发明名称
液晶板自动把持装置及其方法

摘要
一种在自动探测设备用面板托架中使用的液晶板自动把持装置，即使液晶板的型号变更使其大小变化，也能自动把持液晶板。包括：四个移送台，以及平行布置的上、下部构件的左右两侧的两端，通过各驱动源的驱动可自由正反转；移送台托架块，被结合成沿各移送台移送螺杆移动；上、下部的一对移送台，与移送台托架块的一端结合，一对固定夹具相隔预定距离设在移送台内端的中央部，一对移动夹具设在固定夹具的左右两侧，以把持液晶板；移送台移动距离可变机构，安装在移送台两端，调节移送台两端的移动距离；检测机构，安装在夹具上，检测液晶板的大小和错位；控制部，根据检测机构的检测信号，分别控制移送台移送螺杆及移动夹具的动作。
1. 一种在自动探测设备用面板托架中使用的液晶板自动把持装置，其特征在于，包括：

四个移送台移送螺杆，垂直设置于框架的上部和下部构件的左右侧的两端，通过各驱动源的驱动可分别自由地正反转；

移送台托架块，被结合成沿所述各移送台移送螺杆移送；

上部和下部的一对移送台，与所述移送台托架块的一端结合的同时，一对固定夹具相隔预定距离设置在移送台的内端的中央部，一对移动夹具设置在上述固定夹具的左右两侧，以把持液晶板；

移送台移动距离可变机构，安装在所述移送台的两端，调节所述移送台的两端的移动距离；

检测机构，安装在所述夹具上，检测所述液晶板的大小和错位；

以及

控制部，根据所述检测机构的检测信号，分别控制所述移送台移送螺杆及所述移动夹具的动作。

2. 按照权利要求1所述的液晶板自动把持装置，其特征在于，

所述移送台移动距离可变机构是在安装于所述移送台两端的所述移送台托架块上设置的滚柱轴承组件，

具有：与所述移送台托架块成一体设置的基部，与所述基部结合的旋转轴，以及与所述旋转轴结合的旋转用横向滚柱轴承，

安装在所述移送台两端上的移送台移动距离可变机构中的一个，还具有：在所述基部的一侧面上安装的直线移动用横向滚柱轴承，以及夹持在所述基部与所述旋转轴部之间的支承台架。

3. 按照权利要求1所述的液晶板自动把持装置，其特征在于，

所述一对固定夹具在所述移送台的内端中央部仅相距预定的距离，以把持液晶板，所述一对移动夹具设置在所述固定夹具的左右两侧。
4. 按照权利要求3所述的液晶板自动把持装置，其特征在于，
所述移动夹具可沿着在所述移送台上按长度方向设置的夹具导轨移动。

5. 按照权利要求1所述的液晶板自动把持装置，其特征在于，
所述检测机构是安装在所述上部和下部的各移送台上，且成一体地设有受光传感器及发光传感器的2个以上的光电传感器。

6. 按照权利要求1所述的液晶板自动把持装置，其特征在于，
所述检测机构是受光传感器和发光传感器夹持液晶板而上下相距的光电传感器。

7. 按照权利要求1所述的液晶板自动把持装置，其特征在于，
所述检测机构是，当在所述液晶板的周边部该液晶板错位时，与所述液晶板接触以产生电信号的接触式传感器。

8. 一种在自动探测设备用面板托架中使用的液晶板自动把持装置，其特征在于，包括：
四个移送台移送螺杆，在框架的内侧垂直设置于上部和下部构件的左右侧端部，分别可自由地正反转；

移送台托架块，被结合成沿所述各移送台移送螺杆移送；

上部和下部的一对移送台，与所述移送台托架块结合的同时，一对固定夹具相隔预定距离设置在移送台的内端的中央部，一对移动夹具设置在上述固定夹具的左右两侧，以把持液晶板；

移送台移动距离可变机构，安装在所述移送台的各自的两端，调节所述移送台两端的移动距离；

多个检测机构，安装在所述夹具上，检测所述液晶板的大小和位置；

控制部，根据所述检测机构的检测信号，分别驱动所述移送台移送螺杆。

9. 按照权利要求8所述的液晶板自动把持装置，其特征在于，
安装在所述各移杯台的一端上的移杯台移动距离可变机构是滚柱轴承组件，具有旋转用横向滚柱轴承，安装在另一端的移杯台移动距离可变机构具有旋转用横向滚柱轴承和直线移动用横向滚柱轴承。

