
DE60026868T220060907
ß (19)
Bundesrepublik Deutschland
Deutsches Patent- und Markenamt
(10) DE 600 26 868 T2 2006.09.07

(12) Übersetzung der europäischen Patentschrift

(97) EP 1 468 521 B1
(21) Deutsches Aktenzeichen: 600 26 868.3
(86) PCT-Aktenzeichen: PCT/US00/16035
(96) Europäisches Aktenzeichen: 00 970 432.1
(87) PCT-Veröffentlichungs-Nr.: WO 2000/078118
(86) PCT-Anmeldetag: 09.06.2000
(87) Veröffentlichungstag

der PCT-Anmeldung: 28.12.2000
(97) Erstveröffentlichung durch das EPA: 20.10.2004
(97) Veröffentlichungstag

der Patenterteilung beim EPA: 22.03.2006
(47) Veröffentlichungstag im Patentblatt: 07.09.2006

(51) Int Cl.8: H04L 9/28 (2006.01)
H04K 1/00 (2006.01)

(54) Bezeichnung: EIN EINFACHES IMPLEMENTIERUNGSVERFAHREN FÜR KRYPTOGRAPHISCHE PRIMITIVA MIT-
TELS ELEMENTAR-REGISTER-OPERATIONEN

(30) Unionspriorität:
329139 09.06.1999 US

(73) Patentinhaber:
Microsoft Corp., Redmond, Wash., US

(74) Vertreter:
Grünecker, Kinkeldey, Stockmair &
Schwanhäusser, 80538 München

(84) Benannte Vertragsstaaten:
AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT,
LI, LU, MC, NL, PT, SE

(72) Erfinder:
VENKATESAN, Ramarathnam, Redmond, WA
98052, US; JAKUBOWSKI, Mariusz, Bellevue, WA
98007, US

Anmerkung: Innerhalb von neun Monaten nach der Bekanntmachung des Hinweises auf die Erteilung des europä-
ischen Patents kann jedermann beim Europäischen Patentamt gegen das erteilte europäische Patent Einspruch
einlegen. Der Einspruch ist schriftlich einzureichen und zu begründen. Er gilt erst als eingelegt, wenn die Ein-
spruchsgebühr entrichtet worden ist (Art. 99 (1) Europäisches Patentübereinkommen).

Die Übersetzung ist gemäß Artikel II § 3 Abs. 1 IntPatÜG 1991 vom Patentinhaber eingereicht worden. Sie wurde
vom Deutschen Patent- und Markenamt inhaltlich nicht geprüft.
1/20

DE 600 26 868 T2 2006.09.07
Beschreibung

[0001] Die Erfindung betrifft eine Technik zum Implementieren eines Primitivs zum Berechnen von z.B. einer
Prüfsumme. Vorteilhafterweise ist diese Technik relativ einfach und verwendet ziemlich elementare Register-
operationen, wodurch beträchtliche Verarbeitungszeit im Vergleich zu derjenigen gespart wird, die herkömmli-
cherweise zum Berechnen von z.B. einer Nachrichtensignatur (message authentication code) (MAC) oder zum
Implementieren eines Datenketten-Codes (stream cipher) erforderlich ist.

[0002] Viele verschiedene kryptografische Techniken, die sich heute in Einsatz befinden, verwenden mathe-
matische Funktionen, die modulare Arithmetik enthalten, wobei typischerweise ein Restbetrag einer Zahl in Be-
zug auf eine relativ große Primzahl (M) berechnet wird, wie zum Beispiel 231 – 1 oder größer. Eine solche bei-
spielhafte Funktion f(x) würde die Form f(x) = ax + b mod(M) in einem Galois-Feld (GF) über 2n aufweisen, wo-
bei n = 2m + 1, und n und m vordefinierte ganze Zahlen in einem Feld Z(mod M) sind. Obwohl die Funktionen
selbst sich von einer Technik zur anderen in hohem Maße unterscheiden, erfordern sie üblicherweise die Be-
rechnung einer mod(M)-Operation der einen oder anderen Form und für gewöhnlich auf einer in hohem Maße
repetitiven Basis.

[0003] Solche modularen Operationen werden nicht nur zum Verschlüsseln jedes einzelnen Blocks von Klar-
text in einer Nachricht, um einen entsprechenden Chiffretext-Block zu ergeben, und zum Entschlüsseln des
Letzteren zum Wiedergewinnen des dazugehörigen Klartext-Blocks verwendet, sondern auch zum Berechnen
von Zwischenabschnitten der Technik, wie beispielsweise einer Nachrichtensignatur (MAC) oder eines Daten-
ketten-Codes.

[0004] Die Durchführung einer einzelnen mod(M)-Operation kann 10–15 Verarbeitungszyklen erfordern,
wenn nicht mehr, (basierend auf dem Wert eines Moduls M). Da eine kryptografische Technik eine große An-
zahl solcher Operationen erfordert, kann eine beträchtliche Menge an Verarbeitungszeit, die mit dem Einsatz
dieser Technik verbunden ist, für die einfache Berechnung von mod(M)-Operationen aufgewendet werden.

[0005] Kryptografische Techniken werden zunehmend dafür eingesetzt, Informationen in einer großen und
zunehmenden Bandbreite von in hohem Maße unterschiedlichen Anwendungen zu schützen, ebenso wie in
einer immer größer werdenden Reihe von Vorrichtungen, von hochkomplizierten Mehrzweckvorrichtungen, wie
beispielsweise Einzelplatzrechnern und Workstations, bis hin zu relativ einfachen zweckbestimmten Vorrich-
tungen, wie z.B. "Smart Cards", Fernbedienungen und elektronischen Geräten.

[0006] Zum Beispiel erfährt das Internet (unter anderen Netzwerk-Modalitäten) angesichts der Unkompliziert-
heit und der geringen Kosten einer Kommunikation mittels elektronischer Post ein explosives und exponenti-
elles Wachstum als ein bevorzugtes Kommunikationsmedium. Da das Internet ein öffentlich zugängliches
Netzwerk ist, ist es jedoch nicht sicher, und tatsächlich ist es, und wird es in zunehmendem Maß sein, ein Ziel
einer großen Bandbreite von Angriffen von verschiedenen Einzelpersonen und Organisationen mit der Absicht,
Internet-Nachrichtenverkehr abzuhören, abzufangen und oder anderweitig zu beeinträchtigen oder sogar zu
beschädigen oder illegal in Internet-Sites einzudringen. Diese Sicherheitsgefährdung verstärkt angesichts ei-
nes zunehmenden Vertrauens, das in die Verwendung des Internets als einem bevorzugten Kommunikations-
medium gesetzt wird, die Bemühungen in dem Fachgebiet, immer stärkere kryptografische Techniken zu ent-
wickeln, die erhöhte Sicherheitsebenen für elektronische Kommunikation, wie beispielsweise Mail-Nachrich-
ten, Daten- und Computerdateien, in Bezug auf Abhören, Abfangen und mögliche Manipulationen bereitstel-
len. Demzufolge wird die kryptografische Verarbeitung in eine immer größere Reihe von Einzelplatzrech-
ner-Software, insbesondere Web-Browser und andere Betriebssystemkomponenten sowie Programme für
elektronische Post und andere Anwendungsprogramme integriert, um eine sichere Internet-Konnektivität be-
reitzustellen.

[0007] Eine völlig verschiedene kryptografische Anwendung umfasst so genannte "Smart Cards". Hier ver-
wendet eine zweckbestimmte Vorrichtung von Kreditkartengröße einen eher unkomplizierten und kostengüns-
tigen Mikroprozessor, d.h. eine "Smart Card" speichert Bank- und/oder andere finanzielle Salden für eine ent-
sprechende Einzelperson. Der Mikroprozessor, der ein in der Karte gespeichertes Programm verwendet, kann
eine Transaktion validieren und jedes solche Saldo basierend auf der Transaktion ändern. Insbesondere kann
die Einzelperson eine elektronische Transaktion mit einem Dritten aufrufen, wie beispielsweise einem Anbieter
oder einer Bank, indem die Karte einfach in ein entsprechendes Datenendgerät eingeführt wird und die Trans-
aktionsdaten in eine Tastatur eingegeben werden, die an das Endgerät angeschlossen ist, um die Gesamtheit
oder einen Teil des auf der Karte gespeicherten Saldos zu belasten und/oder gutzuschreiben. Eine derartige
Transaktion stellt einen unverzüglichen Geldtransfer bereit, wobei jeder Bedarf an und Kosten im Zusammen-
2/20

DE 600 26 868 T2 2006.09.07
hang mit der Verarbeitung von Papiergeld oder dokumentbasierten Geldinstrumenten, wie beispielsweise
Schecks, beseitigt werden. Das gespeicherte Programm verwendet extrem starke kryptografische Techniken,
um die auf der Karte gespeicherten Informationen, insbesondere die Salden, vor illegalem Zugriff und Manipu-
lation durch Dritte zu schützen.

