PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

WO 98/11690

(51) International Patent Classification 6 : (11) International Publication Number:

HO4L 9/00 Al) -
. (43) International Publication Date: 19 March 1998 (19.03.98)
(21) International Application Number: PCT/US97/16223 | (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR,

(22) International Filing Date: 12 September 1997 (12.09.97)

(30) Priority Data:
60/025,991
08/887,723

Us
us

12 September 1996 (12.09.96)
3 July 1997 (03.07.97)

(71)(72) Applicant and Inventor: GLOVER, John, J. [US/US]; 26
Amaranth Avenue, Medford, MA 02155 (US).

(74) Agent: GORDON, Peter, J.; Wolf, Greenfield & Sacks, P.C.,
600 Atlantic Avenue, Boston, MA 02210 (US).

BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE,
GH, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR,
LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ,
PL, PT, RO, RU, SD, SE, SG, S, SK, SL, TI, T™M, TR,
TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent (GH, KE,
LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY,
KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH,
DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT,
SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML,
MR, NE, SN, TD, TG).

Published
With international search repori.
Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
amendments.

(54) Title: SELF-DECRYPTING DIGITAL INFORMATION SYSTEM AND METHOD

g
Processor |~ v
4 9- b
b Z
Input Device Interconnection Mechanism » Output Device >0

(57) Abstract

The claimed data protection device (20) includes a processor (22) connected to a memory system (24) through an interconnection
mechanism (26). An input device (28) is also connected to the processor (22) and memory system (24) through the interconnection

mechanism (26). The interconnection mechanism (26) is typically a

combination of one or more buses and one or more switches. The

output device (30) may be a display, and the input device (28) may be a keyboard and/or mouse or other cursor control device.

AL
AM

AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
Cl
CM
CN
Ccu
Cz
DE
DK
EE

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cote d’lvoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
1L
IS
IT
JP
KE
KG
KP

KR
KZ
LC
LI

LK
LR

FOR THE PURPOSES OF INFORMATION ONLY

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Ireland

Israel

Iceland

Ttaly

Japan

Kenya

Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
Lu
LV
MC
MD
MG
MK

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
Sz
TD
TG
T}
™
TR
TT
UA
UG
us
vz
VN
YU
w

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

20

30

WO 98/11690 ' PCT/US97/16223
-1-

SELF-DECRYPTING DIGITAL INFORMATION SYSTEM AND METHOD

Field of the Invention
The present invention is related to mechanisms for protecting digital information from
being copied. In particular, the present invention is related to mechanisms which permit
authorized execution of computer program code or access to other digital information which is

encrypted or otherwise encoded.

Background of the Invention

A serious problem which faces the electronic publishing and software industries is the
ease with which digital information can be copied without authorization from the publisher.
Digital information also may be used or modified without authorization. For example, computer
software may be reverse engineered or attacked by computer viruses.

There are many mechanisms available which may be used to limit or prevent access to
digital information. Such mechanisms often either restrict the ability of the user to make back-up
copies or involve the use of special purpose hardware to limit access to the digital information.
For example, some mechanisms restrict the use of digital information to a particular machine.
See, for example, U.S. Patent 4,817,140. Other mechanisms require the digital information to be
stored on a particular recording medium in order to be used. See, for example, U.S. Patent (
5,412,718. Yet other mechanisms allow only a certain number of uses of the digital informatio'ﬁ: '
See for example, U.S. Patent 4,888,798. Many of these access control mechanisms cause
distribution to be more costly.

Several other patents describe a variety of systems for encryption, compression,
licensing and royalty control and software distribution such as: U.S. Pat. No. 4,405,829, U.S.
Pat. No. 4,864,616, U.S. Pat. No. 4,888,800, U.S. Pat. No. 4,999,806, U.S. Pat. No. 5,021,997,
U.S. Patent No. 5,027,396, U.S. Pat. No. 5,033,084, U.S. Pat. No. 5,081,675, U.S. Pat. No.
5,155,847, U.S. Pat. No. 5,166,886, U.S. Pat. No. 5,191,611, U.S. Pat. No. 5,220,606, U.S. Pat.
No. 5,222,133, U.S. Pat. No. 5,272,755, U.S. Pat. No. 5,287,407, U.S. Pat. No. 5,313,521, U.S.
Pat. No. 5,325,433, U.S. Pat. No. 5,327,563, U.S. Pat. No. 5,337,357, U.S. Pat. No. 5,351,293,
U.S. Pat. No. 5,341,429, U.S. Pat. No. 5,351,297, U.S. Pat. No. 5,361,359, U.S. Pat. No.
5.379,433, U.S. Pat. No. 5,392,351, U.S. Pat. No. 5,394,469, U.S. Pat. No. 5,414,850, U.S. Pat.
No. 5,473,687, U.S. Pat. No. 5,490,216, U.S. Pat. No. 5,497,423, U.S. Pat. No. 5,509,074, U.S.

10

15

20

25

30

WO 98/11690 PCT/US97/16223

-2-

Pat. No. 5,,511,123, U.S. Pat. No. 5,524,072, U.S. Pat. No. 5,532,920, U.S. Pat. No. 5,555,304,
U.S. Pat. No. 5,557,346, U.S. Pat. No. 5,557,765, U.S. Pat. No. 5,592,549, U.S. Pat. No.
5,615,264, U.S. Pat. No. 5,625,692, and U.S. Pat. No. 5,638,445.

Computer programs or other digital information also may be encrypted in order to
prevent an individual from making a useful copy of the information or from reverse engineering
a program. Even with such encryption, however, a computer program must be decrypted in order
for a computer to load and execute the program. Similarly, other digital information must be
decrypted before it can be accessed and used. Generally, digital information is decrypted to disk,
and not to main memory of the computer which is more protected by the operating system,
because decryption to main memory results in a significant loss of memory resources. If the
purpose for using encryption is to prevent uscrs from copying the digital information, then
decryption of the information to accessible memory for usc defeats this purpose.

One way to protect digital information using encryption has been made available by
International Business Machines (IBM) and is called a “CRYPTOLOPE” information container.
This technology is believed to be related to U.S. Patent Nos. 5,563,946 and 5,598,470 (to Cooper
et al.), and published European patent applications 0679977, 0679978, 0679979 and 0681233.
The CRYPTOLOPE system requires a user to have a “helper application” and a key. The
CRYPTOLOPE information container is generated by IBM. The content provider submits data
to IBM, which in turn encrypts and packages the data ina CRYPTOLOPE information container.
The helper application is a form of memory resident program, called a terminate and stay
resident (TSR) program, which is a form of input/output (1/O) device driver installed in the
operating system and which monitors requests from the operating system for files on specified
drives and directories. Because the TSR program must know the directory, and/or file name to
be accessed, that information also is available to other programs. Other programs could use that
information to manipulate the operation of the TSR program in order to have access to decrypted
contents of the information container. The encrypted information container includes an
executable stub which is executed whenever the application is run without the installed TSR
program or from a drive not monitored by the TSR program to prevent unpredictable activity
from executing encrypted code. This stub may be used to install decryption and causc the
application be executed a second time, or to communicate with the TSR program to instruct the
TSR program to monitor the drive. It may be preferable from the point of view of the content

provider however to maintain an encryption process and keys independently of any third party.

20

25

WO 98/11690 PCT/US97/16223
-3-

Multimedia content, such as a movie or hypertext presentation also may be stored on a
digital versatile disk (DVD), sometimes called a digital video disk. compact disk read-only
memory (CD-ROM), rewriteable compact disks (CD-RW) or other medium in an encrypted
digital format for use with special-purpose devices. For example, concern about illegal copying
of content from digital video disks or other digital media has resulted in a limited amount of
content being available for such devices. This problem has caused representatives of both
multimedia providers and digital video disk manufacturers to negotiate an agreement on an
encryption format for information stored on DVDs. This copy protection scheme is licensed
through an organization called the CSS Interim Licensing organization. However, in this
arrangement, the content provider is limited to using the agreed upon encryption format and a
device manufacturer is limited to using a predetermined decryption system.

Encryption has also been used to protect and hide computer viruses. Such viruses are
typically polymorphic, i.e., they change every time they infect a new program, and are encrypted.
The virus includes a decryption program that executes to decrypt the virus every time the
infected program is run. Such viruses are described, for example, in “Computer Virus-Antivirus
Coevolution” by Carey Nachenberg, Communications of the ACM, Vol. 40, No. 1, (Jan. 1997),
p. 46 et seq. Such viruses include decryption keys within them since, clearly, their execution is
not carried out by the user and a user would not be asked for authorization keys to permit
execution of the viruses. Additionally, such viruses are typically only executed once at the start
of execution of an infected program and permanently return control to the infected program after

execution.

Summary of the Invention

Some of these problems with digital information protection systems may be overcome
by providing a mechanism which allows a content provider to encrypt digital information
without requiring either a hardware or platform manufacturer or a content consumer to provide
support for the specific form of corresponding decryption. This mechanism can be provided in a
manner which allows the digital information to be copied easily for back-up purposcs and to be
transferred easily for distribution, but which should not permit copying of the digital information
in decrypted form. In particular, the encrypted digital information is stored as an executable

computer program which includes a decryption program that decrypts the encrypted information

20

25

30

WO 98/11690 ' PCT/US97/16223
-4 -

to provide the desired digital information, upon successful completion of an authorization

procedure by the user.

