
deoxycholate in simulated saliva (pH 6.8) on cumulative
release of fenretinide from Eudragit® RS-PO film. Drug
loading was 5 wt %.

[0069] FIG. 4: Graph showing effect of polymer matrix
permeability on cumulative release of fenretinide from Eudragit®
film. Drug loading was 5 wt %. Release study was conducted in
simulated saliva (buffer, pH 6.8) containing 5% w/v sodium
deoxycholate at 37°C. Values represent mean±SE, n=3.

[0070] FIG. 5: Graph showing effect of co-encapsulation of
solubilizer on cumulative release of fenretinide from Eudragit®
RL PO film. Drug loading was 5 wt %. Release study was
conducted in simulated saliva (buffer, pH 6.8) containing 5% w/v
sodium deoxycholate at 37°C. Values represent mean±SE, n=3.

[0071] FIG. 6: Graph showing effect of co-encapsulation of
mixed solubilizers on cumulative release of fenretinide from
Eudragit® RL PO film. Drug loading was 5 wt %. Release
study was conducted in simulated saliva (buffer, pH 6.8)
containing 5% w/v sodium deoxycholate at 37°C. Values
represent mean±SE, n=3.
chemical permeation enhancers propylene glycol, L-menthol, and oleic acid.

Fig. 8: Graph showing cumulative percentage versus time profiles of fenretinide permeated across porcine buccal mucosa from patches with/without propylene glycol (mean±SD, n=3).

Fig. 9: Graph showing cumulative amount versus time profiles of fenretinide permeated across porcine buccal mucosa from patches with/without propylene glycol (mean±SD, n=3).

Fig. 10A-10B: Graph showing solubilization of fenretinide in bovine serum. The effect of quantity of 0.9 (○), 2.26 (□), 3.97 (▲), 8.05 (●), and 20.05 (■) of fenretinide added in 15-mL bovine serum and incubation time on the solubility of fenretinide (Fig. 10A) and the relationship between the quantity of fenretinide added and time required to reach equilibrium (Fig. 10B). Solubility study was conducted at 37°C under the protection from light.

Fig. 11A-11C: Graph showing co-incorporation of propylene glycol (PG) or PG+menthol in fenretinide/Eudragit® RL PO patches significantly enhance permeation across porcine buccal mucosa. The effect of co-incorporation of 0 (○), 5 (▲) and 10 (▼) wt % PG (Fig. 11A); 5 (▲) and 10 (▼) wt % menthol (Fig. 11B), and 1 wt % PG+5 wt % menthol (▲), 2.5 wt % PG+5 wt % menthol (▼) and 10 wt % PG+5 wt % menthol (○) in patches on ex vivo permeation of fenretinide across porcine buccal mucosa. Ex vivo permeation studies were conducted using side-by-side flow-through diffusion cells at 37°C. Permeation enhancer-free patch comprised of 5 wt % fenretinide, 20 wt % Tween® 80, and 40 wt % sodium deoxycholate. Bars represent mean±SE, n=5.

Fig. 12A-12H: Photographs showing histological examination of porcine buccal tissue before and after fenretinide buccal permeation enhancement with permeation enhancers loaded mucosadhesive patches. The effect of co-incorporation of 0 wt % (Fig. 12A), 5 wt % (Fig. 12B) or 10 wt % (Fig. 12D) propylene glycol (PG); 5 wt % (Fig. 12D) or 10 wt % (Fig. 12E) menthol; and, 1 wt % PG+5 wt % menthol (Fig. 12F), or 2.5 wt % PG+5 wt % menthol (Fig. 12G), or 10 wt % PG+10 wt % menthol (Fig. 12H), in fenretinide/Eudragit® RL PO mucosadhesive patches on histological changes of porcine buccal tissue. As shown in these photomicrographs, patch application with or without permeation enhancers did not dramatically perturb porcine buccal mucosa. All sections demonstrate a preserved basement membrane and basal cell layer, an intact stratified squamous surface epithelium with an overlying para keratinotic layer. Notably, no evidence of changes consistent with extensive epithelial damage e.g., hydropic degeneration of the basal cell layer or acantholysis were observed in multiple sections.

The evidence of increased intracellular and intercellular edema observed in epithelium exposed to increased levels PG (Fig. 12C and 12H) likely reflects diffusion of PG into subject keratinocytes as well as the intercellular spaces. Images were taken by a light microscope. Permeation enhancer-free patch comprised of 5 wt % fenretinide, 20 wt % Tween® 80, and 40 wt % sodium deoxycholate. Release Time (h).

Fig. 13: Graph showing in vitro and in vivo release characteristics of permeation enhancers-free and permeation enhancers-loaded fenretinide/Eudragit® RL PO mucosadhesive patches. Cumulative amount of fenretinide released in vitro in vivo from permeation enhancers-free (○: in vitro; ▲: in vivo) and permeation enhancers (2.5 wt % propylene glycol+5 wt % menthol)-loaded (●: in vitro; ▼: in vivo) patches as a function of time. In vitro and in vivo release studies were conducted in simulated saliva containing 5% w/v sodium deoxycholate (pH 6.8) at 37°C C. and rabbits, respectively. Permeation enhancer-free patch comprised of 5 wt % fenretinide, 20 wt % Tween® 80, and 40 wt % sodium deoxycholate. Symbols represent mean±SE, n=4 in vitro) or 6 (in vivo).

Throughout this disclosure, various publications, patents and published patent specifications are referenced by an identifying citation. The disclosures of these publications, patents and published patent specifications are hereby incorporated by reference into the present disclosure to more fully describe the state of the art to which this invention pertains.

In describing and claiming the present invention, the following terminology will be used in accordance with the definitions set out below.

Throughout this disclosure, various publications, patents and published patent specifications are referenced by an identifying citation. The disclosures of these publications, patents and published patent specifications are hereby incorporated by reference into the present disclosure to more fully describe the state of the art to which this invention pertains.

In describing and claiming the present invention, the following terminology will be used in accordance with the definitions set out below.

Throughout this disclosure, various publications, patents and published patent specifications are referenced by an identifying citation. The disclosures of these publications, patents and published patent specifications are hereby incorporated by reference into the present disclosure to more fully describe the state of the art to which this invention pertains.

In describing and claiming the present invention, the following terminology will be used in accordance with the definitions set out below.

Throughout this disclosure, various publications, patents and published patent specifications are referenced by an identifying citation. The disclosures of these publications, patents and published patent specifications are hereby incorporated by reference into the present disclosure to more fully describe the state of the art to which this invention pertains.

In describing and claiming the present invention, the following terminology will be used in accordance with the definitions set out below.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

Throughout this disclosure, various publications, patents and published patent specifications are referenced by an identifying citation. The disclosures of these publications, patents and published patent specifications are hereby incorporated by reference into the present disclosure to more fully describe the state of the art to which this invention pertains.

Throughout this disclosure, various publications, patents and published patent specifications are referenced by an identifying citation. The disclosures of these publications, patents and published patent specifications are hereby incorporated by reference into the present disclosure to more fully describe the state of the art to which this invention pertains.

In describing and claiming the present invention, the following terminology will be used in accordance with the definitions set out below.

Throughout this disclosure, various publications, patents and published patent specifications are referenced by an identifying citation. The disclosures of these publications, patents and published patent specifications are hereby incorporated by reference into the present disclosure to more fully describe the state of the art to which this invention pertains.

In describing and claiming the present invention, the following terminology will be used in accordance with the definitions set out below.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

Throughout this disclosure, various publications, patents and published patent specifications are referenced by an identifying citation. The disclosures of these publications, patents and published patent specifications are hereby incorporated by reference into the present disclosure to more fully describe the state of the art to which this invention pertains.

In describing and claiming the present invention, the following terminology will be used in accordance with the definitions set out below.

Throughout this disclosure, various publications, patents and published patent specifications are referenced by an identifying citation. The disclosures of these publications, patents and published patent specifications are hereby incorporated by reference into the present disclosure to more fully describe the state of the art to which this invention pertains.

In describing and claiming the present invention, the following terminology will be used in accordance with the definitions set out below.

Throughout this disclosure, various publications, patents and published patent specifications are referenced by an identifying citation. The disclosures of these publications, patents and published patent specifications are hereby incorporated by reference into the present disclosure to more fully describe the state of the art to which this invention pertains.

Throughout this disclosure, various publications, patents and published patent specifications are referenced by an identifying citation. The disclosures of these publications, patents and published patent specifications are hereby incorporated by reference into the present disclosure to more fully describe the state of the art to which this invention pertains.

Throughout this disclosure, various publications, patents and published patent specifications are referenced by an identifying citation. The disclosures of these publications, patents and published patent specifications are hereby incorporated by reference into the present disclosure to more fully describe the state of the art to which this invention pertains.

Throughout this disclosure, various publications, patents and published patent specifications are referenced by an identifying citation. The disclosures of these publications, patents and published patent specifications are hereby incorporated by reference into the present disclosure to more fully describe the state of the art to which this invention pertains.

Throughout this disclosure, various publications, patents and published patent specifications are referenced by an identifying citation. The disclosures of these publications, patents and published patent specifications are hereby incorporated by reference into the present disclosure to more fully describe the state of the art to which this invention pertains.

Throughout this disclosure, various publications, patents and published patent specifications are referenced by an identifying citation. The disclosures of these publications, patents and published patent specifications are hereby incorporated by reference into the present disclosure to more fully describe the state of the art to which this invention pertains.

Throughout this disclosure, various publications, patents and published patent specifications are referenced by an identifying citation. The disclosures of these publications, patents and published patent specifications are hereby incorporated by reference into the present disclosure to more fully describe the state of the art to which this invention pertains.

In describing and claiming the present invention, the following terminology will be used in accordance with the definitions set out below.

Throughout this disclosure, various publications, patents and published patent specifications are referenced by an identifying citation. The disclosures of these publications, patents and published patent specifications are hereby incorporated by reference into the present disclosure to more fully describe the state of the art to which this invention pertains.

Throughout this disclosure, various publications, patents and published patent specifications are referenced by an identifying citation. The disclosures of these publications, patents and published patent specifications are hereby incorporated by reference into the present disclosure to more fully describe the state of the art to which this invention pertains.

