(54) 发明名称
热塑性组合物，及其制备方法和形成的制品

(57) 摘要
一种热塑性组合物，包括含间苯二甲酸-对苯二甲酸-间苯二酚酯单元和碳酸酯单元的聚酯-聚碳酸酯聚合物，以及含对苯二甲酸乙二酯单元、1,4-环己二亚甲基对苯二甲酸酯单元或对苯二甲酸乙二酯单元与1,4-环己二亚甲基对苯二甲酸酯单元的结合的聚（亚烷基酯），其中在聚酯-聚碳酸酯聚合物内间苯二甲酸-对苯二甲酸-间苯二酚酯单元的摩尔百分数和在聚（亚烷基酯）聚合物内的1,4-环己二亚甲基对苯二甲酸酯单元的摩尔百分数之和为大于40的数值。在其他实施方案中，可包括聚碳酸酯。还公开了形成热塑性组合物的方法和由其制备的制品。
1. 一种热塑性组合物，包括：
包含摩尔比为 20：80~80：20 的间苯二甲酸 - 对苯二甲酸 - 间苯二酚酯单元和碳酸酯单元的聚酯 - 聚碳酸酯聚合物，和
包含摩尔比为 20：80~95：5 的对苯二甲酸乙二酯单元和 1,4-环己基亚甲基对苯二甲酸酯单元的聚（亚烷基酯），
其中聚酯 - 聚碳酸酯和聚（亚烷基酯）聚合物以 20：80~80：20 的重量比存在于热塑性组合物内，
其中在聚酯 - 聚碳酸酯聚合物内的间苯二甲酸 - 对苯二甲酸 - 间苯二酚酯单元的摩尔百分数和在聚（亚烷基酯）聚合物内的 1,4-环己基亚甲基对苯二甲酸酯单元的摩尔百分数之和为大于 40 的数值，
和
其中厚度为 2.5mm 且由聚酯 - 聚碳酸酯、聚（亚烷基酯）聚合物和小于或等于 5% 重量的添加剂组成的模塑制品的密度小于或等于 5%，根据 ASTM D1003-00 来测得。

2. 权利要求 1 的热塑性组合物，其中聚酯 - 聚碳酸酯聚合物进一步包括额外的酯单元。

3. 权利要求 2 的热塑性组合物，其中额外的酯单元包括下式的二羟基化合物的间苯二甲酸酯 - 对苯二甲酸酯：

HO-A1-Y-A2-OH
其中 A1 和 A2 中的每一个是单环二价芳基，Y 是具有 1 或 2 个隔开 A1 和 A2 的原子的桥
涟基团。

4. 权利要求 1 的热塑性组合物，其中厚度为 2.5mm 且由聚酯 - 聚碳酸酯、聚（亚烷基酯）聚合物和小于或等于 5 重量%的添加剂组成的模塑制品的透明度大于或等于 80%，根据 ASTM D1003-00 来测得。

5. 权利要求 1 的热塑性组合物，其中间苯二甲酸 - 对苯二甲酸 - 间苯二酚酯单元具有下述结构：

其中每一 R' 独立地为卤素原子、C12-C12 烃基或 C12-C12 卤素取代的烃基 ; p 为 0~4 ; m 为 2~500。

6. 权利要求 5 的热塑性组合物，其中聚酯 - 聚碳酸酯具有下述结构：

其中每一 R' 独立地为卤素原子、C12-C12 烃基或 C12-C12 卤素取代的烃基 ; p 为 0~4 ; 每一 R' 独
立地为 C12~30 亚芳基，m 为 2~500，n 为 2~500。

7. 权利要求 6 的热塑性组合物，其中聚酯 - 聚碳酸酯是聚（间苯二甲酸 - 对苯二甲酸 - 间苯二酚酯） - 共 -（双酚 A 碳酸酯）。

8. 权利要求 1 的热塑性组合物，其中热塑性组合物包括添加剂，所述添加剂包括抗氧化剂，热稳定剂，光稳定剂，紫外光吸收剂，增塑剂，脱模剂，润滑剂，抗静电剂，颜料，染料，
阻燃剂、Y稳定剂或含至少一种前述添加剂的组合，其中选择添加剂的用量和类型，以使热塑性组合物的所需性能没有受到显著的负面影响。

9. 权利要求8的热塑性组合物，其中基于聚酯-聚碳酸酯和聚（亚烷基酯）的总重量，添加剂的存在总量小于或等于5%重量。

10. 热塑性组合物，包括：

基本上由摩尔比为20：80-80：20的间苯二甲酸-对苯二甲酸-间苯二醇酯单元和

硫酸酯单元组成的聚酯-聚碳酸酯聚合物，和

基本上由摩尔比为20：80-95：5的对苯二甲酸乙二酯单元和1,4-环己基二甲基

对苯二甲酸酯单元组成的聚（亚烷基酯），

其中聚酯-聚碳酸酯和聚（对苯二甲酸亚烷基酯）的重量比为20：80-80：20，和

其中在聚酯-聚碳酸酯聚合物内的间苯二甲酸-对苯二甲酸-间苯二醇酯单元的摩尔

百分数和聚（亚烷基酯）聚合物内的1,4-环己基二甲基对苯二甲酸酯单元的摩尔百分数之和为大于40的数值，

和

其中厚度为2.5mm且由聚酯-聚碳酸酯、聚（亚烷基酯）聚合物和小于或等于5%重量

的添加剂组成的模塑制品的雾度小于或等于5%，根据ASTMD1003-00来测得。

11. 权利要求10的热塑性组合物，其中聚酯-聚碳酸酯是聚（间苯二甲酸-对苯二甲

酸-间苯二醇酯）-共-（双酚A碳酸酯）聚合物。

12. 形成热塑性组合物的方法，该方法包括熔体组合：

包含摩尔比为20：80-80：20的间苯二甲酸-对苯二甲酸-间苯二醇酯单元和碳酸

酸酯单元的聚酯-聚碳酸酯聚合物，和

包含摩尔比为20：80-95：5的对苯二甲酸乙二酯单元和1,4-环己基二甲基对苯

二甲酸酯单元组成的聚（亚烷基酯），

其中选择聚酯-聚碳酸酯和聚亚烷基酯以使在聚酯-聚碳酸酯聚合物内的间苯二甲

酸-对苯二甲酸-间苯二醇酯单元的摩尔百分数和在聚（对苯二甲酸亚烷基酯）聚合物内

的1,4-环己基二甲基对苯二甲酸酯单元的摩尔百分数之和为大于40的数值，

和

其中厚度为2.5mm且由聚酯-聚碳酸酯、聚（亚烷基酯）聚合物和小于或等于5%重量

的添加剂组成的模塑制品的雾度小于或等于5%，根据ASTMD1003-00来测得，

其中聚酯-聚碳酸酯和聚（亚烷基酯）以20：80-80：20的重量比熔体共混。

13. 通过权利要求12的法制备的热塑性组合物。

14. 含权利要求1的组合物的制品。

15. 热塑性组合物，基本上由下述组成：

包含摩尔比为20：80-80：20的间苯二甲酸-对苯二甲酸-间苯二醇酯单元和碳酸

酸酯单元的聚酯-聚碳酸酯聚合物，和

包含摩尔比为20：80-95：5的对苯二甲酸乙二酯单元和1,4-环己基二甲基对苯

二甲酸酯单元的聚（亚烷基酯），

其中聚酯-聚碳酸酯和聚（亚烷基酯）聚合物以20：80-80：20的重量比存在于热

塑性组合物内，
其中在聚酯 - 聚碳酸酯聚合物内间苯二甲酸 - 对苯二甲酸 - 间苯二酚酯单元的摩尔百分数和在聚（亚烷基酯）聚合物内 1,4- 环己基二亚甲基对苯二甲酸酯单元的摩尔百分数之和为大于 40 的数值，其中厚度为 2.5mm 且由聚酯 - 聚碳酸酯 - 聚（亚烷基酯）聚合物和小于或等于 5% 重量的添加剂组成的模塑制品的雾度小于或等于 5%，根据 ASTM D1003-00 来测得。

16. 热塑性组合物，由下述组成：

包含摩尔比为 20 : 80-80 : 20 的间苯二甲酸 - 对苯二甲酸 - 间苯二酚酯单元和碳酸酯单元的聚酯 - 聚碳酸酯聚合物，和

包含摩尔比为 20 : 80-95 : 5 的对苯二甲酸乙二酯单元和 1,4- 环己基二亚甲基对苯二甲酸酯单元的聚（亚烷基酯），和

0-5wt% 的添加剂，

其中聚酯 - 聚碳酸酯和聚（亚烷基酯）聚合物与 20 : 80-80 : 20 的重量比存在于热塑性组合物内；和

其中厚度为 2.5mm 且由聚酯 - 聚碳酸酯 - 聚（亚烷基酯）聚合物和小于或等于 5% 重量的添加剂组成的模塑制品的雾度小于或等于 5%，根据 ASTM D1003-00 来测得；

其中在聚酯 - 聚碳酸酯聚合物内间苯二甲酸 - 对苯二甲酸 - 间苯二酚酯单元的摩尔百分数和在聚（亚烷基酯）聚合物内 1,4- 环己基二亚甲基对苯二甲酸酯单元的摩尔百分数之和为大于 40 的数值，并且其中选择添加剂的用量与类型以没有显著负面影响热塑性组合物的所需性能。
热塑性组合物、及其制备方法和形成的制品

发明背景
本发明的公开内容涉及稳定化的热塑性组合物、制备方法及其制品和用途。
聚碳酸酯可与其他不同的混溶或不混溶的聚合物共混，以改进聚碳酸酯的各种机械和其他性能。对于要求改进机械性能的应用来说，有用的是混溶的共混物，因为它们还会使用用于具有透明度需求的共混物。具体地，聚酯可与聚碳酸酯共混以改进机械性能，例如冲击强度，和/或也可添加聚酯以改进流变学性能，例如熔体的体积流速。然而，聚碳酸酯的其他性能，具体是光学性能，可受到形成共混物的负面影响，其中聚碳酸酯可能形成发雾的外观和减少的透光率。

因此，本领域需要含聚碳酸酯和聚酯的混溶的热塑性组合物。该热塑性组合物具有高的透明度和低的雾度（haze），且具有所需的机械和/或流变学性能。

发明概述
在一个实施方案中，通过包含间苯二甲酸 - 对苯二甲酸 - 间苯二酚酯单元和聚碳酸酯单元的聚酯 - 聚碳酸酯聚合物以及包含对苯二甲酸乙二酯单元、1,4-环己基二亚甲基对苯二甲酸酯单元或者对苯二甲酸乙二酯单元与 1,4-环己基二亚甲基对苯二甲酸酯单元的结合（物）（combination）的聚（二烷基酯）的热塑性组合物来减少本领域的上述缺陷，其中在聚酯 - 聚碳酸酯聚合物内的间苯二甲酸 - 对苯二甲酸 - 间苯二酚酯单元的摩尔百分数和在聚（二烷基酯）聚合物内的 1,4-环己基二亚甲基对苯二甲酸酯单元的摩尔百分数之和为大于 40 的数值。在具体的实施方案中，聚酯 - 聚碳酸酯和聚（二烷基酯）聚合物以 20 : 80–80 : 20 的重量比存在于热塑性组合物内。

在另一实施方案中，热塑性组合物包括基本上由间苯二甲酸 - 对苯二甲酸 - 间苯二酚酯单元和聚碳酸酯单元组成的聚酯 - 聚碳酸酯聚合物，以及基本上由对苯二甲酸乙二酯单元、1,4-环己基二亚甲基对苯二甲酸酯单元或对苯二甲酸乙二酯单元与 1,4-环己基二亚甲基对苯二甲酸酯单元的结合组成的聚（二烷基酯），其中在聚酯 - 聚碳酸酯聚合物内的间苯二甲酸 - 对苯二甲酸 - 间苯二酚酯单元的摩尔百分数大于或等于酯和聚碳酸酯单元总摩尔数的 1mol %，其中聚酯 - 聚碳酸酯和聚（对苯二甲酸亚烷酯）以 20 : 80–80 : 20 的重量比存在，并且其中在聚酯 - 聚碳酸酯聚合物内的间苯二甲酸 - 对苯二甲酸 - 间苯二酚酯单元的摩尔百分数和在聚（二烷基酯）聚合物内的 1,4-环己基二亚甲基对苯二甲酸酯单元的摩尔百分数之和为大于 40 的数值。

在另一实施方案中，形成热塑性组合物的方法包括熔体结合含间苯二甲酸 - 对苯二甲酸 - 间苯二酚酯单元和聚碳酸酯单元的聚酯 - 聚碳酸酯，以及含对苯二甲酸乙二酯单元、1,4-环己基二亚甲基对苯二甲酸酯单元或对苯二甲酸乙二酯单元与 1,4-环己基二亚甲基对苯二甲酸酯单元的结合的聚（二烷基酯），其中选择聚酯 - 聚碳酸酯和聚（二烷基酯），以在聚酯 - 聚碳酸酯聚合物内的间苯二甲酸 - 对苯二甲酸 - 间苯二酚酯单元的摩尔百分数和在聚（对苯二甲酸亚烷酯）聚合物内的 1,4-环己基二亚甲基对苯二甲酸酯单元的摩尔百分数之和为大于 40 的数值。

在另一实施方案中，热塑性组合物基本上由含间苯二甲酸 - 对苯二甲酸 - 间苯二
酚醚单元和碳酸酯单元的聚酯，则聚氯酸酯聚合物，以及含对苯二甲酸乙二酯单元、1,4-环己基二甲基对苯二甲酸酯单元或对苯二甲酸乙二酯单元与1,4-环己基二甲基对苯二甲酸酯单元的聚合物的聚(亚烷基酯)组成。其中在聚酯-聚氯酸酯聚合物内，对苯二甲酸-间苯二酚酯单元的摩尔百分数和在聚(亚烷基酯)聚合物内，在1,4-环己基二甲基对苯二甲酸酯单元的摩尔百分数和为大于40的数值。

