Abstract:

The invention relates to a composition and a laser-welded article comprising the composition. The composition comprises a near-infrared laser-absorbing part and a near-infrared laser-transmissive part. The composition is useful for forming a near infrared laser-transmissive part in a laser-welded article that further includes a near infrared laser-absorbing part.

Title:

THERMOPLASTIC COMPOSITION AND LASER-WELDED ARTICLE

FIG. 1

Transmission - 2 mm

(51) International Patent Classification:
C08L 67/02 (2006.0) C08L 69/00 (2006.0)

(21) International Application Number:
PCT/IB2015/053687

(22) International Filing Date:
19 May 2015 (19.05.2015)

(25) Filing Language:
English

(26) Publication Language:
English

(30) Priority Data:
62/008,134 5 June 2014 (05.06.2014) US

(71) Applicant: SABIC GLOBAL TECHNOLOGIES B.V., [NL/NL]; Plasticslaan 1, NL-4612 PX Bergen op Zoom (NL).

(72) Inventor: FARRELL, Tony; Plasticslaan 1, NL-4612 PX Bergen op Zoom (NL).

Declarations under Rule 4.17:

— as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(h))

— as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(in))

Published:

— with international search report (Art. 21(3))

(54) Title: THERMOPLASTIC COMPOSITION AND LASER-WELDED ARTICLE

(57) Abstract: A composition includes specific amounts of an amorphous polycarbonate, a partially crystalline polyester, and an ultraviolet absorbing agent comprising a hydroxyaryl group and a hydrogen-bond accepting group. The ultraviolet absorbing agent has a lambda-max less than 400 nanometers. The composition excludes white pigments, and colorants having a lambda-max of 400 to 700 nanometers. The composition is useful for forming a near infrared laser-transmissive part in a laser welded article that further includes a near infrared laser-absorbing part.
THERMOPLASTIC COMPOSITION AND LASER-WELDED ARTICLE

BACKGROUND OF THE INVENTION

[0001] Thermoplastic compositions are often used in the manufacture of products requiring the joining of separate previously-formed articles, such as through laser-welding. Near-infrared (NIR) laser-welding of two polymer articles by transmission welding requires one of the polymer articles to be at least partially transparent to NIR laser light, and the other to absorb a significant amount of the NIR laser light. The laser passes through the first laser transparent layer and is absorbed by the second polymer layer, generating heat in the exposed area. External pressure is applied to ensure uninterrupted contact and heat conduction between the parts resulting in the melting of both the absorbing and the transmitting polymers, thus generating a weld at the interface.

[0002] The level of NIR transmission in the upper part should allow sufficient laser density at the interface to facilitate effective welding. Otherwise, the joining of the two materials by laser transmission welding is either difficult or restricted to slow scan speeds, which undesirably lengthens the part assembly cycle time. Partially crystalline polyesters, such as poly(butylene terephthalate), are materials that can easily disperse the incoming radiation through a combination of back scattering and internal diffusion, thereby causing unwanted broadening of the NIR laser beam. Consequently, the laser energy at the joining interface is diminished and the adhesion between the two layers is reduced. Scattering effects are greatly enhanced when fillers such as glass fibers are present, especially when the upper layer thickness is greater than 1 millimeter. Additionally, the internal scattering of the laser in the first (upper) part can bring about a rise in temperature, especially in thick walled parts. Coupled with the fact that the crystallization pattern across a complex part varies, it is therefore beneficial to have high and consistent laser transparency across a range of thicknesses and processing conditions of the part to achieve consistent weld strengths.

[0003] Several methods have been investigated to increase the NIR laser transparency of compositions based on partially crystalline polyesters. One approach is to blend the partially crystalline polyester with an amorphous resin such as polycarbonate or polyester carbonate. Such compositions are disclosed, for example, in U.S. Patent Nos. 7,396,428 B2 to Matsushima et al. and 8,052,830 B2 to Sakata et al., and U.S. Patent Application Publication No. US 201 1/0256406 A1 of Farrell et al. However, further improvements in NIR laser transparency are desired.
[0004] An alternative approach to increase NIR laser transparency is to speed up the rate of crystallization of the composition using a chemical nucleant. This can occur by chemical reaction between the nucleating agent and polymeric end groups of the partially crystalline polyester to produce ionic end groups that enhance the rate of crystallization. Such compositions are disclosed, for example, in U.S. Patent No. 8,318,843 B2 to Benten et al., and U.S. Patent Application Publication No. US 2011/0306707 A1 of Benten et al. The addition of such chemical nucleants, however, can lower the molecular weight of the partially crystalline polyester and lead to unstable melt viscosity. Additionally, such chemical nucleants can substantially degrade the amorphous resin, causing unstable melt viscosities and other undesirable defects such as splay and jetting (deformations due to turbulent flow).

[0005] There remains a need for increased NIR laser transparency in compositions based on partially crystalline polyesters.

BRIEF SUMMARY OF EMBODIMENTS OF THE INVENTION

[0006] One embodiment is a composition comprising 20 to 79.95 weight percent of an amorphous polycarbonate; 20 to 79.95 weight percent of a partially crystalline polyester comprising poly(butylene terephthalate), poly(ethylene terephthalate), poly(butylene terephthalate) copolymers, poly(ethylene terephthalate) copolymers, or a combination thereof; 0.05 to 2 weight percent of an ultraviolet absorbing agent comprising a hydroxyaryl group and a hydrogen-bond accepting group; wherein the ultraviolet absorbing agent has a lambda-max less than 400 nanometers measured in solution; wherein the composition excludes white pigments, and colorants having a lambda-max of 400 to 700 nanometers; and wherein all weight percent values are based on the total weight of the composition.

[0007] Another embodiment is a laser welded article comprising a near infrared laser-transmissive part comprising the composition described above, and a near infrared laser-absorbing part.

[0008] These and other embodiments are described in detail below.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] Figure 1 is a plot of percent transmittance versus wavelength for 2 millimeter thick articles molded from the compositions of Comparative Example 1, Example 1, and Example 2.
Figure 2 is a plot of percent reflectance versus wavelength for 2 millimeter thick articles molded from the compositions of Comparative Example 1, Example 1, and Example 2.

DETAILED DESCRIPTION OF THE INVENTION

The present inventor has determined that increased NIR laser transparency and decreased NIR laser reflectivity are exhibited when an ultraviolet absorbing agent having a hydroxyaryl group and an associated hydrogen-bond accepting group is added to a composition comprising a partially crystalline polyester and an amorphous polycarbonate.