10、按照权利要求8所述的液晶板自动把持装置，其特征在于，

所述夹具包括：在所述移杯台的内侧把持液晶板的一个以上的固定夹具，以及设置在所述固定夹具的左右两侧的多个移动夹具。

11、一种在自动探测设备用面板托架中使用的液晶板自动把持装置，其特征在于，包括：

四个移杯台移杯螺杆，在框架的内侧垂直设置于上部和下部构件的左右两侧端部，沿着框架的内侧面可平行移动；

上部和下部的一对移杯台，与所述移杯机构结合的同时，一对固定夹具相隔预定距离设置在移杯台的内端的中央部，一对移动夹具设置在上述固定夹具的左右两侧，以把持液晶板；

移杯台移动距离可变机构，安装在所述移杯台各自的两端，调节所述移杯台两端的移动距离；

多个检测机构，安装在所述夹具上，检测所述液晶板的大小和错位；

控制部，根据所述检测机构的检测信号，分别驱动所述移杯机构。

12、一种在自动探测设备用面板托架中使用的液晶板自动把持方法，其特征在于，包括：

将液晶板装载到所述面板托架上的步骤；

检测所述装载的液晶板的错位程度的步骤；

根据所述检测结果，由控制部判断所述装载的液晶板的错位程度的步骤；以及

使用用于把持所述液晶板的多个夹具来把持所述装载的液晶板的步骤；

所述多个夹具的各自朝所述装载的液晶板的移动距离，是根据所述装载的液晶板的错位程度的判断而决定。
13、按照权利要求12所述的液晶板自动把持方法，其特征在于，还包括：

在错位装载到所述面板托架的状态下，将液晶板运送到检查液晶板状态的检查台上的步骤；

通过所述控制部将所述液晶板错位程度的判断数据向所述检查台供给的步骤；

根据所述判断数据，与所述面板托架中的错位程度相同地把持运送到所述检查台上的液晶板的步骤。

14、按照权利要求12所述的液晶板自动把持方法，其特征在于，还包括：

在所述液晶板把持步骤之后，当装载在所述面板托架上的液晶板有错位时修正所述液晶板的错位的步骤；

将所述修正了错位的液晶板运送到用于检查液晶板状态的所述检查台上的步骤。
液晶板自动把持装置及其方法

技术领域

本发明涉及一种安装于自动探测设备用面板托架上的液晶板自动把持装置及其方法，更详细地说，涉及一种可对因要检查的液晶板的型号发生变更使液晶板的尺寸变化、或错位装裁的液晶板自动把持的液晶板自动把持装置及其方法。

背景技术

正如所公知的，TFT-LCD（Thin Film Transistor-Liquid Crystal Display：薄膜晶体管液晶显示器）、PDP（Plasma Display Panel：等离子显示器）、EL（Electro Luminescent：电发光）等平板显示器（Flat display）制造领域中使用的玻璃基板，逐渐大型化和薄型化。由如此玻璃基板制造的液晶板在其制造程序最后阶段要进行照明检查。对该液晶板的照明检查，要使用自动探测设备分别对液晶板的数据线和门线进行断线或色相的检查，除此以外，用显微镜等通过肉眼检查来进行。

图1示出了作为代表例的水平型自动探测设备。正如图示，自动探测设备包括：本体12，其整个表面以预定的角度例如60°倾斜安装；液晶板供给部20，供给要检查的被检查体（以下称作“液晶板P”）；检查部30，装载该该液晶板供给部20供给来的液晶板P，并通过设置在底面上的光源（未图示）照明，以检查制造工序中产生的液晶板P的不匀或数据线及门线的断线、色相等；以及面板托架60，由向液晶板供给部20和检查部30运送液晶板P的至少2个运送装置构成。在液晶板供给部20上设有使供给的液晶板P同2层形态的面板托架60相配合使之选择性地处于等待状态的辅助台50，在该辅助台50上等待的检查前提的液
晶板P通过任意一个运送装置朝检查部30的检查台32移动并进行检查的期间，在辅助台50上装载新的未检查的液晶板P。此外，在液晶板P的检查结束时，该任意一个运送装置将检查完的液晶板P从检查台32卸载后，再次移到供给部20的辅助台50上，而另外的运送装置将装载在辅助台50上的新的未检查的液晶板P朝检查部30的检查台32运送。反复进行如此步骤，可连续地进行液晶板P的检查。

