47079510 A2 | I YO0 OO RO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Burcau

(43) International Publication Date

(10) International Publication Number

16 September 2004 (16.09.2004) PCT WO 2004/079510 A2
(51) International Patent Classification’: GO6F AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
(21) International Application Number: GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
PCT/US2004/005260

(22) International Filing Date: 23 February 2004 (23.02.2004)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/451,313
10/780,299

28 February 2003 (28.02.2003)
17 February 2004 (17.02.2004)

UsS
UsS

(71) Applicant (for all designated States except US): BEA
SYSTEMS INC. [US/US]; 2315 North First Street, San
Jose, California 95131 (US).

(72) Inventor; and

(75) Inventor/Applicant (for US only): CALAHAN, Patrick
[US/US]; 174 Beaver Street, San Francisco, California
94114 (US).

(74) Agents: MEYER, Sheldon, R. et al.; FLIESLER MEYER
LLP, Four Embarcadero Center, Fourth Floor, San Fran-
cisco, California 94111 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,

KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,
MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,
PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM,
ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), Euro-
pean (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR,
GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant’s entitlement to apply for and be granted
a patent (Rule 4.17(ii)) for the following designations AE,
AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ,
CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE,
EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS,
JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA,
MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM,
PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ,
TM, TN, TR, TT, TZ, UA, UG, UZ, VC, VN, YU, ZA, ZM,
ZW, ARIPO patent (BW, GH, GM, KE, LS, MW, MZ, SD,

[Continued on next page]

(54) Title: SYSTEMS AND METHODS FOR STREAMING XPATH QUERY

XML _ | Streaming | Stream of Events foaht_h XML Stream
Document Parser > atching |— — —— — »
Component
102
100 104
Matching
Event
Y
- User
Observer ™ Object
106 108

& (57) Abstract: ABSTRACT An improved XML query system represents an XML document as a stream of discrete ‘events,” with
& each event representing a portion of the document as the document is being parsed. Expression-based event matching such as XPath
can be performed against the event stream using a stack to keep only the relevant contexts in memory. Observers can be used to
listen for matching events. Matching events can then be routed for processing by appropriate objects or components and returned to
the event stream if necessary. This description is not intended to be a complete description of, or limit the scope of, the invention.
Other features, aspects, and objects of the invention can be obtained from a review of the specification, the figures, and the claims.

WO 2004/079510 A2 I} N0 A080A0 T 00000 0 AR

SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, Published:

KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, — without international search report and to be republished
CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, upon receipt of that report

LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ,

CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD,

TG) For two-letter codes and other abbreviations, refer to the "Guid-
as to the applicant’s entitlement to claim the priority of the ance Notes on Codes and Abbreviations” appearing at the begin-
earlier application (Rule 4.17(iii)) for all designations ning of each regular issue of the PCT Gagzette.

WO 2004/079510

10

15

20

25

30

PCT/US2004/005260

SYSTEMS AND METHODS FOR STREAMING XPATH QUERY

COPYRIGHT NOTICE
A portion of the disclosure of this patent document contains material which is
subject to copyright protection. The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document of the patent disclosure, as it appears in
the Patent and Trademark Office patent file or records, but otherwise reserves all

copyright rights whatsoever.

CLAIM OF PRIORITY

This application claims priority from the following applications, which are
hereby incorporated by reference in their entirety:

U.S. Provisional Application No. 60/451,313, entitled SYSTEMS AND
METHODS FOR STREAMING XPATH QUERY, by Patrick Calahan, filed on
February 28, 2003 (Attorney Docket No. BEAS-01330US0 SRM/DTX); and

U.S. Patent Application No. entitled SYSTEMS AND METHODS
FOR STREAMING XPATH QUERY, by Patrick Calahan, filed February 17, 2004
(Attorney Docket No. BEAS-01330US1 SRM/DTX).

FIELD OF THE INVENTION
The present invention relates to the querying of data, such as from a document

or file.