Thus, one embodiment is a composition comprising 20 to 79.95 weight percent of an amorphous polycarbonate; 20 to 79.95 weight percent of a partially crystalline polyester comprising poly(butylene terephthalate), poly(ethylene terephthalate), poly(butylene terephthalate) copolymers, poly(ethylene terephthalate) copolymers, or a combination thereof; 0.05 to 2 weight percent of an ultraviolet absorbing agent comprising a hydroxyaryl group and a hydrogen-bond accepting group; wherein the ultraviolet absorbing agent has a lambda-max less than 400 nanometers measured in solution; wherein the composition excludes white pigments, and colorants having a lambda-max of 400 to 700 nanometers; and wherein all weight percent values are based on the total weight of the composition.

The composition comprises an amorphous polycarbonate. Amorphous polycarbonate as used herein means a polymer or copolymer having repeating structural carbonate units of the formula

\[\ast R^1\text{O-C-O}\ast \]

wherein at least 60 percent of the total number of \(R^1 \) groups are aromatic. Specifically, each \(R^1 \) can be derived from a dihydroxy compound such as an aromatic dihydroxy compound of the formula

\[
\begin{align*}
\text{HO} & \quad \begin{array}{c}
\text{R}^a_p \\
\text{X}^a \\
\text{OH}
\end{array} \\
\text{HO} & \quad \begin{array}{c}
\text{R}^a_q \\
\text{OH}
\end{array}
\end{align*}
\]

or

wherein \(n, p, \) and \(q \) are each independently 0, 1, 2, 3, or 4; \(R^a \) is independently at each occurrence halogen, or unsubstituted or substituted \(C_{1-10} \) hydrocarbyl; and \(X^a \) is a single bond.
-O-, -S-, -S(O)-, -S(0)\(_2\), -C(O)-, or a C\(_{1-18}\) hydrocarbylene, which can be cyclic or acyclic, aromatic or non-aromatic, and can further comprise one or more heteroatoms selected from halogens, oxygen, nitrogen, sulfur, silicon, or phosphorous. As used herein, the term "hydrocarbyl", whether used by itself, or as a prefix, suffix, or fragment of another term, refers to a residue that contains only carbon and hydrogen unless it is specifically identified as "substituted hydrocarbyl". The hydrocarbyl residue can be aliphatic or aromatic, straight-chain, cyclic, bicyclic, branched, saturated, or unsaturated. It can also contain combinations of aliphatic, aromatic, straight chain, cyclic, bicyclic, branched, saturated, and unsaturated hydrocarbon moieties. As used herein, "substituted" means including at least one substituent such as a halogen (i.e., F, Cl, Br, I), hydroxyl, amino, thiol, carboxyl, carboxylate, amide, nitrile, sulfide, disulfide, nitro, C\(_{1-18}\) alkyl, C\(_{1-18}\) alkoxy, C\(_6\)\(^{-}\) aryl, C\(_6\)\(^{-}\) aryloxyl, C\(_7\)-alkylaryl, or C\(_7\)-alkylaryloxyl. So, when the hydrocarbyl residue is described as substituted, it can contain heteroatoms in addition to carbon and hydrogen.

[0014] Some illustrative examples of specific dihydroxy compounds include the following: bisphenol compounds such as 4,4'-dihydroxybiphenyl, 1,6-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, bis(4-hydroxyphenyl)methane, bis(4-hydroxyphenyl)diphenylmethane, bis(4-hydroxyphenyl)-1-naphthylmethane, 1,2-bis(4-hydroxyphenyl)ethane, 1,1-bis(4-hydroxyphenyl)-1-phenylethane, 2-(4-hydroxyphenyl)-2-(3-hydroxyphenyl)propane, bis(4-hydroxyphenyl)phenylmethane, 2,2-bis(4-hydroxy-3-bromophenyl)propane, 1,1-bis(4-hydroxyphenyl)cyclopentane, 1,1-bis(4-hydroxyphenyl)cyclohexane, 1,1-bis(4-hydroxyphenyl)isobutene, 1,1-bis(4-hydroxyphenyl)cyclododecane, trans-2,3-bis(4-hydroxyphenyl)-2-butene, 2,2-bis(4-hydroxyphenyl)adamantane, alpha,alpha'-bis(4-hydroxyphenyl)toluene, bis(4-hydroxyphenyl)acetonitrile, 2,2-bis(3-methyl-4-hydroxyphenyl)propane, 2,2-bis(3-ethyl-4-hydroxyphenyl)propane, 2,2-bis(3-n-propyl-4-hydroxyphenyl)propane, 2,2-bis(3-isopropyl-4-hydroxyphenyl)propane, 2,2-bis(3-sec-butyl-4-hydroxyphenyl)propane, 2,2-bis(3-t-butyl-4-hydroxyphenyl)propane, 2,2-bis(3-cyclohexyl-4-hydroxyphenyl)propane, 2,2-bis(3-allyl-4-hydroxyphenyl)propane, 2,2-bis(3-methoxy-4-hydroxyphenyl)propane, 2,2-bis(4-hydroxyphenyl)hexafluoropropene, 1,1-dichloro-2,2-bis(4-hydroxyphenyl)ethylene, 1,1-dibromo-2,2-bis(4-hydroxyphenyl)ethylene, 1,1-dichloro-2,2-bis(5-phenoxy-4-hydroxyphenyl)ethylene, 4,4'-dihydroxybenzophenone, 3,3-bis(4-hydroxyphenyl)-2-butanone, 1,6-bis(4-hydroxyphenyl)-1,6-hexanediol, ethylene glycol bis(4-hydroxyphenyl)ether, bis(4-hydroxyphenyl)ether, bis(4-hydroxyphenyl)sulfide, bis(4-hydroxyphenyl)sulfoxide, bis(4-hydroxyphenyl)sulfone, 9,9-bis(4-hydroxyphenyl)fluorine, 2,7-dihydroxypyrene,
6,6'-dihydroxy-3,3,3',3'-tetramethylspiro(bis)indane ("spirobiindane bisphenol"), 3,3-bis(4-hydroxyphenyl)phthalimide, 2,6-dihydroxydibenzo-p-dioxin, 2,6-dihydroxythianthrene, 2,7-dihydroxyphenoxathin, 2,7-dihydroxy-9,10-dimethylphenazine, 3,6-dihydroxydibenzofuran, 3,6-dihydroxydibenzothiophene, and 2,7-dihydroxycarbazole; resorcinol, substituted resorcinol compounds such as 5-methyl resorcinol, 5-ethyl resorcinol, 5-propyl resorcinol, 5-butyl resorcinol, 5-t-butyl resorcinol, 5-phenyl resorcinol, 5-cumyl resorcinol, 2,4,5,6-tetrafluoro resorcinol, 2,4,5,6-tetrabromo resorcinol, or the like; catechol; hydroquinone; substituted hydroquinones such as 2-methyl hydroquinone, 2-ethyl hydroquinone, 2-propyl hydroquinone, 2-butyl hydroquinone, 2-t-butyl hydroquinone, 2-phenyl hydroquinone, 2-cumyl hydroquinone, 2,3,5,6-tetramethyl hydroquinone, 2,3,5,6-tetra-t-butyl hydroquinone, 2,3,5,6-tetrafluoro hydroquinone, and 2,3,5,6-tetrabromo hydroquinone.