[0010] 在另一实施方案中，热塑性组合物由包含间苯二甲酸-对苯二甲酸-间苯二酚酯单元和碳酸酯单元的聚酯-聚氯酸酯聚合物，包含对苯二甲酸乙二酯单元、1,4-环己基二甲基对苯二甲酸酯单元或对苯二甲酸乙二酯单元与1,4-环己基二甲基对苯二甲酸酯单元的聚合物的聚(亚烷基酯)，以及0-5wt%的添加剂组成，其中在聚酯-聚氯酸酯聚合物内，对苯二甲酸-间苯二酚酯单元的摩尔百分数和在聚(亚烷基酯)聚合物内的1,4-环己基二甲基对苯二甲酸酯单元的摩尔百分数之和为大于40的数值。并且选择添加剂的类型和用量，以使热塑性组合物的所需性能没有受到负面影响。

[0011] 在另一实施方案中，还公开了该热塑性组合物的制品。

[0012] 通过下述详细说明例举以上所述和其他的特征。

[0013] 发明详述

[0014] 令人惊奇地，已发现：包含间苯二甲酸-对苯二甲酸-间苯二酚酯单元(ITR)和碳酸酯单元的聚酯-聚氯酸酯聚合物，与包含对苯二甲酸乙二酯单元和/或1,4-环己基二甲基对苯二甲酸酯单元(CTDM)的聚(亚烷基酯)聚合物的共混物的透明度高。当聚酯-聚氯酸酯聚合物内的ITR酯单元的摩尔百分数和聚(亚烷基酯)聚合物内CTDM单元的摩尔百分数之和大于40时，这些聚合物的共混物的透明度高。除了透明度和所需的机械性能以外，该组合物还具有所需的、杰出的耐候老化性(Weathability)。

[0015] 此处所使用的术语“烷基(alkyl)”是指直链或支链的单价烃基;“亚烷基(alkylene)”是指直链或支链的二价烃基;“偏烷基(alkylidene)”是指直链或支链的二价烃基且两个价态或同一个碳原子上;“(链)烯基”是指具有通过碳碳双键相连的至少两个碳的直链或支链单价烃基;“环烷基”是指具有至少三个碳原子的非芳族单环或多环烃基;“环烷基(环烯烃)”是指具有至少三个碳原子的非芳族的脂环族二价烃基，或具有至少一个不饱和度;“芳基”是指在个或多个芳环上仅仅含碳的芳族基团;“烷环芳基”是指在个或多个芳环上仅仅含有碳的芳族基团;“烷芳基”是指被以上定义的烷基取代的芳基，举例，烷芳基是4-甲基苯基;“烷氧基”是指被以上定义的芳基取代的烷基基团，其中芳基是例举的芳基;“酰基”是指具有通过羰基碳桥(-C(O)-)连接具有所指碳原子数的以上定义的烷基得到的基团;“烷氧基”是指具有通过氧桥(-O-)连接具有所指碳原子数的以上定义的烷基得到的基团;“芳氧基”是指具有通过氧桥(-O-)连接具有所指碳原子数的以上定义的芳基得到的基团。
酸酯树脂”是指具有式 (1) 表示的碳酸酯重复结构单元的组合物：

$$\begin{array}{c}
\text{O} \\
\text{___} \text{O} \text{--C--O--R}^1 \text{--} \\
\text{R}^1
\end{array}$$

(1)

其中 R^1 基总数中的至少 60％是芳族有机基团，其余为脂族、脂环族或芳族基团。在一个实施方式中，每 - R^1 是芳族有机基团。在另一实施方式中，每 - R^1 是式 (2) 表示的基团：

$$\begin{array}{c}
\text{R}^2 \text{--} \text{Y}^1 \text{--} \text{R}^3 \text{--} \\
\text{R}^4
\end{array}$$

(2)

其中每 - R^1 和 R^2 是单环二价芳基，Y^1 是具有一个或两个隔开 R^1 与 R^2 的原子的桥连基团。在例举的实施方式中，R^1 与 R^2 被一个原子隔开。举例而言，这类基团的非限定性实例是 -O-、-S-、-S(O)-、-S(O)_2-、-O(O)-、亚甲基、环己亚 - 亚甲基、2-[2,2,1]- 双环偏亚环己基、偏环亚乙基、偏环亚异丙基、偏环新戊基、偏环环己基、偏环环十五烷基、偏环环十二烷基和偏环环己基环烷基。桥连基团 Y^1 可以是烃基或饱和烃基，例如亚甲基、环己基或偏环亚异丙基。在另一实施方式中，Y^1 是连接 R^1 和 R^2 的碳碳键 (-)。

可通过包括式 HO-R^1-OH 的二羟基化合物（它包括式 (3) 的二羟基芳族化合物）的界面反应，生产聚碳酸酯：

$$\text{HO--R}^1\text{--Y}^1\text{--R}^2\text{--OH}$$

(3)

其中 Y^1、R^1 和 R^2 如上所述。还包括通式 (4) 的双酚化合物：

$$\begin{array}{c}
\text{HO---} \\
\text{R}^6 \text{--X}^p \text{--R}^6 \text{--OH} \\
\text{R}^7 \text{--X}^q \text{--R}^7 \text{--OH}
\end{array}$$

(4)

其中 R^6 和 R^7 各自代表卤原子或单价烃基，可相同或不同；p 和 q 各自独立地为整数 0-4，X^p 表示式 (5) 的基团之一：

$$\begin{array}{c}
\text{R}^5 \text{--C--} \text{R}^5 \\
\text{R}^6 \text{--C--} \text{R}^6
\end{array}$$

(5)

其中 R^5 和 R^6 各自独立地代表氢原子或单价直链烷基或环亚烷基，R^6 是二价烃基。在一个实施方式中，R^5 和 R^6 代表环烷烃；或含杂原子的环烷烃；所述环烷烃包括价态大于或等于 2 的碳原子、杂原子或含至少一个杂原子和至少两个碳原子的化合物。在含杂原子的环烷烃中使用的合适的杂原子包括 -O-、-S- 和 -N(Z)-，其中 Z 是选自下述中的取代基：氢、烃基、C_{1-12} 烷基、C_{1-12} 烷氧基或 C_{1-12} 醚基。若存在，环亚烷基或含杂原子的环烷烃可具有 3-20 个原子，可以是单饱和或不饱和环或稠合的多环体系，其中稠合的环是饱和、不饱和和芳族的。

合适的聚碳酸酯进一步包括由含烷基环己烷单元的双酚衍生的那些。这种聚碳酸酯具有式 (6) 的结构单元：

$$\begin{array}{c}
\text{HO--} \\
\text{R}^8 \text{--X}^p \text{--R}^8 \text{--OH} \\
\text{R}^9 \text{--X}^q \text{--R}^9 \text{--OH}
\end{array}$$

(6)
其中 R°-R°°各自独立地为氢、C_{1-2}烷基或卤素，取代基 R°-R°°和 R°′-R°′各自独立地为氢或 C_{1-2}烷基。取代基可以是脂族或芳族、直链、环状、双环、支链、饱和或不饱和的。在具体的实施方式中，含烷基环己烷的双酚，例如 2-摩尔苯酚与 1-摩尔氯化异佛尔酮的反应产物可用于制备玻璃化转变温度高且热变形温度高的聚碳酸酯聚物。这种含异佛尔酮双酚的聚碳酸酯对应于式 (6)，其中 R°, R°°和 R°°°均是甲基；R°′，R°′′，R°′′′，R°′′′′，R°′′′′和 R°′′′′′各自是氢；R°′-R°′′各自是所定义。这些异佛尔酮双酚类聚物，其中包括含有烷基环己烷双酚的聚碳酸酯聚物以及含有烷基环己基双酚的聚碳酸酯与非烷基环己基双酚聚碳酸酯的共混物，由 Bayer Co. 以商品名 APE®供应。

合适的二羟基化合物的一些例举的非限定性实例包括下述：4,4′-二羟基联苯，1,6-二羟基萘，2,6-二羟基萘，双 (4-羟苯基) 甲烷，双 (4-羟苯基) 二苯甲烷，双 (4-羟苯基) -1-萘基甲烷，1,2-双 (4-羟基苯基) 乙烷，1,1-双 (4-羟基苯基) -1-苯基乙烷，2,2-双 (4-羟基苯基) -2-(3-羟基苯基) 丙烷，双 (4-羟基苯基) 苯基甲烷，2,2-双 (4-羟基-3-溴苯基) 丙烷，1,1-双 (羟基苯基) 环己烷，1,1-双 (4-羟基苯基) 环己烷，1,1-双 (4-羟基苯基) 异丁烯，1,1-双 (4-羟基苯基) 环十二烷，反式-2,3-双 (4-羟基苯基) -2-丁烯，2,2-双 (4-羟基苯基) 金刚烷，4,4′-双 (4-羟基苯基) 甲烷，双 (4-羟基苯基) 乙烷，2,2-双 (3-甲基-4-羟基苯基) 丙烷，2,2-双 (3-乙基-4-羟基苯基) 丙烷，2,2-双 (3-丙基-4-羟基苯基) 丙烷，2,2-双 (3-异丙基-4-羟基苯基) 丙烷，2,2-双 (3-仲丁基-4-羟基苯基) 丙烷，2,2-双 (3-叔丁基-4-羟基苯基) 丙烷，2,2-双 (3-环己基-4-羟基苯基) 丙烷，2,2-双 (3-烯丙基-4-羟基苯基) 丙烷，2,2-双 (3-甲氧基-4-羟基苯基) 丙烷，2,2-双 (3-羟基苯基) 六氟丙烷，1,1-双 (氯苯基)-2,2-双 (4-羟基苯基) 乙烯，1,1-双 (氯苯基)-2,2-双 (4-羟基苯基) 乙烯，4,4′-二羟基二苯甲酮，3,3′-双 (4-羟基苯基)-2-丁酮，1,1-双 (4-羟基苯基)-1,6-己二酮，乙二醇双 (4-羟基苯基) 醚，双 (4-羟基苯基) 醚，双 (4-羟基苯基) 硫醚，双 (4-羟基苯基) 硫醚，双 (4-羟基苯基) 亚砜，双 (4-羟基苯基) 硫酸，9,9′-双 (4-羟基苯基) 氮，2,7-二羟基花，6,6′-二羟基-3,3,3′-三-四甲基螺双 (2) 二氢化萘 (“螺双二氢化萘双酚”)，3,3-双 (4-羟基苯基) 苄基 (phthalimide) 2,6-二羟基二苯并 -p-二噻苯 (dioxin)，2,6-二羟基噻吩，2,7-二羟基苯素 (phenoxathin) 2,7-二羟基-9,10-二甲基咔唑，3,6-二羟基二苯并噻吩，2,7-二羟基咔唑和类似物以及含至少一种前述二羟基化合物的衍生物。

式 (3) 表示的双酚化合物类的具体实例包括 1,1-双 (4-羟基苯基) 甲烷，1,1-双 (4-羟基苯基) 乙烷，2,2-双 (4-羟基苯基) 丙烷，2,2-双 (4-羟基苯基) 丁烷，1,1-双 (4-羟基苯基) 丙烷，1,1-双 (4-羟基苯基) 正丁烷，2,2-双 (4-羟基苯基) 丙烷，1,1-双 (4-羟基苯基) 水，3,3-双 (4-羟基苯基) 苄并 [c] 吡咯酮 (phthalimidone) 2,2-苯基-3,3-双 (4-羟基苯基) 苄并 [c] 吡咯酮 (PPBP) 和 1,1-双 (4-羟基苯基) 环已烷 (DMBPC)。也可使用含至少一种前
述二羟基化合物的结合物。

[0034] 另一羟基芳族基团 R^1 衍生于式 (7) 的二羟基芳族化合物；

\[\text{(R^1)}_2 \]

(7)

[0035] 其中每一 R^1 独立地为卤素原子、C_{1-12} 烃基或 C_{1-12} 卤素取代的烃基，p 为 0-4。卤素通常是溴。可用式 (7) 表示的化合物的实例包括间苯二酰、取代的间苯二酰化合物，例如 5- 甲基间苯二酰、5- 乙基间苯二酰、5- 丙基间苯二酰、5- 丁基间苯二酰、5- 叔丁基间苯二酰、5- 苯基间苯二酰、5- 烷基间苯二酰、2,4,5,6- 四氟间苯二酰、2,4,5,6- 四溴间苯二酰或类似物；儿茶酚、氢醌，取代氢醌，例如 2- 甲基氢醌、2- 乙基氢醌、2- 丙基氢醌、2- 丁基氢醌、2- 叔丁基氢醌、2- 苯基氢醌、2- 烷基氢醌、2,3,5,6- 四甲基氢醌、2,3,5,6- 四烷基氢醌、2,3,5,6- 四氟氢醌、2,3,5,6- 四溴氢醌或类似物；或含至少一种前述化合物的结合物。

[0036] 此处所使用的“聚碳酸酯”和“聚碳酸酯树脂”进一步包括均聚碳酸酯、在碳酸酯内含不同 R^1 部分的共聚物（此处称为“共聚碳酸酯”）、含碳酸酯单元和其他类型聚合物单元如酯单元的共聚物，以及含一种或多种聚碳酸酯和共聚碳酸酯的结合物。此处所使用的“结合物”包括共混物、混合物、合金、反应产物和类似物。

[0037] 在具体的实施方案中，当使用时，聚碳酸酯可以是由双酚 A 衍生的直链聚酯，其中每一 A^1 和 A^2 为对亚苯基，Y^1 是偏亚异丙基。聚碳酸酯在 25℃下在氯仿中测定的特性粘度 (intrinsic viscosity) 为 0.3-1.5 分升 / 克 (dl/g)，具体 0.45-1.0 dl/g。聚碳酸酯的重均分子量 (Mw) 可以是 10,000-100,000，使用交联的苯乙烯 - 乙乙烯基苯柱，在 1mg/ml 的样品浓度下的凝胶渗透色谱法 (GPC) 测量，并采用聚碳酸酯标准物校正。