Throughout this disclosure, various publications, patents and published patent specifications are referenced by an identifying citation. The disclosures of these publications, patents and published patent specifications are hereby incorporated by reference into the present disclosure to more fully describe the state of the art to which this invention pertains.
relieving, altering, remedying, ameliorating, improving, stabilizing or affecting a disease or disorder, or a symptom of a disease or disorder. The terms “treating” and “treatment” can also refer to reduction in severity and/or frequency of symptoms, elimination of symptoms and/or underlying cause, prevention of the occurrence of symptoms and/or their underlying cause, and improvement or remediation of damage.

As used herein, the term “preventing” a disorder or unwanted physiological event in a subject refers specifically to the prevention of the occurrence of symptoms and/or their underlying cause, wherein the subject may or may not exhibit heightened susceptibility to the disorder or event.

By the term “effective amount” of a therapeutic agent is meant a nontoxic but sufficient amount of a beneficial agent to provide the desired effect. The amount of beneficial agent that is “effective” will vary from subject to subject, depending on the age and general condition of the subject, the particular beneficial agent or agents, and the like. Thus, it is not always possible to specify an exact “effective amount.” However, an appropriate “effective amount” in any subject case may be determined by one of ordinary skill in the art using routine experimentation. Also, as used herein, and unless specifically stated otherwise, an “effective amount” of a beneficial can also refer to an amount covering both therapeutically effective amounts and prophylactically effective amounts.

An “effective amount” of a drug necessary to achieve a therapeutic effect may vary according to factors such as the age, sex, and weight of the subject. Dosage regimens can be adjusted to provide the optimum therapeutic response. For example, several divided doses may be administered daily or the dose may be proportionally reduced as indicated by the exigencies of the therapeutic situation.

As used herein, a “therapeutically effective amount” of a therapeutic agent refers to an amount that is effective to achieve a desired therapeutic result, and a “prophylactically effective amount” of a therapeutic agent refers to an amount that is effective to prevent an unwanted physiological condition. Therapeutically effective and prophylactically effective amounts of a given therapeutic agent will typically vary with respect to factors such as the type and severity of the disorder or disease being treated and the age, gender, and weight of the subject.

The term “therapeutically effective amount” can also refer to an amount of a therapeutic agent, or a rate of delivery of a therapeutic agent (e.g., amount over time), effective to facilitate a desired therapeutic effect, such as pain relief. The precise desired therapeutic effect will vary according to the condition to be treated, the tolerance of the subject, the drug and/or drug formulation to be administered (e.g., the potency of the therapeutic agent (drug), the concentration of drug in the formulation, and the like), and a variety of other factors that are appreciated by those of ordinary skill in the art.

As used herein, the term “pharmaceutically acceptable” component can refer to a component that is not biologically or otherwise undesirable, i.e., the component may be incorporated into a pharmaceutical formulation of the invention and administered to a subject as described herein without causing any significant undesirable biological effects or interacting in a deleterious manner with any of the other components of the formulation in which it is contained. When the term “pharmaceutically acceptable” is used to refer to an excipient, it is generally implied that the component has met the required standards of toxicological and manufacturing testing or that it is included on the Inactive Ingredient Guide prepared by the U.S. Food and Drug Administration.

Also, as used herein, the term “pharmacologically active” (or simply “active”), as in a “pharmacologically active” derivative or analog, can refer to a derivative or analog (e.g., a salt, ester, amide, conjugate, metabolite, isomer, fragment, etc.) having the same type of pharmacological activity as the parent compound and approximately equivalent in degree.

As used herein, the term “mixture” can include solutions in which the components of the mixture are completely miscible, as well as suspensions and emulsions, in which the components of the mixture are not completely miscible.

As used herein, the term “subject” can refer to living organisms such as mammals, including, but not limited to, humans, livestock, dogs, cats, and other mammals. Administration of the therapeutic agents can be carried out at dosages and for periods of time effective for treatment of a subject. In some embodiments, the subject is a human. In some embodiments, the pharmacokinetic profiles of the systems of the present invention are similar for male and female subjects.

As used herein, the term “controlled drug delivery” refers to release or administration of a drug from a given dosage form in a controlled fashion in order to achieve the desired pharmacokinetic profile in vivo. An aspect of “controlled” drug delivery is the ability to manipulate the formulation and/or dosage form in order to establish the desired kinetics of drug release.

As used herein, the term “sustained drug delivery” refers to release or administration of a therapeutic agent from a source (e.g., a drug formulation) in a sustained fashion over a protracted yet specific period of time, which may extend from several minutes to a few hours, days, weeks or months. In certain embodiments, the term “sustained” can refer to delivery of consistent levels of the therapeutic agent over a time period ranging from a few minutes to a day, with a profile characterized by the absence of an immediate release phase, such as the one obtained from intravenous administration.

The present invention is based, at least in part, on the discovery that transmucosal uptake of fenretinide can be enhanced by employing permeation enhancing agents. Such permeation enhancing agents are advantageous, e.g., because the absolute bioavailability of the therapeutic agent contained therein is enhanced, while also providing a desired delivery time period for the therapeutic agent. Additionally, less therapeutic agent is needed in the system to deliver a therapeutic effect versus systems of the prior art.

In particular, there has been a major challenge in developing an effective mucoadhesive system to achieve continuous and complete drug-release from the system.

In one aspect, described herein is a mucoadhesive system which now provides a continuous and near complete drug-release. The mucoadhesive system, as now described herein provides an improved technology where systemic administration using the mucoadhesive system provides therapeutic levels to the mouth without inducing significant side effects.

The mucoadhesive system-based approach provides a targeted delivery of therapeutic levels of fenretinide at a treatment site without induction of deleterious systemic effects.
The mucoadhesive system described herein overcomes the issues associated with the efficacy of delivery systems for various hydrophilic drugs.

The term “transmucosal,” as used herein, refers to any route of administration via a mucosal membrane. Examples include, but are not limited to, buccal, sublingual, nasal, vaginal, and rectal. In one embodiment, the administration is buccal. In one embodiment, the administration is sublingual. As used herein, the term “direct transmucosal” refers to mucosal administration via the oral mucosa, e.g., buccal and/or sublingual.

The term “buccal patch” or “film” typically refers to a flexible film that adheres to the oral mucosa and delivers the therapeutic agent. Such films can be either quick dissolving or dispersing films releasing the therapeutic agent immediately or can be films having mucoadhesive properties with the therapeutic being released over a period of time. These patches or films are typically prepared by mixing the ingredients, heating, extruding, drying and then sizing the sheets to deliver the exact amounts of medications.

The present invention provides a formulation for transmucosal administration that is easy to manufacture, exhibits good stability and allows for flexibility of formulation.

The present invention provides a formulation for transmucosal administration that allows for precise control over the dose administered and the effect obtained.

The present invention provides a formulation for transmucosal administration that is simple, convenient to administer, easy to handle and promotes high patient acceptance and compliance.

In one embodiment, the mucoadhesive system comprises the use of effective solubilizers that enhance the release of the therapeutic agent from the patch.

In one embodiment, the solubilizer and the permeation enhancer are co-incorporated with the therapeutic agent in a drug layer film, as schematically illustrated in FIGS. 1A-IC, and as further described below. The solubilizer enhances the release of the therapeutic agent from the drug film layer, while the permeation enhancer improves the permeation of the therapeutic agent across the mucosa. It is to be noted, however, in another embodiment, the formulation be a “single” formulation comprised of the solubilizer and the therapeutic agent.

In another broad aspect, there is provided herein a controlled release retinide mucoadhesive system.

In another broad aspect, there is provided herein formulations of mucoadhesive system for effective controlled release of a therapeutic composition.

The present invention also provides for a method for transmucosal administration of a therapeutic agent where a transmucosal patch is applied to a mucosal membrane and kept in contact with it for a therapeutically effective period of time. When the desired therapeutic effect has been achieved, the patch can be optionally removed.

In one embodiment, the formulation can be delivered by the various transmucosal routes. In a particular embodiment, the formulation is delivered via the buccal mucosa. The buccal mucosa is readily accessible and provides a desired wide area of smooth muscle for application of a patch. In addition, absorption through the buccal mucosa delivers the therapeutic agent directly into the systemic circulation through the internal jugular vein, thus bypassing the hepatic metabolic system. Also, the buccal mucosa tends to have low enzymatic activity, and delivery of the therapeutic agent through the buccal mucosa thus avoids degradation in the gastric and intestinal fluids.

In certain embodiments, the formulation is suitable for both immediate delivery and time-controlled delivery of the therapeutic agent though the buccal mucosa.

Design of Controlled Release Mucoadhesive System

In the embodiment illustrated in FIGS. 1A-IC, a “patch” or mucoadhesive delivery system 10 generally includes a backing layer 12, an adhesive layer 14, and drug-release layer 20. As disclosed herein, the terms “delivery system” and “patch” can be used interchangeably. The patch 10 is designed to be applied to a mucosal membrane, and is used to deliver a therapeutic agent through transmucosal administration. The delivery patch 10 can be of any shape and size as desired.

Each mucoadhesive layer of the system performs specific role and contribute towards effective controlled delivery of one or more therapeutic agents (i.e., drugs). The backing layer 12 (which is insoluble in saliva, water, and the like) prevents the drug loss/release from a rear surface of the drug-release layer 20, thereby providing unidirectional drug-release. The adhesive layer 14 provides strong mucoadhesion with mucosal surfaces. The drug-release layer 20 can provide a substantially continuous and complete drug delivery.

In one embodiment, as described in the Examples herein, the backing layer 12 can be comprised of a 'Legard®' dressing film; the adhesive layer 14 can be comprised of one or more mucoadhesive polymers, and the drug-release layer 20 can be comprised of a formulation comprised of a therapeutic agent, e.g., a Eudragit® polymer+drug solubilizer.

Referring to FIG. 1C, there is shown a schematic cross-sectional view of patch 10. The adhesive layer 12 can have any suitable general overall configuration. As shown in FIG. 1C, the adhesive layer 12 can define a recess 18. It is to be understood that the depth of the recess can be readily determined by those skilled in the art. The adhesive layer 18 has an outer adhesive surface 19 that is exposed when a protective layer (not shown) is removed when the patch is ready for placement in a subject.