这样的面板托架60如图2和图3所示，包括：在液晶板供给部20和检查部30的全长上相对置地设置的一对导轨62、64，与该导轨62、64相对置且平行地设置于其下部的相互对置着的另一对导轨62’、64’，沿着一对导轨62、64或一对导轨62’、64’分离成上层和下层水平移动的第1和第2移送臂70、80，与各传送臂70、80的端部连接并通过沿着各导轨移动分别使第1和第2移送臂70、80水平移动的多个传送体61、63、65、67，与第1和第2移送臂70、80的上层和下层中的任意一个连接的传送体例如下层传送体65、67相接合，且可驱动该传送体65、67移动的多个驱动机构90。

如图2所示，第1移送臂70包括：方框构件72，安装有从上部和下部的左右侧端部朝移送臂70的内侧垂直设置的2对导引件71、71’；上下一对移动块76，沿着该导引件71、71’可上下自由移动地安装；以及多个夹具75，设置在各移动块76的内端侧，并把持液晶板P。移动块76的结构为，通过未图示的气缸朝上下对称方向前进，并使用夹具75以嵌入方式把持液晶板P。第2移送臂80的结构与第1移送臂70的结构相同，在此省略对其详细说明。

可是，该结构的以往的面板托架60的移动块76、78，考虑与要实行照明检查的液晶板P的型号对应的尺寸，通过手工作业使移动块76、78只移动导引件71、71’、73、73’上表示的刻度量，而预先设定在装备运转前的状态。因此，当根据液晶板P的型号的变更其尺寸变化时，存在着必须根据该型号的数据再次通过手工作业变更装备的设定的问题。
此外，由于该结构是以夹具75把持持液晶板P的方式把持的，即使装载同样的液晶板P，该液晶板P也会稍许错位。在该状态下面送到另外的步骤时，例如为了进行照明检查时检查部30移送时，液晶板P的检查位置会变化，由此，会获得不同的检查结果，这将降低检查的可靠性。对于小型液晶板，即使检查的可靠性没有特别的问题，但在最近逐渐大型化的液晶板的场合，在面板的中心部，即使角度稍微错位，在周边端部中的检查位置的变化就会增加，对照明检查时的可靠性产生严重的影响。

另外，由于上述的液晶板自动把持装置中具有的夹具75被固定在移动块76、78的内侧中央部，所以，在把持30英寸以上的大型液晶板并移送时，也会存在液晶板的侧端部挠曲，或者液晶板引起反复振动使端部破损的不良现象。

发明内容
发明所要解决的技术问题
本发明是鉴于上述课题而做出的，其目的在于提供一种即使通过变更液晶板的型号来改变其尺寸、也可自动地把持液晶板的在自动探测设备用面板托架中使用的的液晶板自动把持装置。

本发明的另一目的是，提供一种能够自动地把持错位装载的液晶板的在自动探测设备用面板托架中使用的的液晶板自动把持装置。

本发明的又一目的是，提供一种在自动探测设备用面板托架中、即使液晶板的型号变更或该面板错位装载也能自动地把持该液晶板的把持方法。

本发明的再一目的是，提供一种把持大型液晶板移送时防止液晶板的侧端部挠曲或者该液晶板引起反复振动使端部破损的现象的同时、可适用于各种尺寸的液晶板的在自动探测设备用面板托架中使用的的液晶板自动把持装置。

解决技术问题的方案
为了实现上述目的，根据本发明的较佳实施例的在自动检测设备用面板托架中使用的液晶板自动把持装置，包括：四个移送台移送螺杆，垂直设置于框架的上部和下部构件的左右侧的两端，通过各驱动源的驱动可分别自由地正反转；移送台托架块，被连接成沿所述各移送台移送螺杆移送；上部和下部的一对移送台，与所述移送台托架块的一端结合的同时，一对固定夹具相隔预定距离设置在移送台的内端的中央部，一对移动夹具设置在所述固定夹具的左右两侧，以把持液晶板；移送台移动距离可变机构，安装在所述移送台的两端，调节所述移送台的两端的移动距离；检测机构，安装在所述夹具上，检测所述液晶板的大小和错位；以及控制部，根据所述检测机构的检测信号，分别控制所述移送台移送螺杆及所述移动夹具的动作。