[0038] 在一个实施方案中，聚碳酸酯具有适合于制造薄型制品 (thin article) 的流动性性能。熔体体积流动速度（常常简称为 MVR）在预定的温度和负载下热塑性树脂挤出经过孔隙的速度。适合于形成薄型制品的聚碳酸酯在 300℃/1.2kg 下根据 ASTM 1238-04 测量的 MVR 为 0.5-80cc/10min。在具体的实施方案中，合适的聚碳酸酯组合物是在 300℃/1.2kg 下根据 ASTM1238-04 测量的 MVR 为 0.5-50cc/10min，具体为 0.5-25cc/10min，更具体 1-15cc/10min。可使用不同流动性能的聚碳酸酯的混合物以实现总体所需的流动性能。

[0039] 聚碳酸酯的透光率大于或等于 55％，具体大于或等于 60％，更具体地，大于或等于 70％，根据 ASTM1003-00 在 2.5mm 的厚度上测量。聚碳酸酯的雾度也可以少于或等于 50％，具体少于或等于 40％，最具体少于或等于 30％，根据 ASTM1003-00 在 2.5mm 的厚度上测量。

[0040] 热塑性组合物包括聚酯 - 聚碳酸酯（也称为聚酯碳酸酯，共聚酯 - 聚碳酸酯和共聚酯聚碳酸酯）。这种共聚物组合物除了含有式 (1) 的碳酸酯重复单元以外，还含有式 (8) 的重复单元：

\[\text{O} - \text{C} - \text{O} - \text{D} - \text{O} \]

(8)

[0041] 其中 D 是衍生于二羟基化合物的二价基团，且可以是例如 C_{2-10} 亚烷基，C_{8-30} 脂环族
基团、C_{6-30} 芳族基团或硅氧烷基，其中硅氧烷基含有 2-6 个碳原子，具体 2、3 或 4 个碳原子；且 T 二价基团衍生于二羧酸且可以是例如 C_{2-10} 亚烷基、C_{6-30} 脂环族基团、C_{6-30} 烷基芳族基团或 C_{6-30} 芳族基团。

【0044】在另一个实施方案中，D 是 C_{2-6} 亚烷基。在另一实施方案中，D 衍生于上式 (4) 的芳族二羟基化合物，在另一实施方案中，D 衍生于上式 (7) 的芳族二羟基化合物。

【0045】制备聚酯可使用的芳族二羧酸的实例包括邻苯二甲酸或对苯二甲酸、1,2-二(对-羧基苯)乙烷、4,4'-二羧基二苯醚、4,4'-双苯甲酸，以及含至少一种前述酸的混合物。也可存在含稠合环的酸，例如 1,4-或 1,5-及 2,6-萘二羧酸。具体的二羧酸是对苯二甲酸、间苯二甲酸、间苯二羧酸、环己烷二羧酸或其混合物。具体的二羧酸包括间苯二甲酸和对苯二甲酸的混合物，其中间苯二甲酸与对苯二甲酸的重量比为 91：1-2：98。在另一具体的实施方案中，D 是 C_{2-6} 亚烷基，T 是 p-亚苯基、m-亚苯基、n-亚苯基、二价脂环族基团或其混合物。

【0046】在一个实施方案中，聚丙烯酸酯包括式 (9) 所示的间苯二酚丙烯酸酯聚合物：

![化学结构式]

(9)

【0047】其中 R' 和 p 如式 (7) 中所定义，m 大于或等于 1。在 p 为 0 的情况下，R' 是氢。在一个实施方案中，m 为 2-500。在另一实施方案中，间苯二甲酸与对苯二甲酸的摩尔比可以是约 0.25：1-约 4.0：1。

【0048】在一个实施方案中，有芳族聚酯碳段可包括例如聚 (间苯二甲酸-对苯二甲酸-间苯二酚) 酯、聚 (间苯二甲酸-对苯二甲酸-双酚 A) 酯、聚 [(间苯二甲酸-对苯二甲酸-间苯二酚) 酯 -N-(间苯二甲酸-对苯二甲酸-双酚 A)] 酯或含这些中的至少一种的化合物。还加以考虑具有微量，例如约 0.5-约 10wt% 衍生于脂族二酸和 / 或脂族多元醇的单元，以制备聚酯的芳族聚酯。

【0049】除了酯单元以外，聚酯 - 聚碳酸酯还包括在上式 (1) 中所述的碳酸酯单元。在一个实施方案中，式 (1) 的碳酸酯单元可衍生于式 (7)、式 (4)、式 (7) 的芳族二羟基化合物，或含至少一种前述二羟基化合物的结合物。在一个实施方案中，具体碳酸酯单元衍生于双酚 A 碳酸酯和 / 或间苯二酚碳酯单元。

【0050】因此，在一个实施方案中，聚酯 - 聚碳酸酯具有式 (10) 所示的结构：

![化学结构式]

(10)

【0051】其中 R', p 和 m 如式 (9) 中所定义，每一 R' 独立地为 C_{6-30} 亚芳基，m 大于或等于 1。在一个实施方案中，m 为 2-500 和 n 为 2-500。在具体的实施方案中，m 为 3-300，n 为 3-300。

【0052】具体地，聚酯 - 聚碳酸酯中的聚酯单元可以由间苯二甲酸和对苯二甲酸（或其衍生物）的结合物，与间苯二酚、双酚 A 或含这些中的至少一种的化合物的反应得到，其中间

当考虑在此处所述的热塑性组合物内使用其他树脂时，具有 ITR 酯单元和碳酸酯单元的聚酯 - 聚碳酸酯聚合物尤其适合于在此处的热塑性组合物中使用。因此，在另一实施方案中，聚酯 - 聚碳酸酯的共聚物由间苯二甲酸 - 对苯二甲酸 - 间苯二酚酯单元和碳酸酯单元组成。

聚酯 - 聚碳酸酯的重均分子量 (Mw) 可以是 1,500-100,000，具体 1,700-50,000，更具体 2,000-40,000。分子量使用交联的苯乙烯 - 二乙烯基苯柱，通过凝胶渗透色谱法 (GPC) 来进行测定，并相对于 BPA- 聚碳酸酯基准来校正。约 1 mg/ml 的浓度下制备样品，并在约 1.0 ml/min 的流速下洗脱。

可通过诸如界面聚合和熔体聚合之类的工艺方法制备共聚物内的合适的聚碳酸酯或聚碳酸酯嵌段。尽管界面聚合的反应条件可以变化，但已知的方法通常包括在含水催化剂或水性催化剂中溶解或分散双酚 A 反应物，然后所得混合物到合适的与水互不混溶的溶剂介质内，并在合适的催化剂如三乙胺或氯转移催化剂存在下，在控制的 pH 条件下 PH 如 8-10 下接触该反应物与碳酸酯前体。最常用的与水互溶的代表性溶剂包括二氯甲烷、1,2-二氯乙烷、氯苯、甲苯和类似物。合适的碳酸酯前体包括例如碳酸酯，例如碳酰氯或碳酰氯，或卤代甲酸酯，例如卤代丙二酸酯（例如，双酚 A、氯丙烯和双氯代甲酸酯或类似物）或二氯醇的双氯代甲酸酯（例如乙二醇、新戊二醇、聚乙二醇的双氯代甲酸酯或类似物）。也可使用含至少一种前述类型碳酸酯前体的联合物。在聚合过程中可包括链终止剂（也称为封端剂）。链终止剂限制分子量的生长速度，因此控制聚碳酸酯的分子量。链终止剂可以是至少一种 - 元素化合物，一元羧酸酯氯和 / 或单氯代甲酸酯。在链终止剂与聚碳酸酯一起掺入的情况下，链终止剂可称为基团。

例如，适合于用作链终止剂的一元羧酸化合物包括单环化，例如苯酚、C1-C22 烷基取代的苯酚、p- 枯基 - 苯酚、p- 丁基苯酚、p- 丁基苯酚、p- 丁基苯酚。烷基取代苯酚包括具有 8-9 个碳原子的支链烷基取代基的那些。一元羧酸 UV 吸收剂可用作封端剂。这种化合物包括 4- 取代 -2- 羟基二苯甲酸及其衍生物，水杨酸酯，二元酯的单酯，例如苯二酚单苯甲酸酯，2- (2- 羟基基) - 苯并三唑及其衍生物，2- (2- 羟基基) - 1,3,5- 三嗪及其衍生物和类似物。具体，一元酚链终止剂包含苯酚、p- 枯基苯酚和 / 或间苯二酚单苯甲酸酯。

一元羧酸酯氯 (mono-carboxylic acid chloride) 也可合适地作为链终止剂。这些包括单环，单羧酸酯氯，例如苯甲酸酯氯，C1-C22 烷基取代的苯甲酸氯，4- 甲基苯甲
酰氯、卤素取代的苯甲酰氯、溴苯甲酰氯、肉桂酰氯、4-羟基丁基四氢邻苯二甲酰胺基（nadmido）苯甲酰氯及其混合物，多环、单胺酰胺氯，例如偏苯三酸酰氯和苯甲酰氯；以及单环和多环单胺酰氯的混合物。具有最多22个碳原子的酯类单胺酰氯的酰氯是合适的。脂肪族单胺酰氯的官能团化酰氯，例如丙烯酰氯和甲基丙烯酰氯也是合适的。同样合适的是单氯代甲酸酯，其中包括单环、单氯代甲酸酯，例如氯代甲酸苯酯、烷烃取代的苯基氯代甲酸酯、对甲基苯基氯代甲酸酯、甲苯氯代甲酸酯及其混合物。

[0060] 界面聚合中可使用的相转移催化剂是化学式（R）,Q'X 的催化剂，其中每一 R'相同或不同，且是 C_{10}-烷基；Q 是氯或磷原子；X 是卤素原子或 C_{10}-烷氧基或 C_{6}-芳氧基。合适的相转移催化剂包括例如 [CH_3(CH_2)_n]_2NX，[CH_3(CH_2)_n]PXN，[CH_3(CH_2)_n]_2NX，[CH_3(CH_2)_n]_2NX，[CH_3(CH_2)_n]_2NX，[CH_3(CH_2)_n]_2NX，其中 X 是 Cl^-,Br^-,C_{10}-烷氧基或 C_{6}-芳氧基。在另一个实施方案中，具体可用的相转移催化剂是 C_{10}[CH_3(CH_2)_n]_2NCI(甲基三正丁基氯化铵)。基于光气化合物中双酚的重量，有效量的相转移催化剂可以是 0.1-10wt%。在另一实施方案中，基于光气化合物中的二羟基化合物的重量，有效量的相转移催化剂可以是 0.5-2wt%。

[0061] 或者，可使用熔体工艺，制备聚碳酸酯或聚碳酸酯嵌段。一般地，在熔体聚合工艺中，可在 Banbury* 混合器、双螺杆挤出机或类似机器内，辅体交换催化剂存在下，通过在熔融态下共反应二羟基反应物和碳酸二酯如碳酸二苯酯，制备聚碳酸酯。从熔融的反应物中通过蒸馏除去挥发性一元醇，并以熔融的残渣形式分离聚合物。制备聚碳酸酯尤其可用的熔体工艺用的是在芳基上具有吸电子取代基的碳酸二苯酯。具有吸电子取代基的具体可用的碳酸酯的实例包括双 (4-硝基苯基) 碳酸酯、双 (2-氯苯基) 碳酸酯、双 (4-氯苯基) 碳酸酯、双 (甲基氧基苯) 碳酸酯 (IMSC)、双 (4-甲基磺酰苯基) 碳酸酯、双 (4-乙酰氧基苯基) 碳酸酯、双 (4-羟基苯基) 羧酸酯或含这些中的至少一种的化合物。另外，适合使用的酯交换催化剂包括上式 (R)，Q'X 的酯交换催化剂，其中每一 R'相同或不同如上所定义。合适的酯交换催化剂的实例包括四丁基氢氧化铵、甲基三丁基氢氧化铵、甲基丁基乙酸铵、丁基氢氧化钠、丁基乙酸钠、丁基氢氧化锂、丁基氢氧化钾或含这些中的至少一种的化合物。

[0062] 支化聚碳酸酯，以及支链聚碳酸酯和支化聚碳酸酯的共混物也是有用的。可在聚合过程中，通过添加支化催化剂制备支化聚碳酸酯。这些支化剂包括含有至少三个官能团的多官能的有机化合物，所述官能团选自羟基、羧基、羧酸酯、卤代甲酸基和含前述官能团的混合物。具体实例包括偏苯三酸、偏苯三酸酐、偏苯三酸氯、三-羟基苯基乙烷、旋红 (isatin)-双-苯酚、三-苯酚 TC(1,3,5-三(3-(p-羟基苯基) 苯基)苯)、三-苯酚 PA(4(4(4(1,1-双(p-羟基苯基)-乙基)-a，a-二甲基苯基) 苯酚))、4-氯代甲酸苯基苯二甲酸酯、1,3,5-苯三酸和二苯甲酮四羧酸。支化剂的添加量可以是聚碳酸酯的 0.05-2.0wt%。所有类型的聚碳酸酯端基都被考虑可用于聚碳酸酯内，条件是这种端基没有显著负面影响热塑性组合物的所需性能。

[0063] 除了以上所述的聚酯 - 聚碳酸酯聚合以外，热塑性组合物还包括聚酯。合适的聚酯包括具有式 (8) 所示重复单元的那些聚酯。有用的聚酯包括芳族聚酯、聚 (亚烷基酯)，其中包括聚 (芳基醛酸甲烷酯) 和聚 (环烷基二酯)。芳族聚酯可具有式 (8) 的聚酯结构，其中 D 和 T 各自为以上所述的芳族基团。

