(54) 发明名称
液体喷出头

(57) 摘要
一种液体喷出头，其包括：记录元件基板，其包括喷出液体的喷出口和产生用于喷出液体的能量的能量产生元件；电触线基板，其包括用于传输驱动能量产生元件用的电力的触线和使记录元件基板暴露的开口；多个连接部，其将记录元件基板和电触线基板电连接；四部，其形成在记录元件基板和电触线基板之间；以及至少一个槽，其与多个连接部中的至少一个对应地形成在四部的底部。至少一个槽包括第一部分和第二部分，该第一部分沿着多个连接部的排列方向形成，该第二部分沿着与排列方向交叉的方向形成。
1. 一种液体喷出头，其包括：
记录元件基板，其包括喷出液体的喷出口和产生用于喷出液体的能量的能量产生元件；
电布线基板，其包括用于传输驱动所述能量产生元件用的电力的布线和使所述记录元件基板暴露的开口；
多个连接部，其电连接所述记录元件基板和所述电布线基板；
凹部，其形成在所述记录元件基板和所述电布线基板之间；以及
至少一个槽，其与所述多个连接部中的至少一个对应地形成在所述凹部的底部。
其特征在于，所述至少一个槽中的每个槽包括第一部分和第二部分，该第一部分沿着所述多个连接部的排列方向形成，该第二部分沿着与所述排列方向交叉的方向形成，并且
所述至少一个槽的所述第二部分的宽度大于所述至少一个槽的所述第一部分的宽度。
2. 根据权利要求1所述的液体喷出头，其中，所述记录元件基板具有矩形的面，所述喷出口形成于该矩形的面，所述第一部分沿着所述面的形成有所述连接部的第一边形成，并且所述第二部分沿着邻接所述第一边的第二边形成。
3. 根据权利要求2所述的液体喷出头，其中，所述至少一个槽的所述第二部分的长度小于所述第二边的长度。
4. 根据权利要求1所述的液体喷出头，其中，所述连接部覆盖的密封材料被布置在所述至少一个槽中。
5. 根据权利要求2所述的液体喷出头，其中，所述至少一个槽的所述第一部分的长度对应于所述第一边的长度。
6. 根据权利要求1所述的液体喷出头，其中，所述至少一个槽包括两个槽，该两个槽分别形成在所述记录元件基板的第一端和位于所述第一端的相反侧的第二端。
7. 根据权利要求4所述的液体喷出头，其中，与布置在所述至少一个槽中的密封材料不同的密封材料被布置在所述连接部的上方。
8. 根据权利要求1所述的液体喷出头，其中，所述至少一个槽形成在支撑所述记录元件基板的支撑基板中。
9. 根据权利要求1所述的液体喷出头，其中，所述液体喷出头还包括支撑所述电布线基板的支撑板。
说明书

液体喷出头

技术领域
[0001] 本发明涉及一种液体喷出头。

背景技术
[0002] 本发明涉及一种液体喷出头。图11A，图11B和图11C是日本特开2002-019120号公报中所公开的典型液体喷出头的概略构造图。图11A是立体图，图11B是沿着图11A的X1B-X1B线截取的放大截面图，图11C是沿着图11A的X1C-X1C线截取的放大截面图。
[0003] 液体喷出头100可以安装于在例如纸张等记录介质上进行记录的记录设备主体（未图示）。如图11A所示，液体喷出头100包括两个矩形的记录元件基板1a和1b以及支撑记录元件基板1a和1b的支撑基板8。
[0004] 液体喷出头100包括用于在液体喷出头100被安装于记录设备主体时从记录设备主体向记录元件基板1a和1b传输电脉冲信号的电接触基板16和电布线基板11。电布线基板11被支撑基板8支撑。
[0005] 如图11B和图11C所示，记录元件基板1a包括基板2和形成用于以覆盖基板2的喷出口板5。作为电热转换元件的喷出能量产生元件4设置在基板2上。喷出口6以与喷出能量产生元件4相对应的方式形成在喷出口板5中。
[0006] 四部17形成在记录元件基板1a的四边和支撑板9之间。比四部17窄的槽28形成于支撑板8的与四部17对应的部分。因此，记录元件基板1a完全被四部17和槽28包围。
[0007] 如图11C所示，电连接记录元件基板1a和电布线基板11的电极端子13被布置在四部17的上方。响应于从电布线基板11传输的电脉冲信号，记录元件基板1a驱动喷出能量产生元件4从而从喷出口6喷出墨。
[0008] 当制造液体喷出头100时，通过分配法（dispense method）将处于未固化状态的第一密封树脂18注入到四部17中。由于毛细作用，被注入到四部17中的未固化的第一密封树脂18沿着槽28流动并填充四部17。填充四部17的第一密封树脂18通过加热而固化。
[0009] 在液体喷出头100中，可以由第一密封树脂18来防止墨对支撑基板8的腐蚀以及由墨引起的记录元件基板1a和电布线基板11之间的短路。
[0010] 此外，如图11C所示，以覆盖电极端子13的方式形成第二密封树脂19层。当制造液体喷出头100时，第二密封树脂19在未固化的状态下被涂布于电极端子13，并随后如同第一密封树脂18一样通过加热而固化。
[0011] 在液体喷出头100中，电极端子13可以被第二密封树脂19保护，从而可以防止墨对电极端子13的腐蚀等。
[0012] 当制造如图11A至图11C所示的液体喷出头100时，如前所述，未固化的第一密封树脂18被注入到槽28上方的四部17中。此时，因为槽28是窄的，所以由于未固化的第一
说明书