[0008] Allerdings, wie oben angemerkt, führt Kryptografie zu einem Verarbeitungs-Overhead. Während bei
komplizierten Vorrichtungen mit beträchtlicher Verarbeitungskapazität, wie beispielsweise PCs und Worksta-
tions, der Overhead den Gesamtsystemdurchsatz reduziert, kann der Overhead in anderen Vorrichtungen mit
eher begrenzter Verarbeitungskapazität, wie beispielsweise Smart Cards, Fernbedienungen und anderen "ein-
fachen" Vorrichtungen, bis zu einem Punkt untragbar werden, dass der Einsatz von ausreichend starken kryp-
tografischen Techniken in solchen Vorrichtungen ausgeschlossen ist.

[0009] Daher besteht angesichts des schnell und anscheinend ständig zunehmenden Bedürfnisses in dem
Fachgebiet, kryptografische Techniken in eine große Bandbreite von Vorrichtungen zu integrieren, insbeson-
dere diejenigen, die über eine begrenzte Verarbeitungsleistung verfügen, ein Bedarf in dem Fachgebiet, die
Verarbeitungszeit zu reduzieren, die zum Implementieren kryptografischer Techniken erforderlich ist.

[0010] Insbesondere könnte der Verarbeitungs-Overhead, der mit gewissen kryptografischen Techniken ver-
bunden ist, insbesondere beim Berechnen einer Prüfsumme, deutlich reduziert werden, wenn eine
mod(M)-Operation durch eine oder mehrere, jedoch weniger prozessorintensive Operationen ersetzt werden
könnte. Wenn dieses Ergebnis erzielt werden könnte, dann könnte der Gesamtdurchsatz von hochkomplizier-
ten Vorrichtungen, wie beispielsweise Einzelplatzrechnern und Workstations, die verschiedene kryptografische
Techniken verwenden, in vorteilhafter Weise erhöht werden. Des Weiteren, wenn ein solcher Overhead redu-
ziert werden könnte, dann könnten starke kryptografische Techniken in eine Vielzahl von rechnerbezogenen
Vorrichtungen integriert werden, die bisher eine unzureichende Verarbeitungsleitung aufwiesen, um derartige
Techniken angemessen zu unterstützen.

[0011] Denning, D., "Cryptography and Data Security", 1982, XP002934657, Seiten 59–64, 71–74, 90–93,
135–138 und 147 offenbart einen kryptografischen Prozess zum Verschlüsseln/Entschlüsseln eines Blocks
von Klartext/Chiffretext, der unter Verwendung einer affinen Abbildung eine Funktion f(x) = ax + b mod(M) im-
plementiert.

[0012] Bosselaers, A., "Comparison of Three Modular Reduction Functions", 1994, CRYPTO '83 offenbart
drei modulare Reduktionsalgorithmen für große ganze Zahlen und vergleicht sie in Bezug auf erwartete Aus-
führungszeiten.

[0013] Es ist die Aufgabe der vorliegenden Erfindung, einen kryptografischen Prozess und eine Vorrichtung
zum Verschlüsseln oder Entschlüsseln eines Blocks von digitalem Eingabe-Klartext oder -Chiffretext in einen
Block von digitalem Ausgabe-Chiffretext oder -Klartext bereitzustellen, wobei die Verarbeitungszeit aufgrund
der mod(M)-Berechnungen reduziert wird.

[0014] Diese Aufgabe wird durch den Gegenstand der selbstständigen Ansprüche gelöst.

[0015] Bevorzugte Ausführungsformen werden durch den Gegenstand der Unteransprüche definiert.

[0016] Vorteilhafterweise erfüllt unsere vorliegende Erfindung diese Anforderung durch Implementieren eines
Primitivs zum Berechnen einer Prüfsumme, doch vorteilhafterweise ohne eine mod(M)-Operation zu erfordern.

[0017] In Übereinstimmung mit unseren breitgefassten erfinderischen Lehren ersetzt dieses Primitiv die
mod(M)-Operation durch eine Reihe von elementaren Registeroperationen. Diese Operationen umfassen
mod-2n-Multiplikationen, Reihenfolgemanipulationen, (z.B. Byte- oder Wort-Swaps), und Additionen – die alle
äußerst einfach zu implementieren sind und sehr wenige Verarbeitungszyklen für die Ausführung erfordern.
Mit dem Einsatz unserer erfinderischen Technik kann die Verarbeitungszeit im Vergleich zu derjenigen be-
trächtlich reduziert werden, die herkömmlicherweise erforderlich ist, um verschiedene kryptografische Parame-
ter zu berechnen, wie beispielsweise eine Nachrichtensignatur (MAC), oder um einen Datenketten-Code zu
implementieren.

[0018] Insbesondere basiert eine elementare, beispielhafte und nicht-invertierbare Version unserer Technik
auf dem Berechnen eines Primitivs durch die folgende Sequenz von Gleichungen:
3/20

DE 600 26 868 T2 2006.09.07
XS ← Wort-Swap (x)

y ← A x + B xS mod (2n)

ys ← Wort-Swap (y)

z ← C yS + y D mod (2n)

θ ← z + yS E mod (2n)

wobei: die Koeffizienten A, B, C, D und E jeweils eine ungerade zufällige ganze Zahl sind, die kleiner oder
gleich 2n ist; und
θ eine n-Bit-Zeichenfolge ist.

[0019] Für den Einsatz bei der Generierung eines MAC oder anderen kryptografischen Parametern sind die
Koeffizienten "geheim"; wenn sie jedoch verwendet werden, um eine Prüfsumme zu generieren, sind diese Ko-
effizienten allgemein bekannt.

[0020] Vorteilhafterweise weist unsere erfinderische Technik als ihre Merkmale sowohl invertierbare als auch
nicht-invertierbare Varianten auf.

KURZE BESCHREIBUNG DER ZEICHNUNGEN

[0021] Die Lehren der vorliegenden Erfindung sind unter Berücksichtigung der folgenden ausführlichen Be-
schreibung in Verbindung mit den folgenden begleitenden Zeichnungen leicht zu verstehen:

[0022] Fig. 1 stellt ein Blockschaltbild des gesamten durchgehenden kryptografischen Prozesses 5 dar, der
die vorliegenden erfinderischen Lehren einsetzt, um beispielsweise eine Nachrichtensignatur (MAC) zu gene-
rieren;

[0023] Fig. 2 stellt ein Blockschaltbild höchster Ebene einer typischen Internet-basierten Client-Server-Verar-
beitungsumgebung dar, die beispielsweise die vorliegende Erfindung einsetzt;

[0024] Fig. 3 stellt ein Blockschaltbild eines in Fig. 2 gezeigten Client-Rechners 100 dar;

[0025] Fig. 4 stellt ein Ablaufdiagramm höchster Ebene des MAC-Generierungsprozesses 400 dar, der in
dem in Fig. 1 gezeigten Prozess 5 verwendet wird, um eine MAC in Übereinstimmung mit unseren vorliegen-
den erfinderischen Lehren zu erzeugen;

[0026] Fig. 5 stellt ein Ablaufdiagramm höchster Ebene der Prozedur Summe alternativ berechnen 500 dar,
die statt der Prozedur Summe berechnen 430 verwendet werden kann, die einen Teil des in Fig. 4 gezeigten
MAC-Generierungsprozesses 400 bildet;

[0027] Fig. 6A stellt eine typische Wort-Swap-Operation dar, wie sie von unserer vorliegenden Erfindung ver-
wendet werden kann; und

[0028] Fig. 6B stellt eine typische Byte-Swap-Operation dar, wie sie von unserer vorliegenden Erfindung ver-
wendet werden kann.

[0029] Zum leichteren Verständnis wurden identische Bezugszeichen verwendet, wo dies möglich war, um
identische Elemente zu bezeichnen, welche die Figuren gemeinsam haben.

DETAILLIERTE BESCHREIBUNG

[0030] Unter Berücksichtigung der folgenden Beschreibung wird der Fachmann klar erkennen, dass die Leh-
ren unserer vorliegenden Erfindung in jeder einer breiten Bandbreite von kryptografischen Techniken verwen-
det werden können, die das Berechnen einer Prüfsumme umfassen. Solche Techniken sind diejenigen, die z.B.
Nachrichtensignaturen (MACs) berechnen oder Datenketten-Codes implementieren.