As shown in FIGS. 1A-IC, the drug-release layer 20 can be configured to fit into the recess 18 such that an outer drug-release surface 22 of the drug-release layer 20 is exposed to the mucosa (not shown) when in use. The remaining sides and inner surfaces of the drug-release layer 20 can be substantially surrounded by the adhesive layer 14. Both the adhesive layer 14 and the drug-release layer 22 together can form a unitary construction. In such construction, the outer drug-release surface 22 of the drug-release layer 20 is substantially planar with a plane defined by the outer adhesive surface 19 of the adhesive layer 14 such that, when the patch 10 adheres to a mucosal membrane, both the outer drug-release surface 22 and the outer adhesive layer are in contact with the mucosa (not shown).
patient compliance and mouth-feel. For example, the thickness can range from about 0.5 mm to about 5 mm. While certain embodiments are of a circular shape, alternative shapes of the patch can be easily manufactured. Non-limiting examples of other shapes include oval, elliptoidal, capsule shape, and the like. In certain embodiments, the shapes lack sharp edges such that the patch is less likely to have raise concerns such as mechanical instability and irritation during use. However, it is to be understood that other modifications to the shape, such as making various geometric shapes or making both the compartments of different shapes are obvious to a person skilled in the art and are contemplated as part of the invention.

[0121] The drug-release layer contains a formulation comprising one or more therapeutic agent/agents, and optionally excipients. In certain embodiments, the therapeutic agent can be present in the range of about 0.1 to about 99% w/w, preferably about 1 to about 90% w/w of the patch, depending on its dose and formulation factors.

[0122] Formulations and Therapeutic Formulations

[0123] The terms “therapeutic formulation” and “formulation” may be used interchangeably herein. In one aspect, the formulation includes at least one mucoadhesive material; at least one active, or therapeutic, agent, such as a retinoid composition; and, at least one permeation enhancer agent; and, in certain embodiments, at least one solubilizer agent.

[0124] The present invention further provides for a method of treatment and prophylaxis of diseases comprising administering to a subject in need of such treatment, the formulation of the invention.

[0125] In certain embodiments, the formulations can include be provided as: a gel, a rinse, and two locally injectable delivery formulations: one that can be delivered from a poly-lactide-co-glycolide, and another that can be delivered as a gel that undergoes hybridization after injection and achieving body temperature.

[0126] Mucoadhesive Materials

[0127] The formulation includes one or more mucoadhesive materials, optionally in combination with suitable excipients. In certain embodiments, the mucoadhesive material is present in the range of about 1% to about 99% w/w, preferably about 5 to about 95% w/w of the formulation.

[0128] Useful examples of mucoadhesive materials include polymers of acrylic acid esters, acrylic acid copolymers, vinyl polymers, vinyl copolymers, polymers of vinyl alcohols, carboxyvinyl polymers and copolymers, vinyl esters, alkyl vinyl ethers, polyethylene oxide polymers, polyethers, and mixtures thereof.

[0129] In the examples herein the mucoadhesive materials comprised a methacrylate copolymer. One non-limiting example is commercially available under the tradename Eudragit® L, which is a copolymer of ethyl acrylate, methyl methacrylate, and a low content of methacrylic acid ester with quaternary ammonium groups. The ammonium groups are present as salts and make the polymers permeable. The Chemical/UPAC name is poly(ethyl acrylate-co-methyl methacrylate-co-trimethylammonioethyl methacrylate chloride) 1:2:0:1; INCI name: Acrylates/Ammonium Methacrylate Copolymers.

[0130] The mucoadhesive material may be admixed with other materials; for example, the mucoadhesive materials may be admixed with optional excipients, such as binders, coloring agents; diluents, enzyme inhibitors, fillers, flavoring agents, lubricants, stabilizers, sweetening agents, and the like.

[0131] Therapeutic Agents

[0132] The therapeutic formulation described herein is especially useful in the treatment of subjects with precancerous oral epithelial lesions.

[0133] In one particular aspect, the therapeutic agent is a hydrophilic composition, such as synthetic Vitamin A compositions, such as retinoid compositions. In a particular embodiment, the mucoadhesive system includes a formulation that is especially useful for the delivery of retinoid compositions. In certain embodiments, the retinoid composition comprises a synthetic retinoid such as fenretidine. Fenretidine (4-hydroxy(phenyl)retinamide) is a highly lipophilic drug and has a log P of 8.03, which results in minimal buccal mucosal uptake and permeation. The chemical structures of the drug and permeation enhancers are shown in FIG. 7.

[0134] In the past, however, the achievement of desired antitumor activity using fenretidine has been limited by the bioavailability (due to low membrane permeability) and rapid elimination from the body respectively after oral and intravenous administration of fenretidine. Therefore, multiple dosing of fenretidine is required to achieve therapeutic drug level in the blood and hence potent oral cancer chemoprevention. The local delivery from hydrogel-based mucoadhesive system provides therapeutic fenretidine level directly at the treatment site, thereby improving the therapeutic efficacy of fenretidine in cancer chemoprevention. However, fenretidine is a highly hydrophobic drug with very low water solubility (below HPLC detection limit). Though fenretidine possesses both desirable epithelial differentiation and apoptotic-inducing capabilities, its previous clinical use has been limited to oral systemic administration.

[0135] Transmucosal Permeation Agents

[0136] The transmucosal permeation enhancing agents described in more detail herein provide an enhanced delivery profile and more efficient delivery of the therapeutic agent. Additional advantages of the transmucosal permeation enhancing agents are also described herein. For example, in certain embodiments, the transmucosal permeation enhancing agent comprises one or more of: propylene glycol (PG) and terpenoids or terpenes (such as menthol, D-limonene, geraniol, nerolidol) and mixtures thereof.

[0137] In one embodiment, the transmucosal permeation enhancer agent is selected from propylene glycol (PG) and menthol. In a particular embodiment, the transmucosal permeation enhancer agent comprises from about 1 wt % to about 2.5 wt % PG, and from 1 wt % to about 5 wt % menthol.

[0138] In another embodiment, the transmucosal permeation enhancer agent comprises from about 1 wt % to about 2.5 wt % PG, and about 5 wt % menthol.

[0139] In another embodiment, the transmucosal permeation enhancer agent comprises about 1 wt % PG and about 5 wt % menthol.

[0140] In yet another embodiment, the transmucosal permeation enhancer agent comprises about 2.5 wt % PG and about 5 wt % menthol.

[0141] Solubilizers

[0142] In certain embodiment, the formulation includes an effective amount on one or more solubilizers to facilitate continuous in vitro and in vivo release from the mucoadhesive material. To maintain a desired sink condition in the release/receiver chamber medium, appropriate quantity of suitable
solubilizing agent can be incorporated. In this Example, the optimal quantity of nonionic surfactant in the release media was selected by matching the drug solubility to that in bovine serum.

[0143] Non-limiting examples of solubilizers include, deoxycholic acid, polyoxyethylene-6 lauryl ether, polyoxyethylene-palmitate, polyoxyethylene sorbitan fatty acid esters (e.g., Tween®80).

EXAMPLES

[0144] The present invention is further defined in the following Examples, in which all parts and percentages are by weight and degrees are Celsius, unless otherwise stated. It should be understood that these Examples, while indicating preferred embodiments of the invention, are given by way of illustration only. From the above discussion and these Examples, one skilled in the art can ascertain the essential characteristics of this invention, and without departing from the spirit and scope thereof, can make various changes and modifications of the invention to adapt it to various usages and conditions. All publications, including patents and non-patent literature, referred to in this specification are expressly incorporated by reference. The following examples are intended to illustrate certain preferred embodiments of the invention and should not be interpreted to limit the scope of the invention as defined in the claims, unless so specified.

Example 1

Preparation of Hydrogel-Based Controlled Release Fenretinide Mucoadhesive System

[0145] Preparation of an Adhesive Layer

[0146] An adhesive layer based on the blend of hydroxypropyl methylcellulose (HPMC 4KM) and polycarbophil (PC) at a weight ratio of 3:1 was prepared by a casting method. Briefly, 1.5% polymer solution was prepared in ddH₂O containing required amount (20 wt % based on polymer mass) of propylene glycol by stirring the polymer/water mixture overnight. About 50 mL of polymer solution was then casted onto glass petri dish (150x20 mm) and incubated at 50°C for 48 h. Then, the polymer film was cut into required size and stored in a desiccator at room temperature until further use.

[0147] Preparation of Drug-Release (Fenretinide) Layer/ Film

[0148] Preparation of fenretinide films was performed under the protection from light. A desired quantity of solubilizer (Tween® 80 and sodium deoxycholate), permeation enhancers (1, 2.5, 5, and 10 wt %) and mucoadhesive material, Eudragit® RL PO, were weighed in 15 mL polypropylene tubes to which 8 mL of a 50:50 (v/v) acetonitrile-methanol mixture was added. The quantity of plasticizer or solubilizer added was calculated based on the mass of polymer. The resulting mixture was vortexed until all ingredients were dissolved. The required quantity (5 wt % based on the total mass of polymer-excipients) of fenretinide was then added to above prepared polymer-solubilizer or polymer-solubilizer-permeation enhancer(s) solution, vortexed again, and the volume was adjusted to 10 mL with the same solvent mixture. Five milliliter of fenretinide-polymer solution was added onto Teflon (Scientific Commodities, Inc., Lake Havasu City, Ariz., USA) overlaid glass petri dish (60x15 mm) and incubated at 38°C for 48 h. After sufficient drying, fenretinide loaded polymer film was cut into required size (7 mm diameter), packed in aluminum foil, and stored in a desiccator at -20°C until further use.

[0149] Assembly of Oral Mucoadhesive Patches of Fenretinide

[0150] An annular adhesive layer with 11 (outer diameter) and 7 (inner diameter) mm dimensions were formed by cutting the film with 11 and 7 mm cork borers, respectively. The adhesive layer was then placed onto adhesive side of the Tegaderm™ film (backing layer), followed by insertion of previously cut 7 mm fenretinide/Eudragit® layer into open region of adhesive layer to obtain oral mucoadhesive patch of fenretinide. FIG. 1D shows the physical appearance of the fenretinide/Eudragit® (drug-release) layer loaded with 5 wt % menthol (photograph A), 10% menthol (photograph B), and 1 wt % PG+5 wt % menthol (photograph C).

[0151] Effect of Co-Incorporation of Menthol on Fenretinide/Eudragit® RL PO Film Morphology

[0152] Fenretinide/Eudragit® RL PO (drug-release) films without menthol exhibited good film forming and physical appearance. Fenretinide/Eudragit® RL PO films loaded with 5% or 10% menthol did not exhibit good film forming and physical appearance (see photograph A and photograph B in FIG. 1D). It appeared that that phase separation occurred during the film formation due to formation precipitation and/or aggregation of menthol. As shown in photograph C in FIG. 1D, the addition of 1% PG as a co-solvent facilitated desirable film formation.