密封树脂18的表面张力等，有时候未固化的第一密封树脂18不能从凹部17进入到槽28的某些部分中。
【0013】在这种情况下，在凹部17被未固化的第一密封树脂18填充后，在未固化的第一密封树脂18中存留有空气。未固化的第一密封树脂18中的空气形成气泡，并且有时气泡的直径长到1mm或更大。
【0014】如果气泡在第一密封树脂18中破裂，则未固化的第一密封树脂18可能会散乱从而可能会附着于记录元件基板1a等。这可能妨碍记录元件基板1a适当地喷出墨。
【0015】当第一密封树脂18和第二密封树脂19被加热以便固化时，有时候第一密封树脂18中的气泡会移动到第二密封树脂19中。在这种情况下，可能会在电极端子13和覆盖电极端子13的第二密封树脂19之间形成间隙，并且此间隙可能引起电极端子13的密封缺陷。日本特开2002-019120号公报中公开的液体喷出头具有这种问题。

发明内容
【0016】根据本发明的方面，一种液体喷出头，其包括：记录元件基板，其包括喷出液体的喷出口和产生用于喷出液体的液体的容量的产生元件；电布线基板，其包括用于传输驱动所生能量产生元件用的电力的布线和使所述记录元件基板暴露的开口；多个连接部，其连接所述记录元件基板和所述电布线基板；凹部，其形成在所述记录元件基板和所述电布线基板之间；以及至少一个槽，其与所述多个连接部中的至少一个对应地形成在所述凹部的底部。所述至少一个槽包括第一部分和第二部分，该第一部分沿着所述多个连接部的排列方向形成，该第二部分沿着与所述排列方向交叉的方向形成。
【0017】从以下参照附图对示例性实施方式的描述，本发明的其他特征将变得明显。

附图说明
【0018】图1是根据实施方式的液体喷出头的分解立体图。
【0019】图2是图1所示的记录元件基板的立体图。
【0020】图3是图1所示的记录元件基板的立体图。
【0021】图4A和图4B是图1所示的支撑基板的概略构成图。
【0022】图5A、图5B和图5C是示出图1所示的液体喷出头的制造过程中的状态的示意图。
【0023】图6是示出图1所示的液体喷出头的制造过程中的状态的示意图。
【0024】图7是密封树脂涂布设备的概略构造型。
【0025】图8是沿图6中的VIII-VIII线截取的截面图。
【0026】图9是示出图1所示的液体喷出头的制造过程中的状态的示意图。
【0027】图10是图1所示的液体喷出头的分解立体图。
【0028】图11A、图11B和图11C是典型液体喷出头的概略构造型。

具体实施方式
【0029】以下将参照附图对本发明的实施方式进行说明。
【0030】图1是根据实施方式的液体喷出头H1000的分解立体图。液体喷出头H1000可以安装于在例如纸张等记录介质上进行记录的记录设备主体（未图示）。液体喷出头H1000包
括两个单元；记录元件单元 H1002 和供墨单元 H1003。

[0031] 保持墨盒(未图示)的盒保持件 H2000 被可拆装地安装到供墨单元 H1003，其中墨盒储存待供给到记录元件单元 H1002 的墨。供墨单元 H1003 被构造成将安装到盒保持件 H2000 的墨盒中的墨供给到记录元件单元 H1002。