BACKGROUND

XPath is a W3C language standard that can be used to address or query parts of
an XML document. It models an XML document as a tree of nodes, which can include
element nodes, attribute nodes and/or text nodes. XPath can be used to identify a subset
of an XML document by matching, or determining whether a node matches a pattern,
similar to how SQL can be used against a database. In the typical case, an expression
written in the XPath language is evaluated against an XML document to determine
which parts of the document 'match' the XPath. In order to do this, the XML document
must be parsed and represented in memory. One of the standard representations of XML
is the Document Object Model (DOM). DOM model presents an XML document as a

-1-

WO 2004/079510 PCT/US2004/005260

10

15

20

25

30

hierarchy of nodes through which one can navigate arbitrarily. This approach provides a
lot of flexibility, but comes at a cost in terms of efficiency and memory use, as the entire

document must be brought into memory at one time.

BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 is a diagram showing an exemplary system that can be used in
accordance with one embodiment of the present invention.
Figure 2 shows an exemplary data tree that can be used with the system of
Figure 1 in an embodiment.
Figure 3 is a flowchart for an exemplary process that can be used with the

systeﬁq of Figure 1 in an embodiment.

DETAILED DESCRIPTION

The invention is illustrated by way of example and not by way of limitation in
the figures of the accompanying drawings in which like references indicate similar
elements. It should be noted that references to “an” or “one” embodiment in this
disclosure are not necessarily to the same embodiment, and such references mean at
least one.

Systems and methods in accordance with one embodiment of the present
invention overcome deficiencies in existing XML query systems by representing the
XML document as a stream of discrete 'events', with each event representing a ‘portion
of the document as the document is being parsed. Event matching can be performed
against the event stream. Matching events can then be routed for processing by
appropriate objects or components and returned to the event stream if necessary.

XPath can be used to identify a subset of an XML document, similar to how
SQL can be used against a database. XPath is a W3C language standard that can be used
to address or query parts of an XML document. It can address parts of an XML
document by providing basic facilities for manipulating strings, numbers, and Boolean
variables. XPath operates on the hierarchical structure, which can be but is not limited to
a tree, instead of the syntax of an XML document and can be used for matching, or
determining whether a node matches a pattern. It models an XML document as a tree of
nodes, which can include element nodes, attribute nodes and/or text nodes and defines a
way to compute a string-value for each node type. The primary syntactic construct in

XPath is the expression. An expression is evaluated to yield an object of type node-set,

-2

WO 2004/079510 PCT/US2004/005260

10

15

20

25

30

Boolean, number, or string. In the typical case, an expression written in the XPath
language is evaluated against an XML document to determine which parts of the
document 'match' the XPath. In order to do this, the XML document must be parsed and
represented in memory.

Systems and methods in accordance with one embodiment of the present
invention adopt a true streaming approach, passing bits of an XML document one after
another, and it is up to the system to decide what to do with each bit as it passes on the
stream. An advantage of a true streaming approach is that such a system is faster and far
more memory efficient than a DOM-style approach, since only one portion of the
document is in memory at any given time. When using a streaming parser, a system can
take a stream on an XML document, generating a stream of events, one event for each
node in the XML tree, and perform XPath matching on that stream. A streaming XPath
system can also be schema aware, such that the system knows the XML schema for a
document, that schema can be used to provide insight on how to most effectively
process the document. For instance, the need to go “backwards” in a stream can be
avoided if the system knows in advance which events it needs to grab and in what order
those events will be received. |

| A streaming approach can place a greater burden on a system to maintain
relevant state than a DOM approach, as a streaming approach may provide no
navigation mechanisms. While such an approach provides a very efficient way to
process an XML document, the efficiency comes at a cost, as there can be considerably
less context available when working with a stream than when working with a DOM ftree.
Further, XPath has to be able to traverse the hierarchy, in some sense, in order to locate
the appropriate portion of the document. In many instances, it is simple to locate an
appropriate portion of XML against a DOM tree, since the system is able to walk against
the tree. When using a stream, a system has to maintain context in a way that is efficient
enough to make using the stream worthwhile. Some tradeoffs can be made, such as not
supporting the entire XPath specification. At some point, it may be more efficient to
realize an entire DOM tree, if doing a convoluted matching against the entire document.