In one embodiment, the decryption program is executed as a process within a given
operating system and decrypts the digital information within the memory area assigned to that
process. This memory area is protected by the operating system from copying or access by other
processes. Even if access to the memory arca could be obtained, for example through the
operating system, when the digital information is a very large application program or a large data
file, a copy of the entire decrypted digital information is not likely to exist in the memory area in
complete form.

By encrypting information in this manner, a platform provider merely provides a
computer system with an operating system that has adequate security to define a protected
memory area for a process and adequate functionality to execute a decryption program. The
content provider in turn may use any desired encryption program. In addition, by having a
process decrypt information within a protected memory area provided by the operating system,
the decrypted information does not pass through any device driver, memory resident program or
other known logical entity in the computer system whose behavior may be controlled to provide
unauthorized access to the data. The ability to reverse engineer or attack a computer program
with a computer virus also may be reduced.

In another embodiment, the decryption program is part of a dynamically loaded device
driver that responds to requests for data from the file containing the encrypted data. When the
digital information product is first executed, this device driver is extracted from the file and is
loaded into the operating system. The executed digital information product then informs the
loaded device driver of the location of the hidden information in the file, any keys or other
passwords, and the name of a phantom directory and file to be called that only the digital
information product and the device driver know about. The name of this directory may be
generated randomly. Each segment of hidden information in the digital information product may
be assigned its own unique file name in the phantom directory. The digital information product
then makes a call to the operating system to execute one of the files in the phantom directory.
The loaded driver traps these calls to the operating system, accesses the original file, decrypts the
desired information and outputs the desired information to the operating system.

In combination with other mechanisms that track distribution, enforce royalty payments

and control access to decryption keys, the present invention provides an improved method for

20

25

30

WO 98/11690 PCT/US97/16223
-5-
identifying and detecting sources of unauthorized copies. Suitable authorization procedures also
enable the digital information to be distributed for a limited number of uses and/or users, thus
enabling per-use fees to be charged for the digital information.

Accordingly, one aspect of the invention is a digital information product including a
computer-readable medium with digital information stored thereon. The digital information
includes computer program logic having a first portion of executable computer program logic
and a second portion of digital information. The first portion of executable program logic, when
executed, defines a mechanism for responding to requests for digital information from an
operating system of a computer. This mechanism, when used to access the second portion of the
encrypted digital information, decrypts the encrypted digital information, and provides the
encrypted digital information to the operating system.

In the foregoing aspect of the invention, the digital information may be executable
computer program logic. Hence, one aspect of the invention is a computer program product,
including a computer readable medium with computer program logic stored thereon. The
computer program logic includes a first portion of executable computer program logic and a
second portion of encrypted computer program logic. The first portion of executable computer
program logic, when executed, defines a mechanism for responding to requests for computer
program logic from an operating system of a computer. This mechanism accesses the second
portion of encrypted computer program logic, decrypts the encrypted computer program logic,
and provides the decrypted computer program logic to the operating system.

Another aspect of the present invention is a computer program product, a computer
system and a process which produce a computer program or digital information product in
accordance with other aspects of the invention, using executable program code for the first and
second portions of the desired computer program product.

Another aspect of the present invention is a computer program product including a self-
decrypting encrypted executable computer program. The product includes a computer readable
medium having computer program logic stored thereon. The computer program logic defines
first, second and third modules, wherein the third module defines the encrypted executable
computer program. The first module, when executed by a computer, defines a mechanism for
loading the second module into memory of the computer. The second module, when executed by
a computer, defines a mechanism for communicating with an operating system of the computer

io receive requests for program code from the encrypted executable compulter program from the

15

20

25

30

WO 98/11690 PCT/US97/16223
-6 -
third module, and for processing the requests to access and decrypt the encrypted executable
computer program and for providing the decrypted executable code from the third module to the
operating system.

Another aspect of the invention is a process for executing encrypted executable
computer programs on a computer system having a processor, memory and operating system.
The process involves receiving computer program logic having a first module defining a start up
routine, a second module, and a third module containing the encrypted executable computer
program. The first module of the received computer program logic is executed using the
processor. When the first module is executed, the second module is caused to be loaded into the
memory of the computer system. Requests are generated from the operating system for data
from the encrypted executable computer program and arc received by the sccond module. The
second module accesses and decrypts the encrypted executable computer program in response to
these requests and returns the decrypted executable computer program to the operating system.

These and other aspects, advantages and features of the present invention and its

embodiments will be more apparent given the following detailed description.

Brief Description of the Drawing

In the drawing,

Fig. 1 is a block diagram of a typical computer system with which the present invention
may be implemented,;

Fig. 2 is a block diagram of a memory system in the computer system of Fig. 1;

Fig. 3 is a diagram of a computer program or digital information product which may be
recorded on a computer readable and writable medium, such as a magnetic disc;

Fig. 4 is a flowchart describing how the computer program or digital information
product of Fig. 3 is used;

Fig. 5 is a flowchart describing operation of an examplc unwrap procedure as shown in
Fig. 3 in one embodiment of the invention;

Fig. 6 is a flowchart describing operation of an example device driver as shown in Fig.
3 in one embodiment of the invention;

Fig. 7 is a block diagram of a computer system in the process of exccuting a computer

program product in accordance with one embodiment of the invention;

25

30

WO 98/11690 PCT/US97/16223
-7 -

Fig. 8 is a flowchart describing operation of an example unwrap procedure in another

embodiment of the invention; and

Fig. 9 is a flowchart describing how a computer program product such as shown in Fig.

3 is constructed.

Detailed Description

The present invention will be more completely understood through the following
detailed description which should be read in conjunction with the attached drawing in which
similar reference numbers indicate similar structures.

Embodiments of the present invention may be implemented using a general purpose
digital computer or may be implemented for use with a digital computer or digital processing
circuit. A typical computer system 20 is shown in Fig. 1, and includes a processor 22 connected
to a memory system 24 via an interconnection mechanism 26. An input device 28 also is
connected to the processor and memory system via the interconnection mechanism, as 1s an
output device 30. The interconnection mechanism 26 is typically a combination of one or more
buses and one or more switches. The output device 30 may be a display and the input device
may be a keyboard and/or a mouse or other cursor control device.

It should be understood that one or more output devices 30 may be connected to the
computer system. Example output devices include a cathode ray tube (CRT) display, liquid
crystal display (LCD), television signal encoder for connection to a television or video tape
recorder, printers, communication devices, such as a modem, and audio output. It also should be
understood that onc or more input devices 28 may be connected to the computer system.
Example input devices include a keyboard, keypad, trackball, mouse, pen and tablet,
communication device, audio or video input and scanner. It should be understood that the
invention is not limited to the particular input or output devices used in combination with the
computer system or to those described herein.

The computer system 20 may be a general purpose computer system, which is
programmable using a high level computer programming language, such as "C++," "Pascal,”
“VisualBasic.” The computer system also may be implemented using specially programmed,
special purpose hardware. In a general purpose computer system, the processor is typically a
commercially available processor, such as the Pentium processor from Intel Corporation. Many

other processors are also available. Such a processor executes a program called an operating

15

20

25

30

WO 98/11690 PCT/US97/16223
-8-

system, such as Windows 95 or Windows NT 4.0, both available from Microsott Corporation,
which controls the execution of other computer programs and provides scheduling, debugging,
input output control, accounting compilation, storagc assignment, data management and memory
management, and communication control and related services. Other examples of operating
systems include: MacOS System 7 from Apple Computer, OS/2 from IBM, VMS from Digital
Equipment Corporation, MS-DOS from Microsoft Corporation, UNIX from AT&T, and IRIX
from Silicon Graphics, Inc.

The computer system 20 also may be a special purpose computer system such as a
digital versatile disk or digital video disk (DVD) player. In a DVD player, there is typically a
decoder controlled by some general processor which decodes an incoming stream of data from a
DVD. In some instances, the DVD player includes a highly integrated DVD decoder engine.
Such devices generally have a simple operating system which may be modified to include the
capabilities described and used herein in connection with the typical operating systems in a
general purpose computer. In particular, some operating systems are designed to be small
enough for installation in an embedded system such as a DVD player, including the WindowsCE
operating system from Microsoft Corporation and the JavaOS operating system from SunSoft
Corporation. The operating system allows a content provider to provide its own programs that
define some of the content, which is particularly useful for interactive multimedia. This
capability also can be used to provide encryption and decryption, in accordance with the
invention.

The processor and operating system define a computer platform for which application
programs in a programming language such as an assembly language or a high level programming
language are written. 1t should be understood that the invention is not limited to a particular
computer platform, operating system, processor, or programiming language. Additionally, the
computer system 20 may be a multi-processor computer system or may include multiple
computers connected over a computer network.