[0032] 具体地，供墨单元 H1003 包括供墨构件 H1500、流路形成构件 H1600、接头橡胶 H2300、过滤器 H1700 和密封橡胶 H1800。

[0033] 记录元件单元 H1002 包括两个矩形的记录元件基板 H1100 和 H1101 以及支撑构件 H1200，支撑构件 H1200 包括支撑基板 H1201 和支撑板 H1202。记录元件基板 H1100 和 H1101 由支撑基板 H1201 的支撑部保持。用于将从供墨单元 H1003 供给的墨输送至记录元件基板 H1100 和 H1101 的供墨通道形成在支撑构件 H1200 中。

[0034] 记录元件单元 H1002 包括从安装有液体喷出头 H1000 的记录设备主体向记录元件基板 H1100 和 H1101 传输脉冲信号和电力的电接触基板 H2200 和电布线基板 H1300。

[0035] 图 2 是记录元件基板 H1100 的局部剖切立体图，图 3 是记录元件基板 H1101 的局部剖切立体图。记录元件基板 H1100 和 H1101 均包括厚度为大约 0.5mm 至 1mm 的硅基板 H1110。记录元件基板 H1100 的硅基板 H1110 具有贯穿硅基板 H1110 形成的供墨口 H1102。记录元件基板 H1101 的硅基板 H1110 具有贯穿硅基板 H1110 形成的供墨口 H1102。利用硅的结晶取向通过夹接向性蚀刻来形成供墨口 H1102。

[0036] 液体喷出头 H1000 是侧喷型气泡喷射头(side shooter type bubble jet head)。在每个记录元件基板 H1100 和 H1101 中，配置有多个电热转换器 H1103，电热转换器 H1103 是产生用于喷出液体的能量的能量产生元件。电热转换器 H1103 沿着一个或多个供墨口 H1102 以交错的方式排列于硅基板 H1110 的上表面。

[0037] 在硅基板 H1110 的上表面设置有喷出口板 H1111。喷出口板 H1111 具有形成与电热转换器 H1103 相对应的喷出口 H1107 和形成墨流路的墨流路壁 H1106，其中墨流路用于将供给到一个或多个供墨口 H1102 的墨引导至喷出口 H1107。

[0038] 电热转换器 H1103 与沿着硅基板 H1110 两端的两边排列的电极 H1104 连接。电热转换器 H1103 以及连接电热转换器 H1103 和电极 H1104 的布线(未图示)是通过膜形成技术而形成的。在每个电极 H1104 上用金形成凸块 H1105。

[0039] 响应于来自记录设备主体的脉冲信号，电热转换器 H1103 产生热能并在墨中引起沸騰。因此，墨从喷口 H1107 喷出。

[0040] 图 4A 和图 4B 是图 1 所示的记录元件单元 H1002 的支撑基板 H1201 的放大视图。图 4A 是平面图，图 4B 是沿着图 4A 中的 1VB-1VB 线裁剪的截面图。

[0041] 支撑基板 H1201 通过将氧化铝(Al2O3)粉末压制成型后烧制而形成。支撑基板 H1201 的厚度可以是大约 0.5mm 至 10mm。形成支撑基板 H1201 的材料不限于氧化铝。形成支撑基板 H1201 的材料可以具有与形成记录元件基板 H1100 和 H1101 的材料的线性膨胀系数相等的线性膨胀系数以及等于或高于形成记录元件基板 H1100 和 H1101 的材料的导热率的导热率。形成支撑基板 H1201 的材料的示例包括氮化铝(AIN)、氮化硅(Si3N4)和碳化硅(SiC)。

[0042] 支撑基板 H201 设置有用于将从供墨单元 H1003 (见图 1)供给的墨导向设置在记录元件基板 H1100 和 H1101 中的供墨口 H1102 的供墨口 H6001 和 H6002。
此外，支撑基板 H1201 具有形成在供墨口 H6001 的长度方向上的一端附近的槽 H6003，和形成在供墨口 H6002 的长度方向上的一端附近的槽 H6004。换言之，槽 H6003 被设置在支撑基板 H1201 的、设置有记录元件基板 H1100 的面的外周的、在长度方向上相互面对的两边附近；并且槽 H6004 被设置在支撑基板 H1201 的、设置有记录元件基板 H1101 的面的外周的、在长度方向上相互面对的两边附近。每个槽 H6003 均包括一个第一部分 H6003a 和一对第二部分 H6003b，并且每个槽 H6004 均包括一个第一部分 H6004a 和一对第二部分 H6004b。