[0153] Solubilization of Fenretinide in Simulated Saliva with Variety of Solubilizers

[0154] The extent of solubility enhancement of fenretinide by numerous solubilizers (bile salts, surfactants, hydrophilic polymers, and co-solvents) was studied by determining the solubility in simulated saliva in the presence of 0.5, 1, 2, and 5% w/v solubilizers. Briefly, an excess amount of fenretinide was added into separate amber color ampoules containing 1-mL 0.5, 1, 2, and 5% w/v solutions of solubilizers (prepared using N₂-purged simulated saliva) and sealed under vacuum in order remove the oxygen from the head-space. The ampoules were then placed in an incubator maintained at 37°C and shaken at 240 RPM for 72 h (this duration was determined to be sufficient to reach the equilibrium). After 72 h, the ampoules were broken, mixture was passed through 0.45 µm PVDF filter units (Millipore, USA), diluted suitably with respective solubilizer solution, and the amount of fenretinide solubilized in simulated saliva was determined by HPLC.

[0155] RESULTS for Example 1

[0156] FIGS. 2A-2C show graphs illustrating the solubilization of fenretinide in simulated saliva (buffer, pH 6.8). Effect of addition of bile salt/lecithin (FIG. 2A), surfactant (FIG. 2B), and hydrophilic polymer (FIG. 2C) on the solubility of fenretinide in simulated saliva. Solubility of fenretinide in simulated saliva in the presence of 0.5, 1, 2, and 5% w/v solubilizers at 37°C. Values represent mean±SEM, n=3.

[0157] Table 1 below shows examples of formulations of hydrogel-based controlled release fenretinide mucoadhesive system that were evaluated.
TABLE 1

<table>
<thead>
<tr>
<th>Adhesive layer</th>
<th>1) HPMC 4KM</th>
<th>2) Polycarbophil</th>
<th>3) Propylene glycol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drug (fenretinide)-release layer A) Solubilizer-free fenretinide layer</td>
<td>1) Fenretinide</td>
<td>2) Eudragit® R polymer</td>
<td>3) Triacetin citrate</td>
</tr>
<tr>
<td>B) Solubilizer-loaded fenretinide layer</td>
<td>1) Fenretinide</td>
<td>2) Eudragit® R polymer</td>
<td>3) Solubilizer</td>
</tr>
<tr>
<td>Tween 20 or Tween 80 of Brij 98 of Sodium deoxycholate</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[0159] The fenretinide loading efficiency of Eudragit® RS PO/RL PO films is shown in Table 2 below.

TABLE 2

<table>
<thead>
<tr>
<th>Formulation</th>
<th>Theoretical* (wt %)</th>
<th>Actual (wt %)*</th>
<th>Efficiency (%)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eudragit® RS-PO</td>
<td>5.0</td>
<td>4.5 ± 0.1</td>
<td>90.0 ± 1.2</td>
</tr>
<tr>
<td>Solubilizer-free Eudragit® RL-PO</td>
<td>5.0</td>
<td>4.6 ± 0.1</td>
<td>92.1 ± 1.0</td>
</tr>
<tr>
<td>10.0</td>
<td>9.2 ± 0.2</td>
<td>92.0 ± 2.0</td>
<td></td>
</tr>
<tr>
<td>Solubilizers Loaded Eudragit® RL-PO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 wt % Tween 20</td>
<td>5.6</td>
<td>5.4 ± 0.1</td>
<td>96.3 ± 1.5</td>
</tr>
<tr>
<td>20 wt % Tween 80</td>
<td>5.1</td>
<td>4.9 ± 0.2</td>
<td>95.1 ± 1.6</td>
</tr>
<tr>
<td>20 wt % Brij 98</td>
<td>5.2</td>
<td>4.8 ± 0.1</td>
<td>92.1 ± 1.5</td>
</tr>
<tr>
<td>20 wt % Sodium deoxycholate</td>
<td>5.6</td>
<td>5.5 ± 0.2</td>
<td>97.0 ± 1.0</td>
</tr>
<tr>
<td>40 wt % Sodium deoxycholate</td>
<td>5.0</td>
<td>4.6 ± 0.1</td>
<td>91.4 ± 1.0</td>
</tr>
<tr>
<td>40 wt % Tween 80</td>
<td>4.9</td>
<td>4.5 ± 0.2</td>
<td>92.0 ± 2.1</td>
</tr>
</tbody>
</table>

*Mean ± SE, n = 3.

[0160] Identification of Suitable Release Medium to Maintain Sink Condition During In Vitro Drug-Release

[0161] The drug is insoluble in simulated saliva (pH 6.8). Therefore, it is not possible to maintain the sink condition in simulated saliva during the in vitro drug-release studies. To maintain the sink condition, 2.5 and 5% (w/v) sodium deoxycholate was added into the simulated saliva. In certain embodiments, the solubilizer used to maintain sink condition is inert and does not change the drug release characteristics of film. To understand phenomenon, in vitro release study of fenretinide from Eudragit® films in simulated saliva containing 2.5 and 5% (w/v) sodium deoxycholate was performed.

[0162] Effect of Polymer Matrix Permeability on In Vitro Release of Fenretinide from Eudragit® Films

[0163] FIG. 4 illustrates the effect of polymer matrix permeability on cumulative release of fenretinide from Eudragit® film. Drug loading was 5 wt %. Release study was conducted in simulated saliva (buffer, pH 6.8) containing 5% w/v sodium deoxycholate at 37° C. Values represent mean ± SE, n=3.

[0164] Effect of Co-Encapsulation of Solubilizer on In Vitro Release of Fenretinide from Eudragit® Films

[0165] FIG. 5 illustrates the effect of co-encapsulation of solubilizer on cumulative release of fenretinide from Eudragit® RL PO film. Drug loading was 5 wt %. Release study was conducted in simulated saliva (buffer, pH 6.8) containing 5% w/v sodium deoxycholate at 37° C. Values represent mean ± SE, n=3.

[0166] FIG. 6 illustrates the effect of co-encapsulation of mixed solubilizers on cumulative release of fenretinide from Eudragit® RL PO film. Drug loading was 5 wt %. Release study was conducted in simulated saliva (buffer, pH 6.8) containing 5% w/v sodium deoxycholate at 37° C. Values represent mean ± SE, n=3.

[0167] The release of fenretinide from solubilizer-free Eudragit® RL PO/RS PO films was very slow (13-15% release after 8 h). Co-encapsulation of single (17-22 and 50-58% release, respectively, after 1 and 8 h from 20 wt % Tween® 20 and 80 and sodium deoxycholate loaded films) or mixed (24 and 73% release respectively after 1 and 8 h from 20 wt % Tween® 80+40 wt % sodium deoxycholate loaded film) solubilizers in fenretinide/Eudragit® RL PO films led to significant improvement in drug-release over a period of 8 h.

Example 2

Materials

[0168] Sodium deoxycholate (Sigma-Aldrich, Co., St. Louis, Mo.), Tween® 80 (Sigma-Aldrich, Co., St. Louis, Mo.), Eudragit® RL-PO (Rohm GmbH, Pharma Polymers, Darmstadt, Germany), propylene glycol (MP Biomedicals, LLC, Solon, Ohio). Fenretinide (MK-4016) was provided by Merck Corp.

[0169] Porcine buccal tissue was obtained from local slaughterhouse and used within 2 hours of slaughter. Tissue was kept on ice during transit. The epithelium was separated from the underlying connective tissue with surgical technique.

[0170] Methods for Example 2

[0171] Preparation of Oral Patch

[0172] Various types of mucoadhesive layers were prepared by a casting method. Briefly, about 50 mL polymer solutions (1.5% w/v) of various mucoadhesive polymers were each prepared in water by stirring overnight and poured into glass Petri dishes. The water was evaporated by incubating the Petri dishes at 50° C. for 24 h. The films were then removed and stored in a desiccator until further use.

[0173] The drug layer was also prepared by a casting method using Eudragit® RL-PO polymer. Briefly, 12% (w/w) Tween® 80, 33% (w/w) sodium deoxycholate, 5% (w/w) fenretinide, 50% (w/w) Eudragit® RL-PO and 5% (w/w) or 10% (w/w) permeation enhancers were dissolved in 10 mL acetone: ethanol (50:50). All the weight to weight ratios were based on the total amount of polymer, excipients and drug.
The solution was casted onto Teflon coated Petri dishes. The Petri dishes were then incubated at 37°C for 24 h. The films were removed and stored in a desiccator at -20°C until further use.

Determination of Fenretinide Solubility in Bovine Serum

Excessive amount of fenretinide was added into fetal bovine serum in polypropylene tubes. The sample was placed on a mechanical circulator and incubated at 37°C avoiding light. At every 24 hours (until fenretinide reached saturation in serum), the sample was centrifuged at 8000 rpm for 10 minutes. 0.2 ml sample was drawn from the supernatant. This volume was immediately replaced using blank serum. The tubes were shook to mix the supernatant and sediment, and then re-placed on the mechanical circulator and incubated at 37°C. The fenretinide concentration in the supernatant was measured by a HPLC assay after extraction using acetonitrile.

In Vitro Permeation

In vitro permeation studies were investigated using a side-by-side Franz diffusion cell apparatus. The orifice diameter in both donor and receptor compartments was 1 cm (0.785 cm²). Porcine buccal membrane was mounted between donor and receptor compartments of the diffusion cell. Fenretinide patches were placed on surface side of buccal membrane, in such a way that the backing layer faced the donor chamber and the adhesive film facing the membrane. The receptor compartment held phosphate buffered saline (PBS, pH = 7.4) containing 0.084% Tween 80 (v/v), which was degassed prior to use by vacuum filtration through a HPLC filter. The donor compartment held saliva buffer. Compartment temperature was kept constant at 37°C by recirculating water from a thermostatically controlled bath. Continuous stirring was provided by stirring bar, rotating at 600 rpm. 1 ml samples were collected from the receptor compartment at defined time intervals (1, 2, 3, 4, 5, 6, 7, 8 and 12 h). This volume was immediately replaced using blank, pre-warmed PBS buffer. The samples were then analyzed by HPLC.