An example memory system 24 will now be described in more detail in connection with
Fig. 2. A memory system typically includes a computer readable and writable non-volatile
recording medium 40, of which a magnetic disk, a flash memory, rewritcable compact disk (CD-
RW) and tape are examples. The recording medium 40 also may be a rcad only medium such as
a compact disc-read only memory (CD-ROM) or DVD. A magnetic disk may be removable,

such as a “floppy disk” or “optical disk,” and/or permanent, such as a “hard drive.” The disk,

20

30

WO 98/11690 PCT/US97/16223
-9

which is shown in Fig. 2, has a number of tracks, as indicated at 42, in which signals are stored,
in binary form, i.e., a form interpreted as a sequence of 1's and 0's, as shown at 44. Such signals
may define an application program to be executed by the microprocessor, or information stored
on the disk to be processed by the application program. Typically, in the operation of a general
purpose computer, the processor 22 causes data to be read from the non-volatile recording
medium 40 into an integrated circuit memory element 46, which is typically a volatile random
access memory, such as a dynamic random access memory (DRAM) or static random access
memory (SRAM). The integrated circuit memory clement 46 allows for faster access to the
information by the processor than disk 40, and is typically called the system or host memory.
The processor generally causes the data to be manipulated within the integrated circuit memory
46 and may copy the data to the disk 40, if modified, when processing is completed. A variety of
mechanisms are known for managing data movement between the disk 40 and the integrated
circuit memory 46, and the invention is not limited thereto. It should also be understood that the
invention is not limited to a particular memory system.

The file system of a computer generally is the mechanism by which an operating system
manages manipulation of data between primary and secondary storage, using files. A fileisa
named logical construct which is defined and implemented by the operating system to map the
name and a sequence of logical records of data to physical storage media. An operating system
may specifically support various record types or may leave them undefined to be interpreted or
controlled by application programs. A file is referred to by its name by application programs and
is accessed through the operating system using commands defined by the operating system. An
operating system provides basic file operations provided by for creating a file, opening a file,
writing a file, reading a file and closing a file.

In order to create a file, the operating system first identifies space in the storage media
which is controlled by the file system. An entry for the new file is then made in a directory
which includes entries indicating the names of the available files and their locations in the file
system. Creation of a file may include allocating certain available space to the file. Opening a
file returns a handle to the application program which it uses to access the file. Closing a file
invalidates the handle.

In order to write data to a file, an application program issues a command to the
operating system which specifies both an indicator of the file, such as a file name, handle or

other descriptor, and the information to be written to the file. Given the indicator of the file, the

10

15

20

25

30

WO 98/11690 PCT/US97/16223
-10 -
operating system searches the directory to find the location of the file. The directory entry stores
a pointer, called the write pointer, to the current end of the file. Using this pointer, the physical
location of the next available block of storage is computed and the information is written to that
block. The write pointer is updated in the directory to indicate the new end of the file.

In order to read data from a file, an application program issues a command to the
operating system specifying the indicator of the file and the memory locations assigned to the
application where the next block of data should be placed. The operating system searches its
directory for the associated entry given the indicator of the file. The directory may provide a
pointer to a next block of data to be read, or the application may program or specify some offset
from the beginning of the file to be used.

A primary advantage of using a file system is that, for an application program, the file is
a logical construct which can be created, opened, written to, read from and closed without any
concern for the physical storage used by the operating system.

The operating system also allows for the definition of another logical construct called a
process. A process is a program in execution. Each process, depending on the operating system,
generally has a process identifier and is represented in an operating system by a data structure
which includes information associated with the process, such as the statc of the process, a
program counter indicating the address of the next instruction to be executed for the process,
other registers used by process and memory management information including base and bounds
registers. Other information also may be provided. The base and bounds registers specified for a
process contain values representing the largest and smallest addresses that can be generated and
accessed by an individual program. Where an operating system is the sole entity able to modify
these memory management registers, adequate protection from access to the memory locations of
one process from another process is provided. As a result, this memory management information
is used by the operating system to provide a protected memory area for the process. A process
generally uses the file system of the operating system to access files.

The present invention involves storing encrypted digital information, such an audio,
video, text or an executable computer program, on a computer readable medium such that it can
be copied easily for back-up purposes and transferred easily for distribution, but also such that it
cannot be copied readily in decrypted form during use. In particular, the digital information is
stored as a computer program that decrypts itsclf while it is used to provide the digital

information, e.g., to provide executable operation code to the operating system of a computer, as

20

25

30

WO 98/11690 PCT/US97/16223
-11-

the digital information is needed. Any kind of encryption or decryption may be used and also
may include authorization mechanisms and data compression and decompression. In one
embodiment of the present invention, decrypted digital information exists only in memory
accessible to the operating system and processes authorized by the operating system. When the
digital information is a large application program, a copy of the entire decrypted application
program is not likely to exist in the main memory at any given time, further reducing the
likelihood that a useful copy of decrypted code could be made. The decryption operation also is
performed only if some predetermined authorization procedure is completed successfully.

One embodiment of the invention, in which the decryption program is a form of
dynamically loaded device driver, will first be described. Fig. 3 illustrates the structure of digital
information as stored in accordance with one embodiment of the present invention, which may
be stored on a computer readable medium such as a magnetic disc or compact disc read only
memory (CD-ROM) to form a computer program product. The digital information includes a
first portion 50, herein called an unwrap procedure or application, which is generally
unencrypted executable program code. The purpose of the unwrap procedure is to identify the
locations of the other portions of the digital information, and may perform other operations such
as verification. In particular, the unwrap procedure identifies and extracts a program which will
communicate with the operating system, herein called a virtual device driver 52. The unwrap
procedure may include decryption and decompression procedures to enable it to
decrypt/decompress the driver, and/or other content of this file. The program 52 need not be a
device driver. The virtual device driver 52 typically follows the unwrap procedure 50 in the file
container, the digital information. The virtual device driver, when executed, decrypts and
decodes the desired digital information such as an executable computer program code from
hidden information 54, which may be either encrypted and/or encoded (compressed). 1t is the
decrypted hidden information which is the desired digital information to be accessed. This
hidden information may be any kind of digital data, such as audio, video, text, and computer
program code including linked libraries or other device drivers.

In this embodiment of the computer program product, labels delineate the boundaries
between the device driver and the hidden files. These labels may or may not be encrypted. A
first label 56 indicates the beginning of the code for the virtual device driver 52. A second label
58 indicates the end of the virtual device driver code. Another label 60 indicates the beginning

of the hidden information and a label 62 indicates the end of that application. There may be one

25

30

WO 98/11690 PCT/US97/16223
-12-

or more blocks of such hidden information, each of which can be given a different name. It may
be advantageous to usc the name of the block of information in its begin and end tags. This
computer program product thus contains and is both executable computer program code and one
or more blocks of digital information. A table of locations specifying the location of each
portion of the product could be used instead of labels. Such a table could be stored in a
predetermined location and also may be encrypted.

The overall process performed using this computer program product in one embodiment
of the invention will now be described in connection with Fig. 4. This embodiment may be
implemented for use with the Windows95 operating system and is described in more detail in
connection with Figs. 5-7. An embodiment which may be implemented for use on the
WindowsNT 4.0 operating system is described in more detail below in connection with Fig. 8.

In both of these described embodiments, the digital information is an executable computer
program which is read by the operating system as data from this file and is executed. The same
principle of operation would apply if the data were merely audio, video, text or other information
to be conveyed by a user. In the embodiment of Fig. 4, the computer program is first loaded
into memory in step 70, and the unwrap procedure 50 is executed by the operating system, as any
typical executable computer program is executed. The unwrap procedure may perform
authorization, for example by checking for a required password or authentication code, and may
receive any data needed for decryption or decompression, for example keys or passwords, in step
72. Suitable authorization procedures may provide the ability to distribute software for single
use. The unwrap procedure locates the virtual device driver 52 within the computer program in
step 74, and then locates the hidden application in step 76. The virtual device driver 52 is then
extracted by the unwrap procedure from the computer program, copied to another memory
location and loaded for use by the operating system in step 78. An advantage of an operating
system like Windows95 is that it allows such device drivers to be loaded dynamically without
restarting the computer.

The executed unwrap procedure 50, in step 80, informs the loaded virtual device driver
52 of the location of the hidden information in the file, any keys or other passwords, and a name
of a phantom directory and file to be called that only the unwrap procedure and the virtual device
driver know about. The name of this phantom directory may be generated randomly. Each
segment information hidden in the digital information product may be assigned its own unique

file name in the phantom directory.

20

25

30

WO 98/11690 | PCT/US97/16223
- 13-

After the loaded virtual device driver 52 receives all communications from the unwrap
procedure, it opens the original application file for read only access in step 82. The unwrap
procedure then makes a call to the operating system in step 84 to execute the file in the phantom
directory for which the name was transmitted to the loaded virtual device driver. One function of
the loaded virtual device driver 52 is to trap all calls from the operating system to access files in
step 86. Any calls made by the operating system to access files in the phantom directory are
processed by the virtual device driver, whereas calls to access files in other directories are
allowed to proceed to their original destination. In response to each call from the operating
system, the virtual device driver obtains the bytes of data requested by the operating system from
the original computer program file in step 88. These bytes of data are then decrypted or
decompressed in step 90 and returned to the operating system. When processing is complete, the
phantom application is unloaded from the operating system in step 92, and may be deleted from
the memory.