[0031] Um dem Leser das Verständnis zu erleichtern, werden wir unsere Erfindung im Zusammenhang mit
4/20

DE 600 26 868 T2 2006.09.07
ihrer Verwendung in einer solchen Technik erläutern, wenn auch in sehr allgemeiner Form, die in einer Cli-
ent-Server-Transaktionsverarbeitungsumgebung verwendet werden könnte, in der Transaktionsnachrichten
über ein unsicheres Kommunikationsnetzwerk übertragen werden müssen, wie beispielsweise das Internet,
und insbesondere im Zusammenhang mit der Berechnung einer MAC, die in dieser Technik verwendet wird.

A. Übersicht

[0032] Fig. 1 stellt ein Blockschaltbild des gesamten durchgehenden kryptografischen Prozesses 5 dar, der
eine MAC unter Verwendung unserer vorliegenden Erfindung generiert.

[0033] Wie gezeigt, werden eingehende Klartext-Informationen in so genannte "Nachrichten" gegliedert. Jede
solche Nachricht 7, die als P bezeichnet wird, wird als N Blöcke (P1, P2, ..., PN) gegliedert, wobei jeder Block n
Bits in der Breite beträgt, wobei n hier beispielsweise 32 Bits ist. Jeder derartige Klartext-Block wird, wie durch
die Linie 10 symbolisch dargestellt, auf den Verschlüsselungsprozess 20 angewendet. Dieser Prozess umfasst
beispielsweise den Nachrichten-Verschlüsselungsprozess 23 und den erfinderischen MAC-Generierungspro-
zess 400. Der Prozess 400, (der im Folgenden ausführlich in Verbindung mit Fig. 4 und Fig. 5 beschrieben
wird), generiert unter Vorgabe der Klartext-Nachricht P oder einer geeigneten kryptografischen Manipulation
davon als Eingabe in Übereinstimmung mit unserer Erfindung eine MAC, die typischerweise 64 Bits lang ist,
die für diese Nachricht eindeutig ist. Der Nachrichten-Verschlüsselungsprozess 23 verschlüsselt die Klar-
text-Nachricht in Chiffretext und fügt die 64-Bit-MAC in geeigneter Weise in die Nachricht ein, beispielsweise
als zwei Blöcke der höchsten Ordnung (CN–1, CN), (ein Komma, das aufeinander folgende Werte in Klammern
trennt, wird hierin im Folgenden als ein Operator zum Bezeichnen der Verkettung dieser Werte verwendet), um
die Chiffretext-Nachricht C zu ergeben. Die zwei Blöcke höchster Reihenfolge bilden zusammen die MAC 42.
Abhängig von einem spezifischen Verschlüsselungsprozess, der im Prozess 23 verwendet wird, kann die MAC
42 selbst verschlüsselt werden, wie beispielsweise über eine bekannte DES- (Data Encryption Standard) Ver-
schlüsselung oder eine andere herkömmliche pseudo-zufällige Permutation, oder auch nicht. Die Chiffre-
text-Nachricht wird aus N aufeinander folgenden n-Bit-Blöcken von Chiffretext ausgebildet.

[0034] Die sich daraus ergebende Chiffretext-Nachricht C wird dann gespeichert oder mittels einer vorgege-
benen Modalität, z.B. einem unsicheren Kommunikationskanal, der durch die gestrichelte Linie 45 dargestellt
und durch eine Internet-Verbindung verkörpert wird, zu einer Empfänger-Speicherstelle übertragen. Hier wird
eine empfangene Version der Chiffretext-Nachricht, die als bezeichnet wird, (auch gekennzeichnet als Nach-
richt 40'), durch den Entschlüsselungsprozess 50 entschlüsselt, um eine wiedergewonnene Klartext-Nachricht
70 zu ergeben, die auch als Klartext-Nachricht bezeichnet wird, die, um gültig und damit für die Stromab-
wärts-Verwendung geeignet zu sein, in allen Aspekten mit der ursprünglichen Klartext-Nachricht P identisch
sein muss. Der Entschlüsselungsprozess 50 enthält den Nachrichten-Entschlüsselungsprozess 60, den
MAC-Generierungsprozess 400 und den Identitäts-Komparator 90.

[0035] Um zu bestimmen, ob die wiedergewonnene Klartext-Nachricht gültig ist, z.B. nicht geändert worden
ist, erzeugt der Nachrichten-Entschlüsselungsprozess 60 nicht nur den wiedergewonnenen Klartext, sondern
extrahiert (und entschlüsselt, falls erforderlich,) die MAC aus der Chiffretext-Nachricht . Eine sich daraus er-
gebende MAC wird, wie durch die Linie 67 symbolisch dargestellt, auf einen Eingang des Komparators 90 an-
gewendet. Der wiedergewonnene Klartext wird ebenfalls, wie durch Linie 77 symbolisch dargestellt, auf den
MAC-Generierungsprozess 400 angewendet. Der Prozess 400 berechnet die MAC aus der wiedergewonne-
nen Klartext-Nachricht neu und wendet, wie durch Linie 80 symbolisch dargestellt, eine sich daraus erge-
bende neu berechnete MAC auf einen anderen Eingang des Komparators 90 an. Wenn beide dieser MACs,
die dann auf die entsprechenden Eingänge des Komparators 90 angewendet sind, miteinander identisch über-
einstimmen, generiert der Komparator 90 eine entsprechende Meldung am Ausgang 93, um anzugeben, dass
die wiedergewonnene Klartext-Nachricht , die dann an der Ausgangsleitung 73 (output lead) erscheint, für
nachfolgende Verwendung gültig ist. Wenn die wiedergewonnenen und neu berechneten MACs jedoch nicht
miteinander übereinstimmen, generiert der Komparator 90 eine entsprechende Meldung am Ausgang 97, um
anzugeben, dass die wiedergewonnene Klartext-Nachricht , die dann am Ausgang 73 erscheint, ungültig ist
und ignoriert werden sollte. Insofern, abgesehen von der Generierung einer MAC, als die spezifische Natur der
Verschlüsselungs- und Entschlüsselungstechniken, die jeweils in dem Verschlüsselungsprozess 23 und dem
Nachrichten-Entschlüsselungsprozess 60 verwendet werden, für die vorliegende Erfindung und jede einer gro-
ßen Bandbreite solcher Techniken irrelevant sind, erfolgreich verwendet werden kann, werden wir diese As-
pekte nicht weiter ausführlich erläutern. Trotzdem beschreiben und beanspruchen wir eine solche beispielhafte
kryptografische Technik in unseren gleichzeitig anhängigen Patentanmeldungen in den Vereinigten Staaten,
(auf die der Leser verwiesen wird), mit dem Titel: "Cryptografic Technique That Provides Fast Encryption and
Decryption and Assures Integrity of a Ciphertext Message", eingereicht am 20. April 1998, Serialnummer

P̂

P̂

P̂

P̂

5/20

DE 600 26 868 T2 2006.09.07
09/062,836, veröffentlicht unter US 6226742 am 01.05.01; und "Method and Apparatus for Producing A Mes-
sage Authentication Code", eingereicht am 20. April 1998, Serialnummer 09/062,837 veröffentlicht unter US
6128737 am 03.10.01 – von denen beide dem gemeinsamer Rechtsnachfolger hiervon übertragen sind.

B. Beispielhafte Verarbeitungsumgebung

[0036] Unter Berücksichtigung des Vorgenannten wird auf Fig. 2 Bezug genommen, die ein Blockschaltbild
höchster Ebene einer Client-Server-Verarbeitungsumgebung 200 darstellt, welche die vorliegende Erfindung
einsetzt.