The XPath specification defines the notion of a context, where a context is the
information about an event, consisting of a node it represents, a position of the node
relative to a parent node, and a function library, as well as any of several other
components such as variable bindings. A location path is a type of expression that can

select a set of nodes relative to the context node. The evaluation of a location path

-3-

WO 2004/079510 PCT/US2004/005260

10

15

20

25

30

expression can result in the node-set containing the nodes being selected by the location
path. Location paths can recursively contain expressions used to filter node sets.
Expressions can be parsed by first dividing the character string to be parsed into tokens,
then parsing the resulting token sequence.

In one embodiment, it is relatively easy to map context to the stream, as the
system can maintain a stack of stream events that provide the direct ancestral line back
to the root. For instance, matching an XPath that consists solely of child axes can be
straightforward. In another embodiment, mapping can become more complicated in the
case of descendant axes, similar to matching an entire sub-tree. In those cases, it can be
necessary to spawn a tree of contexts and perform matching against each of those
contexts. It can become complicated, as the system gets to maintain, and know when
you can discard those cloned contexts. It can be even more complicated when matching
axes called “following,” which match everything below a certain point in the document.
In some cases, it is necessary to maintain that context tree and track what to add on to
the tree as the system navigates its way back out of the document.

Systems and methods in accordance with one embodiment of the present
invention know how to manage the multi-context mode discussed in the proceeding
paragraph. They utilize the information of contexts in the stack matching against the
expression to recognize when to go into this multi-context mode, when to destroy those
contexts, and how to update the context stack appropriately. Certain optimizations can
also be used that can know when not to match certain contexts in the context tree. XPath
defines different ways to slice up a document, such as parents and children, that each
has to be dealt with in a different way.

Systems and methods in accordance with one embodiment do not account for
reverse axes. A reverse axis is any axis that would require going “back” through the
stream. A diagram showing an exemplary “forward” and “backward” or “reverse” path
through a data tree is given by Figure 2. A diagram of an exemplary system is shown in
Figure 1. A streaming parser 102 generates events by parsing an XML document 100,
and then places those events on an XML event stream. Such a streaming process is
demonstrated by the diagram of Figure 3. The streaming parser first takes a tree of an
XML document as the input 300, traverses the XML tree either through a broad-first
search or a depth-first search and adds each node visited into a data structure, e.g., a
queue 302. The streaming parser then processes the queue in the first-in-first-out (FIFO)

manner 304 to generate an event for the context of each node in the queue 306 and

-4-

WO 2004/079510 PCT/US2004/005260

10

15

20

25

30

appends each event to the output stream 308. Using the event stream, the end user of the
streaming API pulls events from the stream as they come through it. When a user calls
for the next event on the stream, that user has a guarantee that they will get the next
event. The user will find out if the next event is going to match, and will find out before
the call to next returns.

In one embodiment, an XPath matching component 104 performs matching on
each event received on the stream. Matching can be communicated to a caller or end
user in a number of ways. These systems are doing event-based processing, as opposed
to static tree-based processing. In a tree-based implementation, for example, a user can
request all the nodes that match an XPath for a document. The user will receive a
collection of nodes that match that XPath. Such an approach is not necessarily effective
in the case of streaming, as it is then necessary to read through the document, save all
the nodes, and present the collection to the user. This is fundamentally not a stream-
centric way of looking at the problem. Instead, using an XPath matching approach, an
observer 106 can be registered. The registered observer is an object to be notified
whenever an event comes through the stream that matches this XPath. If an event
matches an XPath, that event can be temporarily diverted and sent over to a user-defined
object 108 that reacts to the match. Then, the event can be returned to the stream if
necessary so that any subsequent object pulling events from the stream can process that
event.

One embodiment may be implemented using a conventional general purpose or
a specialized digital computer or microprocessor(s) programmed according to the
teachings of the present disclosure, as will be apparent to those skilled in the computer
art. Appropriate software coding can readily be prepared by skilled programmers based
on the teachings of the present disclosure, as will be apparent to those skilled in the
software art. The invention may also be implemented by the preparation of integrated
circuits or by interconnecting an appropriate network of conventional component
circuits, as will be readily apparent to those skilled in the art.