另外，根据本发明的另一较佳实施例的在自动检测设备用面板托架中使用的液晶板自动把持方法，包括：将液晶板装载到所述面板托架上的步骤；检测所述装载的液晶板的错位程度的步骤；根据所述检测结果，由控制部判断所述装载的液晶板的错位程度的步骤；以及，使用用于把持所述液晶板的多个夹具来把持所述装载的液晶板的步骤；所述多个夹具的各自朝所述装载的液晶板的移动距离，是根据所述装载的液晶板的错位程度的判断而定。

发明的效果

根据本发明的在自动检测设备用面板托架中使用的液晶板自动把持装置，因能够自动地检测出装载的液晶板的型号大小和错位来把持该液晶板，能够容易地自动地把持完全不具有与液晶板的型号对应的数据的新型号液晶板。

此外，即使要进行检查的液晶板的型号发生变更，因装置自身自动把持变更的液晶板，无须设置的时间和功夫，能够提高生产率。

另外，根据本发明，能够存储自动地把持新型的液晶板时获得的新型号的相关数据，通过将该存储的数据适用于自动检测设备中，在以后装载有同样型号的液晶板时，能够减少对其的另外的设置时间。
再有，根据本发明，通过移动夹具安装在移送台上，把持大型液晶板移时，能够防止液晶板的检测端部偏移、或者液晶板反复振动引起的端部破损的现象，可适用于各种大小的液晶板。

附图说明
图1是表示现有的自动探测设备结构的透视图。
图2是表示图1所示设备中的面板托架结构的俯视图。
图3是图2所示面板托架的侧视图。
图4是表示本发明较佳实施例的垂直型自动探测设备结构的透视图。
图5是表示图4所示自动探测设备的面板托架结构的俯视图。
图6是图5所示面板托架的侧视图。
图7是表示图5所示运送装置的俯视图。
图8是表示移送台移动距离可变机构的结构的分解透视图。
图9是表示固定夹具和移动夹具的配置状态的移送台的后视图。
图10A－图10C是表示本发明较佳实施例的面板托架把持各种型号的液晶板时的状态的例示图。

具体实施方式
以下，参照图4－图6，详细地说明本发明较佳实施例的在自动探测设备用面板托架中使用的液晶板自动把持装置。

图4－图6示出本发明的较佳实施例的垂直型自动探测设备用面板托架的结构。正如这些视图所示，本发明较佳实施例的自动探测设备是相当于液晶板供给部220和检查部230的部分上下垂直设置的垂直型。本发明较佳实施例的自动探测设备，包含有：供给要检查的液晶板P的液晶板供给部220，对液晶板供给部220供给的液晶板P进行检查的检查部230，以及由向供给部220和检查部230运送液晶板P的至少2个运送装置构成的面板托架260。另外，在液晶板供给部220上设有将所供给的液晶板P同2层形态的面板托架260相配合使之有选择地处于等待状态的辅助台250，从而能够连续地进行液晶板P的检查。
如此构成的垂直型自动探测设备用面板托架，包括：长方形的框
状基部100，在上下方分别设置液晶板供给部220和检查部230；2对移
送螺杆110、110°，其基部100的两端两条并设置成上层和下层；驱动
源120，使移送螺杆110、110°正反转；第1和第2运送装置130、140，
分别与上下层的移送螺杆110、110°结合；液晶板自动把持装置150，
分别安装在运送装置130、140上。

第1运送装置130和第2运送装置140的结构是相同的，为了便于说
明，只说明第1运送装置130的结构。如图7所示，第1运送装置130包括：
大致四角形的框架132，设置在基部100内；以及托架部134，安装在框
架132的两侧面，通过移送螺杆110、110°的正反转使框架132上下移动，
并与移送螺杆110、110°结合。