Fenretinide HPLC Assay

HPLC assays were performed on a Waters 2695 alliance system (Milford, Mass., USA) consisting of a 2996 Photodiode array detector and a personal computer with Empower 2 Software. A symmetry C18 column (4 μm, 150 mm×4.6 mm) was used. Isocratic elution with acetonitrile: 0.1% (v/v) phosphoric acid (67:33 v/v) was employed at a flow rate of 1.0 ml/min and detection wavelength was set at 365 nm. Volume of injection was 50 μl. All samples were analyzed at room temperature. Standard curve of fenretinide was established in acetonitrile: ethanol (50:50) and concentration of unknown samples was calculated from the standard curve.

Results for Example 2

Fenretinide Solubility in Bovine Serum

The solubility of fenretinide in serum after 6 days incubation was 20.94±1.022 μg/ml. As the intrinsic aqueous solubility of fenretinide is extremely low (0.0098 μg/ml) (practically insoluble in water), the fenretinide concentrations achieved in serum might be fenretinide bound to serum proteins, such as albumin, lipoproteins and serum retinol-binding protein (RBP). RBP, a glycoprotein, is a well-characterized protein which transports retinol in plasma. It consists of a single polypeptide chain of 21 kDa which binds one molecule of retinol. It forms a complex with all-trans retinol (ATRiol) in the liver and is involved in the transport of ATRiol in the blood. Fenretinide also interacts with RBP to form a tight complex, but the affinity is lower than that of retinol.

The inventors herein have shown that the addition of Tween® 80 can improve the solubility of fenretinide. Therefore, to mimic the physiological conditions inside the body, in vitro permeation studies were performed in the presence of 0.084% Tween 80 (v/v) in the receiver containing PBS buffer (pH 7.4) as the solubility of fenretinide in serum is equal to that in 0.084% Tween 80 (v/v) solution.

Permeation of Fenretinide Through Porcine Buccal Tissue

Permeation profiles of fenretinide, i.e., cumulative percentages and amounts of fenretinide permeated through porcine buccal mucosa plotted against time, are shown in FIG. 8 and FIG. 9, respectively. The FIGS. 8-9 show that the co-solvent system described herein enhances oral mucosal permeation of fenretinide. In particular, there is an enhancement of oral mucosal permeation of fenretinide by co-incorporation of propylene glycol (co-solvent) in the hydrogel-based fenretinide controlled release system.

The steady state flux (J), cumulative amounts and percentages of fenretinide in the receiver and tissue, and enhancement factors from PG-incorporated patches are shown in Table 3.

TABLE 3

<table>
<thead>
<tr>
<th>Formulation</th>
<th>J (μg cm⁻² h⁻¹)</th>
<th>Cumulative amount of fenretinide in the receptor Q_{126} (μg)</th>
<th>Cumulative percentage of fenretinide in the receptor fluid Q_{10} (%)</th>
<th>Fenretinide amount in the tissue (μg)</th>
<th>Fenretinide percentage in the tissue (%)</th>
<th>EF for fenretinide in the tissue²</th>
<th>EF for fenretinide in the tissue³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>10.03 ± 1.03</td>
<td>66.66 ± 3.72</td>
<td>2.16 ± 0.12</td>
<td>234.05 ± 45.88</td>
<td>7.55 ± 1.48</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Propylene glycol 5%</td>
<td>16.19 ± 2.21</td>
<td>86.49 ± 5.27</td>
<td>2.79 ± 0.17</td>
<td>504.06 ± 33.79</td>
<td>16.26 ± 1.09</td>
<td>1.3</td>
<td>2.2</td>
</tr>
<tr>
<td>Propylene glycol 10%</td>
<td>22.77 ± 2.90</td>
<td>112.22 ± 3.10</td>
<td>3.62 ± 0.10</td>
<td>616.28 ± 40.92</td>
<td>19.88 ± 1.32</td>
<td>1.7</td>
<td>2.6</td>
</tr>
<tr>
<td>Propylene glycol 10% + Menthol 5%</td>
<td>39.75 ± 2.11</td>
<td>131.75 ± 4.03</td>
<td>4.25 ± 0.13</td>
<td>908.92 ± 84.32</td>
<td>29.32 ± 2.72</td>
<td>2.0</td>
<td>3.9</td>
</tr>
</tbody>
</table>

1. Steady state fluxes obtained from the slope of the graph of cumulative amount permeated versus time. (the linear portion of the concentration-time profiles).
2. Enhancement factor (EF) = cumulative percentage of fenretinide in the receiver from patch with enhancer/cumulative percentage of fenretide in the receiver from control patch.
3. Enhancement factor (EF) = fenretinide percentage in the tissue from patch with enhancer/fenretinide percentage in the tissue from control patch.
The results in Table 3 demonstrate that patches containing both 5% and 10% PG increased buccal mucosa permeation and retention of fenretinide. This enhancement was in a greater extent when more PG (10%) was incorporated into the patch. Propylene glycol enters the buccal tissue, competes for the solvation sites of the polar head groups of the lipid bilayers and increases the solubility of this site for the permeant. As a consequence, the partitioning of the drug from the patch into the buccal tissue increases.

When 5% menthol was incorporated into the patch which contained 10% PG, much more drug (3.9 times in comparison with patch without enhancer) was recovered from the buccal tissue. As terpenes can enhance both hydrophilic drugs including propranolol and lipophilic drugs such as testosterone. This permeation enhancement results from the synergistic effect of propylene glycol and menthol. The menthol improves the permeation of drugs by increasing the drug diffusivity in the membrane by modifying the intercellular packing, disrupting highly ordered structure of lipids.

Propylene glycol has an effect on the enhancement of buccal mucosa permeation and retention of fenretinide. The combination of other enhancers with propylene glycol provides a synergistic effect and significantly increases the activity of enhancers. As such, in certain embodiments, there is also provided herein methods and buccal patches containing PG and other permeation enhancer(s) (e.g., L-menthol, oleic acid).

Example 3

Chemicals, Tissue, and Animals

Fenretinide was received as a gift sample from Merck & Co., Inc. (Whitehouse Station, N.J.). Sodium deoxycholate, Tween® 80 and L-menthol were purchased from Sigma-Aldrich, Co. (St. Louis, Mo.). Noveon® AA-1 polyacrylph (PC), hydroxypropyl methylcellulose (HPMC) 4K and Eudragit® RL-PO were all gifts from Lubrizol Corp. (Wickliffe, Ohio), Colorcon®, Inc., (West point, Pa.), and Evonik Deussa Corp. (Piscataway, N.J.), respectively. Propylene glycol was purchased from MP Biomedicals, LLC (Solon, Ohio). Teflon® overlay was purchased from Scientific Commodities, Inc., (Lake Havasu City, Ariz.). Tegaderm™ roll was purchased from 3M Health Care (St. Paul, Minn.). Porcine buccal tissue was obtained from slaughter house (Dunbar Meat Packing Company, Milan, Mich., USA). Rabbits were purchased from Harlan Laboratories (Indianapolis, Ind., USA).

Preparation of Oral Mucosal Adhesive Patches for Enhanced Buccal Permeation of Fenretinide

Fenretinide/Eudragit® RL-PO/solubilizers patches with and without permeation enhancer (PG and menthol) were prepared by a solvent casting and assembly techniques as described herein. Three steps were involved in the preparation of fenretinide patch: formation of adhesive (hydroxypropyl methylcellulose and polycarboxil at a weight ratio of 3:1) and drug release (5 wt % fenretinide/Eudragit® RL-PO/40 wt % sodium deoxycholate/20 wt % Tween® 80 layers), and assembly of adhesive and drug release layers onto backing layer (Tegaderm™ film) (see FIGS. IA-1C. The drug release (fenretinide) layer included permeation enhancer(s) in addition to the formulation given above. Eudragit® RL-PO/5 wt % fenretinide/40 wt % sodium deoxycholate/20 wt % Tween® 80 layer loaded with PG alone (5 and 10 wt %) or menthol alone (5 and 10 wt %) or in combination (1 wt % PG+5 wt % menthol, 2.5 wt % PG+5 wt % menthol, and 10 wt % PG+5 wt % menthol) were prepared.

Fenretinide HPLC Assay.

HPLC assays were performed on a Waters 2695 alliance system (Milford, Mass., USA) consisting of a 2996 Photodiode array detector and a personal computer with Empower 2 Software. A symmetry C18 column (4 mm, 150 mm×4.6 mm) was used. Isocratic elution with acetoniitrile: 0.1% (v/v) phosphoric acid (67:33 v/v) was employed at a flow rate of 1.0 mL/min and detection wavelength was set at 365 nm. Standard curve of fenretinide was established in acetoniitrile: ethanol (50:50) and concentration of unknown samples was calculated from the standard curve.

Determination of Fenretinide Solubility in Bovine Serum.

A known quantity (0.9, 2.26, 3.97, 8.03, and 20.5 mg) of fenretinide was added to polypropylene tubes containing 15 mL fetal bovine serum. The samples were incubated at 37°C under constant rotation using a rigged rotator and protection from light. At every 2 h till 7 days, the samples were centrifuged at 8000 rpm for 10 minutes and 200 µL of supernatant was withdrawn. Withdrawn serum sample was replaced with fresh serum sample, mixed properly, and incubated again under similar conditions. To the withdrawn sample (200 µL), 2 mL of acetoniitrile was added, agitated overnight on a mechanicula shaker with protection from light, passed through 0.45 µm PTFD filter units, and analyzed by HPLC.

Determination of Fenretinide Loading.

Fenretinide/Eudragit® films were digested in acetoniitrile: ethanol (50:50), passed through 0.45 µm PTFD filter units, and analyzed by HPLC after suitable dilution. The fenretinide loading was calculated as the percentage of the amount of fenretinide versus the total weight of the film mixture (i.e., fenretinide, Eudragit®, and other excipients).

Simulated saliva comprised of 14.4, 16.1, 1.3, 0.55, and 2 mM sodium chloride, potassium chloride, calcium chloride dihydrate, magnesium chloride hexahydrate, and dibasic potassium phosphate and the pH was adjusted to 6.8. In vitro release studies were conducted in simulated saliva containing 5% (v/v) sodium deoxycholate under perfect sink conditions. Mucosaladhesive patches were placed in 50 mL tubes (separate tubes for each sampling interval) and 40 mL release medium was added to each tube. The tubes were placed in an incubator maintained at 37°C and shaken at 100 RPM. At predetermined time intervals (0.5, 3, and 6 h), tubes were taken out and the patches were immediately freeze-dried. The amount of fenretinide remaining in the patch was determined as per the method described in loading assay. The cumulative amount of fenretinide released was calculated by subtracting the fraction remaining in the patches from the initial drug content.