[0037] Wie gezeigt, enthält diese Umgebung einen Rechner 205, der den Server 210 implementiert, wobei
Letzterer beispielsweise ein Web-Server ist. Eine Reihe von einzelnen, entfernt angeordneten Client-Rech-
nern, von denen jeder beispielsweise ein Einzelplatzrechner (PC) ist, von denen nur ein solcher Client, d.h. der
Client-Rechner 100, speziell gezeigt ist, ist unter Verwendung entsprechender Kommunikationskanäle, wie
beispielsweise die Kanäle 140 und 160, über ein unsicheres Kommunikationsnetzwerk, hier beispielsweise als
Internet 150 gezeigt, mit dem Rechner 205 verbunden. Ein (nicht speziell dargestellter) Benutzer, der sich am
Client-Rechner 100 befindet und Informationen von dem Server erhalten möchte, kann das entsprechende Cli-
ent-Programm 130 am Client-Rechner 100 aufrufen. Das Client-Programm bildet eines von einer Reihe von
Anwendungsprogrammen 120, die insgesamt darin resident sind und durch den Client-Rechner 100 ausge-
führt werden. Obwohl das Client-Programm speziell als in den Anwendungsprogrammen resident gezeigt ist,
kann Ersteres auch als eine Komponente, wie beispielsweise ein Web-Browser eines Betriebssystems (O/S),
implementiert werden, zum Beispiel von dem in Fig. 3 gezeigten O/S 337. Der in Fig. 2 gezeigte Server 210
kann jede einer breiten Bandbreite von Anwendungsfunktionen implementieren, einschließlich beispielsweise
eines Servers für Handel, eines Servers für Bankgeschäfte, eines Servers für elektronische Post oder für Da-
teien. In Bezug auf elektronischen Handel beabsichtigt der Benutzer eventuell eine Geschäftstransaktion über
den Client-Rechner 100 und den Server 210 ausführen, was die Bereitstellung, (wie durch Linie 110 symbo-
lisch dargestellt), von Informationen für den Server, wie beispielsweise eine Kontonummer des Benutzers bei
einem Geldinstitut und Zahlungsanweisungen, um Mittel zu einem Zahlungsempfänger zu transferieren, oder
das Erhalten von Formationen, (wie durch die Linie 135 symbolisch dargestellt), von dem Server umfasst, wie
beispielsweise verfügbare Konten- oder Kreditsalden des Benutzers, die in jedem Fall für diesen Benutzer ver-
traulich sind. Alternativ kann der Server 210 ein Dateiserver sein, der für den Benutzer den Zugang zu ver-
schiedenen Dateien, die in einem Verwahrungsort gespeichert sind, bereitstellt, von denen jede vom Benutzer
heruntergeladen werden kann. Sobald eine solche Datei heruntergeladen ist, kann sie in dem Speicher 330
gespeichert werden, (siehe Fig. 3), der sich in dem Client-Rechner 100 zur dortigen lokalen Verwendung be-
findet. Eine solche Datei kann jedoch auch geschützte und/oder vertrauliche Informationen enthalten, für die
ihr Besitzer den Benutzerzugriff steuern möchte. Beispielsweise kann eine solche Datei eine sich selbst instal-
lierende ausführbare Datei für eine Aktualisierung für ein bestimmtes Problem sein, auf die ihr Besitzer, z.B.
ein Software-Hersteller, einen illegalen öffentlichen Zugriff verhindern möchte, d.h. verhindern möchte, dass
die Aktualisierung von einer Person verwendet wird, die dafür keine entsprechende Bezahlung geleistet hat.
Der Server 210 selbst, wie in Fig. 2 gezeigt, kann ebenfalls vertrauliche oder geschützte Informationen, (wie
durch Linie 215 symbolisch dargestellt), die von dem Benutzer stammen (und über das Netzwerk (hier das In-
ternet) 150 an den Server übertragen werden), an stromabwärts liegende, (nicht speziell gezeigte) Ausrüstung
zur anschließenden Verarbeitung bereitstellen oder, (wie durch Linie 218 symbolisch dargestellt), vertrauliche
oder geschützte Informationen von der stromabwärts liegenden Ausrüstung zur möglichen Übertragung über
das Netzwerk an den Benutzer empfangen.

[0038] Das Netzwerk 150, das beispielsweise das Internet ist, ist anfällig für eine Beeinträchtigung durch Drit-
te. In dieser Hinsicht könnten Dritte eine in herkömmlicher Weise verschlüsselte Nachricht abfangen, die dann
über das Netzwerk geleitet wird und z.B. vom Client-Rechner 100 für z.B. eine laufende Finanztransaktion
kommt und einen dort befindlichen Benutzer betrifft. Obwohl Dritte eventuell nicht über ausreichende Ressour-
cen hinsichtlich der verfügbaren Verarbeitungskapazität oder die Zeit zum Knacken eines herkömmlichen Co-
des verfügen, der zum Verschlüsseln von Nachrichten und Wiedergewinnen des in der übertragenen Nachricht
inhärenten Klartexts verwendet wird, können Dritte trotzdem über ausreichende Kenntnis der Chiffretext-Nach-
richt, insbesondere ihrer strukturellen Gliederung, und die Ausrüstung verfügen, die erforderlich ist, um die
Nachricht zum Schaden des Benutzers erfolgreich zu verändern. Diesbezüglich könnten Dritte illegal die Chif-
fretext-Nachricht manipulieren, indem ein oder mehrere vordefinierte Chiffretext-Blöcke für entsprechende ur-
sprüngliche Chiffretext-Blöcke ersetzt werden und dann eine sich daraus ergebende modifizierte Chiffre-
text-Nachricht wieder auf das Netzwerk zur Weiterleitung an den Rechner 205 zurückübertragen wird, um dort
verarbeitet zu werden.
6/20

DE 600 26 868 T2 2006.09.07
[0039] Um die vertrauliche oder geschützte Natur der Informationen, die über das Netzwerk 150 zwischen
dem Client-Rechner 100 und dem Rechner 205 übertragen werden, vor dem Zugriff Dritter zu schützen, ver-
wenden sowohl das Client-Programm 130 als auch der Server 210 jeweils eine kryptografische Kommunikati-
on durch Integration des darin enthaltenen Verschlüsselungsprozesses 20 und des Entschlüsselungsprozes-
ses 50. Daher werden Nachrichten, die zur Weiterleitung über das Netzwerk bestimmt sind und von einer
gleichrangigen Netzwerk-Anwendung, entweder dem Client-Programm 130 oder dem Server 210, generiert
werden, jeweils durch den darin enthaltenen Verschlüsselungsprozess 20 verschlüsselt, um entsprechende
Chiffretext-Nachrichten mit eingebetteten MACs zu ergeben, die dann wiederum jeweils über das Netzwerk
150 zu der anderen gleichrangigen Netzwerk-Anwendung übertragen werden. Auf ähnliche Weise werden von
dem Netzwerk empfangene Chiffretext-Nachrichten von jedem der Gleichrangigen durch den darin enthalte-
nen Entschlüsselungsprozess 50 entschlüsselt, um eine entsprechende wiedergewonnene Klartext-Nachricht
und eine Angabe bezüglich ihrer Gültigkeit zu ergeben. Die Verschlüsselungs- und Entschlüsselungs-Proze-
duren 20 und 50 sind zueinander umgekehrte Prozeduren.

C. Client-Rechner 100

[0040] Fig. 3 stellt ein Blockschaltbild eines Client-Rechners (PC) 100 dar.

[0041] Wie gezeigt, umfasst der Client-Rechner 100 Eingabeschnittstellen (I/F) 320, einen Prozessor 340,
eine Kommunikationsschnittstelle 350, einen Speicher 330 und Ausgabeschnittstellen 360, die alle in her-
kömmlicher Weise durch den Bus 370 verbunden sind. Der Speicher 330 umfasst im Allgemeinen verschiede-
ne Modalitäten, einschließlich beispielsweise einem Direktzugriffsspeicher (RAM) 332 zum temporären Spei-
chern von Daten und Befehlen, Diskettenlaufwerken) 334 zum Austauschen von Informationen per Benutzer-
befehl mit Floppy-Disks, und einem nicht-flüchtigen Massenspeicher 335, der über eine Festplatte implemen-
tiert wird und normalerweise magnetischer Natur ist. Der Massenspeicher 335 kann auch eine CD-ROM oder
eine andere Lesevorrichtung für (nicht speziell gezeigte) optische Medien (oder eine Schreibvorrichtung) ent-
halten, um aus entsprechenden optischen Speichermedien Informationen auszulesen (oder auf sie Informati-
onen zu schreiben). Der Massenspeicher speichert das Betriebssystem (O/S) 337 und die Anwendungspro-
gramme 120; die Letzteren enthalten beispielsweise das Client-Programm 130, (siehe Fig. 2), das unsere er-
finderische Technik integriert. Das in Fig. 3 gezeigte O/S 337 kann durch jedes herkömmliche Betriebssystem
implementiert werden, wie beispielsweise das Betriebssystem WINDOWS NT ("WINDOWS NT" ist ein einge-
tragenes Warenzeichen der Microsoft Corporation von Redmond, Washington). Wir werden aus dem Grund
keine Komponenten des O/S 337 erläutern, da sie alle irrelevant sind. Es genügt zu erwähnen, dass das Cli-
ent-Programm als eines der Anwendungsprogramme 120 unter der Steuerung des O/S ausgeführt wird.

[0042] Wenn unsere vorliegende erfinderische Technik zur Verwendung in kryptografische Verschlüsselungs-
und Entschlüsselungs-Module eingebettet wird, spart sie vorteilhafterweise Verarbeitungszeit, wodurch der
Durchsatz sowohl des Client-Rechners 120 als auch des Servers 210 (siehe Fig. 2) erhöht wird.