[0064] 在一个实施方案中，热塑性组合物包括聚 (亚烷基酯)。具有式 (8) 的聚酯结构的
聚（亚烷基酯），其中 T 包括衍生于芳族二羧酸酯、脂环族二羧酸或其衍生物的基团。具体可用的 T 基的实例包括 1,2-、1,3- 和 1,4- 亚苯基；1,4- 和 1,5- 亚苯基；顺式 - 或反式 - 1,4 环亚乙基以及和类似物。因此在其中 T 是 1,4- 亚苯基的式（8）中，聚（亚烷基酯）是聚（对苯二甲酸亚烷酯）。另外，对于聚（亚烷基芳基酸酯）来说，具体可用的亚烷基 D 包括例如亚乙基、1,4- 亚丁基，以及双 -（亚烷基 - 二取代的环己烷），其中包括顺式 - 和 / 或反式 -1,4-（环亚乙基）二亚甲基。

【0065】聚（对苯二甲酸亚烷酯）的实例包括聚（对苯二甲酸乙二酯）（PET）、聚（对苯二甲酸 1,4- 丁二酯）（PBT）和聚（对苯二甲酸丙二酯）（PPT）。同样有用的是聚（萘二甲酸亚烷酯），例如聚（萘二甲酸乙二酯）（PEN）和聚（萘二甲酸丁二酯）（PBN）。特别合适的聚（环亚烷基二酯）是聚（环己烷二甲酯对苯二甲酸酯）（PCT）。也可使用含至少一种前述聚酯的结合物。

【0066】含对苯二甲酸亚烷酯重复酯单元与其他合适的酯基的共聚物是有用的。具体可用的酯单元包括不同的对苯二甲酸亚烷酯（alkylene terephthalate）单元，该单元可作为单独的单元存在于聚合物链中或作为聚（对苯二甲酸亚烷酯）的嵌段存在。在一个实施方案中，对苯二甲酸亚烷酯单元的共聚物包括式（8）的对苯二甲酸乙二酯单元，其中 T 是 1,4- 亚苯基，D 是亚乙基；式（8）的 1,4- 环己烷二亚甲基对苯二甲酸酯（ET）酯单元，其中 T 是 1,4- 亚苯基，D 是 1,4- 环己烷二亚甲基（CHDM）酯基。共聚物具有以 1：99-99：1，具体5：95-95：5，更具体10：90-90：10，更具体20：80-80：20 的摩尔比存在的 ET 酯单元和 CHDM 酯单元。还考虑可在对苯二甲酸亚烷酯内存在额外的亚烷酯单元。

【0067】尽管考虑可在此处所描述的热塑性组合物内使用其他树脂，但具有 ET 酯单元和 CHDM 酯单元的（对苯二甲酸亚烷酯）聚合物尤其适于在这些的热塑性组合物内使用。因此，在另一实施方案中，对苯二甲酸亚烷酯单元的共聚物基本上由下述单元组成如下式 8 的对苯二甲酸乙二酯单元，其中 T 是 1,4- 亚苯基，D 是亚乙基；以及式（8）的环己烷二亚甲基对苯二甲酸酯（ET）酯单元，其中 T 是 1,4- 亚苯基，D 是 1,4- 环己烷二亚甲基（CHDM）酯基。在其他实施方案中，考虑聚（对苯二甲酸亚烷酯）聚合物也包括间苯二甲酸亚烷酯单元，其中间苯二甲酸亚烷酯单元与对苯二甲酸亚烷酯单元的摩尔比为 99：1-1：99。由 ET 酯单元和 CHDM 酯单元组成的共聚物可具有以 1：99-99：1，具体 5：95-95：5，更具体 10：90-90：10，再具体的是以 20：80-80：20 的摩尔比存在的 ET 酯单元和 CHDM 酯单元。

【0068】具体，这种共聚物的合适实例包括聚（对苯二甲酸乙二酯）- 共（co）-（对苯二甲酸 1,4- 环己二亚甲酯），其中聚合物包括大于或等于 50mol%的对苯二甲酸乙二酯单元（缩写为 PETG），并且其中聚合物包括大于 50mol%的 1,4- 环己烷二亚甲基对苯二甲酸酯单元（1,4-cyclohexanediimethylene terephthalate，缩写为 PCT）。

【0069】可通过以上所述的界面聚合或熔体工艺缩合，通过溶液相缩合或者通过酯交换聚合，获得聚酯，其中例如使用酸催化剂，将二烷酯如对苯二甲酸二甲酯与乙二醇酯交换，生成聚（对苯二甲酸乙二酯）。也可使用支化聚酯，其中掺入了支化剂，例如具有 3 或更多个羟基或三官能团或多官能团羧酸的二元醇。此外，有时希望在聚酯上具有各种酸和羟基基团，这取决于组合物的最终用途。当共混时，此处所述的聚酯通过聚碳酸酯完全混溶。通常通过二元醇与二元酸或衍生物反应制备脂环族聚酯。
制备聚酯聚合物有用的二元醇是直链、支链或脂环族的，可含有2~12个碳原子。合适的二元醇的实例包括乙二醇、丙二醇，例如1,2-和1,3-丙二醇；丁二醇，例如1,3-和1,4-丁二醇；二甘醇；2,2-二甲基-1,3-丙二醇；2-乙基-和2-甲基-1,3-丙二醇；1,3-和1,5-戊二醇；2-丙二醇；2-甲基-1,5-戊二醇；1,6-己二醇；1,4-环己烷二甲醇，尤其是顺式和反式异构体；三甘醇；1,10-癸二醇，以及含至少一种前述二元醇的结合物。具体可用的是二氢甲基环辛烷、二氢甲基环己烷、脂环族二醇或其化学等价物，尤其是1,4-环己二烷甲醇或其化学等价物。若1,4-环己烷二甲醇用作二元醇组分，则可使用顺式与反式异构体的混合物比值为约1:4~约4:1。具体，顺式与反式异构体之比为约1:3可以是有用的。

可用于制备脂环族聚酯聚合物的二元酸是脂族二元酸，它包括具有至少两个羧基的羧酸，其中每一个羧基连接到饱和环上的饱和碳上。脂环族酸的合适的实例包括十氢化萘二羧酸、降冰片烯二羧酸、双环辛烷二羧酸。具体可用的脂环族二元酸包括1,4-环己烷二羧酸和反-1,4-环己烷二羧酸。直链脂族二元酸也是有用的，条件是聚酯具有含脂环族环的至少一个单体。直链脂族二元酸的实例是琥珀酸、己二酸、环己甲基琥珀酸和壬二酸。二元酸和二元醇的混合物也可用于制备脂环族聚酯。

环己烷二羧酸及其化学等价物例如可通过在室温和大气压下，使用诸如承栽在含碳和氧化铝的载体上的钯之类的催化剂，在合适的溶剂（例如水或乙酸）内氢化环烷族二元酸和相应的衍生物如间苯二甲酸、对苯二甲酸，制备。它们也可通过使用惰性液体介质来制备，其中酸在反应条件下至少部分可溶，并使用在碳或氧化硅中的钯或钌催化剂。

一般地，在氢化过程中，获得两种或更多种异构体，其中羧酸基在顺式或反式位置上。可在有或无溶剂，例如正庚烷的情况下通过结晶或者通过蒸馏，分离顺式和反式异构体。顺式异构体会更加稳定，然而，反式异构体具有较高的熔点和结晶温度并特别地是合适的。也可使用顺式和反式异构体的混合物。反式和顺式异构体的重量比可以是约75:25。当使用异构体的混合物或大于一种二元酸时，共聚酯或两种聚酯的混合物可用作脂环族聚酯聚合物。

聚酯-聚碳酸酯和聚（亚烷基酯）的共混物的熔体体积流速所要求的为约5~约150cc/10min，具体约7~约125cc/10min，更具体约9~约110cc/10min，仍更具体约10~约100cc/10min，这是根据ASTMD1238-04，在300℃和1.2kg的负载下测量。因此，在一个实施方案中，热塑性组合物包括间苯二甲酸-对苯二甲酸-间苯二酚单元和碳酸酯单元的聚酯聚碳酸酯聚合物，以及聚（亚烷基酯），其中聚酯-聚碳酸酯与聚（亚烷基酯）的重量比为20:80~80:20，具体25:75~75:25，更具体地是30:70~70:30。

据观察，聚碳酸酯，当与具有80mol%CHDM酯单元和20mol%对苯二甲酸乙二醇单元的聚（对苯二甲酸乙二酯）聚合物（即PCTG聚合物）和100mol%CHDM（即PCT聚合物）共混时，形成透明的共混物，其透光率大于或等于80%，吸光度小于5%。然而，当在PCTG聚合物内CHDM的摩尔百分数下降时，聚碳酸酯的共混物变得不透明。据观察，具有含ITR酯和碳酸酯单元总重40mol%的ITR酯单元的聚酯-聚碳酸酯当与聚（对苯二甲酸乙二酯）（0mol%CHDM）共混时，形成透明的共混物。然而，已发现，当聚酯-聚碳酸酯聚合物内的ITR酯单元的摩尔百分数和可能存在于聚（亚烷基酯）聚合物内的任何CHDM单元的摩尔百
分数之和为小于40的数值时，含有ITR酯单元的聚酯—聚碳酸酯共混物与具有CHDM酯单元的PET或PETG共聚物形成互不混溶的共混物。

0077】尽管不要求提供本发明如何作用的解释，但是理论可用于更好地辅助读者理解本发明。因此要理解，权利要求不是通过下述操作理论来显示。据认为是在分子规模上，聚酯—聚碳酸酯的透明度和雾度二者与下述因素有关：聚合物链内的酯基段的长度、聚酯嵌段的平均尺寸（即重复酯单元的连续转动（runs））、在聚合物链内酯基段的无规或非无规分布，或一种或更多种这些因素的组合。认为在共聚物内聚酯嵌段更加无规的分布有助于更大程度的透明度和较小程度的雾度。认为在共混的聚酯内形成晶体区域（它具有比聚合物基体不同的折射指数），观察到低的透明度，即高的雾度和低的透光率。可形成有足尺寸（20mm和更大）的区域。这些区域起反射射光的作用，且可通过肉眼和/或使用光谱法以雾度形式观察，其中后者可用于表征结晶区并量度雾度大小。在本发明的公开内容中，还发现含有范围为20mol%–80mol% ITR的聚酯—聚碳酸酯与聚（对苯二甲酸—二酯）共聚物得到透明的共混物。

0078】令人惊奇地是已发现，含有间苯二甲酸—对苯二甲酸—间苯二酚酯单元（ITR）和碳酸酯单元的聚酯（聚碳酸酯聚合物，以及含对苯二甲酸—乙酯单元和/或1,4—环己基二亚甲基对苯二甲酸酯单元（CHDM）的聚（亚烷基酯）聚合物的共混物的热塑性共混物具有高的透明度。当在聚酯—聚碳酸酯聚合物的间苯二甲酸—对苯二甲酸—间苯二酚酯单元和和在聚（亚烷基酯）聚合物的1,4—环己基二亚甲基对苯二甲酸酯单元的摩尔百分数的和为大于40的数值时，这些聚合物的共混物是透明的。在例举的实施方案中，具有20mol% ITR酯单元的聚酯—聚碳酸酯聚合物与含70mol% ET酯单元和30mol% CHDM酯单元的PETG共聚物在全部组合物范围内（即聚（ITR—酯）—聚碳酸酯与PETG的重比为1：99—99：1）混溶。在相反情况下，具有间苯二甲酸—A酸酯单元的聚碳酸酯提供不透明的共混物。因此增加聚酯—聚碳酸酯中的ITR酯含量可改进共混物的透明性。有利之处在于，使用聚酯—聚碳酸酯聚合物提供抗因聚混合物的相Fries光解导致的气候老化性，并且除了透明度以外，还提供热塑性共混物改进的机械性能与耐候老化性的结合。

0079】聚（对苯二甲酸—乙酯）聚合物可经历结晶区域的快速形成，而聚（1,4—环己基二亚甲基对苯二甲酸酯）可具有显著较慢的结晶速度并提供更加无定形结构。因此，认为与PET均聚物相比时，使用含CHDM酯单元的聚（亚烷基酯）可提供形成结晶区的相对缓慢的动力学来降低结晶区的尺寸和长度。在聚（对苯二甲酸—亚烷基酯）内增加CHDM酯单元的含量将有利地提供这些区域形成的相应降低，从而提供具有增加的无定形特征的聚（亚烷基酯）聚合物，因此较好的混溶性和较好的透明度。然而，当CHDM含量增加到非常高的水平（例如大于或等于70mol%）时，聚合物结晶的倾向实际上可能增加，因此可使这种共混物的加工操作窗口变窄。

0080】在一个实施方案中，热塑性共混物包括含间苯二甲酸—对苯二甲酸—间苯二醇（ITR）酯单元的聚酯—聚碳酸酯和含对苯二甲酸—乙酯单元、1,4—环己基二亚甲基或对苯二甲酸—乙酯单元与1,4—环己基二亚甲基单元的结合的聚（亚烷基酯）。该聚合物是这些聚合物的共混物，其中在聚酯—聚碳酸酯聚合物的间苯二甲酸—对苯二甲酸—间苯二酚酯单元的摩尔百分数和在聚（亚烷基酯）聚合物的1,4—环己基二亚甲基对苯二甲酸酯单元的摩尔百分数之和为大于40的数值，具体大于或等于45，更具体大于或等
于50，仍具体大干或等于55。此外，含聚酯-聚碳酸酯和聚（亚烷基酯）的热塑性组合物
是这些聚合物的共混物，其中在聚酯-聚碳酸酯聚合物内的间苯二甲酸-对苯二甲酸-间苯
二酚酯单元的摩尔百分数和在聚（亚烷基酯）聚合物内的1,4-环己二亚甲基基对苯二
甲酸酯单元的摩尔百分数之和为小于200的数值，具体小于或等于195，更具体小于或等于
190，和仍具体大干或等于180。在一实施方式中，热塑性组合物基本上由含间苯二甲
酸-对苯二甲酸-间苯二酚（ITR）酯单元的聚酯-聚碳酸酯和含对苯二甲酸乙二酯单元，
1,4-环己二亚甲基基对苯二甲酸乙二酯单元和1,4-环己二亚甲基基对苯二甲酸乙二酯单
元的聚（亚烷基酯）组成。