[0015] Specific dihydroxy compounds include resorcinol, 2,2-bis(4-hydroxyphenyl)propane ("bisphenol A" or "BPA"), 3,3-bis(4-hydroxyphenyl)phthalimidine, 2-phenyl-3,3'-bis(4-hydroxyphenyl)phthalimidine (also known as N-phenyl phenolphthalein bisphenol, "PPPBP", or 3,3-bis(4-hydroxyphenyl)-2-phenylisindolin-1-one), 1,1-bis(4-hydroxy-3-methylphenyl)cyclohexane (DMBPC), 1,1-bis(4-hydroxy-3-methylphenyl)-3,3,5-trimethylcyclohexane (isophorone bisphenol), and combinations thereof.

[0016] In some embodiments, at least 90 percent of the total number of R_1 groups in the polycarbonate have the formula

\[
\begin{align*}
\text{CH}_3 & \quad \text{O} \\
\text{C} & \quad \text{O} \\
\text{CH}_3
\end{align*}
\]

In some embodiments, the polycarbonate comprises or consists of bisphenol A polycarbonate resin.

[0017] More than one polycarbonate can be used. For example, the composition can comprise a first polycarbonate having a weight average molecular weight of 18,000 to 25,000 atomic mass units and a second polycarbonate having a weight average molecular weight of 27,000 to 35,000 atomic mass units.

[0018] Methods of forming polycarbonates are known, and many are commercially available from suppliers including SABIC Innovative Plastics, Bayer MaterialScience, and Mitsubishi Chemical Corp.
In some embodiments, the amorphous polycarbonate has a terminal hydroxyaryl group content of less than or equal to 300 parts per million by weight and an internal hydroxyaryl (Fries rearrangement) content of less than or equal to 150 parts per million by weight. For example, when the amorphous polycarbonate is a bisphenol A polycarbonate, the terminal hydroxyaryl group can have the structure

and the internal hydroxyaryl (Fries rearrangement) group can have the structure

The composition comprises the amorphous polycarbonate in an amount of 20 to 79.95 weight percent, based on the total weight of the composition. Within this range, the amorphous polycarbonate amount can be 30 to 69.9 weight percent, specifically 40 to 59.8 weight percent.

In addition to the amorphous polycarbonate, the composition comprises a partially crystalline polyester comprising poly(butylene terephthalate), poly(ethylene terephthalate), poly(butylene terephthalate) copolymers, poly(ethylene terephthalate) copolymers, or a combination thereof.

When the partially crystalline polyester comprises a poly(butylene terephthalate) copolymer, it comprises repeat units in addition to the butylene terephthalate repeat units. Specifically, in addition to the butylene units, the copolymer can comprise alkyylene groups having other alkylene units having 2 to 18 carbon atoms. Examples of such alkylene units are ethylene, 1,3-propylene, 1,5-pentylene, 1,6-hexylene, 2,2,4,4-tetramethyl-1,3-cyclobutylene, 1,4-cyclohexylene, 1,4-cyclohexanediethylene, and combinations thereof. In addition to the terephthalate units, the copolymer can comprise isophthalate units.

When the partially crystalline polyester comprises a poly(ethylene terephthalate) copolymer, it comprises repeat units in addition to the ethylene terephthalate repeat units. Specifically, in addition to the ethylene units, the copolymer can comprise
alkylene groups having other alkylene units having 3 to 18 carbon atoms. Examples of such alkylene units are 1,3-propylene, 1,4-butylene, 1,5-pentyne, 1,6-hexylene, 2,2,4,4-tetramethyl-1,3-cyclobutylene, 1,4-cyclohexylene, 1,4-cyclohexanediimethylene, and combinations thereof. In addition to the terephthalate units, the copolymer can comprise isophthalate units.

[0024] In some embodiments, the partially crystalline polyester comprises poly(butylene terephthalate).

[0025] The composition comprises the partially crystalline polyester in an amount of 20 to 79.95 weight percent, based on the total weight of the composition. Within this range, the partially crystalline polyester amount can be 30 to 69.9 weight percent, specifically 40 to 59.8 weight percent.

[0026] In addition to the amorphous polycarbonate and the partially crystalline polyester, the composition comprises an ultraviolet absorbing agent comprising a hydroxyaryl group and a hydrogen-bond accepting group, wherein the ultraviolet absorbing agent has a lambda-max less than 400 nanometers measured in solution. In some embodiments, the hydrogen-bond accepting group is capable of hydrogen bonding with the hydroxyaryl group.

[0027] In some embodiments, the ultraviolet absorbing agent is not a polycarbonate. In some embodiments, the ultraviolet absorbing agent is non-polymeric (i.e., not a polymer).

[0028] Suitable classes of ultraviolet absorbing agents include hydroxyarylbenzotriazoles, hydroxyarylbenzophenones, hydroxyaryltriazines, and combinations thereof. In some embodiments, the ultraviolet absorbing agent comprises an unsubstituted or substituted 2-(2-hydroxyphenyl)benzotriazole, an unsubstituted or substituted 2-hydroxybenzophenone, an unsubstituted or substituted 2-(2-hydroxyphenyl)-1,3,5-triazine, or a combination thereof.

[0029] In some embodiments, the hydrogen bonding of the hydroxyaryl group and the hydrogen-bond accepting group form a six-membered ring.