[0043] Wie in Fig. 3 gezeigt, können eingehende Informationen von zwei beispielhaften externen Quellen
stammen: Informationen, die vom Netzwerk, z.B. vom Internet und/oder anderen Netzwerkeinrichtungen, über
die Netzwerk-Verbindung 140 zur Kommunikationsschnittstelle 350 oder von einer zweckbestimmten Einga-
bequelle über Pfade) 310 zu Eingabeschnittstellen 320 zugeführt werden. Eine zweckbestimmte Eingabe kann
von einer breiten Bandbreite von Quellen stammen, z.B. einer externen Datenbank. Des Weiteren können Ein-
gabe-Informationen in Form von Dateien oder darin enthaltenem spezifischem Inhalt ebenfalls durch Einsetzen
einer Diskette, welche die Informationen enthält, in das Diskettenlaufwerk 334 bereitgestellt werden, von dem
aus der Rechner 100 unter Benutzerbefehl auf diese Informationen auf der Diskette zugreift und sie liest. Die
Eingabeschnittstellen 320 enthalten entsprechende Schaltungen zum Bereitstellen der notwendigen und ent-
sprechenden elektrischen Verbindungen, die erforderlich sind, um jede verschiedene zweckbestimmte Quelle
von Eingabe-Informationen physikalisch mit dem Rechnersystem 100 zu verbinden und mit ihm eine Schnitt-
stelle auszubilden. Unter der Steuerung des Betriebssystems tauschen die Anwendungsprogramme 120 Be-
fehle und Daten mit externen Quellen über die Netzwerkverbindung 140 oder den (oder die) Pfade) 310 aus,
um Informationen zu senden oder zu empfangen, die typischerweise von einem Benutzer während der Pro-
grammausführung angefordert werden.

[0044] Die Eingabeschnittstellen 320 verbinden auch die Benutzer-Eingabevorrichtungen 395, wie beispiels-
weise eine Tastatur und eine Maus, elektrisch mit dem Rechnersystem 100 und bilden eine Schnittstelle mit
ihm aus. Die Anzeigevorrichtung 380, wie beispielsweise ein herkömmlicher Farbmonitor, und der Drucker
385, wie beispielsweise ein herkömmlicher Laserdrucker, werden jeweils über die Leitungen 363 und 367 an
die Ausgabeschnittstellen 360 angeschlossen. Die Ausgabeschnittstellen stellen die erforderlichen Schaltkrei-
7/20

DE 600 26 868 T2 2006.09.07
se für den elektrischen Anschluss der Anzeigevorrichtung und des Druckers an das Rechnersystem und zur
Ausbildung von Schnittstellen mit diesem bereit. Es ist klar, dass unsere vorliegende erfinderische kryptogra-
fische Technik mit jeder Art von digitalen Informationen arbeiten kann, ungeachtet der Modalitäten, durch die
der Client-Rechner 100 diese Informationen erhält, speichert und/oder überträgt.

[0045] Des Weiteren, da die spezifischen Hardware-Komponenten des Rechnersystems 100 sowie alle an-
deren Aspekte der im Speicher 335 gespeicherten Software, ausgenommen die Module, welche die vorliegen-
de Erfindung implementieren, herkömmlicher Art und bekannt sind, werden sie nicht weiter ausführlich erläu-
tert. Im Allgemeinen weist der Rechner 205 eine Architektur auf, die derjenigen des Client-Rechners 100 ziem-
lich ähnlich ist.

D. Einschränkungen durch Modulo-Arithmetik in herkömmlichen kryptografischen Techniken

[0046] Herkömmliche kryptografische Techniken verwenden häufig als ein Primitiv eine Prüfsumme, die das
Berechnen von mod(M) erfordert, wobei M eine große Primzahl ist, wie beispielsweise 231–1 oder größer.

[0047] Leider erfordert eine mod(M)-Operation für die Berechnung eine Größenordung von wenigstens 10–15
Maschinenzyklen, wenn nicht mehr (basierend auf dem Wert des Moduls M). Diese Funktion wird während der
beiden herkömmlichen Verschlüsselungs- und Entschlüsselungs-Operationen wiederholt berechnet. Wenn da-
her eine solche Funktion auf einer Vorrichtung mit beträchtlicher Verarbeitungskapazität implementiert wäre,
wie beispielsweise einem PC oder einer Workstation, würden die mod(M)-Berechnungen den Gesamtdurch-
satz reduzieren, vielleicht sogar merklich. Dieser Berechnungs-Overhead kann untragbar sein in Vorrichtun-
gen, die eine ziemlich begrenzte Verarbeitungskapazität aufweisen, und schließt daher den Einsatz dieser
kryptografischen Technik in diesen Vorrichtungen – in denen ihr Einsatz von großem Nutzen sein könnte – aus.

E. Unsere erfinderische Technik und ihre Implementierung

[0048] Unter Würdigung dieses Mangels des Stands der Technik haben wir eine Technik zum Implementieren
einer Prüfsumme entwickelt, die vorteilhafterweise keine mod(M)-Operation erfordert.

[0049] Unsere Technik implementiert die Prüfsumme als eine relativ einfache Reihe von elementaren Regis-
teroperationen. Diese Operationen umfassen mod-2n-Multiplikationen, Reihenfolgemanipulationen, (die eine
Operation sind, welche die Bit-Reihenfolge in einem Block ändert, wie zum Beispiel Byte- oder Wort-Swaps)
und Additionen – die alle äußerst einfach zu implementieren sind und sehr wenige Verarbeitungszyklen für die
Ausführung erfordern. Die Operationen, die in dem Primitiv verwendet werden, können auch ziemlich effektiv
in Pipeline-Verarbeitung bearbeitet werden. Daher kann die Verwendung des Primitivs auf der Basis unserer
Erfindung, insbesondere bei Pipeline-Verarbeitung, die Verarbeitungszeit gegenüber derjenigen beträchtlich
reduzieren, die herkömmlicherweise zum Berechnen von verschiedenen kryptografischen Parametern erfor-
derlich ist, wie beispielsweise einer Nachrichtensignatur (MAC), oder zum Implementieren eines Datenket-
ten-Codes. Wir glauben, dass unsere erfinderische Technik ebenfalls vorteilhaft in gewisse Codes integriert
werden kann, um die Sicherheit dieser Codes gegenüber Klartext-Chiffretext-Angriffen zu erhöhen.

[0050] Wir beginnen mit den folgenden mathematischen Definitionen: F(x) = θ, und einem hochgestellten "S",
das wie z.B. in xS entweder eine entsprechende Byte- oder Wort-Swap-Operation bezeichnet.

[0051] Um kurz abzuschweifen, stellen Fig. 6A und Fig. 6B jeweils Wort-Swap- und Byte-Swap-Operationen
dar. Unter Vorgabe eines n-Bit-Blocks 610, (der beispielsweise 32 Bits lang ist), mit zwei 16-Bit-Wörtern (z.B.
den Wörtern 613 und 617, die jeweils auch mit L und R für "links" und "rechts" bezeichnet werden), erzeugt
eine Wort-Swap-Operation, die durch die Linie 620 symbolisch dargestellt wird, einen n-Bit-Block 630, bei dem
diese Wörter ihre Position vertauscht haben, (d.h. mit den Wörtern 633 und 639, die jeweils mit den Wörtern
617 und 613 identisch sind). Eine solche Operation kann in einem Verarbeitungszyklus implementiert werden,
indem die einzelnen Wörter einfach vertauscht werden, wie durch den Pfeil 625 gezeigt. Unter Vorgabe des
n-Bit-Blocks 650, (der ebenfalls beispielsweise 32 Bits lang ist), mit einzelnen Acht-Bit-Bytes 652, 564, 656 und
658 (auch jeweils als Bytes A, B, C D bezeichnet), erzeugt eine Byte-Swap-Operation, die symbolisch durch
die Linie 660 dargestellt wird, den n-Bit-Block 670, wobei die Reihenfolge dieser vier Bytes umgekehrt ist, (d.h.
die Bytes 672, 674, 676 und 678 sind jeweils identisch mit den Bytes 658, 656, 654 und 652). Die
Byte-Swap-Operation kann in einem Verarbeitungszyklus implementiert werden, indem einzelne Bytes parallel
vertauscht werden, wie durch die Pfeile 665 gezeigt.

[0052] Unter Berücksichtigung dieser Definitionen berechnet eine nicht-invertierbare Version des Primitivs
8/20

DE 600 26 868 T2 2006.09.07
F(x), das eine Prüfsumme, insbesondere f(x) = ax + bmod(M) implementiert, die Gleichungen (1)–(5) in Über-
einstimmung mit unseren erfinderischen Lehren wie folgt der Reihe nach:

xS ← Wort-Swap (x) (1)

y ← A x + B xS mod (2n) (2)

yS ← Wort-Swap (y) (3)

z ← C yS + y D mod (2n) (4)

θ ← z + yS E mod (2n) (5)

wobei: die Koeffizienten A, B, C, D und E jeweils eine ungerade zufällige ganze Zahl sind, die kleiner oder
gleich 2n ist; und
θ eine n-Bit-Zeichenfolge ist.