[0081] 用于测试的制品由热塑性组合物模塑，该热塑性组合物可含有典型地与含聚碳酸
酯组合物一起包括的添加剂，例如脱模剂和抗氧化剂，其中以有效地进行所打算的功能
的用量存在的这些添加剂没有显著影响热塑性组合物的所需性能。典型地，这些添加剂
的用量小于或等于热塑性组合物内存在的各组分总重量的5.0wt％。在例举的实施方式中，
在制备透光率和雾度测试用模塑制品所使用的热塑性组合物内存在的合适添加剂可包括
脱模剂和抗氧化剂。在具体地实施方式中，脱模剂是季戊四醇四硬脂酸酯，抗氧化剂是2,
6-（二叔丁基苯基）亚磷酸酯。

[0082] 因此，在一个实施方式中，厚度为2.5mm且由聚酯-聚碳酸酯、聚（亚烷基酯）和
每一种均为有效量的脱模剂和抗氧化剂组成的模塑制品的透光率当根据ASTMD1003-00 测
量时，大于或等于80，具体大于或等于85，更具体大于或等于87，更具体大于或等于90。在一
个实施方式中，通过注塑制备制品。

[0083] 在另一个实施方式中，厚度为2.5mm且由聚酯-聚碳酸酯、聚（亚烷基酯）和每一种
均有效量的脱模剂和抗氧化剂组成的模塑制品的透光率当根据ASTMD1003-00 测量时，小
于或等于10，具体小于或等于5，更具体小于或等于4，更具体小于或等于3。

[0084] 除了聚酯-聚碳酸酯和聚（对苯二甲酸亚烷酯）聚合物以外，热塑性组合物还可
包括常规地与这一类热塑性组合物一起掺入的各种其他添加剂，条件是选择这些添加剂以没
有显著影响热塑性组合物的所需性能。可使用添加剂的混合物。可在混合各组分以供
形成热塑性组合物的过程中，在合适的时间处混合这种添加剂。

[0085] 热塑性组合物可包括着色剂，例如颜料和/或染料添加剂。合适的颜料包括例
如无机颜料，例如金属氧化物和混合的金属氧化物，例如氧化锌、二氧化钛、氧化铁或类似
物；硫化物例如硫化铝或类似物；铝酸盐；磺酸盐酸钠；硫酸盐；钛酸盐或类似物；炭黑；铁
酸锌；硅酸铝；颜料红24；颜料红101；颜料黄119；有机颜料，例如偶氮、重氮、喹啶酮
类、萘四环酸、黄烷分子、异吲哚啉酮、四氯异吲哚啉酮、葱酮、三苯并[c,d,jk]并[n,10-二
酮（anthanthrones）、二恶嗪、酸菁和偶氮色淀；颜料蓝60、颜料红122、颜料红149、颜料红
177、颜料红179、颜料红202、颜料紫29、颜料蓝15、颜料蓝28、颜料绿7、颜料
黄147和颜料黄150或含至少一种前述颜料的聚合物。颜料的使用量基于聚酯-聚碳酸酯
和聚（亚烷基酯）的总重量，可以是0.01-10wt％，其中颜料的使用没有显著的负面影响热
塑性组合物的所需性能。

[0086] 合适的染料可以是有机材料，且包括例如香豆素染料，例如香豆素460（蓝色）、香
豆素6（绿色）、尼罗红或类似物；酸化络合物；经和取代经染料；多环芳烃染料；闪烁染料，
例如恶唑或恶二唑染料；芳基-或杂芳基取代的多(Cn)烯烃染料；鞣花青染料；引丹酮染
说明书

热塑性组合物可进一步包括抗氧化剂。合适的抗氧化剂添加剂包括例如亚磷酸酯，例如三（壬基苯基）亚磷酸酯，二（2,4-二叔丁基苯基）亚磷酸酯，双（2,4-二叔丁基苯基）季戊四醇二亚磷酸酯，二硬脂基季戊四醇二亚磷酸酯或类似物；烷化一元醇或多元醇；多元酚和二烯烃的烷化反应产物，例如四[亚甲基（3,5-二叔丁基-4-羟基环己烷）]甲烷或类似物；对甲酚或二环戊二烯的丁烷反应产物；烷化氢醚；羟化二苯醚；偏亚烷基-双羟基化合物；β-(3,5-二叔丁基-4-羟基苯基)-丙酸与一元醇或多元醇的酯；β-(5-叔丁基-4-羟基-3-甲基苯基)-丙酸与一元醇或多元醇的酯；硫化烷基或硫化硫烷基化合物的酯，例如硫化二丙酮酯、硫化二丙酮月桂酯、硫化二丙酮双十三烷酸酯、十八烷酸酯-3-(3,5-二叔丁基-4-羟基苯基)丙酸酯；季戊四醇酯-3-(3,5-二叔丁基-4-羟基苯基)丙酸酯或类似物；β-(3,5-二叔丁基-4-羟基苯基)-丙酸与酰胺或类似物或含至少一种前述抗氧化剂的衍生物。基于聚酯、聚碳酸酯和聚（亚烷基酯）的总重量，抗氧化剂的使用量可以是0.0001-1wt%。

合适的热稳定剂添加剂包括例如有机亚磷酸酯，例如亚磷酸三苯酯，亚磷酸酯，[混合如苯环二甲基苯基]亚磷酸酯或类似物；膦酸酯，例如二甲基苯膦酸酯或类似物，磷酸酯，例如磷酸三甲酯或类似物，或含至少一种前述热稳定剂的衍生物。基于聚酯、聚碳酸酯和聚（亚烷基酯）的总重量，热稳定剂的使用量可以是0.0001-1wt%。

也可使用光稳定剂和/或紫外光（UV）吸收添加剂。合适的光稳定剂包括例如苯并三嗪，例如2-(2-羟基-5-甲基苯基)苯并三嗪，2-(2-羟基-5-叔丁基苯基)苯并三嗪和2-羟基-4-正辛氧基二甲基苯或类似物或含至少一种前述光稳定剂的衍生物。基于聚酯、聚碳酸酯和聚（亚烷基酯）的总重量，光稳定剂的使用量可以是0.0001-1wt%。
合适的 UV 吸收添加剂包括例如羟基二苯甲酮，羟基苯并三唑，羟基苯并三嗪，氟基丙烯酸酯，N，N′-草酰二苯胺 (oxanilide)；苯并恶唑酮；2-（2H- 苯并三唑-2-基）-4-(1，1，3,4-四甲基丁基) - 苯酚 (CYASORB® 5411)；2-羟基 -4- 正辛氧基二苯甲酮 (CYASORB® 531)；2-[4,6-双 (2,4-二甲基苯基)-1,3-五嗪 -2-基]-5-（辛氧基）-苯酚 (CYASORB® 1164)；2,2’-(1,4-亚苯基) 双 (4-苯并恶唑 -4- 酮) (CYASORB® UV-3638)；1,3-双 [(2-氮基 -3,3-二甲基丙烯酰基) 氧基] -2,2’-双 [(2-氮基 -3,3-二甲基丙烯酰基) 氧基] 丙烷 (UVINUL® 3030)；2,2’-(1,4-亚苯基) 双 (4H-3,1-苯并恶唑 -4- 酮)；1,3-双 [(2-氮基 -3,3-二甲基丙烯酰基) 氧基] -2,2’-双 [(2-氮基 -3,3-二甲基丙烯酰基) 氧基] 甲基] 丙烷；纳米尺寸的无机材料，例如二氧化钛，氧化铈和氧化锌，其中所有这些的粒度小于 100 纳米；或类似物；或含至少一种前述 UV 吸收剂的结合物。基于聚酯 - 聚碳酸酯和聚（亚烷基酯）的总重量，UV 吸收剂的使用量可以是 0.001-1wt%。

也可使用增塑剂、润滑剂和/或脱模剂添加剂。在这些材料类型中存在明显差异，其中包括例如邻苯二甲酸酯，例如二辛基 -4,5-环氧基 - 六氢邻苯二甲酸酯；三（辛氧基羰基乙基）异氰酸酯；三硬脂酯；二－或多官能团芳族磷酸酯，例如间苯二酚四联苯磷酸酯 (RDP)；氢醌的双 (二苯基) 磷酸酯和双酚 A 的双 (二苯基) 磷酸酯；聚 -α-烯烃；环氧化大豆油；硅酮，其中包括硅油；酯，例如脂肪酸酯，例如烷基硬脂酸酯，例如硬脂酸甲酯；硬脂酸硬脂酯，季戊四醇四硬脂酸酯和类似物；硬脂酸甲酯和含聚乙二醇聚合物的亲水与疏水非离子表面活性剂，聚丙二醇聚合物及其共聚物，例如在合适的溶剂内硬脂酸甲酯和聚乙二醇 - 聚丙二醇共聚物的混合物；蜡，例如蜂蜡，褐蜡蜡，蜡烷烃蜡 (paraffin) 或类似物。基于聚酯 - 聚碳酸酯和聚（亚烷基酯）的总重量，这种材料的使用量可以是 0.001-1wt%，具体 0.01-0.75wt%，更具体 0.1-0.5wt%。

术语“抗静电剂”是指可加工成聚合物树脂和/或喷洒在材料或制品上以改进传导性能和总的物理性能的单体、低聚物或聚合物材料。单体抗静电剂的实例包括甘油单硬脂酸酯、甘油二硬脂酸酯、甘油三硬脂酸酯、乙二醇，伯，仲和叔胺，乙氧化烷，烷基硫酸酯，烷基芳基硫酸酯，烷基磷酸酯，烷基酯磷酸酯，烷基磺酸盐，例如硬脂基磺酸钠，十二烷基苯磺酸钠或类似物，季铵盐，季铵树脂，咪唑啉衍生物，脱水山梨醇酯，乙醇醛醇，甘油酸，或类似物，或含至少一种前定抗静电剂的结合物。

例举的聚合物型抗静电剂包括一些聚酮酸酯聚醚 - 聚醚酯 （聚醚酯酰胺）嵌段共聚物，聚醚硬脂酰胺嵌段共聚物，聚醚酯或聚氨酯，其中各自含有聚亚烷基二醇部分，聚氧化烯单元，例如聚乙二醇，聚丙二醇，聚四亚甲基二醇和类似物。这种聚合物型抗静电剂是可商用的，例如 Pelestat® 6321 (Sanyo) 或 Pebax ® MH1657 (Atotina)，Irgastat ® P18 和 P22 (Ciba-Geigy)。可用作抗静电剂的其他聚合物材料是固有导电的聚合物，例如聚苯胺（以 PANIPOL® EB 形式商购于 Panipol）、聚吡咯和聚噻吩（商购于 Bayer），它们在升高的温度下熔体加工之后保留一些它们固有的导电率。在一个实施方案中，可在含化学抗静电剂的聚合物树脂中使用碳纤维，碳纳米纤维，碳纳米管，炭黑或前述的任何结合物，以赋予聚合物静电耗散性。基于聚酯 - 聚碳酸酯和聚（亚烷基酯）的总重量，抗静电剂的使用量可以是 0.0001-5wt%。

可添加的合适的阻燃剂可以是含磷、溴和/或氯的有机化合物。在一些应用中，由于法规原因，可优选非溴化和非氯化的含磷阻燃剂，例如含有磷酸酯和含磷 - 氮键的有机
化合物。

[0095] 一类例举的有机磷酸酯是化学式 (GO)_{P = O} 的芳族磷酸酯，其中每一 G 独立地为烷基、环烷基、芳基或烷芳基或芳烷基，条件是至少一个 G 是芳族基团。两个 G 基可相连，提供环状基团，例如二苯基季戊四醇二磷酸酯。其他合适的芳族磷酸酯可以是例如苯基双（十二烷基）磷酸酯、苯基双（新戊基）磷酸酯、苯基双 (3,5,5' - 三甲基己基) 磷酸酯、乙基二苯基磷酸酯，2-乙基己基二（对甲苯基）磷酸酯、双 (2-乙基己基) 对甲苯基磷酸酯、磷酸三甲苯酯，双 (2-乙基己基) 苯基磷酸酯、磷酸三（壬基苯基）酯、双（十二烷基）对甲苯基磷酸酯、二丁基苯基磷酸酯、2-氯乙基联苯磷酸酯、对甲苯基双 (2,5,5' - 三甲基己基) 磷酸酯、2-乙基己基二苯基磷酸酯或类似物。特定的芳族磷酸酯是其中每—G 为芳族的磷酸酯，例如磷酸三苯酯、磷酸三甲苯酯、异丙苯基的磷酸三苯酯和类似物的那些。

[0096] 二或多官能的含芳族膦的化合物也是有用的，例如下式的化合物：

![化学结构式]

[0097]

其中每一 G' 独立地为具有 1-30 个碳原子的烃；每一 G'' 独立地为具有 1-30 个碳原子的烃或烃氧基，每一 X」独立地为具有 1-30 个碳原子的烃；每一 X 独立地为溴或氯；m 为 0-4 和 n 为 1-30。合适的二或多官能的含芳族膦化合物的实例包括间苯二酚四联苯二膦酸酯 (RDP)、氢醌的双（二苯基）磷酸酯和双酚-A 的双（二苯基）膦酸酯，其低聚和聚合对应物和类似物。