A more detailed description of the process of Fig. 4 will now be described in connection
with Figs. 5-7. Fig. 5 is a flowchart describing the operation of one embodiment of the unwrap
procedure in more detail. The first step performed by this procedure is identifying the operating
system being used, in step 100. This step is useful because different methods may be used with
different operating systems. All code that may be used to run in various operating systems may
be placed in this unwrap procedure. This procedure also may contain the
decompression/decryption code, for example or any other computer program code to be
executed.

The executed application then opens the original executable file as a data file and
searches for the begin and end tags of the device driver and hidden files in step 102. The device
driver code is copied into memory and loaded into the operating system in step 104. The unwrap
procedure then informs the device driver of the name of the original application file, offsets of
the hidden files and the name of a phantom directory, which is typically randomly generated
(step 106). This communication may be performed using a “Devicel OControl” function call in
the Windows95 operating system. The unwrap procedure then makes a call to the operating
system to execute the hidden file in the phantom directory, in step 108.

The operation of one embodiment of a device driver will now be described in
connection with Fig. 6. After the device driver is loaded into the operating system, it hooks into

a position between the operating system and a file system driver (FSD), in step 110, to intercept

10

20

25

30

WO 98/11690 PCT/US97/16223
-14 -

calls made by the operating system to the FSD for data from files in the phantom directory. The
FSD is the code within the operating system that performs physical reading and writing of data to
disk drives. The operating system makes requests to the FSD for data from files in directories on
the disk drives. The driver then receives information from the unwrap procedure including the
name of the original file, the location of hidden files within the original file, and the name of the
phantom directory created by the unwrap procedure (step 112). The device driver opens the
original file as a read only data file. The device driver now traps calls, in step 114, made from
the operating system for files in the phantom directory. Calls to other directories are ignored and
passed on to the original destination. The device driver then reads the data from the original data
file, decrypts and decompresses it, and returns the decrypted/decompressed data to the operating
system in step 116.

For example, if the offset for the hidden application in the original data file is 266,270
bytes and the operating system asks for 64 bytes starting at offset 0 of the hidden application in
the phantom directory, the device driver reads 64 bytes from the original file starting at offset
266,270, decrypts/decompresses those 64 bytes, and returns the first 64 decrypted/decompressed
bytes back to the operating system. From the point of view of the operating system, the 64 bytes
appear to have come from the file in the phantom directory. Steps 114 and 116 are performed on
demand in response to the operating system.

A block diagram of the computer system in this embodiment, with a device driver
loaded and in operation, will now be described in more detail in connection with Fig. 7. Fig. 7
illustrates the operating system 120, the loaded device driver 122, a file system driver 124, the
original executable file 126 as it may appear on disk and the unwrap procedure 128. The
executable file may in fact be on a remote computer and accessed through a network by the
device driver. The unwrap procedure causes the operating system to begin execution of the
hidden file by issuing an instruction to execute the file in the phantom directory, as indicated at
130. This command is issued after the device driver 122 is informed of the file name of the
original executable file 126, offsets of the hidden files within that file and the name of the
phantom directory, as indicated at 132. The operating system then starts making calls to the
phantom directory as indicated at 134. The device driver 122 traps these calls and turns them
into requests 136 to the file system driver to access the original executable file 126. Such
requests actually are made to the operating system 120, through the device driver 122 to the file

system driver 124. The file system driver 124 returns encrypted code 138 to the device driver

20

25

30

WO 98/116%90 PCT/US97/16223
-15-

122. The encrypted code 138 actually passes back through the device driver 122 to the operating
system 120 which in turn provides the encrypted code 138 to the device driver 122 as the reply to
the request 136 for the original file. The device driver 122 then decrypts the code to provide
decrypted code 140 to the operating system 120.

Another embodiment of the invention will now be described in connection with Fig. 8.
This embodiment may be implemented using the WindowsNT 4.0 operating system, for
example. In this embodiment, the device driver portion 52 of the computer program product is
not used. The unwrap procedure for this embodiment begins by identifying the operating system
being used similar, which is step 100 in Fig. 5. If the operating system is Windows NT 4.0, for
example, a different unwrap procedure for this embodiment is performed. Before describing this
unwrap procedure, a brief description of some of the available operating system commands will
be provided.

Currently, under all versions of the Window operating system or operating environment
from Microsoft Corporation (such as Windows 3.1, Windows 95 and Windows NT 3.51 and 4.0)
all executable files (.exe) or dynamic link library (.dll and .ocx) files, which are executable files
with different header and loading requirements than .exe files, that are loaded into memory by
the operating system must reside as a file either locally, e.g., on a disk drive or remotely, e.g.,
over a network or communications port. All further references herein to loading an executable
will be using the Win32 function calls used in Windows 95 and NT 3.51 and 4.0 operating
systems. The CreateProcess() function which loads files with an .exe extension takes ten

parameters:

BOOL CreateProcess(// Prototype from Microsoft Visual C+ + Help Documentation

LPCTSTR lpApplicationName, / pointer to name of executable module
LPTSTR IpCommandLine, // pointer to command line string
LPSECURITY_ATTRIBUTES ipProcessAttributes, // pointer to process security attributes
LPSECURITY ATTRIBUTES /pThreadAttributes, // pointer to thread security attributes
BOOL binheritHandles, // handle inheritance flag

DWORD dwCreationFlags, /! creation flags

LPVOID IpEnvironment, // pointer to new environment block
LPCTSTR IpCurrentDirectory, // pointer to current directory namc
LPSTARTUPINFO [pStartupinfo, // pointer to STARTUPINFO

LPPROCESS INFORMATION /pProcessinformation // pointer to PROCESS_INFORMATION
)

15

20

25

30

WO 98/11690 ' PCT/US97/16223

- 16 -
Three of these parameters arc pointers to strings that contain an application file name, command
line parameters, and the current directory. The other parameters are security, environmental, and
process information. The LoadLibrary() function takes one parameter that is a pointer to a string

that contains the application file name:

HINSTANCE LoadLibrary(// Prototype from Microsoft Visual C+ + Help Documentation
LPCTSTR [pLibFileName // address of filename of executable module

);

The LoadLibraryEx() function takes three parameters the first being the same as LoadLibrary(),
the second parameter must be null, and the third tells the operating system whether to load the
file as an executable or as a data file in order to retrieve resources such as icons or string table

data from it and not load it as an executable:

HINSTANCE LoadLibraryEx(// Prototype from Microsoft Visual C+ + Help Documentation
LPCTSTR IpLibFileName, // points to name of executable module
HANDLE hFile, // reserved, must be NULL
DWORD dwFlags // entry-point execution flag

|

The CreateFile() function is used to create and open files and to load files such as device drivers.

This function also requires a pointer to a string that contains the name of a physical file:

HANDLE CreateFile(// Prototype from Microsoft Visual C+ + Help Documentation

LPCTSTR IpFileName, // pointer to name of the file
DWORD dwDesiredAccess, /1 access (read-write) mode

DWORD dwShareMode, // share mode

LPSECURITY_ ATTRIBUTES ipSecurityAttributes, // pointer to sccurity descriptor
DWORD dwCreationDistribution, /! how to create

DWORD dwFlagsAndAttributes, /1 file attributes

HANDLE hTemplateFile // handle to file with attributes to copy

);

S

10

15

20

25

30

35

WO 98/11690 PCT/US97/16223
-17 -

There are other functions such as MapViewOfFile() and MapViewOfFileEx() that map areas of
memory to an already opened physical file through a handle to that file. They have the following

parameters:

LPVOID MapViewOfFile(// Prototype from Microsoft Visual C+ + Help Documentation

HANDLE hFileMappingObject, /1 file-mapping object to map into address space
DWORD dwDesiredAccess, // access mode

DWORD dwFileOffsetHigh, // high-order 32 bits of file offset

DWORD dwFileOffsetLow, /! low-order 32 bits of file offset

DWORD dwNumberOfBytesToMap // number of bytes to map

)

LPVOID MapViewOfFileEx(// Prototype from Microsoft Visual C+ + Help Documentation

HANDLE hFileMappingObject, // file-mapping object to map into address space
DWORD dwDesiredAccess, // access mode

DWORD dwFileOffsetHigh, // high-order 32 bits of file offset

DWORD dwFileOffsetLow, // low-order 32 bits of file offset

DWORD dwNumberOfBytesToMap, // number of bytes to map

LPVOID lpBaseAddress /! suggested starting address for mapped view
)i

All of the foregoing functions directly use a pointer to a string that is a physical file. The only
file functions that do not directly use a physical filename are functions like CreateNamedPipe(),

which has the following parameters:

HANDLE CreateNamedPipe(// Prototype from Microsoft Visual C+ + Help Documentation

LPCTSTR IpName, // pointer to pipe name
DWORD dwOpenMode, /! pipe open mode

DWORD dwPipeMode, /1 pipe-specific modes

DWORD nMaxInstances, // maximum number of instances
DWORD nOutBufferSize, // output buffer size, in bytes
DWORD ninBufferSize, // input buffer size, in bytes
DWORD nDefaultTimeOut, // time-out time, in milliseconds

LPSECURITY ATTRIBUTES /pSecuriryAttributes {1 pointer to security attributes structure
)

10

20

25

30

WO 98/11690 PCT/US97/16223
-18 -

The string to which CreateNamedPipe() points using the first parameter is a string that both an
existing executable and the operating system know about and does not exist physically.
Unfortunately both of the executables that "know" this private name could only be loaded using
one of the other procedures that required a physical file. Currently it is not possible to load an
executable using a "named pipe" name. Both of or any executables that use the name of the
"named pipe" already must have been loaded into memory.