Ex Vivo Permeation of Fenretinide across Porcine Buccal Mucosa.

Ex vivo permeation of fenretinide across porcine buccal mucosa was conducted using side-by-side flow-through diffusion cells (donor and receiver chamber volume=3 mL). The diffusion interface was a spherical shape with a diameter of 1 cm. Porcine buccal tissue was obtained from a local slaughterhouse and used within 2 hours of slaughter. The tissue was stored in Krebs buffer at 4°C upon removal. The epithelium was separated from the underlying.
connective tissue with a scalp and mounted between the donor and the receiver chambers. Fenretinide patch was then attached to the buccal mucosa (adhesive layer facing mucosa and backing layer exposed to buffer) in donor chamber. Donor and receiver chambers were filled with 3 mL degassed phosphate buffered saline (PBS, pH 7.4) containing 0.084% Tween® 80 (v/v) and simulated saliva (pH 6.8), respectively. Both the chambers were maintained at 37°C by circulating the water from a thermostatically controlled water bath. The receiver chamber medium was stirred at 600 rpm. After specified duration (1, 2, 3, 4, 5, 6, 7, 8, and 12 h), 1 mL sample was withdrawn from the receiver chamber and immediately replaced with fresh medium. Fenretinide was quantified by HPLC. At the end of permeation study, phenol red at a concentration of 300 µg/mL was added to the donor chamber to check the integrity of buccal mucosa. Phenol red acts as a marker compound, which does not permeate through an intact porcine buccal mucosa. Upon the completion of ex vivo permeation study, porcine buccal tissue was removed and fenretinide level in the tissue was determined as described below.

[0204] Determination of Fenretinide Levels in Buccal Tissue.

[0205] Treated porcine buccal tissue was cut into small pieces and placed in 4 mL polypropylene tubes. One milliliter of water was added to the tubes and homogenized for 1 minute. Then, 2 mL of acetone/titride was added to the tubes and vortexed for 1 hour. After 1 h, tubes were centrifuged at 2600 g at 25°C for 20 min and the supernatant was analyzed by HPLC to determine fenretinide content.

[0206] Haematoxylin and Eosin Staining.

[0207] A portion of each tissue was fixed in buffered 10% formalin and embedded in paraffin wax. Then, 5 µm sections were placed on microscope slides, deparaffinized using xylene, and rehydrated using ethanol solutions in a gradient of 80% up to 100% and distilled water. The tissue slices were placed in 0.7% w/w haematoxylin solution, rinsed twice in acid ethanol (0.1 N HCl in 95% ethanol) to remove the excess stain. Subsequently, the tissue slices were placed in 0.1% w/w eosin solution and dehydrated using solutions of ethanol in a gradient of 80% up to 100% and then xylene.

[0208] Light Microscopy Analysis.

[0209] Light microscopy was performed using Olympus BX51 microscope (Olympus, Tokyo, Japan) at 40x magnification. Images of the sections were captured using a fitted camera (Olympus DP70 digital camera, Tokyo, Japan) and software (Olympus DP controller, Tokyo, Japan).

[0210] Evaluation of In vivo Fenretinide Release and Permeation.

[0211] Animal studies were approved by the Ohio State University Institutional Animal Care and Use Committee and adhered to National Institute of Health guidelines. Female New Zealand white rabbits (12 weeks old and weight ranging 2.7-3.1 kg) were anesthetized with isoflurane (5% v/v in oxygen) via inhalation for patch placement and removal. Six fenretinide oral mucosal adhesive patches/time point were placed on the buccal mucosa of subject rabbit's oral cavity (drug-adhesive layers facing the mucosa). Slight pressure was applied to the backing layer of the patch for 1 minute to establish mucoadhesion with the rabbit buccal mucosa. After different attachment times (0.5, 3 and 6 h), the patches were carefully removed and remaining fenretinide in patches was determined by HPLC. The cumulative amount of fenretinide released was determined by subtracting the fraction remaining in the patches from the initial drug content. To determine the drug level in the tissue, extraction and quantitation of fenretinide was performed as described in the determination of fenretinide level in buccal tissue section.

[0212] Statistical Analysis.

[0213] The results are expressed as mean±SE (n=3/4 (in vitro) or 5 (ex vivo) or 6 (in vivo)). An unpaired Student's t-test and one-way ANOVA were used to compare the means of in vitro and in vivo drug release, ex vivo porcine buccal mucosal permeation and tissue levels of fenretinide, in vivo tissue levels of fenretinide and assess statistical significance. Results were considered statistically significant if p<0.001.

[0214] Discussion of Example 3

[0215] Mucoadhesive Fenretinide Patches with Enhanced Drug Permeability.

[0216] As described herein, the mucoadhesive patch formulation of fenretinide was tested for site-specific chemoprevention of oral cancer. Solubilizer-free patches exhibited poor in vitro and in vivo drug release behavior. Co-incorporation of either single or mixed solubilizers (e.g., Tween® 20 and 80, sodium deoxycholate) in fenretinide/Eduradgit® patches led to significantly improved continuous in vitro and in vivo fenretinide release. In the past, the use of fenretinide in chemoprevention of oral cancer has been hindered by several key limitations, e.g., poor solubility, biological membrane permeability and bioavailability, and rapid elimination of drug from the body. Undesired effects are rendered mainly by its extremely high hydrophobicity (log P=8.03) and low water solubility (below detection limit).

[0217] Fenretinide-loaded Eduradgit® RL PO layers with and without permeation enhancers were prepared by a solvent casting method with drug loading efficiency of 90-95%, as seen in Table 4.

<table>
<thead>
<tr>
<th>Patch formulation</th>
<th>Fenretinide loading (wt %)</th>
<th>Loading efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permeation enhancer-free</td>
<td>Theoretical</td>
<td>Actual</td>
</tr>
<tr>
<td>5 wt % PG</td>
<td>5.00</td>
<td>4.59 ± 0.07</td>
</tr>
<tr>
<td>10 wt % PG</td>
<td>4.76</td>
<td>4.52 ± 0.12</td>
</tr>
<tr>
<td>5 wt % Menthol</td>
<td>5.00</td>
<td>4.62 ± 0.06</td>
</tr>
<tr>
<td>10 wt % Menthol</td>
<td>4.76</td>
<td>4.51 ± 0.11</td>
</tr>
<tr>
<td>1 wt % PG + 2.5 wt% Menthol</td>
<td>4.95</td>
<td>4.48 ± 0.13</td>
</tr>
<tr>
<td>5 wt % PG + 5 wt % Menthol</td>
<td>4.88</td>
<td>4.53 ± 0.11</td>
</tr>
<tr>
<td>5 wt % Menthol</td>
<td>4.54</td>
<td>4.14 ± 0.05</td>
</tr>
</tbody>
</table>

*Mean ± SE, n = 3; *Based on polymer + excipients weight

[0218] The thickness of fenretinide and adhesive layers, and the tegaderm™ adhesive film were measured to be ~0.28, 0.28, and 0.05 mm, respectively. After assembling drug and adhesive layers onto backing layer, the total thickness of the patch was measured to be ~0.33 mm.
The solubility of fenretinide in bovine serum at different fenretinide concentrations (0.9, 2.26, 3.97, 8.03 and 20.5 mg) and incubation times (1-7 days) is shown in FIGS. 10A-10B. The solubility of fenretinide in bovine serum was found to be 21±1 µg/mL (FIG. 10A). Bovine serum comprises numerous proteins namely albumin, lipoproteins and serum retinol-binding protein (RBP). Enhanced solubility of fenretinide in bovine serum can be attributed to protein-drug binding or complexation.

The time taken by fenretinide to reach equilibrium with bovine serum was affected by the amount of fenretinide added in bovine serum. For example, when the amount of fenretinide was increased from 0.9 to 8.03 mg, the time required to achieve equilibrium was reduced from 7 to 4 days (FIG. 10B). Further increases in fenretinide quantity did not reduce the time required for equilibration, thereby suggesting the necessity of minimum ~8 mg of fenretinide and 4 days incubation time to reach equilibrium state with 15 mL serum. A concentration of 0.084% Tween® 80 required to reach equivalent solubility of fenretinide (21 µg/mL in bovine serum) in test medium (receiver chamber medium i.e., PBS, pH 7.4) was then determined from the perfect linear relationship of fenretinide solubility in PBS versus Tween® 80 concentration above the surfactant critical micelle concentration. Hence, PBS+0.084% Tween® 80 was then used to mimic physiologically solubilization/sink condition in the ex vivo drug permeation studies.

Enhanced Ex vivo Porcine Buccal Mucosal Permeation of Fenretinide by Co-impregnation of Propylene Glycol and Menthol in Fenretinide/Endragit® RL-PO Patches.

The effect of co-impregnation of single (5 and 10 wt % PG or menthol) and mixed (1 wt % PG+5 wt % menthol, 2.5 wt % PG+5 wt % menthol or 10 wt % PG+5 wt % menthol) permeation enhancers in fenretinide/Endragit® RL-PO mucoadhesive patches on ex vivo porcine buccal mucosal permeation of fenretinide is shown in FIGS. 11A-11C. Ex vivo permeation of fenretinide increased steadily over a period of 8 h and then reached a plateau thereafter. The both the flux (J) at steady state and the enhancement factor (EF=J with enhancer/J without enhancer) were calculated.

The fraction of drug permeated across buccal mucosa and deposited in the buccal tissue, and values of J and EF are given in Table 5.

Table 5: Evaluation of Potential of Co-implication of Permeation Enhancers (Propylene Glycol (PG), Menthol or PG + Menthol) in Fenretinide/Endragit® RL-PO Patch to Enhance Porcine Buccal Mucosal Permeation of Fenretinide Ex Vivo.