[0098] 例举的含有磷-氮键的合适的阻燃剂化合物包括磷酸氯、磷酸酰胺、磷酸酰胺、膦酸酰胺、次膦酸酰胺、三（吐啶基）氧化膦。若存在的话，含磷阻燃剂的存在量基于聚酯-聚碳酸酯和聚（亚烷基酯）的总重量，可以是 0.1-10 wt%。

[0100] 卤化材料也可用作阻燃剂，例如式 (19) 的卤化化合物和树脂：

\[
\begin{align*}
(Y)_d & (X)_c (Y)_d \\
\text{Ar} & \quad R \quad \text{Ar'} \\
{a/} & \quad{b/} \quad_{c/}
\end{align*}
\]

(19)

[0101] 其中 R 是亚烷基、偏亚烷基或脂环族链，例如亚甲基、亚乙基、亚丙基、亚异丙基、偏亚异丙基、亚丁基、亚异丁基、亚戊基、环亚己基、环偏亚戊基或类似物；或氢基、羰基、肟或含硫键，例如硫醚、亚砜、砜或类似物。R 也可以由通过诸如芳族、氨基、醚、羰基、硫醚、亚
说明书

第103页

在式（19）中，Ar 和 Ar’各自独立地为单环或多个环的芳族基团，例如亚苯基、亚联苯基、亚三联苯基、亚苯基或类似基团。

第104页

Y 是有机、无机或有机金属基团，例如卤素，例如氯、溴、碘、氟；通式 OE 的醚基，其中 E 是类似于 X 的单一烃基；用 R 表示类型的单一烃基；或其他取代基，例如烷基、烷基和类似基团，所述取代基基本上为惰性，条件是每一苯核存在至少一个和优选两个卤素原子。

第105页

若存在的 X 独立地为单价烃基，例如烷基，例如甲基、乙基、丙基、异丙基、丁基、癸基或类似基团；芳基，例如苯基、萘基、二苯基、二甲苯基、甲苯基或类似基团；和芳烷基，例如苯基、乙基苯基或类似基团；脂环族基团，例如环戊基、环己基或类似基团。单价烃基本身可以包含惰性取代基。

第106页

每一 d 独立地为 1 到最大值等于在含 Ar 或 Ar’的芳环上取代的可取代氢的数量。每一 e 独立地为 0 到最大值等于 R 上可取代的氢的数量。每一 a、b 和 c 独立地为整数，其中包括 0。当 b 不为 0 时，a 或 c 均不可能为 0。在其他情况下，a 或 c，但并非同时可以是 0。在 b 为 0 的情况下，芳族基团通过直接的碳碳键相连。

第107页

在芳族基团 Ar 和 Ar’上的烃基和 Y 可以在芳环的邻、间键或对位上变化，且该基团可以是相对于彼此在任何可能的几何关系上。

第108页

包括在上式范围内的单是下述为代表的双酚：2,2-双-(3,5-二氯苯基)-丙烷；双-(2-氯苯基)-甲烷；双(2,6-二溴苯基)-甲烷；1,1-双-(4-碘苯基)-乙烷；1,2-双-(2,6-二氯苯基)-乙烷；1,1-双-(2-氯-4-碘苯基)-乙烷；1,1-双-(2-氯-4-甲基苯基)-乙烷；1,1-双-(3,5-二氯苯基)-乙烷；2,2-双-(3-苯基-4-溴苯基)-乙烷；2,6-2-(4,6-二氯苯基)-丙烷；2,2-双-(2,6-二氯苯基)-戊烷；2,1,1-双-(3,5-二溴苯基)-己烷；2,2-(4-氯苯基)-苯基-甲烷；双-(3,5-二氯苯基)-环己基甲烷；双-(3-硝基-4-溴苯基)-甲烷；双-(4-羟基-2,6-二氯-3-甲氧基苯基)-甲烷；和 2,2-双-(3,5-二氯-4-羟基苯基)-丙烷。2,2-双-(3-溴-4-羟基苯基)-丙烷。还包括在上述结构式内的是：1,3-二氯苯、1,4-二溴苯、1,3-二氯-4-羟基苯和联苯类，例如 2,2’-二氯联苯、多氯化 1,4-二苯基苯、2,4’-二苯联苯和 2,4’-二氯联苯以及三氯二苯酰等类似物。

第109页

同样有用的是低聚和聚合的卤化芳族化合物，例如双酚 A 和四溴双酚 A 和碳酸酯前体，例如光气的的共聚碳酸酯。金属协同剂，例如氧化镍也可与阻燃剂一起使用。若存在的话，含卤素的阻燃剂的存在量基于聚酯-聚碳酸酯和聚（亚苯基酯）的总重量，可以是 0.1-10wt%。

第110页

也可使用无机阻燃剂，例如 C_{10}-烷磺酸盐，例如全氟丁磺酸钾（Rimar 盐）、全氟辛磺酸钾、四乙基铵全氟己磺酸盐和二苯基砜磺酸钾，以及类似物；通过使例如碱金属或碱士金属（例如锂、钠、钾、镁和钡盐）与无机酸络合物盐例如氧阴离子反应成盐；例如碳酸的碱金属和碱士金属盐，例如 Na_{2}CO_{3}、K_{2}CO_{3}、MgCO_{3}、CaCO_{3} 和 BaCO_{3} 或氯阴离子络合物，例如 Li_{2}AlF_{6}、BaSiF_{6}、KBF_{4}、K_{2}AlF_{6}、KAlF_{4}、K_{3}SiF_{6} 和 / 或 Na_{3}AlF_{6} 或类似物。若存在的话，无机阻燃剂的存在量基于聚酯-聚碳酸酯和聚（亚苯基酯）的总重量，可以是 0.1-5wt%。

第111页

热塑性聚合物可进一步包括电离辐射稳定添加剂。例如的电离辐射稳定添加剂包括一些脂肪醇、芳族醇、脂族二醇、脂族醚、酯、二酮、烯烃、硫醇、硫醚和环状硫醚、砜、二氯芳烃、二醚、氯化合物或含至少一种前述的结合物。醇基稳定添加剂可选自单一、二一或
多 - 取代的醇，且可以是直链、支链、环状和 / 或芳族的。合适的脂肪醇可包括具有不饱和位点的链烯醇，其实例包括 4- 甲基 - 4- 戊烯 - 2- 醇、3- 甲基 - 戊烯 - 3- 醇、2- 甲基 - 戊烯 - 2- 醇、2,4- 二甲基 - 4- 戊烯 - 2- 醇、2- 苯基 - 4- 戊烯 - 2- 醇和 9- 羟丁 - 1- 醇；叔醇，其中包括 3- 羟基 - 3- 甲基 - 2- 丁酮、2- 苯基 - 2- 丁醇和类似物；羟基 - 取代的叔环脂肪烃，例如 1- 羟基 - 1- 甲基 - 环己烷，和具有醇取代基，例如羟甲基（-CH₃OH）的羟基甲基芳烃如（-CRH₂O）或（-CR₂O）或更加复杂的烃基。其中 R 是直链 C₁₋C₂₀ 烷基或支链 C₁₋C₂₀ 烷基。例举的羟基甲基芳烃包括二苯甲基醇、2- 苯基 - 2- 丁醇、1,3- 苯二甲醇、苯醇、4- 苯氧基苯 醇和苯基 - 卡醇。

[0112] 有用的一类电离辐射稳定添加剂是二 - 和多 - 官能的脂族醇，也称为脂族二醇和脂族多元醇。具体地，有用的是式 (20) 的脂族二醇：

\[HO-(C(A^-)(A^+))_n-S-(C(B^-)(B^+))_m-OH \quad (20) \]

[0113] 其中 A^-、A^+、B^- 和 B^+ 各自独立地为 H 或 C₁₋C₂₀ 烷基；S 是 C₁₋C₂₀ 烷基、C₃₋C₆ 环烷基或 C₄₋C₆ 烷取代环烷基；d 和 e 各自为 0 或 1，条件是当 d 和 e 各自为 0 时，选择 S，以便两个 -OH 基没有直接与单一共同的碳原子相连。

[0115] 在式 (20) 中，A^-、A^+、B^- 和 B^+ 各自可独立地选自 H、甲基、乙基、丙基、丁基、戊基、己基、庚基、辛基、壬基、癸基、十一烷基、十二烷基、十三烷基、十四烷基、十五烷基、十六烷基、十七烷基、十八烷基、十九烷基、二十烷基和二十二烷基；以及取代和未取代的环丙二烯、环丁二烯、环戊二烯、环己二烯的异构体，其中取代基可以是基团连接点，例如在 1,4- 二亚甲基环己烷内，或者可包括支链和直链烷烃、环烷烃和类似烃。另外，间隔基 S 可选自含多亚烷基氧基单元，例如亚丙基氧基、1,3- 亚丙基氧基、1,2- 亚丁基氧基、1,4- 亚丁基氧基、1,6- 亚己基氧基和类似基团中的一个或更多个二基；以及含这些中的至少一种的化合物。
4- 丁二醇、内消旋-2,3- 丁二醇、1,2- 萬二醇、2,3- 萬二醇、1,4- 萬二醇、1,4- 乙二醇和类似物，脂肪族醇，例如 1,3- 环丁二醇、2,2,4,4- 四甲基环丁二醇、1,2- 环戊二醇、1,2- 环己二醇、1,3- 环已二醇、1,4- 环己二醇、1,4- 二氟甲基环己烷和类似物；脂肪族二醇，例如 2,3- 二甲基 -2,3- 丁二醇（频哪醇）和 2- 甲基 -2,4- 萬二醇（己二醇）；以及含聚氧化烯醇的醇，例如聚乙二醇、聚丙二醇、无规或嵌段聚（乙二醇三氢植 - 丙 - 丙醇），以及含聚氧化烯醇的共聚物的二醇。有用的多元醇可包括聚亚烯基氧化物化合物，例如聚羟基苯乙烯烷基多聚醇，例如聚乙醇醇、多糖和酯化的多糖，合至少一种前述的化合物也可以是有用的。具体的二醇包括 2- 甲基 -2,4- 萬二醇（己二醇）、聚乙二醇和聚丙二醇。

[0118] 合适脂肪族醚可包括烷氧基取代的环状或脂肪族烷烃，例如 1,2- 二烷氧基乙烷、1,2- 二烷氧基丙烷、1,3- 二烷氧基丙烷、烷氧基环烷烃、烷氧基环己烷和类似物。酯化合物（-COOR）可用作稳定剂，其中 R 可以是取代或未取代、芳族或脂肪族，而母体羧基化合物同样可被取代或未取代，是脂肪族或脂肪族，和 / 或单 - 或多官能团的化合物，若存在的话，取代基可包括例如 C₁-C₈ 烷基, C₁-C₈ 烷基醚，C₆-C₁₂ 芳基和类似基团。证明有用酯可包括四（甲基 [3,5- 二 - 叔丁基 -4- 羟基 - 氨烷基苯酸酯]）甲烷，2,2'- 腺酰基双（乙基 -3-(3,5- 二 - 叔丁基 -4- 羟苯基) 羧酸酯和三官能的受阻酚酯化合物，例如获自 B.F. Goodrichin Cleveland OH 的 GOOD-RITE™ 3125。

[0119] 也可使用二酮化合物，具体是具有两个羰基官能团且被单一的间隔碳原子隔开的那些，例如 2,4- 丁二酮。

[0120] 合适用于作稳定添加剂的含硫化合物可包括硫醇、硫醚和磺酰硫醇。硫醇包括例如 2- 羧基苯并噻唑；硫醚包括硫代丙酸二月桂酯；以及环状硫醚，例如 1,4- 二噁烷、1,4,8,11- 四硫代环十四烷。含有大于一个硫醚基的环状硫醚是有用的，特别是在两个硫醚基之间具有单个间隔碳的那些，例如 1,3- 二噁烷。环状硫醚含氧化氢或氮成员。

[0121] 也可使用通式结构为 R-S(0)₂-R' 的芳基或烷基砜稳定添加剂，其中 R 和 R' 包括 C₁-C₈ 烷基, C₁-C₈ 芳基, C₆-C₁₂ 芳基, C₁-C₈ 烷基醚, C₆-C₁₂ 芳基和类似基团，并且其中 R 或 R' 中的至少一个为取代或未取代的苄基。若存在的话，取代基可包括例如 C₁-C₈ 烷基, C₁-C₈ 烷基醚, C₆-C₁₂ 芳基和类似基团。具体可用的醚的实例是苄基醚。

[0122] 烯烃可作稳定添加剂。合适类型的烯烃包括通式结构 RR' C = CR''R'' 的烯烃，其中 R, R', R'' 和 R''' 各自可独立地相同或不同且可选自氢、C₁-C₂₀ 烷基, C₁-C₂₀ 环烷基, C₁-C₂₀ 链烯烃, C₁-C₂₀ 环烯烃, C₆-C₁₂ 芳基, C₆-C₁₂ 烷芳基, C₁-C₂₀ 芳基和类似衍生物。存在的话，取代基可包括例如 C₁-C₈ 烷基, C₁-C₈ 烷基醚, C₆-C₁₂ 芳基和类似基团。烯烃可以是无环（acyclic）、外向环或桥环。具体可用的链烯烃的实例包括 1,2- 二苯基乙烷, 2- 己基苯酚, 2,4- 二苯基 -1- 芳烯, 2- 芳基 -2- 芳基, 2,4- 二苯基 -1- 芳烯, 1,4- 二苯基 -1,3- 丁二烯, 2- 甲基 -1- 十一碳烯, 1- 十二碳烯和类似物或含至少一种前述的化合物。