All of the foregoing functions require a physical file because all of them usc “file
mapping" processes. File mapping allows large executable files to appear to be loaded rapidly
since they are rarely completely loaded into memory but rather are mapped into memory. The
detriment to this mapping capability is that executable code must remain in physical memory in a
file in unencrypted form in order to be loaded, unless there is a middle layer or file system driver
that the operating system uses as a physical layer and that decrypts the executable code to the
operating system on demand. The potential weakness here is that another file system driver can
hook into the operating system to monitor traffic between the operating system and all file
system drivers and capture decrypted executable code passing from the file system driver to the
operating system. Some operating systems allow such monitoring more than others. Many anti-
viral software packages use this technique to prevent computer virus attacks.

One method of loading and executing encrypted exccutable computer program code is to
use a stub executable having two parts. The first part is the normal front end loader code that all
executables have. In addition, the first part would perform any authorization which may include
receiving a password from the user, then allocate enough memory to hold hidden encrypted code
when it is decrypted, either in its entirety or a portion of it, copy the encrypted code into that area
of protected (and preferably locked so no disk swapping occurs) memory, decrypt it once it is in
memory and only in memory, and then have the operating system load the code only from
memory therefore bypassing any file system drivers or TSRs so they have access to only
encrypted code.

Some of the file functions listed above and similar functions on other operating systems
could be modified easily by a programmer having access to source code for those operating
systems, or a new operating system may be made to provide functions which allow direct loading
of executable code from memory rather than physical files. For example, in the Win32
commands, a command similar to CreateProcess() command could be provided. The command

should have a few extra parameters including the process identifier of the process that contains

25

30

WO 98/11690 PCT/US97/16223
-19-

the now decrypted executable code, the memory address of the start of the decrypted code, and
the size of the decrypted code. The command could also contain a parameter specifying a "call
back" function within the first process that would provide decrypted code on demand directly to
the operating system through a protected buffer, therefore allowing only a portion of the
encrypted code to be decrypted at any one time instead of in its entirety, for better protection and
less memory use. The second parameter of the LoadLibraryEx() command that now needs to be
NULL could be expanded to hold a structure that contained the same information. Both of these
and other similar functions could be changed or created to allow loading executable code either
as an .exe, .dll, or other extensions or identifiers, such as by using a "named pipe" name that only
the operating system and process that holds decrypted code know about and having the operating
system load from the named pipe.

Alternatively, without having such additional capabilities in the operating system, an
application program can be divided into two parts. The first part is code that is common to all
applications such as code for allocating memory off the heap and code that provides some
interaction with the user. This kind of code is generally not code that the content provider is
concerned about copying. The second part is the code that the content provider believes is
valuable. Typically this valuable code is a business logic code or what would be considered a
middle tier of a three-tier environment. A content provider would like to protect this second part
of the code, at least much more that the first part of the code. The content provider would place
all of the important code to be protected inside a dynamic link library and the code that is not that
important would reside in the front end "stub" executable. Both of these would be combined into
another executable containing the .dll in encrypted form only, along with any other files, data,
information, and/or tables for holding, for example, hardware identifiers. This other executable
is the final digital information product.

The first part of the digital information product, i.e., the executable stub, would load and
execute normally like any other application. It then would perform any authorization procedures.
Once the proper authorization or password was completed successfully, an unwrap procedure
would be performed as will now be described in connection with Fig. 8, it would then allocate

enough protected memory using a function like VirtualAlloc() as shown in step 150:

DWORD nFileSize = 0;
DWORD nPhantomFileSize = 0;

20

25

30

WO 98/11690 PCT/US97/16223

-20 -

DWORD exeOffset = 0;

DWORD nPreferredLoadAddress = GetPreCompiledLoad Address();

CString cCommandFile = UnwrapGetNTCommandFile();

exeOffset = UnwrapGetDlIOffset(cCommandFile);

nFileSize = UnwrapGetDIISize(cCommandFile);

nPhantomFileSize = nFileSize + 0x3000; // add any needed extra space

// Increase buffer size to account for page size (currently Intel page size).

DWORD nPageSize = GetPageSize();

nPhantomFileSize += (nPageSize -(nPhantomFileSize % nPageSize));

// Allocate the memory to hold the decrypted executable.

LPVOID lpvBlock = Virtual Alloc((LPVOID) nPreferredLoadAddress,

nPhantomFileSize,

MEM _RESERVE | MEM_COMMIT, PAGE_READWRITE);

This function can request a particular address space. Preferably, this address space is the

preferred load address space to which the .dll was linked in order to minimize any needed

relocation and fix up code. The stub executable may lock that area of memory in step 152, for

cxample by using VirtualLock() to prevent any memory writes to a swap file, depending on the

operating system, as shown below:

BOOL bVLock = VirtualLock((LPVOID) nPreferredLoad Address, nPhantomFileSize);

The memory area still should be secure even without this preventive step since the Windows 95

and NT operating systems do not allow any user access o swap files.

The encrypted code is then copied from the digital information product into the allocated

protected memory in step 154, for example by using the following command:

UnwrapCopyHiddenExeToMem(cCommandFile, exeOffset, nFileSize, (char *) IpvBlock);

Once in memory, the stub would then decrypt the code to that same portion of memory in step

156, for example by using the following commands:

20

25

30

WO 98/11690 PCT/US97/16223
-21-
CwrapDecryptSeed(cPassword.GetBuffer(0), cPassword.GetLength());
CwrapDecrypt((unsigned char *) IpvBlock, 0, nFileSize);

Any "fix up and relocation" type services would then be performed in step 158, for example by

using the following command:

UnwrapFixUpAndRelocateDIll(IpvBlock);

Possibly, the memory protection may be changed to execute only in step 160, for example by

using the VirtualProtect() command as follows:

DWORD IpflOldProtect; // variable to get old protection

BOOL bVProtect = VirtualProtect((LPVOID) nPreferredLoadAddress,
nPhantomFileSize,
PAGE_EXECUTE,
&I1pflOldProtect),

Function calls then can be made into that arca of memory that now contains the decrypted code:

UnwrapDoDIlAlgorithms();

Some of the "fix up" operations to be performed above include placing the addresses of external
or stub.exe functions into the address place holders of the decrypted .dll or internal code, by

using commands similar to the following:

WriteAddress((char*) 0x02406104, (DWORD) &CallBackFunction1);
WriteAddress((char*) 0x0a406100, (DWORD) &CallBackFunction2);

For instance a wrapper function could be created in the outer stub.exe that received a size
parameter, allocated that amount of memory off of the heap, and passed back the starting address
of that block of memory. Another example would be to have encrypted algorithms within the

hidden, encrypted .dll which would be called at run time from the front end stub once decrypted

20

25

30

WO 98/11690 PCT/US97/16223
-22-

within protected memory. The dynamic link library would be compiled and linked to expect a
pointer to a function that took that parameter and/or returned a value by including prototypes in

the header file as follows:

void (*IpCallBackFuncl)();
void (*IpCaliBackFunc2)(unsigned long);

Function calls to "external" functions also could be added as follows:

(*IpCallBackFuncl1)();
unsigned long z =x * x;

(*IpCallBackFunc2)(z);

At run time the "fix up" code would take the run time address of that "wrapper function” and

place it into the pointer address within the .dll block of code as follows:

Write Address((char*) 0x0a406104, (DWORD) &CallBackFunctionl);
WriteAddress({char*) 0x0a406100, (DWORD) & CallBackFunction2);

This information is readily available using the .cod output files from the compiler, an example of

which follows:

_TestSum PROC NEAR ; COMDAT
; Line 8

00000 56 push esi
; Line 23

00001 ff 15 00 00 00

00 call DWORD PTR_lpCallBackFuncl

; Line 24

00007 8b 442408 mov eax, DWORD PTR_a$[esp]