One embodiment includes a computer program product which is a storage
medium (media) having instructions stored thereon/in which can be used to program a
computer to perform any of the features presented herein. The storage medium can
include, but is not limited to, any type of disk including floppy disks, optical discs,
DVD, CD-ROMs, micro drive, and magneto-optical disks, ROMs, RAMs, EPROMs,
EEPROMs, DRAMs, VRAMS, flash memory devices, magnetic or optical cards,

-5-

WO 2004/079510 PCT/US2004/005260

10

15

nanosystems (including molecular memory ICs), or any type of media or device suitable
for storing instructions and/or data.

Stored on any one of the computer readable medium (media), the present
invention includes software for controlling both the hardware of the general
purpose/specialized computer or microprocessor, and for enabling the computer or
microprocessor to interact with a human user or other mechanism utilizing the results of
the present invention. Such software may include, but is not limited to, device drivers,
operating systems, execution environments/containers, and applications.

The foregoing description of the preferred embodiments of the present invention
has been provided for the purposes of illustration and description. It is not intended to be
exhaustive or to limit the invention to the precise forms disclosed. Many modifications
and variations will be apparent to the practitioner skilled in the art. Embodiments were
chosen and described in order to best describe the principles of the invention and its
practical application, thereby enabling others skilled in the art to understand the
invention, the various embodiments and with various modifications that are suited to the
particular use contemplated. It is intended that the scope of the invention be defined by

the following claims and their equivalents.

WO 2004/079510 PCT/US2004/005260

10

15

20

25

30

CLAIMS

What is claimed is:

1. A system to process an XML document, comprising:

a streaming parser capable of parsing an XML document and generating a
stream of at least one event, wherein each event can represent a portion of the
document;

a matching component capable of performing matching on an event in the
stream and notifying an observer if the event is a match;

said observer capable of listening for a matching event and passing it to a user
object; and

said user object capable of handling the matching event.

2. The system according to claim 1, wherein:

the XML document is represented in a hierarchical structure.

3. The system according to claim 2, wherein:

the hierarchical structure can be a tree with each node containing a portion of

the document.

4, The system according to claim 3, wherein:
the streaming parser is capable of performing a method, comprising:
traversing the XML tree and adding visited nodes into a data structure;
processing the nodes in the data structure and generating an event for
each node; and

appending the event to the output stream.

5. The system according to claim 4, wherein:

the tree can be traversed using a breath-first or depth-first search.

6. The system according to claim 4, wherein:

the data structure can be a queue.

WO 2004/079510 PCT/US2004/005260

10

15

20

25

30

7. The system according to claim 4, wherein:

the data structure can be processed using a first-in-first-out approach.

8. The system according to claim 1, wherein:

the matching component is capable of keeping only a portion of the XML

document in memory at any given time.

9. The system according to claim 1, wherein:

the matching component is capable of knowing the schema of the XML

document and foreseeing the coming events.

10. The system according to claim 1, wherein:

the matching component is capable of performing an expression-based match,

which can be an XPath query.

11. The system according to claim 3, wherein:

the matching component is capable of keeping, cloning and destroying the

entirety or a portion of the sub-tree descending from a node in the tree.

12. The system according to claim 1, wherein:

the user object is capable of returning the matching event to an XML stream for

use by any other component.

13. A method for processing an XML document, comprising:
parsing an XML document and generating a stream of at least one event,
wherein each event can represent a portion of the document;
performing matching on an event in the stream and notifying an observer if the
event is a match,;
listening for a matching event and passing it to a user object; and

handling the matching event.

14. The method according to claim 13, further comprising:

WO 2004/079510 PCT/US2004/005260

10

15

20

25

30

representing the XML document in a hierarchical structure, which can be a tree

with each node containing a portion of the document.