另外，液晶板自动把持装置150包括：移送台移送螺杆152，在框
架132的内侧垂直设置于上部和下部构件的左右侧端部，通过各驱动源
154的驱动而分别可自由地正反转；移送台托架块156，其结合成可沿
着各移送台移送螺杆152移送；上下一对移送台162，与左右的移送台
托架块156的端部结合的同时，具有仅相距预定距离来把持液晶板P的
一对固定夹具159；移送台移动距离可变机构160，安装在各移送台162
的两端，调节移送台162两端的移动距离；检测机构157，安装在各夹
具158，159上，以检测液晶板P的尺寸或错位的；控制部（未图示），
根据检测机构157的检测信号，控制各驱动源154的动作，以分别驱动
移送台移送螺杆152。

移送台移动距离可变机构160为滚柱轴承组件，如图8所示，包括：
基部172，设置在安装于移送台162两端的移送台托架块156上，并且，
与移送台托架块156设置成一体；与基部172结合的旋转轴174；以及与
滚柱174结合的旋转用横向滚柱轴承176。两端的移送台移动距离可变
机构160中的一个还具有：安装在基部172的一侧面上的直线移动用横
向滚柱轴承173，以及夹持在基部172与旋转轴174之间的支承台架175。
另外，安装在上下的移送台162上的移送台移动距离可变机构160的结构都是相同的，只是左右移送台移动距离可变机构160的位置相反。

如图9所示，在移送台162里面的中央部，具有仅相距预定距离的一对固定夹具158，用于夹持着液晶板P，而在固定夹具158的左右两侧，具有可沿着在移送台162上的长度方向安装的夹具导轨190移动的一对移动夹具159。

尽管没有详细地示出检测机构157，但受光传感器和发光传感器为一体的2个以下的光电传感器，最好是设置在面板的上部和下部即上下的各移送台162上。作为其他的实施例，通过受光传感器和发光传感器上下的分离地夹持液晶板P，很显然，能够检测出液晶板P的错位程度。另外，在液晶板P的周边部、液晶板P发生错位时，也可使用与该液晶板接触并产生电信号的接触式传感器。

上述结构的本发明的垂直型自动探测设备用面板托架，能够如后述地自动地把持液晶板P。

在液晶板供给部220上装载有新型号的液晶板P时，作业者向设在检查装置中的控制部输入同变更的液晶板P的型号有关的数据。作业者根据所输入的液晶板P的型号数据是否已存在于该控制部，来改变自动探测设备的动作。

在型号数据不存在于控制部时，通过驱动源154移送移送台162的同时，由安装在固定夹具158上的检测机构157检测出液晶板P。

在检测机构157未能检测出液晶板P时，控制部（未图示）使各驱动源154动作以分别驱动移送台移送螺杆152，接着，移送台移送螺杆152各自分别旋转，移送台托架块156和移送台162朝液晶板P的表面方向移动。通过移送台162接近液晶板P，同时，如果安装于一对固定夹具158上的检测机构157检测出液晶板P的面，则没有错位，由于装载有液晶板P，控制部停止其驱动源154的动作，以便停止移送台移送螺杆152的旋转。此时，移送台162的移动距离数据传送到控制部并被存储，以便于以后同样型号的液晶板P装载到运送装置时使用。接着，通过安
装于固定夹具158两侧的移动夹具159分别朝左右移动，安装在移动夹具159上的检测机构157检测出液晶板P的面。安装于移动夹具159上的检测机构157直到不能检测出液晶板P的瞬间，根据移动夹具159的移动距离获得液晶板P的宽度尺寸数据，并将其传输给控制部。控制部计算能够安全地对装裁的液晶板P把持的移动夹具159的位置，将控制信号向与移动夹具159一体设置的驱动源191传送，使移动夹具159朝预定的位置移动。设置在移送台162的内面的同时，端部具有夹具158、159的驱动器192、192'动作，固定夹具158和移动夹具159向前方前进，通过把持液晶板P，完成液晶板P的把持。

与之不同，在安装于一方的固定夹具158上的检测机构157检测出液晶板，而另一方固定夹具158的检测机构157没有检测出液晶板时，意味着错位等同于直到没检测出液晶板的检测机构157检测液晶板为止的间隔。另外，由于在任一方检测出液晶板，因此控制部停止驱动源154的动作，以便停止检测到的该移送台移送螺杆152的旋转。之后，通过移送台移动距离可变机构160，调节移送台162两端的移动距离。即，在移送台162的两侧安装有旋转用横向滚柱轴承176，由于移送台162的任一个上安装有直线移动用横向滚柱轴承173，因此，当使驱动源154动作、以便只旋转任一个移送台移送螺杆152时，将移动停止的移送台移送螺杆152的移送台托架块156为轴，未能检测的一方的移送台托架块156下降，以修正错位。接着，安装在移送台162上的移动夹具159如上述场合同样地动作后，通过与固定夹具158一起把持液晶板P，完成液晶板P的把持。