0000b 50 push eax

0000c e8 00 00 00 00 call _TestSquare

5

10

20

25

30

WO 98/11690

-23-
00011 83 ¢4 04 add esp, 4
00014 8b f0 mov esi, cax
: Line 25
00016 864424 0c mov eax, DWORD PTR b${esp]
0001a 50 push eax
0001b €8 00000000 call _TestSquare
00020 83 c4 04 add esp,4
00023 03 c6 add eax,esi
; Line 28
00025 Se pop esi
00026 c3 ret 0
_TestSum ENDP
_TEXT ENDS
; COMDAT TestSquare
_TEXT SEGMENT
x$=8
_TestSquare PROC NEAR
; Line 30
00000 56 push esi
; Line 32
00001 8b742408 mov esi, DWORD PTR _x$[esp]
00005 Of af f6 imul esl, esi
; Line 34
00008 56 push esi
00009 ff 15 00 00 00
00 call DWORD PTR _IpCallBackFunc2
0000f 83 c4 04 add esp, 4
00012 8b c6 mov eax, esi
; Line 36
00014 Se pop esi
00015 c3 ret 0

_TestSquare ENDP

PCT/US97/16223

; COMDAT

5

20

25

30

WO 98/11690 PCT/US97/16223
-24-
Such information also is available from .map output files from the linker where the "f" between
the address (i.e., 0a406100) and the object file (i.e. Algorithms.obj) means it is a "flat" address
(i.e., hard coded by the linker) and the lack of an "f" means that it is an address pointer to be
supplied at run time (load time) where the address that is contained in that address location is
used and not the actual address location (i.e., the address that is contained at address location

02406100 and not 02406100 itself):

0001:00000000 _TestSum 0a401000 f Algorithms.ob;
0001:00000030 _TestSquare 0a401030 f Algorithms.obj
0003:00001100 _IpCallBackFunc2 0a406100 Algorithms.obj
0003:00001104 _IpCaliBackFuncl 0a406104 Algorithms.obj

When the code inside the .dll makes a "call" to a dereferenced pointer, it would jump to the

correct function in the outer code and return the expected return value (if any). For example:

void CallBackFunction1(){

// This is the first function that exists in the Stub exccutable

// whose address has been placed at the appropriate location inside the "dll" code

// that has now been decrypted in a block of memory. The code inside the "dll"

// makes a function call to this function. In its encrypted state, the "dll" does not contain
// this address, but merely has a placeholder for the address. The “dll” has enough space
allocated to hold an

// address of this size. After the “dll” has been decrypted at run time, its address is

// placed in that location so the code inside the "dl]" that references (or more

// appropriately dereferences) that address can jump (which is function call) to this

// address.

AfxMessageBox(

_T("This is the FIRST Stub.exe call back function being called from the dl1."));

return;

15

20

30

WO 98/11690 PCT/US97/16223
-25.-

void CallBackFunction2(DWORD nNumber){
// See comment for CallBackFunction1 except this function receives a parameter off
/1 of the stack. It could also return a value as well.

CString

cString(
T("This is the SECOND Stub.exe call back function being called from the dli"));

har bufter[20];
Itoa(nNumber, buffer, 10);

cString += _T(" with a parameter of ");
cString += buffer;

cString +=_T(".");
AfxMessageBox(cString.GetBuffer(0));

return;

The outer stub.exe would make the same kinds of jumps or function calls into the now protected

decrypted code block as follows:

DWORD c;

/! This command declares a function pointer. This command is different for different function
// calls. Here the called function takes two integer parameters and

// passes back a DWORD.

DWORD (*lpFunc)(DWORD,DWORD);

// The function pointer is then pointed to the starting address of the function in the
// block of memory that now holds the decrypted DLL.

IpFunc = (DWORD (*)}(DWORD,DWORD)) UnwrapFixUpAndRelocateDII();

// Now call that "function" which is really like all function calls, i.e., a jump to

15

20

25

30

WO 98/11690 PCT/US97/16223
226 -
// the address where that function exists. In this case, two
// variables are passed to that function and returning a value from that function. This function
illustrates that the function call
// can be more complicated than merely a simple jump
// to an address. Inline assembler code may be used to push the variables onto
// the stack frame and return the variable from the eax register, but this function enables
// the C++ compiler to do the same function.

¢ = (DWORD) (*IpFunc)(a, b);

This mechanism requires the unwrap procedure and the now decrypted code to have intimate
knowledge about procedural interfaces of each other but no knowledge about each other's
implementation. This is the way most executable .exe files and .dll files behave but with the
addition of a series of "wrapper" functions on either side for communication. This method works
under Windows 95 and Windows NT 4.0 operating systems and should work under Windows NT
3.51 and other operating systems.

Another modified version of this mechanism that works under the Windows NT 4.0
operating system becausc of functions specific to Windows NT 4.0 would be to have another
hidden and/or encrypted executable within the digital information product. This exccutable
would be copied to a physical disk in an unencrypted form, launched or loaded with the
CreateProcess() command in its current form but called with a parameter to load the executable

in suspended mode:

BOOL success = CreateProcess(cFrontEndExe.GetBuffer(0), 0, 0, 0, TRUE,
CREATE_NEW_CONSOLE | CREATE_SUSPENDED,
0, 0, &startUplInfo, &processinfo);

Then the first process would copy the encrypted dll into its own process and decrypt 1t, allocate
enough memory using VirtualAllocEx() in its current form in the second process that has just

loaded the expendable front end executable in a suspended state as follows:

LPVOID IpvBlockEx = Virtual AllocEx(processInfo.hProcess,

10

15

20

25

30

WO 98/11690 ' PCT/US97/16223
227 -

(LPVOID) nPreferredL.oadAddress, nPhantomFileSize,

MEM_RESERVE | MEM_COMMIT,"
PAGE_READWRITE);

The decrypted code is copied from the first process to the second suspended process using

WriteProcessMemory() in its current form:

BOOL bWriteProcessMemory = WriteProcessMemory((HANDLE) processInfo.hProcess,
(LPVOID) ipvBlockEx, (LPVOID) nPreferredAddress,
(DWORD) nPhantomFileSize, (LPDWORD) &nBytesWritten);

The primary thread of the previously launched second process is then resumed:
DWORD nResumed = ResumeThread(processinfo.hThread);

Any necessary function pointers are then placed in the correct locations by the second process,
the area of memory is locked to prevent any writes to a swap file, and the memory protection is

changed to execute only as follows:

WriteAddress((char*) 0x0a406104, (DWORD) &CallBackFunctionl);
Write Address((char*) 0x0a406100, (DWORD) &CallBackFunction2),

BOOL bVLock = VirtualLock((LPVOID) nPreferredLoad Address, nPhantomFileSize):

DWORD IpflOldProtect; // variable to get old protection

BOOL bVProtect = VirtualProtect((LPVOID) nPreferredLoad Address,
nPhantomFileSize, PAGE_EXECUTE, &lpflOldProtect);

The program can continue running by making and receiving calls to and from the decrypted

dynamic link library that now resides in the protected memory of its process using commands

such as the following:

DWORD c;

10

20

25

30

WO 98/11690 PCT/US97/16223
-28 -

DWORD (*IpFunc)(DWORD,DWORD);

IpFunc = (DWORD (*)(DWORD,DWORD)) ExpendableGetEntry Address();

¢ = (DWORD) (*IpFunc)(a, b);

The first process can either close down or launch another instance of that same process.

In either of these implementations using the same process or launching into a second
process, the hidden encrypted code never passes through a file system driver or memory resident
program in decrypted form. Code can be split up among different dynamic link libraries so that
no two would reside in memory at the same time in order to protect code further. Both of these
systems can be implemented using the Win32 function calls. If additional functions, similar to a
CreateProcess() command or a LoadLibrary() command but that take a process identifier and
address location in memory to load in an executable instead of a physical file, are provided in an
operating system then the entire executable and dynamic link library can be hidden, encrypted,
and protected on the physical disk and then decrypted within protected memory and use the
operating system loader to load it directly to the operating system from memory without residing
in decrypted form on any physical medium.

Having described the operation and use of the computer program product in accordance
with the invention, embodiments of which are described above in connection with Figs. 3-8, and
the operation of the unwrap procedure and device driver it contains, the process of constructing
such a computer program product will now be described in more detail. Referring now to Fig. 9,
an embodiment of this process for creating a computer program product is shown. This process
can be applied to any digital information including an arbitrary executable computer program,
dynamic link libraries and related files of data. All digital information is treated as mere data by
this process. Each separate data file is combined into a single file by this process, with an
executable program for performing the unwrap procedure, and optionally exccutable program
code for a virtual device driver, into the computer program product. Each filc of hidden
information has a unique location and is identified by its own begin and end markers as shown in
Fig. 3. The first step of this process is opening a new data file for the computer program using a
name that will be used to indicate an executable file (step 200). For example, an executable
word processing program may be named “word_processor.exe” in the Windows95 operating

system.

25

30

WO 98/11690 PCT/US97/16223
-29.

The three portions of the computer program product are then inserted into the open data
file. First, the unwrap procedure is inserted at the beginning of the file in an executable format in
step 202. The begin tag for the optional device driver is then inserted in step 204. The
executable device driver program code is then inserted in step 206, followed by its corresponding
end tag in step 208. For each hidden file to be inserted into this computer program product, steps
210 to 216 are performed. First, the begin tag is inserted in step 210. The begin tag also may
include an indication of a unique name of the file which will be used as its name in the phantom
directory created by the unwrap procedure. The hidden file is then encrypted and/or compressed
in step 212 and inserted into the data file in step 214. The end tag for the hidden file is then
inserted in step 216. The device driver and all of the tags may be encrypted also if the unwrap
procedure has suitable decryption procedures. The computer program file is closed when the last
hidden file is processed.