[0053] Wie ersichtlich ist, werden diese Gleichungen unter Verwendung elementarer Registeroperationen im-
plementiert, d.h. Reihenfolgemanipulationen (z.B. Wort- oder Byte-Swaps, Additionen und mod(2n)-Multiplika-
tionen). Demzufolge können diese Operationen unter Verwendung von relativ wenigen Verarbeitungszyklen
durchgeführt werden – mit Sicherheit weniger als die 10–15 Zyklen, die für die Durchführung einer
mod(M)-Operation erforderlich sind. Obwohl wir in den Gleichungen (1) und (3) die Verwendung von
Wort-Swap-Operationen gezeigt haben, könnten stattdessen auch Byte-Swap-Operationen (oder auch andere
Manipulationen, welche die Bit-Reihenfolge verändern) verwendet werden. Für die Verwendung bei der Gene-
rierung einer MAC oder anderer verschiedener kryptografischer Ausdrücke sind die Koeffizientenwerte A, B,
C, D und E "geheime" Werte, d.h. sie werden nicht öffentlich gemacht.

[0054] Eine invertierbare Version des Primitivs F(x), das f(x) ebenfalls in Übereinstimmung mit unseren erfin-
derischen Lehren über die Gleichungen (6)–(15) implementiert, ist wie folgt:

y ← A x mod (2n) (6)

yS ← Wort-Swap (y) (7)

z ← B yS mod (2n) (8)

zS ← Wort-Swap (z) (9)

v ← C zS mod (2n) (10)

vS ← Wort-Swap (v) (11)

w ← D vS mod (2n) (12)

wS ← Wort-Swap (w) (13)

t ← E wS mod (2n) (14)

θ ← t + L yS mod (2n) (15)

wobei: die Koeffizienten A, B, C, D und E jeweils eine ungerade zufällige ganze Zahl sind, die kleiner oder
gleich 2n ist; und
L eine zufällige ganze Zahl ist, die kleiner oder gleich 2n ist.

[0055] Auch hier sind bei der Generierung einer MAC oder anderer verschiedener kryptografischer Ausdrü-
cke alle Koeffizientenwerte A, B, C, D und E "geheime" Werte. Alternativ könnten die Gleichungen (6)–(12) ver-
wendet werden, um das Primitiv mit F(x) = w zu implementieren. Der Weiteren könnte eine "umgekehrte" Ope-
ration, (bei der alle Bits in einem Block in ihrer Abfolge vollständig verändert werden) – was einem anderen Typ
von Reihenfolgemanipulation entspricht – statt eines Byte- oder Wort-Swap verwendet werden. Zum Beispiel
könnte das Primitiv F(x) für eine invertierbare Form von f(x) in Übereinstimmung mit unserer Erfindung durch
9/20

DE 600 26 868 T2 2006.09.07
die Gleichungen (16)–(19) wie folgt implementiert werden:

y ← H x mod (2n) (16)

z ← Umkehrung (y) (17)

s ← J z mod (2n) (18)

θ ← S + K mod (2n) (19)

wobei: die Koeffizienten H, J und K jeweils eine zufällige ganze Zahl sind, die kleiner oder gleich 2n ist.

[0056] Wenn dieses Primitiv dazu verwendet würde, eine MAC oder einen anderen kryptografischen Aus-
druck zu generieren, wären die Koeffizienten H, J und K "geheime" Werte. Da eine Umkehr-Operation im Ver-
gleich zu einer Byte- oder Wort-Swap-Operation relativ langsam ist, wird die Verwendung von Primitiven, die
durch die oben genannten Gleichungen (6)–(12) oder (6)–(15) vorgegeben werden, gegenüber denjenigen be-
vorzugt, die durch die Gleichungen (16)–(19) vorgegeben werden.

[0057] Es ist offensichtlich, dass der Fachmann basierend auf der obigen Beschreibung problemlos verschie-
dene andere Primitive F(x) entwickeln kann, die gleichwertige kryptografische Merkmale für f(x) = ax + b
mod(M) bereitstellen und die in Übereinstimmung mit unserer Erfindung mod-2n-Multiplikationen, Reihenfolge-
manipulationen und Additionen – aber keine mod(M)-Operation – verwenden und daher die oben beschrieben
spezifischen Primitiven ersetzen können.

[0058] Wie oben erläutert, kann ein allgemeines Primitiv, das auf unserer erfinderischen Technik basiert, zum
Generieren einer MAC verwendet werden. Dazu wird eine Reihe von Primitiven F1(x), F2(x), ..., Fp(x) für die
Funktion f(x), die nicht-invertierbar sind und die gleiche Form wie oben angegeben (wie F(x)) aufweisen, aus-
gewählt, jedoch mit verschiedenen Werten für die entsprechenden "geheimen" Koeffizienten, d.h. wenn F1(x)
"geheime" Koeffizienten A, B, C, D und E besitzt, dann besitzt F2(x) "geheime" Koeffizienten a, b, c, d und e
und so weiter. Danach werden unter Vorgabe einer Eingabesequenz X = x1, x2, ..., xN von n-Bit-Zeichenketten
entsprechende Ausgabewerte (Zwischenergebnisse) Y = y1, y2, ..., yN gemäß den Gleichungen (20)–(25) unter
Verwendung von aufeinander folgenden dieser p Primitiven, (wobei p < n), für die entsprechenden aufeinander
folgenden Eingabewerte xi wie folgt berechnet:

y1 = F1(x1) (20)

y2 = F2(x2 + y1) (21)

y3 = F3(x3 + Y2) (22)

yp = Fp(xp + yp–1) (23)

Yp+1 = F1(yp + xp+1) (24)

yp+2 = F2(yp+1 + xp+2) (25)

[0059] Die MAC kann dann in Übereinstimmung mit der Gleichung (26) als eine Funktion der Zwischenergeb-
nisse wie folgt gebildet werden:

[0060] Zur erhöhten Sicherheit kann die Gleichung (25) durch Einführen einer geheimen oder zufälligen Per-
mutation (γi) für jeden yi Ausdruck in der Summe wie in Gleichung (27) gezeigt wie folgt modifiziert werden:

wobei: γi zufällig oder als ein "geheimer" vordefinierter Wert in einem Bereich von einschließlich ± k ausgewählt
10/20

DE 600 26 868 T2 2006.09.07
wird, d.h. γi ∈ {k, k – 1, k – 2, ..., 0. –1, –2, ..., –k}, wobei k eine vordefinierte ganze Zahl ist. Aus Gründen der
Einfachheit kann jedes γi auf den Wert +1 oder –1 gesetzt werden mit einer entweder zufälligen, pseudozufäl-
ligen oder "geheimen" vordefinierten Variation unter allen solchen γi.

[0061] Obwohl die Gleichungen (20)–(25) eine sich wiederholende Reihe der gleichen p Primitiven verwen-
den, können stattdessen auch verschiedene Reihen verwendet werden. Jede Reihe von Funktionen erzeugt
eine separate Ausgabe-Hash-Adresse (output hash value) y, die dann miteinander verkettet werden können,
um eine MAC oder eine einzelne Ausgabe y von jedem der Primitiven auszubilden, die durch Verwendung der
Gleichung (26) summiert werden können, um den MAC-Wert zu ergeben. Des Weiteren könnte eine Reihe mit
Vowärtsverkettung, wie beispielsweise durch die Gleichungen (20)–(23) angegeben, ausgeführt werden. Eine
nächste Ausführung der gleichen Reihe, wie derjenigen, die z.B. durch die Gleichungen (24) und (25) angege-
ben wird, oder eine nächste Ausführung einer verschiedenen Reihe könnte mit "Rückwärts"-Verkettung aus-
geführt werden. In Fällen, in denen eine Rückwärtsverkettung verwendet wird, könnten dazugehörige Einga-
bewerte in umgekehrter Reihenfolge in Bezug auf diejenigen, die mit Vorwärtsverkettung verwendet werden,
auf die einzelnen Primitiven in dieser Reihe angewendet werden.

[0062] In Fällen, in denen unsere erfinderische Technik zum Berechnen einer Prüfsumme verwendet wird,
sind die Berechnungen in hohem Maß denjenigen ähnlich, wenn nicht sogar identisch mit denjenigen, die zum
Berechnen einer MAC verwendet werden, wobei aber alle Koeffizientenwerte sowie alle γi-Werte, wenn sie ver-
wendet werden, öffentlich bekannt sind.