[0123] 氮化芳族化合物也可用作稳定添加剂，其中包括部分氢化的芳烃，以及芳烃与不饱和环的结合。具体的芳烃包括苯和 / 或苯基体系。合适的氮化芳族化合物的实例包括二氯苯, 5,6,7,8- 四氯 -1- 萘酚, 5,6,7,8- 四氯 -2- 萘酚, 5,6,7,8- 四氯 -9,10- 二氢蒽, 9,10- 二氢菲, 9,10- 二氢菲, 1- 芳基 -1- 环己烷, 1- 芳基 -1- 萘酚, 1- 芳基 -1- 萘酚和类似物或含至少一种前述的化合物。

[0124] 二碲，其中包括氢化和非氢化，以及与取代和未取代的吡喃类，也可用作稳定添加
剂。若存在取代基，取代基可包括 C₁-C₆ 烷基、C₁-C₅ 烷基醚或 C₆-C₂₀ 芳基。吡喃可具有包括 C₁-C₂₀ 烷基、C₁-C₂₀ 芳基、C₁-C₂₀ 烷氧基或 C₁-C₂₀ 芳氧基在内的取代基，且该取代基可位于吡喃环的任何碳上。具体可用的取代基包括位于环的第 6 位上的 C₁-C₂₀ 烷氧基或 C₆-C₂₀ 芳氧基。氢化吡喃具体是可用的。合适的二醚的实例包括二氢氢化吡喃醚和四氢氢化吡喃醚。

[0125] 本发明的稳定剂的氢化化合物包括高分子量的草酰胺类酯，例如 2,2'-草酰基双-[乙基 3-(3,5-二-叔丁基-4-羟苯基) 丙酸酯]，高分子量的苯基乙二酰胺 (oxalic anilides) 及其衍生物，以及胺化合物，例如硫脲。

[0126] 基于聚酯-聚碳酸酯和聚（亚烷基酯）的总重量，未离辐射稳定添加剂的使用量典型地为 0.001-1 wt %，具体 0.005-0.75 wt %，更具体 0.01-0.5 wt %，仍更具体 0.05-0.25 wt %。

[0127] 每一种前述 wt % 值基于聚酯-聚碳酸酯和聚（亚烷基酯）的结合重量，而不包括任何其他添加剂。在一个实施方案中，热塑性组合物可包括含抗氧化剂、热稳定剂、光稳定剂、紫外光吸收剂、增塑剂、脱模剂、润滑剂、抗静电剂、颜料、染料、阻燃剂，和/或稳定剂的组成部分。在具体的实施方案中，基于聚酯-聚碳酸酯和聚（亚烷基酯）的总重量，未添加的添加剂的存在总量小于或等于 5 wt %。在具体的实施方案中，热塑性组合物由下述组合组成：含间苯二甲酸-对苯二甲酸-间苯二酚 (ITR) 酯单元的聚酯-聚碳酸酯，含对苯二甲酸乙二酯单元和/或环己二甲酸二甲基单元和含对苯二甲酸乙二酯单元与环己二甲酸二甲基单元的聚合物（亚烷基酯）。基于聚酯-聚碳酸酯和聚（亚烷基酯）的总重量，0.5-5 wt % 的添加剂。要理解选择添加剂的用量和类型，以便没有显著负面影响热塑性组合物的所需性能。

[0128] 本发明中通常可获得的办法是制备热塑性组合物，例如在一个实施方案中，按照行面的一种方式，在 HENSCHEL-Mixer® 高速混合器中首先共混粉化的聚酯-聚碳酸酯聚合物、聚（对苯二甲酸亚烷酯）聚合物和其他任选的组分，其中包括稳定剂包装（例如，抗氧化剂、稳定剂、热稳定剂、紫外光稳定剂和类似物）和/或其他添加剂。其他低剪切方法，其中包括，但不限于，手混也可实现这一共混。然后将该共混物借助料斗喂入挤出机内。或者，可通过在进料口处和/或通过侧供料在下游直接喂入挤出机内，从而掺入一种或多种组分到聚合物内。视需要，也可在母炼胶内配混聚酯-聚碳酸酯，聚（对苯二甲酸亚烷酯）聚合物和任何所需的聚合物和/或添加剂，并与所需的聚酯物树脂结合并喂入到挤出机内。挤出机通常在高于引起组合物流的所需的温度下操作。挤出物立即在水浴内骤冷并造粒。当切割挤出物时，如此制备的粒料可以视需要为 1/4 英寸长或更小。这种粒料可用于随后的模塑、成型或成形。

[0129] 在具体的实施方案中，制备热塑性组合物的方法包括熔体结合聚酯-聚碳酸酯聚合物和聚（对苯二甲酸亚烷酯）聚合物。熔体结合可通过挤出进行。在一个实施方案中，各自选择聚酯-聚碳酸酯聚合物和聚（对苯二甲酸亚烷酯）聚合物的组成，以便在聚酯-聚碳酸酯的 ITR 酯单元，和在聚（对苯二甲酸亚烷酯）聚合物中的 CHDM 酯单元之和为大于 40 的树脂。另外，可选择聚酯-聚碳酸酯和聚（亚烷基酯），以便优化热塑性组合物的最佳性能，使透光率大于或等于 80% 和雾度小于或等于 5%，这通过在 2.5mm 由聚酯-聚碳酸酯和聚（亚烷基酯）组成的整体制品上并根据 ASTM 1003-00 来测量，同时机械性能处于所需的水平下。在进一步具体的实施方案中，结合小于或等于聚碳酸酯总重量 5 wt % 的添加
试剂与聚酯 - 聚碳酸酯聚合物和聚（对苯二甲酸亚烷酯）聚合物，制备热塑性组合物。在一个实施方案中，选择聚酯 - 聚碳酸酯聚合物、聚（对苯二甲酸亚烷酯）聚合物和视需要的聚碳酸酯的比例，以便如下所述优化热塑性组合物的光学性能同时机械性能处于所需的水平下。

[0130] 在具体的实施方案中，使用双螺杆挤出机挤出热塑性组合物。挤出机典型地在180-385°C，具体 200-330°C，更具体地是在 220-300°C 的温度下操作，其中模头温度可以不同。挤出的热塑性组合物在水中骤冷并造粒。

[0131] 还提供包括该热塑性组合物的成型、成形或模塑制品。含该热塑性组合物的制品的实例包括透明覆盖层、保护片材、膜、纤维、器皿、医疗用具、机动车、防护设备、运动和休闲制品，和类似物。

[0132] 通过下述非限定性实施例进一步阐述热塑性组合物。

[0133] 通过在 Wernerand Pfleiderer 25mm 的啮合式双螺杆挤出机上，在 300rpm 和 40-200-250-285-300-300-300-300°C 的机筒温度下制备组合物。在具有设定在 280-290-300-295°C 下的 4 个温度区的 Engel 75T 模塑装置上模塑这一研究所使用的板（模具温度 90°C）。

[0134] 通过凝胶渗透色谱法 (GPC)，使用交联的苯乙烯 - 二乙烯基苯凝胶柱，约 1mg/ml 的样品浓度，测定聚合物的分子量，并使用聚碳酸酯标准物来校正。各自在 2.5mm 的板上根据 ASTMD1003-00 来测量雾度和透光率 (%)。在 Hitachi U4100 分光光度计上测量窄带光谱透射率。

[0135] 使用表 1 所示的组分，制备用于实施例和对比例的热塑性组合物。

[0136] 表 1

<table>
<thead>
<tr>
<th>组分</th>
<th>说明</th>
<th>来源</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC</td>
<td>聚碳酸酯树脂 (Mw = 25,000g/mol, PS 标准物)</td>
<td>GE Plastics</td>
</tr>
<tr>
<td>20 : 80ITR-PC</td>
<td>聚 (20mol%间苯二甲酸 - 对苯二甲酸 - 间苯二酚酯) – 共 -(80mol%双酚-A 碳酸酯) 共聚物 (Mw = 25,000g/mol, PS 标准物)</td>
<td>GE Plastics</td>
</tr>
<tr>
<td>40 : 60ITR-PC</td>
<td>聚 (40mol%间苯二甲酸 - 对苯二甲酸 - 间苯二酚酯) – 共 -(60mol%双酚-A 碳酸酯) 共聚物 (Mw = 25,000g/mol, PS 标准物)</td>
<td>GE Plastics</td>
</tr>
<tr>
<td>80 : 20ITR-PC</td>
<td>聚 (80mol%间苯二甲酸 - 对苯二甲酸 - 间苯二酚酯) – 共 -(20mol%双酚-A 碳酸酯) 共聚物 (Mw = 25,000g/mol, PS 标准物)</td>
<td>GE Plastics</td>
</tr>
<tr>
<td>PET</td>
<td>聚（对苯二甲酸乙二酯）（Mw = 88,000g/mol, PS 标准物）</td>
<td>Du Pont</td>
</tr>
<tr>
<td></td>
<td>处理</td>
<td>Chemical</td>
</tr>
</tbody>
</table>
制备聚（间苯二甲酸-对苯二甲酸-间苯二酚酯）-共-（双酚A碳酸酯）（ITR-PC）的通用工序。根据下述通用工序制备此处所使用的每一种 ITR-PC 共聚物。向配有机械搅拌器、pH 电极、冷凝器和与计量泵相连的两个滴管的 30 升圆底反应器中引入间苯二酚（相对于二羧酸的总摩尔数，12.5-25mol% 过量），水（在制备羟基封端的聚酯之后，提供约 34-约 35wt% 的盐），二氯甲烷（6L）和三乙胺（2mol%）。采用 6 英寸的螺旋桨在约 300-350rpm 下搅拌混合物。一个滴管与由间苯二甲酰氯和对苯二甲酰氯的 50/50 混合物和足量二氯甲烷组成的溶液相连，以制备约 35wt% 的二酰氯溶液。另一滴管与 50% 的氢氧化钠水溶液相连。在 10 分钟的时间内，在恒定的质量流速下，添加含有 3.42mol 间苯二甲酰氯和 3.42mol 对苯二甲酰氯的二酰氯溶液，以及 85-90mol% 的氢氧化钠溶液（基于二酰氯）到反应器中。在加完酰氯溶液之后，将进一步用量的氢氧化钠溶液在约 3 分钟内加入到反应器中，以便调节 pH 到约 8.25, 并允许混合物搅拌约 10 分钟。在完成形成所得羟基封端的聚酯（HTPE）之后，将苯酚（3.4mol%，基于全部双酚 -A）、双酚 -A (BPA)、水和二氯甲烷加入到该混合物中，所添加的 BPA 的用量以下式为基础:

\[
\text{所添加的 BPA 的摩尔数} = 6.84 \times \frac{\text{ITR} \times (100\% \text{ PC})}{(\text{ITR} \times 100\% \text{ ITR})}
\]

[0139] 其中例如具有 20mol% 碳酸酯单元和 80mol% 酯单元（即 80：20 ITR-PC）的所需组成的聚合物使用的 BPA 的用量为

\[
\text{BPA} = (6.84 \times 0.25) = 1.71 \text{mol BPA}.
\]

[0142] 在光气化之前，在形成羟基封端的聚酯中间体形成后，添加充足的额外的水，溶解存在于反应混合物中的所有盐（NaCl）。引入额外的二氯甲烷，在光气化后，在有机相内提供约 11-约 17wt% 的固体浓度。

[0143] 然后在与制备羟基封端的聚酯中间体所使用的相同反应器内，光气化含羟基封端的聚酯、游离苯酚、游离的过量间苯二酚、BPA、二氯甲烷、盐和三乙胺（TEA）的混合物。然后在恒定的速度下，在约 55 分钟的时间段内引入约 1.4 当量（基于游离双酚 A 的总摩尔数）的光气和 50wt% 的氢氧化钠溶液（50wt% NaOH），同时维持 pH 在约 pH 8.5 下，直到添加了约 60mol% 化学计量量的光气。调节 pH 为约 9.5 并添加其余的光气。一旦完成光气的添加，
则搅拌反应混合物数分钟。分离含产物聚酯-聚碳酸酯的二氯甲烷溶液与盐水层，并用 IN HCl 洗涤 2 次，用去离子水洗涤 4 次。含水溶液的体积大致等于产物聚合物溶液的体积。通过将蒸汽注入热水和产物聚酯-聚碳酸酯的二氯甲烷溶液的充分搅拌的混合物内，分离产物。以白色粉末形式分离产物并过滤，在 80-100℃下干燥 24 小时。通过 GPC 表征产物聚酯-聚碳酸酯（Mw，聚苯乙烯分子量标准物）。分析结果与形成偶联聚酯-聚碳酸酯一致。NMR 表明产物聚酯-聚碳酸酯被充分地封端，这通过不存在游离的端羟基（通过 NMR 检测不到）和酸端基（通过 NMR 也检测不到）来表明。

根据以上所述的方法，通过熔体共混聚碳酸酯、20：80ITR-PC、40：60ITR-PC 或 80：20ITR-PC，和 PET，制备对比例 1-10 和实施例 1-10。实施例和对比例中所使用的重量比如下表 1 中所述。