Using the present invention digital information, such as executable program code or
various kinds of data, is loaded and unloaded as needed, and thus does not take up any more
memory than is necessary. At no time does unencrypted digital information, such as computer
program code, exist on disk in accessible and complete decrypted form. Because the original
digital information is available as a read only file in one embodiment of the invention accessible
only to the device driver, the digital information may be accessed over networks, from a CD-
ROM or from a DVD, and can be made to have a limited number of uses. This mechanism is
particularly useful for controlling distribution of computer programs, digitized movies or other
information while reducing the cost of such distribution and control. For example, software may
be distributed over a network on a single use basis, and charges may be levied on a per use basis.
The ability to reverse engineer an application program also may be reduced.

One benefit with this system over some other systems for preventing unauthorized access
to digital information is that the content provider maintains control of the encryption applied to
the information how it may be decrypted. Any need for either a centralized facility or a
predetermined decryption program is eliminated. An operating systems manufacturer or other
platform vendor merely provides the capability for the information to be accessed and decrypted
on the fly. Since the valuable information and any other tables of authorization codes,
passwords, or hardware identifiers that the content provider may use to secure the information
resides in one large encrypted file, it becomes difficult, if not impossible, for someone to

determine just where any of this information exists.

15

20

25

30

WO 98/11690 PCT/US97/16223
-30 -

A potential scenario with authorization procedure in which the present invention may be

used is the following. A consumer purchases a DVD disk containing a movie. The user puts the

disk into the player. This is the first time the disk is installed. The content provider’s functions
are loaded into the DVD chip, which looks in the encrypted table and sees that this is the first
time this disk is being played. The player then displays on a screen a numeric identifier and toll
free phone number. The consumer calls the toll free phone number and inputs the numeric
identifier that was displayed on the screen. The content provider provides a numeric password
based on the numeric identifier that the user inputs into the DVD. The content provider may
develop a database of information about its consumers that also may be used to detect pirating of
the digital information product. Now that this authorization has taken place, the software that the
content provider wrote, and is now in the DVD chip, takes a hardware identifter from the DVD
and encrypts it and puts it in the encrypted and buried table on the disk. Alteratively, the data
may be decrypted in memory and re-encrypted back onto the disk using the hardware identifier
as part of a key. Now that disk will run and show the movie and will only run on that DVD and
no other. The content provider could allow for a table of hardware id’s so they could limit the
number of DVD’s that disk would run on or a limited number of times it can be shown. It should
be understood that many other authorization procedures may be used.

In the foregoing scenario, the movie is encrypted on the same disk inside of the encrypted
file that contains the table and functions the content provider distributed. The movie is decrypted
by the decryption functions contained in the file directly to the DVD chip. At no time does the
movie reside anywhere in decrypted form. The content provider can protect the movie with any
desired level of security (for both encryption and authorization).

In the present invention, the onus of protection of content does not reside with a hardware
manufacturer or platform provider but in the hands of the content provider. The hardware
manufacturer only provides the mechanism to protect the digital information through the
operating system. The technique and implementation of protection resides in the hands of the
content provider. This mechanism allows the content providers to change the level of security as
needed without any modifications to the hardware. The security of the content is provided by the
encryption/decryption algorithms, public/private keys, and authorization methods which are
determined by the content provider. Even each individual product can have its own
encryption/decryption algorithms and/or public/private keys. All of these can be changed and

enhanced as the market demands.

20

25

WO 98/11690 PCT/US97/16223
-31]-

The present invention also could be used for on-line or live use of digital information.
For example, a movie could be retrieved on demand and recorded by a consumer. A set top box
could receive the digital information, decrypt it, and then re-encrypt and store the information
using, for example, a hardware identifier of the set top box. Since home movies digitally
recorded would be encrypted using the hardware identifier of the device used in recording, that
home movie could not be played on another or only on a limited number of other devices and/or
for only a specified number of times depending on the wishes of the content provider. Since the
algorithms are downloaded at the time of recording from a service provider, e.g., the cable
company, the content provider (movie company) would provide the encrypted data to the service
provider to present to their customers. The service provider need not be concerned with the
encryption/decryption and authorization functions used by the content provider. Similar uses are
possible with other data transmission systems including, but not limited to, telephone, cellular
communications, audio transmission including communication and the like.

In another embodiment, the stub executable program is a first process that is implemented
similar to a debugging tool such as the Softlce debugger from NuMega Technologics or the
WinDebug debugger from Microsoft Corporation for Ring 0 kernel level debugging for an Intel
processor based architecture, or the CodeView debugger for ring 3 application level debugging.
Such a debugger controls execution of a program to be debugged as a second process and steps
through each program statement or opcode of the debugged program. The debugging tool could
be modified to monitor each opcode that indicates a jump to a program fragment, such as each
instruction or a block code. If the program fragment to be executed is not decrypted, the
modified debugger decrypts the program fragment before the jump command is allowed to
execute. Each program fragment may be re-encrypted after execution. Clearly, unnecessary
debugging commands may be omitted from the modified debugger.

Having now described a few embodiments of the invention, it should be apparent to those
skilled in the art that the foregoing is merely illustrative and not limiting, having been presented
by way of example only. Numerous modifications and other embodiments are within the scope
of one of ordinary skill in the art and are contemplated as falling within the scope of the

invention as defined by the appended claims and equivalent thereto.

10

15

20

25

30

WO 98/11690 PCT/US97/16223
-32-
AIMS

1. A computer-implemented process for executing encrypted computer program logic while
maintaining protection against copying of corresponding decrypted executable computer
program logic, wherein the encrypted computer program logic is stored in association with first
executable computer program logic, the process comprising the steps of:

through an operating system of a computer, reading, loading and exccuting the first
executable computer program logic as a first process having a protected memory area defined by
the operating system;

the first process decrypting the encrypted computer program logic into second executable
computer program logic and storing the second executable computer program logic in the
protected memory area; and

the first process causing loading and execution of the decrypted second computer

program logic in the protected memory area.

2. The process of claim 1, wherein the encrypted computer program logic and the first
executable computer program logic are stored in a single data file accessible through the

operating system.

3. The process of claim 1, wherein the execution of the decrypted second computer program
logic is performed as a second process having a second protected memory area defined by the

operating system.

4. A digital information product including a computer readable medium having digital
information stored thereon, the digital information including computer program logic defining
first executable computer program logic, wherein the first executable computer program logic
when executed performs the following steps:

storing the encrypted computer program logic in a data file accessible through an
operating system of a computer, wherein the data file also includes first executable computer
program logic;

through the operating system, reading, loading and executing the first executable

computer program logic from the data file as a first process having a protected memory area;

1S

20

30

WO 98/11690 PCT/US97/16223
-33-
the first process decrypting the encrypted computer program logic into second executable
computer program logic and storing the second executable computer program logic in the
protected memory area; and
the first process causing loading and execution of the decrypted second computer

program logic in the protected memory area.

5. A computer system comprising:

a processor for executing computer program logic;

a main memory operatively connected to the processor for storing digital information
including executable computer program logic at memory locations addressed by the processor;
and

an operating system defined by executable computer program logic stored in the memory
and executed by the processor and having a command which when executed by the processor
defines means for creating a process in response to a request specifying a process identifier and a
memory location in the main memory, wherein the process identifier indicates the process
making the request and the memory location stores executable computer program logic which

when executed defines the process.

6. A computer system having an operating system, for decrypting digital information,
comprising:

means for storing the encrypted computer program logic in a data file accessible through
the operating system, wherein the data file also includes first executable computer program logic;

means, invokable through the operating system, for reading, loading and executing the
first executable computer program logic from the data file as a first process having a protected
memory area,

the first process defining means for decrypting the encrypted computer program logic
into second executable computer program logic and storing the second executable computer
program logic in the protected memory area; and

the first process defining means for causing loading and execution of the decrypted

second computer program logic in the protected memory area.

10

15

20

25

30

WO 98/11690 PCT/US97/16223

-34 -
7. The computer system of claim 6, wherein the encrypted computer program logic and the
first executable computer program logic are stored in a single data file accessible through the

operating system.

8. The computer system of claim 6, wherein the execution of the decrypted second computer
program logic is performed as a second process having a second protected memory area defined

by the operating system.

9. A digital information product, including a computer readable medium with computer readable
information stored thereon, wherein the computer readable information comprises:

a first portion of executable computer program logic; and

a second portion of encrypted digital information; and

wherein the first portion of executable program logic, when executed, defines means,
operative in response to requests for digital information, for accessing the second portion of
encrypted digital information, for decrypting the encrypted digital information, and for

outputting the decrypted digital information.

10. The digital information product of claim 9, wherein the encrypted digital information is

encrypted executable computer program logic.