15. The method according to claim 14, wherein:
the parsing of the XML document comprises the steps of:
traversing the XML tree and adding visited nodes into a data structure;
progessing the nodes in the data structure and generating an event for
each node; and
appending the event to the output stream.
16. The method according to claim 15, wherein:
the XML tree is traversed using a breath-first or depth-first search.
17. The method according to claim 15, wherein:
the data structure is processed using a first-in-first-out approach.
18. The method according to claim 13, further comprising:
keeping only a portion of the XML document in memory at any given time.
19. The method according to claim 13, further comprising:
knowing the schema of the XML document and foreseeing the coming events.
20. The method according to claim 13, further comprising:
performing an expression-based match, which can be an XPath query.
21. The method according to claim 14, further comprising:
keeping, cloning and destroying the entirety or a portion of the sub-tree
descending from a node in the tree.
22. The method according to claim 13, further comprising;
returning the matching event to an XML stream for use by any other
component.

WO 2004/079510 PCT/US2004/005260

10

15

20

25

30

23. A machine readable medium having instructions stored thereon that when executed
by a processor cause a system to:
parse an XML document and generate a stream of at least one event, wherein
each event can represent a portion of the document;
perform matching on an event in the stream and notify an observer if the event
is a match;
listen for a matching event and pass it to a user object; and

handle the matching event.

24. The machine readable medium of claim 23, further comprising instructions that
when executed cause the system to:
represent the XML document in a hierarchical structure, which can be a tree

with each node containing a portion of the document.

25. The machine readable medium of claim 24, wherein the instructions that when
executed cause the system to:
parse the XML document, comprising the steps of:
traversing the XML tree and adding visited nodes into a data structure;
processing the nodes in the data structure and generating an event for
each node; and

appending the event to the output stream.

26. The machine readable medium of claim 25, wherein the instructions that when
executed cause the system to:

traverse the tree using a breath-first or depth-first search.

27. The machine readable medium of claim 25, wherein the instructions that when
executed cause the system to:

process the data structure using a first-in-first-out approach.
28. The machine readable medium of claim 23, further comprising instructions that

when executed cause the system to:

perform an expression-based match, which can be an XPath query.

-10-

WO 2004/079510 PCT/US2004/005260

10

15

20

25

30

35

29. The machine readable medium of claim 23, further comprising instructions that
when executed cause the system to:

keep only a portion of the XML document in memory at any given time.

30. The machine readable medium of claim 23, further comprising instructions that
when executed cause the system to:

know the schema of the XML document and foresee the coming events.

31. The machine readable medium of claim 24, further comprising instructions that
when executed cause the system to:
keep, clone and destroy the entirety or a portion of the sub-tree descending

from a node in the tree.

32. The machine readable medium of claim 23, further comprising instructions that
when executed cause the system to:

return the matching event to an XML stream for use by any other component.

33. A system for processing an XML document, comprising:
means for parsing an XML document and generating a stream of at least one
event, wherein each event can represent a portion of the document;
means for performing matching on an event in the stream and notifying an
observer if the event is a match;
means for listening for a matching event and passing it to a user object; and

means for handling the matching event.

34. A computer data signal embodied in a transmission medium, comprising:
a code segment including instructions to parse an XML document and generate
a stream of at least one event, wherein each event can represent a portion of the
document;
a code segment including instructions to perform matching on an event in the
stream and notify an observer if the event is a match;
a code segment including instructions to listen for a matching event and pass it

to a user object; and

a code segment including instructions to handle the matching event.

-11 -

PCT/US2004/005260

WO 2004/079510

1/3

Y

901

«——] JoAlasqQ

JUaAg

[2amSLy

Buyoyepy

weans JAX

Yol

jusuodwon
Bujyolep
yredx

-

SJUSAT JO Weans

o)

losied
Bujweang

(o]

juswnosoq
TINX

WO 2004/079510 PCT/US2004/005260

2/3

Reverse

Forward

WO 2004/079510 PCT/US2004/005260

3/3

Input an XML tree

OO
]
O

|

Traverse the tree and add visited nodes into a queue

l

Process the nodes in the queue

'

Generate an event for the context of each node in the
queue

!

Append the event to the output stream

o8]
N

—

98]
=

(ON]
o
[&)]

|

(g8
(00}

Figure 3

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