表 2

<table>
<thead>
<tr>
<th>聚合物以 wt%计的用量(wt%)</th>
<th>PET</th>
<th>Mol% ITR+ mol%CHDM</th>
<th>%T</th>
<th>雾度</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEx1</td>
<td>15</td>
<td>--</td>
<td>85</td>
<td>0</td>
</tr>
<tr>
<td>CEx2</td>
<td>--</td>
<td>15</td>
<td>--</td>
<td>85</td>
</tr>
<tr>
<td>Ex1</td>
<td>--</td>
<td>--</td>
<td>15</td>
<td>85</td>
</tr>
<tr>
<td>Ex2</td>
<td>--</td>
<td>30</td>
<td>--</td>
<td>85</td>
</tr>
<tr>
<td>CEx3</td>
<td>30</td>
<td>--</td>
<td>70</td>
<td>0</td>
</tr>
<tr>
<td>CEx4</td>
<td>--</td>
<td>30</td>
<td>70</td>
<td>20</td>
</tr>
<tr>
<td>Ex3</td>
<td>--</td>
<td>30</td>
<td>--</td>
<td>70</td>
</tr>
<tr>
<td>Ex4</td>
<td>--</td>
<td>--</td>
<td>30</td>
<td>70</td>
</tr>
<tr>
<td>CEx5</td>
<td>50</td>
<td>--</td>
<td>--</td>
<td>50</td>
</tr>
<tr>
<td>CEx6</td>
<td>--</td>
<td>50</td>
<td>--</td>
<td>50</td>
</tr>
<tr>
<td>Ex5</td>
<td>--</td>
<td>50</td>
<td>--</td>
<td>50</td>
</tr>
<tr>
<td>Ex6</td>
<td>--</td>
<td>--</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>CEx72</td>
<td>70</td>
<td>--</td>
<td>--</td>
<td>30</td>
</tr>
<tr>
<td>CEx8</td>
<td>--</td>
<td>70</td>
<td>--</td>
<td>30</td>
</tr>
<tr>
<td>Ex7</td>
<td>--</td>
<td>70</td>
<td>--</td>
<td>30</td>
</tr>
<tr>
<td>Ex8</td>
<td>--</td>
<td>--</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>CEx9</td>
<td>85</td>
<td>--</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>CEx10</td>
<td>--</td>
<td>85</td>
<td>--</td>
<td>15</td>
</tr>
<tr>
<td>Ex9</td>
<td>--</td>
<td>85</td>
<td>15</td>
<td>40</td>
</tr>
<tr>
<td>Ex10</td>
<td>--</td>
<td>--</td>
<td>85</td>
<td>15</td>
</tr>
</tbody>
</table>

1 雾度值小于 10%但不小于 5%。
2 不可能配混；染料溶解，不透明的物质。

如表 2 所示，分别对于 15：85，30：70，50：50，70：30 和 85：15 的所有重量共混比来说，使用 PC 或 20：80ITR-PC，PET（具有 0mol% CHDM）（对比例 1-10）制备的组合物各自提供透光率(% T) 小于 80%和雾度小于 10%但不小于或等于 5%雾度的组合物。这些组合物不透明或者透光率和/或雾度非所需，因此不满足在本发明公开内容中有效的标准。相反，具有 40：60ITR-PC 和/或 80：20ITR-PC 的 PET 的组合物（实施例 1-10）提供透光率大于或等于 80%和雾度小于或等于 5%的共混物。满足透光率和雾度要求的该
组合物各自具有大于或等于 40 的总 mol% ITR+mol% CHDM。

[0150] 根据以上所述的方法，通过熔体共混聚碳酸酯/20：80ITR-PC, 40：60ITR-PC
或 80：20ITR-PC，与具有 5mol% 1,4-环己基二亚甲基对苯二甲酸酯单元的
PETG（5：95PETG），制备对比例 11-16 和实施例 11-16。下表 3 中描述了在实施例和对比例中所使用的重量比。

[0151] 表 3。

[0152]

<table>
<thead>
<tr>
<th>聚合物以 wt%计的用量 (wt%)</th>
<th>PC</th>
<th>20:80 ITR-PC</th>
<th>40:60 ITR-PC</th>
<th>80:20 ITR-PC</th>
<th>5:95PETG</th>
<th>Mol%ITR+ mol%CHDM</th>
<th>%T</th>
<th>灰度</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEx11</td>
<td>30</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>70</td>
<td>5</td>
<td>71</td>
<td>98</td>
</tr>
<tr>
<td>CEx12</td>
<td>--</td>
<td>30</td>
<td>--</td>
<td>--</td>
<td>70</td>
<td>25</td>
<td>60</td>
<td>96</td>
</tr>
<tr>
<td>Ex11</td>
<td>--</td>
<td>--</td>
<td>30</td>
<td>--</td>
<td>70</td>
<td>45</td>
<td>88</td>
<td>2</td>
</tr>
<tr>
<td>Ex12</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>30</td>
<td>70</td>
<td>85</td>
<td>88</td>
<td>2</td>
</tr>
<tr>
<td>CEx13</td>
<td>50</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>50</td>
<td>5</td>
<td>74</td>
<td>53</td>
</tr>
<tr>
<td>CEx14</td>
<td>--</td>
<td>50</td>
<td>--</td>
<td>--</td>
<td>50</td>
<td>25</td>
<td>63</td>
<td>72</td>
</tr>
<tr>
<td>Ex13</td>
<td>--</td>
<td>--</td>
<td>50</td>
<td>--</td>
<td>50</td>
<td>45</td>
<td>89</td>
<td>1.5</td>
</tr>
<tr>
<td>Ex14</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>50</td>
<td>50</td>
<td>85</td>
<td>89</td>
<td>2</td>
</tr>
<tr>
<td>CEx15³</td>
<td>70</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>30</td>
<td>5</td>
<td>62</td>
<td>95</td>
</tr>
<tr>
<td>CEx16</td>
<td>--</td>
<td>70</td>
<td>--</td>
<td>--</td>
<td>30</td>
<td>25</td>
<td>75</td>
<td>21</td>
</tr>
<tr>
<td>Ex15</td>
<td>--</td>
<td>--</td>
<td>70</td>
<td>--</td>
<td>30</td>
<td>45</td>
<td>88</td>
<td>2</td>
</tr>
<tr>
<td>Ex16</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>70</td>
<td>30</td>
<td>85</td>
<td>86</td>
<td>4</td>
</tr>
</tbody>
</table>

³ 不可能配混，染料溶胀，不透明的物质。

[0154] 如表 3 所示，分别对于 30：70, 50：50 和 70：30 的所有重量共混比来说，使用
PC 或 20：80ITR-PC 和 5：95PETG（具有 5mol% CHDM）（对比例 11-16）制备的组合物各自
提供透光率小于 80% 和雾度小于 10% 但不小于或等于 5% 雾度的组合物。这些组合物不透
明，或者可具有非所需的透光率和 / 或雾度，因此不满足在本发明公开内容中有效的标准。
相反，具有 40：60ITR-PC 和 / 或 80：20ITR-PC 的 5：95PETG 的组合物（实施例 11-16）
提供透光率大于或等于 80% 和雾度小于或等于 5% 的共混物。满足透光率和雾度要求的该
组合物各自具有大于或等于 40 的总 mol% ITR+mol% CHDM。

[0155] 根据以上所述的方法，通过熔体共混聚碳酸酯/20：80ITR-PC, 40：60ITR-PC 或
80：20ITR-PC，与具有 30mol% 1,4-环己基二亚甲基对苯二甲酸酯单元的 30：70PETG，
制备对比例 17-19 和实施例 17-25。下表 4 中描述了在实施例和对比例中所使用的重量比。

[0157] 聚合物以 wt%计的用量(wt%)

<table>
<thead>
<tr>
<th></th>
<th>PC</th>
<th>20:80 ITR-PC</th>
<th>40:60 ITR-PC</th>
<th>80:20 ITR-PC</th>
<th>30:70 PETG</th>
<th>Mol% ITR+mol%CHDM</th>
<th>%T</th>
<th>雾度</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEx17</td>
<td>30</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>70</td>
<td>30</td>
<td>61.5</td>
<td>80.7</td>
</tr>
<tr>
<td>Ex17</td>
<td>--</td>
<td>30</td>
<td>--</td>
<td>--</td>
<td>70</td>
<td>50</td>
<td>89.9</td>
<td>1.3</td>
</tr>
<tr>
<td>Ex18</td>
<td>--</td>
<td>--</td>
<td>30</td>
<td>--</td>
<td>70</td>
<td>70</td>
<td>90.0</td>
<td>1.3</td>
</tr>
<tr>
<td>Ex19</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>30</td>
<td>70</td>
<td>100</td>
<td>89</td>
<td>2.4</td>
</tr>
<tr>
<td>CEx18</td>
<td>50</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>50</td>
<td>30</td>
<td>60.1</td>
<td>45.6</td>
</tr>
<tr>
<td>Ex20</td>
<td>--</td>
<td>50</td>
<td>--</td>
<td>--</td>
<td>50</td>
<td>50</td>
<td>90.2</td>
<td>1.1</td>
</tr>
<tr>
<td>Ex21</td>
<td>--</td>
<td>--</td>
<td>50</td>
<td>--</td>
<td>50</td>
<td>70</td>
<td>89.5</td>
<td>2</td>
</tr>
<tr>
<td>Ex22</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>50</td>
<td>50</td>
<td>100</td>
<td>89</td>
<td>1.6</td>
</tr>
<tr>
<td>CEx19</td>
<td>70</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>30</td>
<td>30</td>
<td>71.3</td>
<td>20.7</td>
</tr>
<tr>
<td>Ex23</td>
<td>--</td>
<td>70</td>
<td>--</td>
<td>--</td>
<td>30</td>
<td>50</td>
<td>90.3</td>
<td>0.92</td>
</tr>
<tr>
<td>Ex24</td>
<td>--</td>
<td>--</td>
<td>70</td>
<td>--</td>
<td>30</td>
<td>70</td>
<td>89.6</td>
<td>1.1</td>
</tr>
<tr>
<td>Ex25</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>70</td>
<td>30</td>
<td>100</td>
<td>87.8</td>
<td>3.1</td>
</tr>
</tbody>
</table>

[0158] 如表 4 所示, 分别对于 30:70, 50:50 和 70:30 的所有重量共混比表, 使用PC, 和 30:70PETG(含有 30mol% CHDM) (对比例17-19) 制备的组合物各自提供透光率小于 80%和雾度大于 5%雾度的组合物。这些组合物不透明或者透光率和/或雾度不需, 因此不满足在本发明公开内容中有效的标准。相反, 其有 20:80 ITR-PC 和/或 40:60 ITR-PC 和/或 80:20 ITR-PC 的30:70PETG 的组合物（实施例17-25）提供透光率大于或等于 80%和雾度小于或等于 5%的共混物。满足透光率和雾度要求的该组合物各自具有大于或等于 40 的总 mol% ITR+mol% CHDM.

[0159] 根据以上所述的方法, 通过熔体共混聚碳酸酯, 20:80 ITR-PC, 40:60 ITR-PC 或 80:20 ITR-PC 和或者具有 80mol% 4-环己基二甲基对苯二甲酸酯单元的PCTG 或者具有 100mol% 1,4-环己基二甲基对苯二甲酸酯单元的PCT, 制备对比例 20 和 21 以及实施例 26-31 下表 5 中描述了在实施例和对比例中所使用的重量比。

[0160] 表 5.

[0161] 聚合物以 wt%计的用量(wt%)

<table>
<thead>
<tr>
<th></th>
<th>PC</th>
<th>20:80 ITR-PC</th>
<th>40:60 ITR-PC</th>
<th>80:20 ITR-PC</th>
<th>PCTG</th>
<th>PCT</th>
<th>Mol% ITR+mol%CHDM</th>
<th>%T</th>
<th>雾度</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEx20</td>
<td>50</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>50</td>
<td>--</td>
<td>80</td>
<td>90</td>
<td>1.1</td>
</tr>
<tr>
<td>Ex26</td>
<td>--</td>
<td>50</td>
<td>--</td>
<td>--</td>
<td>50</td>
<td>--</td>
<td>100</td>
<td>90</td>
<td>0.8</td>
</tr>
<tr>
<td>Ex27</td>
<td>--</td>
<td>--</td>
<td>50</td>
<td>--</td>
<td>50</td>
<td>--</td>
<td>120</td>
<td>90</td>
<td>0.8</td>
</tr>
<tr>
<td>Ex28</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>50</td>
<td>50</td>
<td>--</td>
<td>160</td>
<td>90</td>
<td>0.9</td>
</tr>
<tr>
<td>CEx21</td>
<td>50</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>50</td>
<td>--</td>
<td>100</td>
<td>90</td>
<td>1.8</td>
</tr>
<tr>
<td>Ex29</td>
<td>--</td>
<td>50</td>
<td>--</td>
<td>--</td>
<td>50</td>
<td>--</td>
<td>120</td>
<td>90</td>
<td>1.7</td>
</tr>
<tr>
<td>Ex30</td>
<td>--</td>
<td>--</td>
<td>50</td>
<td>--</td>
<td>50</td>
<td>--</td>
<td>140</td>
<td>90</td>
<td>1.5</td>
</tr>
<tr>
<td>Ex31</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>50</td>
<td>50</td>
<td>--</td>
<td>180</td>
<td>90</td>
<td>1.4</td>
</tr>
</tbody>
</table>

[0162] 如表 5 所示, 使用 PC 与或者 PCTG(80:20 ITR-PC) 或者 PCT(具有 100mol% CHDM) 的共混物制备的每一对比例（对比例 20 和 21）具有大于或等于 80 的总 mol% ITR+mol% CHDM, 透光率大于 80%, 雾度小于 5%。且是已知的组合物。具有 20:80 ITR-PC,
40：601TR-PC或80：201TR-PC，与PCTG（实施例26-28）或PCT的组合物（实施例29-31）
具有大于或等于100的总mol%ITR+mol%CHDM，还提供透光率大于或等于80%和雾度小
于或等于5%的共混物。因此，具有ITR，与PCTG或PCT的共混物的每一种组合物是透明的。
【0163】此处使用标准的命名描述化合物。不是在两个字母或符号之间的短横（“-“）用
于表示取代基的连接点。例如，-CHO通过羰基（C = O）碳连接。单数形式“一个（a）”、“一
种（an）”和“该（the）”包括复数的情况，除非另有说明。引证相同特征或组分的所有范围
的端点可独立地结合并包括所引证的端点值。所有参考文献在此通过参考引入。术语“第
一”、“第二”和类似术语不表示任何顺序、用量或重要性，而是用于彼此区分各要素。
【0164】尽管为了阐述的目的列出了典型的实施方案，单前述说明不应当被视为限制本发
明的范围。因此，本领域的技术人员可在没有脱离本发明的精神和范围的情况下作出各种
改性、改编和替代。