[0030] Specific examples of ultraviolet absorbing agents include 2-(2-hydroxy-3-t-butyl-5-methylphenyl)-5-chlorobenzotriazole, 2-(2-hydroxy-3,5-di-t-butylphenyl)benzotriazole, 2-(2-hydroxy-3,5-di-t-butylphenyl)-5-chlorobenzotriazole, 2-(2-hydroxy-3-sec-butyl-5-t-butylphenyl)benzotriazole, 2-(2-hydroxy-3,5-di-phenylphenyl)benzotriazole, 2-(2-hydroxy-3,5-di- (1-methyl-1-phenylethyl)phenyl)benzotriazole, 2-(2-hydroxy-5-t-octylphenyl)benzotriazole, 2-hydroxy-4-octyloxybenzophenone, 2-(4,6-diphenyl-1,3,5-triazin-2-yl)-5-[(hexyl)oxy]-phenol, or a combination thereof.
In some embodiments, the ultraviolet absorbing agent comprises 2-(2-hydroxy-5-t-octylphenyl)benzotriazole, 2-hydroxy-4-octyloxybenzophenone, 2-(4,6-diphenyl-1,3,5-triazin-2-yl)-5-[(hexyl)oxy]-phenol, or a combination thereof.

The ultraviolet absorbing agent has a lambda-max less than 400 nanometers measured in solution. In some embodiments, lambda-max is measured at 23 °C in a solution comprising chloroform, ethyl acetate, or a combination thereof. The lambda-max can be determined using an ultraviolet-visible spectrophotometer. In some embodiments, a path length of 1 centimeter is used, and the solution ultraviolet absorbing agent has a concentration effective to produce an absorbance in the range 0.1 to 2.0, specifically 0.2 to 1.5, at lambda-max.

The composition comprises the ultraviolet absorbing agent in an amount of 0.05 to 2 weight percent, based on the total weight of the composition. Within this range, the ultraviolet absorbing agent amount can be 0.1 to 1.5 weight percent, specifically 0.1 to 1.0 weight percent, more specifically 0.2 to 0.8 weight percent, even more specifically 0.2 to 0.6 weight percent.

The composition excludes white pigment, and colorants having a lambda-max of 400 to 700 nanometers. In some embodiments, lambda-max values of the colorants are measured at 23 °C in a solution comprising chloroform, ethyl acetate, or a combination thereof. In some embodiments, the composition excludes any colored pigment.

In some embodiments, the composition comprises 0 to less than 5 weight percent of fillers. In some embodiments, the composition excludes fillers.

The composition can, optionally, minimize or exclude polymers other than the amorphous polycarbonate and the partially crystalline polyester. For example, in some embodiments, the composition excludes polyestercarbonates. In some embodiments, the composition excludes polycarbonate-polysiloxane block copolymers. In some embodiments, the composition excludes impact modifiers. In some embodiments, the composition excludes any polymer other than the amorphous polycarbonate and the partially crystalline polyester.

The composition can, optionally, include one or more additives in addition to the ultraviolet absorbing agent. Such additives include, for example, flow modifiers, antioxidants, heat stabilizers, plasticizers, lubricants, mold release agents, antistatic agents, anti-fog agents, antimicrobial agents, radiation stabilizers, flame retardants, anti-drip agents (e.g., a styrene-acrylonitrile copolymer-encapsulated polytetrafluoroethylene (TSAN)), and combinations thereof. In general, the additives, when present, are used in a total amount of
less than or equal to 5 weight percent, based on the total weight of the composition. Within this limit, the additives can be used in a total amount of less than or equal to 2 weight percent, specifically less than or equal to 1.5 weight percent, more specifically less than or equal to 1 weight percent. In some embodiments, the composition excludes flame retardants.

[0038] In a very specific embodiment of the composition, the amorphous polycarbonate comprises repeat units having the formula

\[
\begin{array}{c}
\text{R}^1 \text{O} \text{C} \text{O} \\
\end{array}
\]

wherein at least 90 percent of the total number of \(\text{R}^1 \) groups have the formula

\[
\begin{array}{c}
\text{CH}_3 \\
\text{O} \text{C} \text{O} \\
\text{CH}_3 \\
\end{array}
\]

the partially crystalline polyester component comprises poly(butylene terephthalate); the ultraviolet absorbing agent comprises 2-(2-hydroxy-5-t-octylphenyl)benzotriazole (UVA 5411), 4-(octyloxy)-2-hydroxybenzophenone, or a combination thereof; the composition comprises 40 to 59.8 weight percent of the amorphous polycarbonate, 40 to 59.8 weight percent of the partially crystalline polyester, and 0.2 to 0.8 weight percent of the ultraviolet absorbing agent; the composition excludes fillers; the composition excludes any polymer other than the amorphous polycarbonate and the partially crystalline polyester; and the composition excludes flame retardant.

[0039] Another embodiment is a laser welded article comprising a near infrared laser-transmissive part, and a near infrared laser-absorbing part, wherein the near infrared laser-transmissive part comprises a composition comprising 20 to 79.95 weight percent of an amorphous polycarbonate; 20 to 79.95 weight percent of a partially crystalline polyester comprising poly(butylene terephthalate), poly(ethylene terephthalate), poly(butylene terephthalate) copolymers, poly(ethylene terephthalate) copolymers, or a combination thereof; 0.05 to 2 weight percent of an ultraviolet absorbing agent comprising a hydroxyaryl group and a hydrogen-bond accepting group; wherein the ultraviolet absorbing agent has a lambda-max less than 400 nanometers measured in solution; wherein the composition excludes white pigments, and colorants having a lambda-max of 400 to 700 nanometers; and wherein all weight percent values are based on the total weight of the composition.
[0040] All of the variations described above in the context of the composition apply as well to the composition of the near infrared laser-transmissive part.

[0041] In some embodiments of the laser welded article, the amorphous polycarbonate comprises repeat units having the formula

\[
* \left[\begin{array}{c}
R^1 \quad O \\
\end{array} \right] *
\]

wherein at least 90 percent of the total number of \(R^1 \) groups have the formula

\[
* \left[\begin{array}{c}
\text{CH}_3 \\
\end{array} \right] *
\]

the partially crystalline polyester component comprises poly(butylene terephthalate); the ultraviolet absorbing agent comprises 2-(2-hydroxy-5-t-octylphenyl)benzotriazole (UVA 5411), 4-(octyloxy)-2-hydroxybenzophenone, or a combination thereof; the composition comprises 40 to 59.8 weight percent of the amorphous polycarbonate, 40 to 59.8 weight percent of the partially crystalline polyester, and 0.2 to 0.8 weight percent of the ultraviolet absorbing agent; the composition excludes fillers; the composition excludes any polymer other than the amorphous polycarbonate and the partially crystalline polyester; and the composition excludes flame retardant.