11. A computer program product including a self-decrypting encrypted executable computer
program, comprising:

a computer readable medium having computer program logic stored thereon, wherein the
computer program logic defines:

a first module,

a second module,

wherein the first module, when executed by a computer, defines means for loading the
second module into memory of the computer, and

a third module defining the encrypted executable computer program,

wherein the second module, when executed by a computer, defines means for
communicating with an operating system of the computer to receive requests for program code

from the encrypted executable computer program from the third module, and for processing the

10

WO 98/11690 PCT/US97/16223
-35-
requests to access and decrypt the encrypted executable computer program and for providing the

decrypted executable code from the third module to the operating system.

12. A process for executing encrypted executable computer programs on a computer system
having a processor, memory and operating system, comprising the steps of:
receiving computer program logic having a first module defining a start up routine, a
second module, and a third module containing the encrypted executable computer program,;
executing the first module of the received computer program logic using the processor,
wherein the step of executing causes the second module to be loaded into the memory of
the computer system, and
generating requests from the operating system for data from the encrypted executable
computer program which are received by the second module, and

accessing and decrypting the encrypted executable computer program and returning the

decrypted executable computer program to the operating system.

PCT/US97/16223

WO 98/11690
1/8

’2/’1/

P
[ﬁmut Dcviﬂ*ﬁmcrcomcctim Mechanism Output Dcvic;, 5
o
(2 b

:
o

S o
Fig. 1

Ha

Yo Imeghr/]a;;?o(r?rcu,(

14

Yo

<)

1010110

To Processor 22

Fig. 2

WO 98/11690

2/8

v wia P
Crocedove c0
B oeivep : S6
DRIvep

APLIcATION 152

T END DRIVE, SE
| Bcein apP 3 40
CRNRVPTED

AnD Jo £y
(oM PLESSED

brTR FLE(S)
ENO_ARP 162

FI&,3

PCT/US97/16223

WO 98/11690 PCT/US97/16223

3/8

TTLoRD QoM PLTIR
FROGCRA# /&TC MepigRy ~ 70
ARD BEGIN ERECLTING
UNWRAP AROCCDURE

\(I

PERFORM AUTHORIZ i8N (0as [:-'7-;2

'_71_7/

< Priver

Flbew:mpy LOCAT jor) oF v,
RIDDEN BPPL) prso ~E) ~76
/

(Y4
EXTRACT DRIVER Rays cop T
~ Y '7
V7O MEMORY pupLosd iT s FI6.Y

INTe operpTinG SYET £
!

i PHANT ot D rpee

TOARY AND Fius

/ LOADED DRIVEEL 0Pens ORIGINAC CompPuTER
_PRoGcrRAM Fits Foe pean ONLY ACCESS <v6’2
UNwea ¢ PROC 2 DuAE MAKES CAtL 7o OPERATING

SYSTEM To exeuvure FILE I8 THE PHANTOAs
D/QE‘C'M/LY

[RAP ALl CALLS FRom IPERATING SYSTE
PRocegs THOLE MRDE 70 PHANTOM DiReciany

¢
DRIVEE AC(ESSES REQUITED Byres FROM ~ 9¢
ORIGINAC COMPYTER PLOGRAM FiLE

L

z RETRICVED BYTES o DATA are — e 0
— AND_ReTVANED 1 grguesren CCCKPPTED /DECOMPRSSED Tq
\D.

[ORIVER (and vnwwanear) mAv UNLoAD Gred AOM€7» 72

~—~

94

WO 98/11690 PCT/US97/16223

4/8

[DepTIFY
OPECATING
SHTEM

('C‘.G

SR\

24 SEARCH PR BEBIN o
AND END TARGS (
OF DEUILE DrivER
ARND H(DDED ALES

L —

)
. STRIP OUT DpEVICE A
DRIVER A wad T |, 10

INTO THE 0PERATING
SYSTEM

.I

mm—N

iNFORK DEVICE _
ODRIVER 0F NAME ;Y
OF FILE AND OFFETS

IF HIDDEW FCES AND
ﬂ -~ - ’
NAME OF PHANTIM DIRECTonY

.

/ MAKE CALL TO 0PERNTOC Og
SYSTEM To €L€C UT: ~|
L EEE /v pHAMTON magrg%‘w

FIC.G

WO 98/11690 PCT/US97/16223

5/8

Hool INTOo 7P0SiTion)

BETwEGN' ODPERPATING

SYSTEM AND FiLE ~

SYSTCm 0£/v€/((FSD
RECEIVE |INFoR MATION FROM

UNWRARP PROCEDURE INCLUDING
NAME oF ORICINAL FILE AND

—————

(1

COCATION OF HIDDEN FILES
L AND PHANTOM bipeCTORY

)

T TRAP ¢ALLS TO PHANTOM [L{
>

DIRECTORY BT OFFFATING SYSTEM
e e

A l yd)
DELRYPT/OECOMFRESS RERVESTED

DATA FROM 0R16i1nAL FILE

S

AND PASS DATA T DRERATING SYATE

FI6. 6

WO 98/11690 | PCT/US97/16223

6/8
§ RERATING _no
(874
e SYSTEM
{ AS‘ICY‘UChm\ Cq\ls%
“+o ruy : o
/%)Mn'i'::/ hidden” phantom 13 A“WP{-“A code
. dimt:for\l/
UNWRAP \ el B ng DEVICE | 272

(Z /PROCEBURB s ad

.Phan-fmdx@c‘}uy] DRIVER

requsts +o aces ongmal fle
13

COMPUTER PROGRAM FILE)
— /26

yNwRA? | pEVICE HIDDEN

procepoee | DRWER | APPLICATIOR

FLG. /

WO 98/11690 PCT/US97/16223
7/8

P\LLOC&TE PROTCLTED MEEMW~/§"
\//

Lotk B(LocrICD Memory

[Ga
T0 PREVENT S1onfpinG

1

LokD EACRYPTED PORT (goo

NTO ACLOCATE mMemory |- (54

L —\

DECRYPT ENERVFED PoRTron
m ALLOCATED MEMORY

\

1%

P——

—
[FIK P DE’CM!S%

[Chanee Memory

PROTCTI00) TO CXeCuTe sy
\

(60

FIe.¢

WO 98/11690 PCT/US97/16223

8/8

[OPEN wNew darg sue
WITH /VAM[THHT wirit
B€ vSED TO DICATE

AN Erecumaz(FILE
/ﬁ NSERT z/,m/mr" PREPRE|
mn Exéc w'/i BLE ForRnT
('/A/Sc’ﬂ/ BEGIN TAS Fop - L{
EViCE ﬂ//VE/ °

\..--
/V - -~

Q See7 tX(C VIABLE DEVICE pesyep }, 206
| |]
INSERT END 7AG FoR |

r 20¢
DEVICE NRIVER
/ INSERT RBEGIN TA6 rob
Y HIDDEAN FHE

L

| Eneryer winpEs /—’/AE\I_, 20>
V)
£ INSERT ENERYTED 77 5"""5——- 214

rﬁ INSERT END THE Faf _ 2/

LosE |
FHDLEN FILE AN ﬁ,&

FI6..7

INTERNATIONAL SEARCH REPORT

Intemational application No.
PCT/US97/16223

| A. CLASSIFICATION OF SUBJECT MATTER

IPC(6) :HO4L 9/00
USCL : 3804

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

U.S. : 380/4,9,2325,49,50,59

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the ficlds searched

Electronic data base consulted during the intemational search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category® Citation of document, with indication, where appropriate, of the rclevant passages Relevant to claim No.
A US 4,937,861 A (CUMMINS) 26 June 1990, see Abstract. 1-12
A US 5,007,082 A (CUMMINS) 09 April 1991, see Abstract. 1-12
A US 5,144,659 A (JONES) 01 September 1992, see Abstract. 1-12
A US 5,155,827 A (GHERING) 13 October 1992, see Abstract. 1-12
A US 5,396,609 A (SCHMIDT et al) 07 March 1995, see Abstract. | 1-12

D Further documents are listed in the continuation of Box C.

D See patent family annex.

the priority date claimed

. Special categories of cited documents: T
*A" d ¢ defining the g | stats of the art which is not considered
to be of particular relevance
B earlier documsnt published on or after the internstional filing date X
‘L document which may throw doubts on priority claim(s) or which
cited o blish the publi dste of ther citation or olher
specis| reason (ss specified) ‘Y
o document referting to an orsl disci , use, exhibiion or other
means
P document published prior to the international filing date but lster than <5«

Istor document published after the international filing date or priority
date and not in conflict with the spplication but cited to understand
the principie or theory underlying the invention

document of particular relevance; the claimed invention cannot be
idered novel or t be dered to involve an inventive step
when the document is taken slone

document of particular relevance, the cieimed invention cannot be
considered to invoive an invenuve step when the document s
combined with one or more other such d ts, such combi

being obvious 10 a person skilled in the art

document member of the same patent family

Date of the actual completion of the intemational search

20 JANUARY 1998

Date of mailing of the intemational search report

1 8 FEB 1998

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Facsimile No. (703) 305-3230

clephone No.

Authopized officer ﬁ : - /éﬂw%‘

ERNARR EARL GREGORY

(703) 3064153

Form PCT/ISA/210 (second sheet)(July 1992)x

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS
	SEARCH_REPORT