[0063] Unter Berücksichtigung des Vorgenannten wenden wir uns im Folgenden der Beschreibung der Soft-
ware zu, die zum Generieren einer MAC für die Verwendung durch den Verschlüsselungsprozess 20 und in
Übereinstimmung mit einem Primitiv zu, das unsere erfinderische Technik implementiert.

[0064] Fig. 4 stellt ein Ablaufdiagramm höchster Ebene des MAC-Generierungsprozesses 400 dar, der in
dem in Fig. 1 gezeigten Prozess 5 zum Erzeugen einer MAC verwendet wird. Diese Routine implementiert die
Gleichungen (20–(25), wie oben erläutert, unter der Annahme, dass die Primitiven F(x) und (G(x) vollständig
ausgewählt worden sind, Insbesondere fährt die Ausführung nach der Eingabe in die Routine 410 während der
Ausführung entweder des Verschlüsselungsprozesses 20 oder des Entschlüsselungsprozesses 50 zunächst,
wie in Fig. 4 gezeigt, mit Block 410 fort. Dieser Block initialisiert einen Adressenverweis (i) auf eins und eine
Summenvariable (ys) auf Null. Danach gelangt die Ausführung in eine Schleife, die aus den Blöcken 420, 430,
440 und 450 gebildet wird, um aufeinander folgende Ausgabewerte yi für jeden Eingabe-Klartext-Block (Pi), wie
eingegeben, zu berechnen und diese Ausgabewerte in die Summenvariable ys zu summieren.

[0065] Insbesondere fährt die Ausführung, nachdem sie in diese Schleife gelangt ist, zunächst mit Block 420
fort, um einen F(Pi) entsprechenden Ausgabewert yi zu berechnen. Sobald dies geschieht, fährt die Ausführung
mit der Prozedur Summe berechnen 430 fort, die über den Block 435 einfach den Wert der Ausgabe yi zu der
Summenvariablen ys addiert. Sobald dies geschieht, fährt die Ausführung mit dem Entscheidungsblock 440
fort, um zu bestimmen, ob alle N Blöcke der Eingabe-Klartext-Nachricht P verarbeitet worden sind, d.h. ob ein
gegenwärtiger Wert des Adressenverweises dann gleich N ist. Für den Fall, dass noch solche Blöcke übrig
sind, d.h. der gegenwärtige Wert von i kleiner als N ist, leitet der Entscheidungsblock 440 die Routine über den
NEIN-Pfad 443 zum Block 450. Dieser letztere Block inkrementiert den Wert des Adressenverweises i um eins
und leitet die Ausführung dann über den Rückführpfad 455 zum Block 420 zurück, um den nächsten darauf
folgenden Ausgabewert zu berechnen, und so weiter. Zu diesem Zeitpunkt hängen die von Block 420 durch-
geführten Berechnungen davon ab, ob für irgendeine über den Block 420 vorgegebene Wiederholung der Wert
von i gerade oder ungerade ist; daher der Wechsel zwischen den Primitiven F(x) und G(x) für aufeinander fol-
gende i.

[0066] Sobald alle Ausgabewerte berechnet und summiert worden sind, leitet der Entscheidungsblock 440
die Ausführung über den JA-Pfad 447 zum Block 460. Dieser letztere Block bildet die MAC, indem der Wert
von yN mit einem gegenwärtigen Wert der Summenvariablen einfach verkettet wird und als Ausgabe ein sich
daraus ergebender 64-Bit-Wert als die MAC bereitgestellt wird. Sobald dies geschieht, verlässt die Ausführung
die Routine 400.

[0067] Fig. 5 stellt ein Ablaufdiagramm höchster Ebene der Prozedur Summe alternativ berechnen 500 dar,
die statt der Prozedur Summe berechnen 430 verwendet werden kann, die einen Teil des MAC-Generierungs-
prozesses 400 bildet. Die Prozedur 500 implementiert die oben genannte Gleichung (26).

[0068] Insbesondere fährt die Ausführung nach der Eingabe in die Prozedur 500 zunächst mit dem Block 510
11/20

DE 600 26 868 T2 2006.09.07
fort, der einen Wert von γi entsprechend einrichtet. Wie oben erwähnt, kann dieser Wert in einem Bereich von
einschließlich ± k zufällig, pseudo-zufällig oder vordefiniert sein, (obwohl typischerweise Werte von ± 1 verwen-
det werden). Sobald dieser Wert eingerichtet worden ist, fährt die Ausführung mit dem Block 520 fort, der den
gegenwärtigen Ausgabewert γi mit dem entsprechenden Wert von γi multipliziert und einen sich daraus erge-
benden Wert zu der Summenvariablen ys addiert. Sobald dies geschieht, verlässt die Ausführung die Prozedur
500.

[0069] Der Fachmann wird klar erkennen, dass, obwohl die MAC (oder Prüfsumme) als 64 Bits lang beschrie-
ben worden ist, d.h. als zwei 32-Bit-Blöcke, MACs und Prüfsummen von anderen Bit- (und Block-) Größen, wie
beispielsweise ein einzelner 32-Bit-Block oder mehr als 64 Bits lang (aber in ganzzahligen Blockgrößen) statt-
dessen verwendet werden können. Größere MACs stellen größere Sicherheitsebenen in dem gewährleisteten
Ausmaß bereit, jedoch wahrscheinlich auf Kosten einer erhöhten Verarbeitungszeit für das Erzeugen der MAC
und, falls erforderlich, ihr Verschlüsseln und Entschlüsseln.

[0070] Obwohl eine detaillierte Ausführungsform mit einer Reihe von Variationen, welche die Lehren der vor-
liegenden Erfindung integriert, beschrieben worden ist, ist der Fachmann problemlos in der Lage, viele andere
Ausführungsformen und Anwendungen der vorliegenden Erfindung zu entwickeln, die ebenfalls diese Lehren
verwenden.

Patentansprüche

1. Kryptografischer Prozess zur Verwendung in einer Vorrichtung (100) zum Verschlüsseln oder Entschlüs-
seln von jeweils einem Block von digitalem Eingabe-Klartext oder -Chiffretext in jeweils einen Block von digi-
talem Ausgabe-Chiffretext oder -Klartext, wobei der Prozess ein Primitiv F(x), das einer vordefinierten Funktion
f(x) = a x + b mod (M) entspricht, implementiert, wobei a und b vordefinierte ganze Zahlen sind und M eine
vordefinierte ganzzahlige Primzahl ist, wobei die Vorrichtung (100) umfasst:
einen Prozessor (340); und
einen Speicher (330), der an den Prozessor (340) angeschlossen ist und ein Computerprogramm aufweist, das
aus darin gespeicherten computerausführbaren Befehlen gebildet wird; und
der Prozess gekennzeichnet ist durch das Umfassen des Schritts, der von dem Prozessor durchgeführt und
implementiert wird durch die ausführbaren Befehle des:
Umwandelns des digitalen Klartext- oder Chiffretext-Blocks in jeweils den digitalen Ausgabe-Chiffretext- oder
Klartextblock durch ein vorgegebenes Verfahren, das als das Primitiv eine vordefinierte Abfolge von Reihen-
folgemanipulationen, Additionen und mod(2n)-Multiplikationsoperationen umfasst, wobei n eine vordefinierte
ganze Zahl ist, die kollektiv das Primitiv ohne Durchführung von mod(M)-Berechnungen implementieren;
wobei das Primitiv F(x) in Übereinstimmung mit den folgenden Gleichungen implementiert wird:

xS ← Reihenfolgemanipulation (x)

y ← A x + B xs mod (2n)

ys ← Reihenfolgemanipulation (y)

z ← C ys + y D mod (2n)

θ ← z + ys E mod (2n)

wobei: die Koeffizienten A, B, C, D und E jeweils eine ungerade zufällige ganze Zahl sind, die kleiner oder
gleich 2n ist; und
θ eine Ausgabe-Zeichenfolge ist.

2. Prozess nach Anspruch 1, wobei jede der Reihenfolgemanipulationen eine vordefinierte Operation ist,
die eine Bit-Reihenfolge eines Blocks von Daten ändert, an dem jede Reihenfolgemanipulation durchgeführt
wird.