[0042] All ranges disclosed herein are inclusive of the endpoints, and the endpoints are independently combinable with each other. Each range disclosed herein constitutes a disclosure of any point or sub-range lying within the disclosed range.

[0043] The invention includes at least the following embodiments.

[0044] Embodiment 1: A composition comprising: 20 to 79.95 weight percent of an amorphous polycarbonate; 20 to 79.95 weight percent of a partially crystalline polyester comprising poly(butylene terephthalate), poly(ethylene terephthalate), poly(butylene terephthalate) copolymers, poly(ethylene terephthalate) copolymers, or a combination thereof; 0.05 to 2 weight percent of an ultraviolet absorbing agent comprising a hydroxyaryl group and a hydrogen-bond accepting group; wherein the ultraviolet absorbing agent has a lambda-max less than 400 nanometers measured in solution; wherein the composition excludes white pigments, and colorants having a lambda-max of 400 to 700 nanometers; and wherein all weight percent values are based on the total weight of the composition.
[0045] Embodiment 2: The composition of embodiment 1, wherein the ultraviolet absorbing agent comprises an unsubstituted or substituted 2-(2-hydroxylphenyl)benzotriazole, an unsubstituted or substituted 2-hydroxybenzophenone, an unsubstituted or substituted 2-(2-hydroxyphenyl)-1,3,5-triazine, or a combination thereof.

[0046] Embodiment 3: The composition of embodiment 1, wherein the ultraviolet absorbing agent comprises 2-(2-hydroxy-3-t-butyl-5-methylphenyl)-5-chlorobenzotriazole, 2-(2-hydroxy-3,5-di-t-butylphenyl)benzotriazole, 2-(2-hydroxy-3,5-di-t-pentylphenyl)benzotriazole, 2-(2-hydroxy-3,5-di-1-methyl-1-phenylethyl)phenyl)benzotriazole, 2-(2-hydroxy-5-t-octylphenyl)benzotriazole, 2-hydroxy-4-octyloxybenzophenone, 2-(4,6-diphenyl-1,3,5-triazin-2-yl)-5-[(hexyl)oxy]-phenol, or a combination thereof.

[0047] Embodiment 4: The composition of embodiment 1, wherein the ultraviolet absorbing agent comprises 2-(2-hydroxy-5-t-octylphenyl)benzotriazole, 2-hydroxy-4-octyloxybenzophenone, 2-(4,6-diphenyl-1,3,5-triazin-2-yl)-5-[(hexyl)oxy]-phenol, or a combination thereof.

[0048] Embodiment 5: The composition of any of embodiments 1-4, wherein the amorphous polycarbonate has a terminal hydroxyaryl group content of less than or equal to 300 parts per million by weight and an internal hydroxyaryl content of less than or equal to 150 parts per million by weight.

[0049] Embodiment 6: The composition of any of embodiments 1-5, wherein the amorphous polycarbonate comprises repeat units having the formula

\[
\begin{array}{c}
\text{O} \\
\text{R}^1\text{O} \text{C} \text{O} \\
\end{array}
\]

wherein at least 60 percent of the total number of \(R^1 \) groups are aromatic.

[0050] Embodiment 7: The composition of embodiment 6, wherein \(R^1 \) is the residue of a dihydroxy compound having the formula

\[
\begin{array}{c}
\text{OH} \\
\text{R}^n \\
\end{array}
\quad \text{or} \quad
\begin{array}{c}
\text{OH} \\
\text{R}^p \text{X}^a \\
\end{array}
\]

wherein \(n, p, \), and \(q \) are each independently 0, 1, 2, 3, or 4; \(R^A \) is independently at each occurrence halogen, or unsubstituted or substituted \(C_{1-10} \) hydrocarbyl; and \(X^a \) is a single bond,
-O-, -S-, -S(O)_, -S(0)_, -C(O)-, or C1-18 hydrocarbylene, which can be cyclic or acyclic, aromatic or non-aromatic, and can further comprise one or more heteroatoms selected from halogens, oxygen, nitrogen, sulfur, silicon, or phosphorous.

[0051] Embodiment 8: The composition of embodiment 6, wherein at least 90 percent of the total number of R^1 groups have the formula

[0052] Embodiment 9: The composition of any of embodiments 1-8, wherein the partially crystalline polyester comprises poly(butylene terephthalate).

[0053] Embodiment 10: The composition of any of embodiments 1-9, wherein the composition comprises 0 to less than 5 weight percent of fillers.

[0054] Embodiment 11: The composition of any of embodiments 1-10, wherein the composition excludes polyestercarbonate.

[0056] Embodiment 13: The composition of any of embodiments 1-12, wherein the composition excludes impact modifier.

[0057] Embodiment 14: The composition of any of embodiments 1-13, wherein the composition excludes any polymer other than the amorphous polycarbonate and the partially crystalline polyester.

[0058] Embodiment 15: The composition of any of embodiments 1-14, wherein the composition excludes flame retardant.

[0059] Embodiment 16: The composition of embodiment 1, wherein the amorphous polycarbonate comprises repeat units having the formula

\[
\text{wherein at least 90 percent of the total number of R^1 groups have the formula}
\]
wherein the partially crystalline polyester component comprises poly(butylene terephthalate); wherein the ultraviolet absorbing agent comprises 2-(2-hydroxy-5-t-octylphenyl)benzotriazole (UVA 5411), 4-(octyloxy)-2-hydroxybenzophenone, 2-(4,6-diphenyl-1,3,5-triazin-2-yl)-5-[(hexyl)oxy]-phenol, or a combination thereof; wherein the composition comprises 40 to 59.8 weight percent of the amorphous polycarbonate, 40 to 59.8 weight percent of the partially crystalline polyester, and 0.2 to 0.8 weight percent of the ultraviolet absorbing agent; wherein the composition excludes fillers; wherein the composition excludes any polymer other than the amorphous polycarbonate and the partially crystalline polyester; and wherein the composition excludes flame retardant.