<table>
<thead>
<tr>
<th>Patch formulation</th>
<th>Flux (J) (µg cm⁻² h⁻¹)</th>
<th>Fenretinide in the receptor medium (µg/mL)</th>
<th>Fenretinide in EF° tissue (µg/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permeation enhancer-free</td>
<td>10.0 ± 0.5</td>
<td>22.3 ± 0.5</td>
<td>43.8 ± 6.1</td>
</tr>
<tr>
<td>5 wt % PG</td>
<td>16.2 ± 0.9</td>
<td>28.8 ± 0.8</td>
<td>158.5 ± 4.7</td>
</tr>
<tr>
<td>10 wt % PG</td>
<td>22.8 ± 1.3</td>
<td>37.4 ± 0.5</td>
<td>170.7 ± 5.3</td>
</tr>
<tr>
<td>5 wt % Menthol</td>
<td>12.4 ± 0.6</td>
<td>22.8 ± 0.5</td>
<td>61.7 ± 5.1</td>
</tr>
<tr>
<td>10 wt % Menthol</td>
<td>12.7 ± 0.7</td>
<td>23.5 ± 0.7</td>
<td>63.3 ± 4.7</td>
</tr>
<tr>
<td>1 wt % PG + 5 wt % Menthol</td>
<td>17.0 ± 0.6</td>
<td>35.8 ± 1.0</td>
<td>172.1 ± 7.6</td>
</tr>
<tr>
<td>2.5 wt % PG + 5 wt % Menthol</td>
<td>20.2 ± 0.8</td>
<td>39.4 ± 0.8</td>
<td>175.6 ± 7.0</td>
</tr>
<tr>
<td>10 wt % PG + 5 wt % Menthol</td>
<td>39.8 ± 0.9</td>
<td>43.9 ± 0.6</td>
<td>241.1 ± 9.8</td>
</tr>
</tbody>
</table>

*: Steady-state flux was calculated from linear regression of cumulative amount permeated vs time.
°Enhancement factor (EF) = J with enhancer/J without enhancer. Values represent mean ± S.E.M.; n = 5.

Co-implication of single (FIG. 11A and FIG. 11B) or mixed (FIG. 11C) permeation enhancers in the patch led to significant enhancement (p<0.001) in the rate and extent of fenretinide permeation across porcine buccal mucosa (see Table 5).

For example, the flux for permeation enhancer-free patch was found to be ~10 µg cm⁻² h⁻². After co-implication of 10 wt % PG or 10 wt % PG+5 wt % menthol, the flux was increased to ~23 (EF=2.3) and 40 (EF=4) µg cm⁻² h⁻², respectively. In contrast, a slight increase in the flux was observed with menthol patch formulations (J =~13 µg cm⁻² h⁻²). The levels of drug in tissue were in agreement with the values of flux (see Table 5). Fenretinide content in buccal tissue after 12 h of ex vivo permeation with permeation enhancer-free patch was found to be ~44 µg/g. Co-implication of PG or PG+menthol led significantly high amount of fenretinide recovery from the buccal tissue (~171 and 241 µg fenretinide/g tissue with 10 wt % PG and 10 wt % PG+5 wt % menthol formulation, respectively), thereby indicating increased tissue localization/permeation of fenretinide in the presence of PG or PG+menthol. A moderate enhancement effect was exhibited by menthol alone.

Propylene glycol exerts its permeation enhancement effect by competing for the solvation sites of the polar head groups of the lipid bilayers and occupying the hydrogen bonding sites, thereby increasing the solubility of this site for the permeant. PG may increase the lipid fluidity which in turn facilitates enhanced drug permeation. Enhanced permeation of fenretinide in the presence of PG can be attributed to one or both of these mechanisms. Menthol, on the other hand, has the ability to modify the drug diffusivity and/or partitioning by disrupting the conformational order of the intercellular lipids in bilayers. Menthol alone did not provide significant permeation enhancement of fenretinide (p>0.001). This result can be attributed at least in part to non-homogeneous distribution of menthol in fenretinide/Endragit® RL-PO matrix (see FIG. 1D) due to crystallization and aggregation of menthol during solvent evaporation.
[0230] When PG was combined with menthol, this issue was overcome (see FIG. 1D) and pronounced fenretinide permeation enhancement was observed relative to menthol alone (see FIG. 11C and Table 5). Desirable fenretinide permeation observed with mixed permeation enhancers (PG+menthol) can be attributed to synergistic effect between menthol and PG.

[0232] Photomicrographs of the sections of buccal mucosa are shown in FIGS. 12A-12H. The porcine buccal mucosa, similar to human buccal mucosa, consists of an outermost layer of keratinized stratified squamous epithelium, below which lies a basement membrane, a lamina propria followed by the submucosa containing the buccinator muscle as the innermost layer. Regardless of patch application, all sections showed an appropriately maturing stratified squamous epithelium. Scattered mitotic figures were restricted to the basilar layers, and the outermost granular and corneal layers showed appropriate terminal differentiation as reflected by surface parakeratin production. No evidence of changes consistent with extensive epithelial perturbations attributable to a contact mucositis, e.g., hydropic degeneration of the basal cell layer or acantholysis were noted.

[0233] Basal epithelial cells are tightly bound together in the control (no patch attachment) sample (see FIG. 12A). Noticeable morphological changes (e.g., prickle cells) in the underlying layers and significant loss of superficial cell layers were not apparent after attachment of 5 wt % (see FIG. 12B) and 10 wt % (see FIG. 12C) wt % PG loaded patches. An increase in intercellular edema and swelling of buccal epithelium are visible, however, in FIG. 12B and FIG. 12C when the loading of PG is above 5 wt %.

[0234] The photomicrographs of buccal epithelium after treatment with 5 and 10 wt % menthol loaded patches are respectively shown in FIG. 12D and FIG. 12E. It is visible that the epithelial layers were intact in both the samples. In addition, there was no sign of cellular swelling and significant histological and ultrastructural changes.

[0235] Similar results were observed in samples treated with 1 wt % PG+5 wt % menthol (see FIG. 12F) and 2.5 wt % PG+5 wt % menthol (see FIG. 12G) loaded patches. In contrast, tissue exposed to the 10 wt % PG+5% menthol loaded patch showed a moderate increases in intercellular space and intercellular edema (see FIG. 12H). Since menthol did not cause any epithelial cell alteration, it is likely that higher (10 wt %) loading of PG in the patch resulted in increased intercellular space and intercellular edema.

[0236] The histological changes (e.g., increase in intercellular space and intercellular edema) observed in the tissues treated with 5 and 10 wt % PG loaded patches (see FIG. 12B, FIG. 12C and FIG. 12H) are indicative of diffusion of PG into subject keratinocytes as well as the intercellular spaces. Upon permeation and accumulation in cells, it is likely that PG interacted with intercellular or membrane lipids, thereby increasing the permeability of fenretinide through epithelium. Since 2.5 wt % PG+5 wt % menthol loaded patches exhibited optimal drug permeation enhancement with no morphological and histological changes, this formulation was selected and used to further evaluate in vivo release, permeation and tissue deposition kinetics of fenretinide, as described below.

[0237] In Vitro and In Vivo Release Characteristics of Permeation Enhancers-Loaded Fenretinide/Eudragit® RL-PO Patches.

[0238] In vitro and in vivo fenretinide release from permeation enhancer-free and 2.5 wt % PG+5 wt % menthol-loaded fenretinide/Eudragit® RL-PO patches is shown in FIG. 13. Both the patch formulations provided continuous in vitro and in vivo fenretinide release from Eudragit® polymeric matrices, and the addition of PG and menthol did not significantly affect the release kinetics, indicating further fenretinide solubilization and/or changes to the patch swelling behavior. In this case, the patch release characteristics were largely determined by sodium deoxycholate and Tween® 80, which served as the effective solubilization role in the patch formulation.

[0239] There was a significant difference (p<0.001) between in vitro and in vivo fenretinide release characteristics of permeation enhancer-free and 2.5 wt % PG+5 wt % menthol-loaded fenretinide/Eudragit® RL-PO patches (see FIG. 13), although the continuous release trend was the same. This difference can be linked to dissimilarity in test conditions (e.g., in vitro drug release in simulated saliva vs. in vivo drug release followed by permeation across buccal mucosal membrane).

[0240] Enhanced In Vivo Rabbit Buccal Mucosal Permeation and Deposition of Fenretinide by Co-incorporation of Propylene Glycol and Menthol in Fenretinide/Eudragit® RL-PO Patches.

[0241] The effect of co-incorporation of permeation enhancers (PG+menthol) in fenretinide/Eudragit® RL-PO patches on in vivo buccal mucosal permeation and deposition of fenretinide is shown in FIG. 14. The level of fenretinide in rabbit buccal tissue increased steadily as function of attachment time of both the patch (permeation enhancer-free and permeation enhancers-loaded patches) formulations (see FIG. 14), thereby indicating excellent efficacy of these patch formulations to provide continuous in vivo fenretinide permeation across the rabbit buccal mucosa. The extent of fenretinide permeation and tissue deposition provided by 2.5 wt % PG+5 wt % menthol-loaded patches was significantly higher (43.0±7.7 µg fenretinide/g tissue after 6 h of attachment) than that of permeation enhancer-free patch (17.3±0.3 µg fenretinide/g tissue after 6 h of attachment) (see FIG. 14). These results show excellent effectiveness of co-incorporation of PG and menthol to obtain improved oral mucosal permeation and tissue levels of fenretinide. Different permeation and tissue deposition kinetics of fenretinide obtained with ex vivo and in vivo studies can be attributed to dissimilarity in key test conditions (e.g., porcine vs. rabbit buccal mucosas, ex vivo vs. in vivo sink conditions).

[0242] These data demonstrate the therapeutic advantage imparted by mucoadhesive patch local delivery of fenretinide, i.e., obtaining pharmacologically active levels in the target tissue. In vitro fenretinide concentrations between 1 and 10 µM are useful for inducing desirable chemopreventive effects, e.g., cellular terminal differentiation (<3 µM) and apoptosis (<5 µM). As shown herein, the levels of fenretinide delivered to rabbit buccal mucosa from permeation enhancers loaded patches ranged from 7.75 µg/g (0.5 hour; 19.8 µM) to 42.36 µg/g (6 hours; 108.2 µM). Therefore, short duration patch application (i.e., less than 30 minutes) are especially useful in certain embodiments in order to provide therapeutically relevant concentrations in the targeted oral epithelium.
In addition, due to the decreased treatment time, such applications can facilitate patient compliance.

[0243] The intraoral site-specific fenretinide delivery us thus enhanced by the mucoadhesive patches that provide enhanced buccal mucosal permeation and tissue levels of fenretinide. Suitable permeation enhancers (PG and menthol) were co-incorporated in fenretinide/Eudragit® RL-PO patches. Mucoadhesive patches containing a desired drug delivery (fenretinide+solubilizers+permeation enhancers), adhesive, and backing layers were prepared by solvent casting and assembling techniques. Co-incorporation of PG or PG+menthol in patches led to significant ex vivo and in vivo buccal mucosal permeation and tissue deposition of fenretinide, a extremely hydrophobic and poorly tissue permeable chemopreventive agent. In one embodiment, a mucoadhesive patch co-incorporated with 2.5 wt % PG+5 wt % menthol was found to be have desired oral mucosal permeation enhance ment without significantly affecting the observed histology of the oral mucosa.