3. Prozess nach Anspruch 2, wobei jede Reihenfolgemanipulation ein Byte- oder Wort-Swap oder Umkehr-
operation ist.

4. Prozess nach irgendeinem der Ansprüche 1 bis 3, wobei die digitalen Blöcke von Klartext und Chiffretext
beide n Bits in der Länge sind.
12/20

DE 600 26 868 T2 2006.09.07
5. Kryptografischer Prozess zur Verwendung in einer Vorrichtung (100) zum Verschlüsseln oder Entschlüs-
seln von jeweils einem Block von digitalem Eingabe-Klartext oder -Chiffretext in jeweils einen Block von digi-
talem Ausgabe-Chiffretext oder -Klartext, wobei der Prozess ein Primitiv F(x), das einer vordefinierten Funktion
f(x) = a x + b mod (M) entspricht, implementiert, wobei a und b vordefinierte ganze Zahlen sind und M eine
vordefinierte ganzzahlige Primzahl ist, wobei die Vorrichtung (100) umfasst:
einen Prozessor (340); und
einen Speicher (330), der an den Prozessor (340) angeschlossen ist und ein Computerprogramm aufweist, das
aus darin gespeicherten computerausführbaren Befehlen gebildet wird; und
der Prozess gekennzeichnet ist durch das Umfassen des Schritts, der von dem Prozessor durchgeführt und
implementiert wird durch die ausführbaren Befehle des:
Umwandelns des digitalen Klartext- oder Chiffretext-Blocks in jeweils den digitalen Ausgabe-Chiffretext- oder
Klartextblock durch ein vorgegebenes Verfahren, das als das Primitiv eine vordefinierte Abfolge von Reihen-
folgemanipulationen, Additionen und mod(2n)-Multiplikationsoperationen umfasst, wobei n eine vordefinierte
ganze Zahl ist, die kollektiv das Primitiv ohne Durchführung von mod(M)-Berechnungen implementieren; wobei
das Primitiv F(x) in Übereinstimmung mit den folgenden Gleichungen implementiert wird:

y ← A x mod (2n)

ys ← Reihenfolgemanipulation (y)

z ← B ys mod (2n)

zs ← Reihenfolgemanipulation (z)

v ← C zs mod (2n)

vs ← Reihenfolgemanipulation (v)

w ← D vs mod (2n)

ws ← Reihenfolgemanipulation (w)

t ← E ws mod (2n)

θ ← t + L ys mod (2n)

wobei: die Koeffizienten A, B, C, D und E jeweils eine ungerade zufällige ganze Zahl sind, die kleiner oder
gleich 2n ist;
L eine zufällige ganze Zahl ist, die kleiner oder gleich 2n ist; und
θ eine Ausgabe-Zeichenfolge ist.

6. Prozess nach Anspruch 5, wobei die digitalen Blöcke von Klartext und Chiffretext beide n Bits in der Län-
ge sind.

7. Computerlesbares Medium mit darauf gespeicherten computerausführbaren Befehlen zum Ausführen
der Schritte von Anspruch 1 oder 5.

8. Vorrichtung (100), die zum Verschlüsseln oder Entschlüssel von jeweils einem digitalen Eingabe-Klar-
text oder -Chiffretext in jeweils einen Block von digitalem Ausgabe-Chiffretext oder Klartext ausgelegt ist, wobei
die Vorrichtung (100) so ausgelegt ist, dass sie ein Primitiv implementiert, das einer vordefinierten Funktion f(x)
= a x + b mod (M) entspricht, wobei a und b vordefinierte ganze Zahlen sind und M eine vordefinierte ganzzah-
lige Primzahl ist, wobei die Vorrichtung (100) umfasst:
einen Prozessor (340); und
einen Speicher (330), der an den Prozessor angeschlossen ist und ein Computerprogramm aufweist, das aus
darin gespeicherten computerausführbaren Befehlen gebildet wird; und
dadurch gekennzeichnet ist, dass der Prozessor in Reaktion auf die ausführbaren Befehle veranlasst, dass die
Vorrichtung (100):
den digitalen Klartext- oder Chiffretext-Block in jeweils den digitalen Ausgabe-Chiffretext- oder Klartextblock
durch ein vorgegehenes Verfahren, das als das Primitiv eine vordefinierte Abfolge von Reihenfolgemanipula-
tionen, Additionen und mod(2n)-Multiplikationsoperationen umfasst, wobei n eine vordefinierte ganze Zahl ist,
13/20

DE 600 26 868 T2 2006.09.07
ohne Durchführung von mod(M)-Berechnungen umwandelt;
wobei das Primitiv F(x) in Übereinstimmung mit den folgenden Gleichungen implementiert wird:

xs ← Reihenfolgemanipulation (x)

y ← A x + B xs mod (2n)

ys ← Reihenfolgemanipulation (y)

z ← C ys + y D mod (2n)

θ ← z + ys E mod (2n)

wobei: die Koeffizienten A, B, C, D und E jeweils eine ungerade zufällige ganze Zahl sind, die kleiner oder
gleich 2n ist; und
θ eine Ausgabe-Zeichenfolge ist.

9. Vorrichtung (100) nach Anspruch 8, wobei jede der Reihenfolgemanipulationen eine vordefinierte Ope-
ration ist, die eine Bit-Reihenfolge eines Blocks von Daten ändert, an dem jede Reihenfolgemanipulation
durchgeführt wird.

10. Vorrichtung (100) nach Anspruch 9, wobei jede Reihenfolgemanipulation ein Byte- oder Wort-Swap
oder Umkehroperationen ist.

11. Vorrichtung (100) nach irgendeinem der Ansprüche 8 bis 10, wobei die digitalen Blöcke von Klartext
und Chiffretext beide n Bits in der Länge sind.

12. Vorrichtung (100), die zum Verschlüsseln oder Entschlüssel von jeweils einem digitalen Eingabe-Klar-
text oder -Chiffretext in jeweils einen Block von digitalem Ausgabe-Chiffretext oder Klartext ausgelegt ist, wobei
die Vorrichtung (100) so ausgelegt ist, dass sie ein Primitiv implementiert, das einer vordefinierten Funktion f(x)
= a x + b mod (M) entspricht, wobei a und b vordefinierte ganze Zahlen sind und M eine vordefinierte ganzzah-
lige Primzahl ist, wobei die Vorrichtung (100) umfasst:
einen Prozessor (340); und
einen Speicher (330), der an den Prozessor angeschlossen ist und ein Computerprogramm aufweist, das aus
darin gespeicherten computerausführbaren Befehlen gebildet wird;
dadurch gekennzeichnet ist, dass der Prozessor in Reaktion auf die ausführbaren Befehle veranlasst, dass die
Vorrichtung (100):
den digitalen Klartext- oder Chiffretext-Block in jeweils den digitalen Ausgabe-Chiffretext- oder Klartextblock
durch ein vorgegebenes Verfahren, das als das Primitiv eine vordefinierte Abfolge von Reihenfolgemanipula-
tionen, Additionen und mod(2n)-Multiplikationsoperationen umfasst, wobei n eine vordefinierte ganze Zahl ist,
ohne Durchführung von mod(M)-Berechnungen umwandelt;
wobei das Primitiv F(x) in Übereinstimmung mit den folgenden Gleichungen implementiert wird:

y ← A x mod (2n)

ys ← Reihenfolgemanipulation (y)

z ← B ys mod (2n)

zs ← Reihenfolgemanipulation (z)

v ← C zs mod (2n)

vs ← Reihenfolgemanipulafion (v)

w ← D vs mod (2n)

ws ← Reihenfolgemanipulation (w)

t ← E ws mod (2n)
14/20

DE 600 26 868 T2 2006.09.07
θ ← t + L ys mod (2n)

wobei: die Koeffizienten A, B, C, D und E jeweils eine ungerade zufällige ganze Zahl sind, die kleiner oder
gleich 2n ist;
L eine zufällige ganze Zahl ist, die kleiner oder gleich 2" ist; und
θ eine Ausgabe-Zeichenfolge ist.

13. Vorrichtung nach Anspruch 12, wobei die digitalen Blöcke von Klartext und Chiffretext beide n Bits in
der Länge sind.

14. Vorrichtung (100) nach Anspruch 12, wobei jede der Reihenfolgemanipulationen eine vordefinierte
Operation ist, die eine Bit-Reihenfolge eines Blocks von Daten ändert, an dem jede Reihenfolgemanipulation
durchgeführt wird.

15. Vorrichtung (100) nach Anspruch 12, wobei jede Reihenfolgemanipulation ein Byte- oder Wort-Swat
oder Umkehroperationen sind.

Es folgen 5 Blatt Zeichnungen
15/20

DE 600 26 868 T2 2006.09.07
Anhängende Zeichnungen
16/20

DE 600 26 868 T2 2006.09.07
17/20

DE 600 26 868 T2 2006.09.07
18/20

DE 600 26 868 T2 2006.09.07
19/20

DE 600 26 868 T2 2006.09.07
20/20

	Titelseite
	Beschreibung
	Patentansprüche
	Anhängende Zeichnungen