[0060] Embodiment 17: A laser welded article comprising: a near infrared laser-transmissive part; and a near infrared laser-absorbing part; wherein the near infrared laser-transmissive part comprises a composition comprising 20 to 79.95 weight percent of an amorphous polycarbonate; 20 to 79.95 weight percent of a partially crystalline polyester comprising poly(butylene terephthalate), poly(ethylene terephthalate), poly(butylene terephthalate) copolymers, poly(ethylene terephthalate) copolymers, or a combination thereof; 0.05 to 2 weight percent of an ultraviolet absorbing agent comprising a hydroxyaryl group and a hydrogen-bond accepting group; wherein the ultraviolet absorbing agent has a lambda-max less than 400 nanometers measured in solution; wherein the composition excludes white pigments, and colorants having a lambda-max of 400 to 700 nanometers; and wherein all weight percent values are based on the total weight of the composition.

[0061] Embodiment 18: The laser welded article of embodiment 17, wherein the amorphous polycarbonate comprises repeat units having the formula

\[
\begin{array}{c}
\text{R}^1 \text{O} \quad \text{C} \quad \text{O} \\
\end{array}
\]

wherein at least 90 percent of the total number of R\(^1\) groups have the formula

\[
\begin{array}{c}
\text{O} \quad \text{C} \quad \text{O} \\
\end{array}
\]

wherein the partially crystalline polyester component comprises poly(butylene terephthalate); wherein the ultraviolet absorbing agent comprises 2-(2-hydroxy-5-t-octylphenyl)benzotriazole (UVA 5411), 4-(octyloxy)-2-hydroxybenzophenone, 2-(4,6-diphenyl-1,3,5-triazin-2-yl)-5-[(hexyl)oxy]-phenol, or a combination thereof; wherein the composition comprises 40 to 59.8
weight percent of the amorphous polycarbonate, 40 to 59.8 weight percent of the partially crystalline polyester, and 0.2 to 0.8 weight percent of the ultraviolet absorbing agent; wherein the composition excludes fillers; wherein the composition excludes any polymer other than the amorphous polycarbonate and the partially crystalline polyester; and wherein the composition excludes flame retardant.

[0063] The invention is further illustrated by the following non-limiting examples.

EXAMPLES 1-3, COMPARATIVE EXAMPLE 1

[0064] The components used to form compositions are summarized in Table 1.

<table>
<thead>
<tr>
<th>Table 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component</td>
</tr>
<tr>
<td>PC 1</td>
</tr>
<tr>
<td>PC 2</td>
</tr>
<tr>
<td>PBT 1</td>
</tr>
<tr>
<td>PBT 2</td>
</tr>
<tr>
<td>UVA 1</td>
</tr>
<tr>
<td>UVA 2</td>
</tr>
<tr>
<td>UVA 3</td>
</tr>
<tr>
<td>UVA 4</td>
</tr>
<tr>
<td>MZP</td>
</tr>
<tr>
<td>Antioxidant</td>
</tr>
<tr>
<td>PETS</td>
</tr>
</tbody>
</table>
| Glass fiber | Glass fiber having a diameter of about 13 micrometers, a pre-compounded
length of about 4 millimeters, and a surface treatment for compatibility with poly(ethylene terephthalate) and poly(butylene terephthalate); obtained as T-120 from Nippon Electric Glass.

[0065] All solid additives were dry blended off-line as concentrates using one of the primary polymer powders as a carrier and starve-fed via gravimetric feeder(s) into the feed throat of the extruder. The remaining polymer(s) were starve-fed via gravimetric feeder(s) into the feed throat of the extruder as well. The compositions were prepared by melt extrusion on a Werner & Pfleiderer 25 millimeter internal diameter twin-screw extruder, using a nominal melt temperature of 240 to 270°C, 25 inches (635 millimeters) of mercury vacuum, a throughput of about 20 kilograms per hour, and a screw rotation rate of 300 rotations per minute (rpm). The extrudate was pelletized and dried at about 120°C for about 3 hours prior to use for injection molding.

[0066] Two millimeter thick parts for near infrared transmission and reflection measurements were injection molded in a 45-ton Engel injection molding machine operating at a barrel temperature of 250 °C and a mold temperature of 70 °C. The near infrared (NIR) percent transmission and reflection values at 960 and 1064 nanometers were measured on the 2 millimeter thick molded parts using a Perkin-Elmer Lambda 950 spectrophotometer. Transmission and reflection curves are plotted in Figures 1 and 2, respectively.

[0067] These examples utilize a polycarbonate prepared by interfacial polymerization. Compositions and optical properties are summarized in Table 2, where component amounts are in weight percent based on the total weight of the composition. The property data in Table 2 and Figures 1 and 2 show that a substantial increase in near infrared transmittance and a substantial decrease in near infrared reflectance are observed on the addition of an ultraviolet absorbing agent comprising a hydroxyaryl group and a hydrogen-bond accepting group (Examples 1-3 versus Comparative Example 1).

<table>
<thead>
<tr>
<th>COMPOSITIONS</th>
<th>C. Ex. 1</th>
<th>Ex. 1</th>
<th>Ex. 2</th>
<th>Ex. 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC 1</td>
<td>49.69</td>
<td>49.29</td>
<td>49.29</td>
<td>49.29</td>
</tr>
<tr>
<td>PBT 1</td>
<td>50.00</td>
<td>50.00</td>
<td>50.00</td>
<td>50.00</td>
</tr>
<tr>
<td>UVA 1</td>
<td>0.00</td>
<td>0.40</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>UVA 2</td>
<td>0.00</td>
<td>0.00</td>
<td>0.40</td>
<td>0.00</td>
</tr>
<tr>
<td>UVA 3</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.40</td>
</tr>
<tr>
<td>Mono zinc phosphate</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>Antioxidant</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td>PETS</td>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PROPERTIES</th>
<th>C. Ex. 1</th>
<th>Ex. 1</th>
<th>Ex. 2</th>
<th>Ex. 3</th>
</tr>
</thead>
</table>

15
NIR Transmission at 960 nm (%) | 37.1 | 50.3 | 52.3 | 48.1
Transmission compared with C. Ex. 1 (%) | – | +13.2 | +15.2 | +11.0
NIR Reflection at 960 nm (%) | 55.0 | 40.7 | 36.9 | –
Reflection compared with C. Ex. 1 (%) | – | -14.3 | -18.1 | –
NIR Transmission at 1064 nm (%) | 40.0 | 54.5 | 56.5 | 52.2
Transmission compared with C. Ex. 1 (%) | – | +14.5 | +16.5 | +12.2
NIR Reflection at 1064 nm (%) | 50.2 | 36.1 | 32.2 | –
Reflection compared with C. Ex. 1 (%) | – | -14.1 | -18.0 | –

EXAMPLES 4 AND 5, COMPARATIVE EXAMPLE 2

[0068] These examples utilize a polycarbonate prepared by melt polymerization. The property data in Table 3 show that a substantial increase in near infrared transmittance is observed on the addition of an ultraviolet absorbing agent comprising a hydroxyaryl group and a hydrogen-bond accepting group (Examples 4 and 5 versus Comparative Example 2).