[0244] Methods of Treatment

[0245] Methods of using the formulations disclosed herein generally involve applying the formulations topically to mucosal surfaces of the oral cavity.

[0246] In one embodiment, the method generally comprising: providing a transmucosal system comprising the formulation described herein; applying the transmucosal system to a mucosal membrane of a subject; and, keeping the transmu cosal system in contact with the mucosal membrane for a therapeutically effective period of time; and, optionally removing the transmucosal system when a desired therapeutic effect has been achieved.

[0247] In certain embodiments, the patch contains a permeation enhancer agent that is not present an adhesive layer, but is only present in the formulation.

[0248] In another embodiment, the method includes treatment and prophylaxis of a disease, comprising: administering to a subject in need of such treatment the formulation described herein.

[0249] In certain embodiments, the formulation can be present as a mouth product such as a toothpaste, a mouthwash or mouth rinse, a gel or paste, a spray, a chewing gum, and/or a lozenge.

Example 3

Therapeutic Uses

[0250] The formulations described herein have useful clinical applications for preventing development (primary chemoprevention) or inhibiting recurrence (secondary chemoprevention) of oral cancer.

[0251] Another therapeutic use includes treatment for includes inhibiting growth of a tumor such as head and neck squamous carcinoma cells (HNSCC).

[0252] Another therapeutic treatment includes decreasing the size of a tumor, comprising tumor cells, wherein the tumor cells are head and neck squamous cell carcinoma cells.

[0253] Another therapeutic treatment includes preventing head and neck squamous cell carcinoma (HNSCC).

[0254] Another clinical application is the use of the formulations on actinically induced precancerous lesions of the lower lip, known as actinic cheilitis. While not as clinically aggressive as intraoral dysplastic lesions, lip lesions need to be surgically managed, and can progress into oral squamous cell carcinoma.

[0255] Still other clinical applications can include all vari ants of oral squamous cell carcinoma (including these actinically-induced lip lesions) as treatment sites.

[0256] Other clinical applications include the treatment, amelioration or reversal of oral epithelial dysplasias, such as Fancioni anemia.

[0257] Kits

[0258] Also provided herein are kits comprising the formulations described herein and instructions for use in a method for administering to a subject.

[0259] In one embodiment, the kit includes instructions for use in the treatment of a cancerous or precancerous condition. In certain embodiments, the kit includes instructions for administering the composition to a mammal with a head or neck basal cell precancerous or cancerous condition. It is to be understood that the formulations described herein can be packaged in kit form. In one aspect, the invention provides a kit that includes delivery systems in suitable packaging.

[0260] Each formulation is supplied in a pharmaceutically acceptable carrier that is suitable for inventory storage. A kit may optionally provide additional components that are useful in the methods and formulation procedures of the invention, such as buffers, reacting surfaces, or means of purifying delivery particles.

[0261] In addition, the kits optionally include labeling and/or instructional or interpretive materials providing directions (i.e., protocols) for the practice of the methods of this invention, such as preparation, formulation and/or use of delivery particles. While the instructional materials typically comprise written or printed materials they are not limited to these formats. Any medium capable of storing such instructions and communicating them to an end user is contemplated by this invention. Such media include, but are not limited to electronic storage media (e.g., magnetic discs, tapes, cartridges, chips), optical media (e.g., CD ROM), and the like. Such media may include addresses to Internet sites that provide such instructional materials.

[0262] In one embodiment, there is provided herein a prophylactic kit for reducing the likelihood of disease in a subject comprising: (a) a bioadhesive pharmaceutical formulation as described herein; and (b) a delivery system, such as a patch or film for delivery of the formulation.

[0263] In another embodiment, there is provided herein a therapeutic kit for treating disease in a subject comprising: (a) a bioadhesive pharmaceutical formulation as described herein; and (b) a delivery system, such as a patch or film for delivery of the formulation.

[0264] While the invention has been described with reference to various and preferred embodiments, it should be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the essential scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof.

[0265] Therefore, it is intended that the invention not be limited to the particular embodiment disclosed herein contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the claims.

What is claimed is:

1. A formulation, comprising: at least one mucoadhesive material; at least an effective amount of at least one retinide composition or a pharmaceutically acceptable salt thereof;
and, at least one transmucosal permeation enhancer agent selected from one or more of: propylene glycol (PG), menthol, and a terpene or terpenoid composition; and; optionally, at least one solubilizer agent.

2. (canceled)

3. The formulation of claim 1, wherein the retinide composition comprises fenretinide.

4. The formulation of claim 3, wherein the fenretinide is present at about 0.1 wt % to about 5 wt %.

5. The formulation of claim 1, wherein the transmucosal permeation enhancer agent comprises from about 1 wt % to about 2.5 wt % PG, and from 1 wt % to about 5 wt % menthol.

6. (canceled)

7. (canceled)

8. (canceled)

9. The formulation of claim 1, wherein the pharmaceutically active retinide composition and the at least one permeation enhancer agent are adapted to be in contact with at least on common mucosal membrane.

10. The formulation of claim 9, wherein the mucosal membrane is the buccal mucosa.

11. The formulation of claim 1, present as a mouth product such as a toothpaste, a mouthwash or mouth rinse, a gel or paste, a spray, a chewing gum, and/or a lozenge.

12. (canceled)

13. The formulation of claim 1, wherein the formulation contains a predetermined amount of pharmaceutically active retinide composition in an amount selected from the group consisting of: 0 µg, 15 µg, 25 µg, 50 µg, 100 µg, 500 µg, 1 mg, 2 mg, 3 mg, 4 mg, 5 mg, 6 mg, 7 mg, 8 mg, 9 mg, and 10 mg.

14. The formulation of claim 1, wherein the amount of the pharmaceutically active retinide absorbed via the oral mucosa is selected from the group consisting of: at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 98%, and at least 99% of the drug in the dosage form.

15. (canceled)

16. (canceled)

17. (canceled)

18. A transmucosal drug delivery system comprising at least one drug-release layer comprised of the formulation of claim 1, at least one adhesive layer, and at least one backing layer.

19. A drug dosage form for oral transmucosal administration, comprising:

a formulation comprised of: at least an effective amount of a pharmaceutically active retinide composition or a pharmaceutically acceptable salt thereof, and at least one transmucosal permeation enhancer agent selected from propylene glycol (PG) and menthol; and,

an adhesive material, the adhesive material providing for adherence of the drug dosage form to the oral mucosal membrane.

20. A method of treatment and prophylaxis of a disease or disorder, comprising: administering to a subject in need of such treatment the formulation of claim 1.

21. The method of claim 20, wherein the disease or disorder is a cancerous or precancerous condition.

22. The method of claim 20, wherein the disease or disorder comprises one or more of: oral squamous cell carcinoma, intraoral dysplastic lesions, head and neck squamous carcinoma.

23. A method of treatment, comprising inhibiting growth and/or decreasing the size of a tumor comprising head and neck squamous carcinoma cells by administering an effective amount of the formulation of claim 1.

24. (canceled)

25. (canceled)

26. A method of treatment, comprising ameliorating actinically induced precancerous lesions, including actinic cheilitis by administering an effective amount of the formulation of claim 1.

27. (canceled)

28. (canceled)

29. A method for chemoprevention of an oral cancer or precancerous condition, comprising topically administering to a subject in need of such chemoprevention the formulation of claim 1.

30. The method of claim 29, wherein the formulation is administered to an interior of an oral cavity of the subject.

31. (canceled)

32. (canceled)

33. (canceled)

34. The method of claim 30, wherein a single or repeated oral transmucosal administration to a subject results in a bioavailability of greater than 70%, 75%, 80%, 90%, or 94%.

35. (canceled)

36. (canceled)

37. (canceled)

38. (canceled)

39. (canceled)

40. The method of claim 30, wherein a single or repeated oral transmucosal administration to a subject results in a bioavailability with a coefficient of variation of less than 30%, or less than 40%.

41. (canceled)

42. The method of claim 30, wherein a single oral transmucosal administration of the drug dosage form to a subject results in a T_{max} of from about 6 hours to about 8 hours, or from about 6 hours to about 12 hours.

43. (canceled)

44. (canceled)

45. (canceled)

46. (canceled)

47. A method, comprising:

i) providing a transmucosal system comprised of the formulation of claim 1;

ii) applying the transmucosal system to a mucosal membrane of a subject; and,

iii) keeping the transmucosal system in contact with the mucosal membrane for a therapeutically effective period of time; and,

iv) optionally removing the transmucosal system when a desired therapeutic effect has been achieved.

48. The method of claim 45, wherein the transmucosal system includes an adhesive material.

49. The method of claim 48, wherein the formulation and the adhesive material are present in separate compartments.

50. The method of claim 47, wherein the mucosal membrane is the buccal mucosa.

51. A method for making a buccal drug delivery system, comprising:
i) preparing a drug-release layer comprised of the formulation of claim 1;
ii) preparing an adhesive layer; and,
iii) assembling the drug layer and the adhesive layers onto a backing layer.

52. (canceled)

53. A method for increasing permeation of a retinide composition from a drug-release layer into a mucosa of a subject in need thereof, comprising:
i) admixing a retinide composition with a permeation enhancer agent comprised of one or more of propylene glycol and menthol, and
ii) forming the admixture into a drug-release layer.

54. (canceled)

55. A method for making the formulation of claim 1, comprising:
i) mixing a quantity of at least one solubilizer, at least one mucoadhesive polymer, and at least one permeation enhancer in a solvent to form a solvent mixture;
ii) adding a quantity of retinide to the solvent mixture of step i); and, optionally adjusting a volume thereof to 10 ml, with the solvent mixture of step i);
iii) forming a layer of the retinide mixture of step ii); and,
iv) drying the layer of step iii).

56. The method of claim 55, wherein the quantity of solubilizer comprises one or more of: Tween® 80 which is comprised of a nonionic surfactant and emulsifier derived from polyethoxylated sorbitan and oleic acid, and sodium deoxycholate, and sodium deoxycholate.

57. The method of claim 55, wherein the permeation enhancer comprises propylene glycol and menthol.

* * * * *