在作业者输入的数据已存在于控制部的情况下，与该数据相对应驱动驱动源154，使移送台移送螺杆152旋转，调节两端之间的移动距离的同时，移动移送台162，夹具158、159的端部与装载的液晶板P端部之间的间隔例如设置成2～5mm。设置移送台162后，设置在移送台162内面的同时，端部具有夹具158，159的驱动器动作，夹具158、159向前方前进，把持液晶板P，完成液晶板P的把持。此时，如此地根据存
在于控制部的数据动作的结果，液晶板P没有可靠地被把持时，例如液晶板P被错位装载而使一部分夹具不能把持液晶板P时，所有的夹具158、159解除把持，移送台162退回到原来的位置后，与前述输入的数据不存在于控制部的场合同样地，再次尝试液晶板P的把持。

例如，如图10A所示，小型的液晶板P没错位地被供给到供给部220的框架132的中央时，因由任何检测机构157都没有检测出液晶板，所以上下左右的各驱动源154动作，以使各移送台移送螺杆152同时旋转时，上下的各移送台162与框架132平行地从点线位置移动到实线位置，之后，由夹具158、159把持液晶板P。

与之不同，如图10B所示，大型液晶板P没有错位地被供给到供给部220的框架132的下部时，因上部检测机构157不能检测出液晶板，当上部的一对驱动源154动作，以使各移送台移送螺杆152同时旋转时，上部移送台162与框架132平行地从点线位置移动到实线位置，之后，由夹具158、159把持液晶板P。

此外，与之不同，如图10C所示，小型的液晶板P错位地被供给到供给部220的框架132中央时，因上下左右的任何检测机构157都没有检测出液晶板，上下左右的各驱动源154动作，以使各移送台移送螺杆152同时旋转，直到各检测机构157检测出液晶板。接着，当任一个检测机构157检测出液晶板时，使进行该检测的移送螺杆152的旋转停止。由此，沿着移送螺杆152移动的移送台托架块156也停止。

之后，直到另一检测机构157检测出液晶板P的面，由移送台移动距离可变机构160使另一移送台托架块156下降，修正错位，从而移送台162只错开角度 \(\theta \)。如此，上部和下部的移送台162均只旋转液晶板P错开的角度后，因由夹具158、159把持液晶板P，也能够自动地把持错位装载的液晶板P。

如上所述，将从辅助台装载到面板托架上的液晶板P从液晶板供给部220运送到检查部230的过程按如下方式进行。

实施例1
将在面板托架上错位把持的液晶板P以错位状态运送到检查部230的检查台上后，将错位把持的液晶板P的数据向控制部传送。控制部将控制信号向检查台232传送，检查台232与装载到面板托架上的液晶板的错位相对应，接收该状态下的液晶板。在检查台232结束液晶板P的检查后，错位状态的液晶板保持原样地被把持在面板托架上，接着，被运送到液晶板供给部220。之后，从面板托架错位装载来的液晶板的数据被传送到控制部，该控制部将控制信号向辅助台250传输，辅助台250根据装载到面板托架上的液晶板的错位，接收液晶板。

实施例2

在面板托架上错位把持的液晶板的数据被传送到控制部，该控制部将控制信号传送到面板托架的第1和第2运送装置130、140的驱动源154，通过使与驱动源154连接的各移送台移送螺杆152旋转来调节移送台162的错位，可校正错位把持的液晶板P的位置。该被校正的液晶板P从液晶板供给部220运送到检查部230，并且，被装载到检查部230的检查台232上，以进行检查。之后，检查结束的液晶板在已被校正的状态下，从检查部230再次被运送到液晶板供给部220，由辅助台250接收该液晶板。

在上述说明中，本发明的自动探测设备用面板托架例示了垂直型，但并不限于此，例如采用水平型自动探测设备用面板托架，同样并不超出本发明权利要求的范围，在此范围内本领域普通技术人员可进行各种变化。
图 6
图10C