Table 3

<table>
<thead>
<tr>
<th>COMPOSITIONS</th>
<th>C. Ex. 2</th>
<th>Ex. 4</th>
<th>Ex. 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC 2</td>
<td>49.69</td>
<td>49.29</td>
<td>49.29</td>
</tr>
<tr>
<td>PBT 1</td>
<td>50.00</td>
<td>50.00</td>
<td>50.00</td>
</tr>
<tr>
<td>UVA 1</td>
<td>0.00</td>
<td>0.40</td>
<td>0.00</td>
</tr>
<tr>
<td>UVA 2</td>
<td>0.00</td>
<td>0.00</td>
<td>0.40</td>
</tr>
<tr>
<td>Mono zinc phosphate</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>Antioxidant</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td>PETS</td>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
</tr>
</tbody>
</table>

| PROPERTIES | NIR Transmission at 960 nm (%) | 64.8 | 80.8 | 76.2 |
|--------------| Transmission compared with C. Ex. 2 (%) | -- | +16.0 | +11.4 |

EXAMPLES 6-8, COMPARATIVE EXAMPLE 3

[0069] These examples utilize a polycarbonate prepared by melt polymerization and a mixture of two poly(butylene terephthalate)s. The property data in Table 4 show that a substantial increase in near infrared transmittance is observed on the addition of an ultraviolet absorbing agent comprising a hydroxyaryl group and a hydrogen-bond accepting group (Examples 6-8 versus Comparative Example 3).

Table 4

<table>
<thead>
<tr>
<th>COMPOSITIONS</th>
<th>C. Ex. 3</th>
<th>Ex. 6</th>
<th>Ex. 7</th>
<th>Ex. 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC 2</td>
<td>40</td>
<td>39.6</td>
<td>39.6</td>
<td>39.6</td>
</tr>
<tr>
<td>PBT 1</td>
<td>29.7</td>
<td>29.7</td>
<td>29.7</td>
<td>29.7</td>
</tr>
<tr>
<td>PBT 2</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>UVA 1</td>
<td>0</td>
<td>0.40</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>UVA 2</td>
<td>0</td>
<td>0</td>
<td>0.40</td>
<td>0</td>
</tr>
<tr>
<td>UVA 4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.40</td>
</tr>
<tr>
<td></td>
<td>Value 1</td>
<td>Value 2</td>
<td>Value 3</td>
<td>Value 4</td>
</tr>
<tr>
<td>----------------------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Mono zinc phosphate</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>Antioxidant</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td>PETS</td>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
</tr>
<tr>
<td>Glass fiber</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

PROPERTIES

<table>
<thead>
<tr>
<th></th>
<th>Value 1</th>
<th>Value 2</th>
<th>Value 3</th>
<th>Value 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIR Transmission at 960 nm (%)</td>
<td>62.3</td>
<td>74.9</td>
<td>68.8</td>
<td>75.7</td>
</tr>
<tr>
<td>Transmission compared with C. Ex. 3 (%)</td>
<td>–</td>
<td>+12.6</td>
<td>+6.5</td>
<td>+13.4</td>
</tr>
</tbody>
</table>
CLAIMS

1. A composition comprising:
 20 to 79.95 weight percent of an amorphous polycarbonate;
 20 to 79.95 weight percent of a partially crystalline polyester comprising
 poly(butylene terephthalate), poly(ethylene terephthalate), poly(butylene terephthalate)
copolymers, poly(ethylene terephthalate) copolymers, or a combination thereof; and
 0.05 to 2 weight percent of an ultraviolet absorbing agent comprising a hydroxyaryl
 group and a hydrogen-bond accepting group; wherein the ultraviolet absorbing agent has a
 lambda-max less than 400 nanometers when measured in solution;
 wherein the composition excludes white pigments, and colorants having a
 lambda-max of 400 to 700 nanometers; and
 wherein all weight percent values are based on the total weight of the composition.

2. The composition of claim 1, wherein the ultraviolet absorbing agent comprises an
 unsubstituted or substituted 2-(2-hydroxyphenyl)benzotriazole, an unsubstituted or
 substituted 2-hydroxybenzophenone, an unsubstituted or substituted 2-(2-hydroxyphenyl)-
 1,3,5-triazine, or a combination thereof.

3. The composition of claim 1, wherein the ultraviolet absorbing agent comprises 2-(2-
 hydroxy-3-t-butyl-5-methylphenyl)-5-chlorobenzotriazole, 2-(2-hydroxy-3,5-di-t-
 butylphenyl)benzotriazole, 2-(2-hydroxy-3,5-di-t-butylphenyl)-5-chlorobenzotriazole, 2-(2-
 hydroxy-3-sec-butyl-5-t-butylphenyl)benzotriazole, 2-(2-hydroxy-3,5-di-t-
 pentyphenyl)benzotriazole, 2-(2-hydroxy-3,5-di-(1-methyl-1-
 phenylethyl)phenyl)benzotriazole, 2-(2-hydroxy-5-t-octylphenyl)benzotriazole, 2-hydroxy-4-
 octyloxybenzophenone, 2-(4,6-diphenyl-1,3,5-triazin-2-yl)-5-[(hexyl)oxy]-phenol, or a
 combination thereof.

4. The composition of claim 1, wherein the ultraviolet absorbing agent comprises 2-(2-
 hydroxy-5-t-octylphenyl)benzotriazole, 2-hydroxy-4-octyloxybenzophenone, 2-(4,6-diphenyl-
 l,3,5-triazin-2-yl)-5-[(hexyl)oxy]-phenol, or a combination thereof.

5. The composition of any one of claims 1-4, wherein the amorphous polycarbonate has
 a terminal hydroxyaryl group content of less than or equal to 300 parts per million by weight
 and an internal hydroxyaryl content of less than or equal to 150 parts per million by weight.

6. The composition of any one of claims 1-5, wherein the amorphous polycarbonate
 comprises repeat units having the formula
wherein at least 60 percent of the total number of R^1 groups are aromatic.

7. The composition of claim 6, wherein R^1 is the residue of a dihydroxy compound having the formula

![Chemical structure](image)

wherein n, p, and q are each independently 0, 1, 2, 3, or 4; R^a is independently at each occurrence halogen, or unsubstituted or substituted C$_{1-10}$ hydrocarbyl; and X^A is a single bond, -O-, -S-, -S(O)-, -S(0)$_2$-, -C(0)-, or C$_{i8}$ hydrocarbylene, which can be cyclic or acyclic, aromatic or non-aromatic, and can further comprise one or more heteroatoms selected from halogens, oxygen, nitrogen, sulfur, silicon, or phosphorous.

8. The composition of claim 6, wherein at least 90 percent of the total number of R^1 groups have the formula

![Chemical structure](image)

9. The composition of any one of claims 1-8, wherein the partially crystalline polyester comprises poly(butylene terephthalate).

10. The composition of any one of claims 1-9, wherein the composition comprises 0 to less than 5 weight percent of fillers.

11. The composition of any one of claims 1-10, wherein the composition excludes polyestercarbonates.

12. The composition of any one of claims 1-11, wherein the composition excludes polycarbonate-poly siloxane block copolymers.

13. The composition of any one of claims 1-12, wherein the composition excludes impact modifiers.

14. The composition of any one of claims 1-13, wherein the composition excludes any polymer other than the amorphous polycarbonate and the partially crystalline polyester.

15. The composition of any one of claims 1-14, wherein the composition excludes flame
16. The composition of claim 1, wherein the amorphous polycarbonate comprises repeat units having the formula

\[
\begin{array}{c}
\text{O} \\
\text{R}^1 \text{O} \text{C} \text{O} \text{R}^1
\end{array}
\]

wherein at least 90 percent of the total number of \(R^1 \) groups have the formula

\[
\begin{array}{c}
\text{O} \\
\text{C} \\
\text{CH}_3 \\
\text{CH}_3
\end{array}
\]

wherein the partially crystalline polyester component comprises poly(butylene terephthalate);

wherein the ultraviolet absorbing agent comprises 2-(2-hydroxy-5-t-octylphenyl)benzotriazole, 4-(octyloxy)-2-hydroxybenzophenone, 2-(4,6-diphenyl-1,3,5-triazin-2-yl)-5-[(hexyl)oxy]-phenol, or a combination thereof;

wherein the composition comprises

- 40 to 59.8 weight percent of the amorphous polycarbonate,
- 40 to 59.8 weight percent of the partially crystalline polyester, and
- 0.2 to 0.8 weight percent of the ultraviolet absorbing agent;

wherein the composition excludes fillers;

wherein the composition excludes any polymer other than the amorphous polycarbonate and the partially crystalline polyester; and

wherein the composition excludes flame retardant.

17. A laser welded article comprising:

- a near infrared laser-transmissive part; and
- a near infrared laser-absorbing part;

wherein the near infrared laser-transmissive part comprises a composition comprising

- 20 to 79.95 weight percent of an amorphous polycarbonate;
- 20 to 79.95 weight percent of a partially crystalline polyester comprising poly(butylene terephthalate), poly(ethylene terephthalate), poly(butylene terephthalate) copolymers, poly(ethylene terephthalate) copolymers, or a combination thereof;

- 0.05 to 2 weight percent of an ultraviolet absorbing agent comprising a hydroxyaryl group and a hydrogen-bond accepting group; wherein the ultraviolet
absorbing agent has a lambda-max less than 400 nanometers measured in solution; wherein the composition excludes white pigments, and colorants having a lambda-max of 400 to 700 nanometers; and wherein all weight percent values are based on the total weight of the composition.

18. The laser welded article of claim 17, wherein the amorphous polycarbonate comprises repeat units having the formula

\[
* \left[\begin{array}{c} \text{R}^1 \text{O} \\ \text{C} \text{O} \end{array} \right]^*
\]

wherein at least 90 percent of the total number of \(\text{R}^1 \) groups have the formula

\[
\left[\begin{array}{c} \text{O} \\ \text{C} \\ \text{O} \end{array} \right]
\]

wherein the partially crystalline polyester component comprises poly(butylene terephthalate);

wherein the ultraviolet absorbing agent comprises 2-(2-hydroxy-5-t-octylphenyl)benzotriazole (UVA 5411), 4-(octyloxy)-2-hydroxybenzophenone, 2-(4,6-diphenyl-1,3,5-triazin-2-yl)-5-[(hexyl)oxy]-phenol, or a combination thereof;

wherein the composition comprises

- 40 to 59.8 weight percent of the amorphous polycarbonate,
- 40 to 59.8 weight percent of the partially crystalline polyester, and
- 0.2 to 0.8 weight percent of the ultraviolet absorbing agent;

wherein the composition excludes fillers;

wherein the composition excludes any polymer other than the amorphous polycarbonate and the partially crystalline polyester; and wherein the composition excludes flame retardant.
A. CLASSIFICATION OF SUBJECT MATTER

INV. C08L67/02 C08L69/00

According to International Patent Classification (IPC) or to both national classification and IPC.

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
C08L C08K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database consulted during the international search (name of database and, where practicable, search terms used)
EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier application or patent but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed
 "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 "A" document member of the same patent family

Date of the actual completion of the international search: 12 August 2015
Date of mailing of the international search report: 19/08/2015

Authorized officer: Pouilly, Delphine

Form PCT/ISA/210 (second sheet) (April 2005)
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>MY 142114</td>
<td>15-09-2010</td>
<td>US 2005256275 A</td>
<td>17-11-2005</td>
</tr>
<tr>
<td>US 2008226857 A</td>
<td>18-09-2008</td>
<td>US 2011256406 A</td>
<td></td>
</tr>
<tr>
<td>US 2005165176 A</td>
<td>28-07-2005</td>
<td>CN 1646629 A</td>
<td>27-07-2005</td>
</tr>
<tr>
<td>JP 2011052223 A</td>
<td>17-03-2011</td>
<td>US 2005165176 A</td>
<td>28-07-2005</td>
</tr>
</tbody>
</table>