两个槽 H6003 的第一部分 H6003a 以彼此相互面对的方式被布置在供墨口 H6001 的长度方向上的两端。两个槽 H6004 的一部分 H6004a 以彼此相互面对的方式被布置在供墨口 H6002 的长度方向上的两端。两个槽 H6003 的两对第二部分 H6003b 从第一部分 H6003a 的两面沿供墨口 H6001 的长度方向朝向彼此延伸预定的长度。两个槽 H6004 的两对第二部分 H6004b 从第一部分 H6004a 的两面沿供墨口 H6002 的长度方向朝向彼此延伸预定的长度。

槽 H6003 的第二部分 H6003b 的宽度 W2 大于槽 H6003 的第一部分 H6003a 的宽度 W1。槽 H6004 的第二部分 H6004b 的宽度 W2 大于槽 H6004 的第一部分 H6004a 的宽度 W1。

图 5A，图 5B 和图 5C 显示了记录元件基板 H1100 和 H1101 以及支撑板 H1202 被结合至支撑基板 H201 的状态。图 5A 是平面图，图 5B 是沿图 5A 的 VB-VB 线截取的截面图，图 5C 是沿图 5A 的 VC-VC 线截取的截面图。

支撑板 H1202 通过第一粘合剂结合至支撑基板 H1201。第一粘合剂可以是耐墨 (resistant to ink) 的。记录元件基板 H1100 和 H1101 通过第二粘合剂结合至支撑基板 H1201。第一粘合剂层和第二粘合剂层都可以具有 50 μm 或更小的厚度。

支撑板 H1202 具有与记录元件基板 H1100 和 H1101 的厚度相等的厚度，使得记录元件基板 H1100 和 H1101 的从支撑基板 H201 开始的高度大致等于电布线基板 H300 的从支撑基板 H201 开始的高度。因此，支撑板 H1202 的厚度也是大约 0.5mm 至 1.0mm。支撑板 H1202 由氧化铝形成。然而，支撑板 H1202 可以由任何材料 (陶瓷材料、金属材料等) 形成，只要这种材料具有与形成支撑基板 H201 的材料相同的线性膨胀系数即可。

在支撑板 H1202 中形成用于使记录元件基板暴露的开口 H1204 和 H1205。记录元件基板 H1100 被布置在开口 H1204 中，记录元件基板 H1101 被布置在开口 H1205 中。因此，在记录元件基板 H1100 和 H1101 的周围，并且在记录元件基板 H1100 和 H1101 与支撑板 H1202 之间，形成凹部 H7001 和 H7002。凹部 H7001 和 H7002 的底部是支撑基板 H1201 的部分上表面。槽 H6003 的第二部分 H6003b 的末端暴露在凹部 H7001 中，槽 H6004 的第二部分 H6004b 的末端暴露在凹部 H7002 中。

在图 5A 至图 5C 所示的状态下，图 4A 和图 4B 所示的支撑基板 H201 的供墨口 H6001 与图 2 所示的记录元件基板 H1100 的供墨口 H1102 相连通，图 4A 和图 4B 所示的支撑基板 H201 的供墨口 H6002 与图 3 所示的记录元件基板 H1101 的供墨口 H1102 相连通。

图 6 是示出了电布线基板 H300 安装到图 5A 至 5C 所示的支撑板 H1202 的状态的平面图。在电布线基板 H300 中形成与支撑板 H1202 的开口 H1204 和 H1205 相类似的开口。电布线基板 H300 被定位成使得电布线基板 H300 的开口重叠在支撑板 H1202 的开口 H1204 和 H1205 上，并且电布线基板 H300 通过第三粘合剂结合至支撑板 H1202。
尽管记录元件基板 H1100 和 H1101 通过四部 H7001 和 H7002 与电布线基板 H1300 间隔开，但是记录元件基板 H1100 和 H1101 的电极 H1104 通过作为连接部的电极端子 H1302 与电布线基板 H1300 电连接。电极 H1104 和电极端子 H1302 例如通过热超声接合法而连接。

电极端子 H1302 布置在四部 H7001 和 H7002 的上方，并且将来自记录设备主体的电脉冲信号从电布线基板 H1300 传输到记录元件基板 H1100 和 H1101 的电极 H1104。

接下来，将描述根据本实施方式的密封树脂层形成方法。密封树脂层的形成是在图 6 所示的状态下进行的。

图 7 是示出在本实施方式中使用的密封树脂涂布设备 1700 的概略构造的立体图。在密封树脂涂布设备 1700 中，图 6 所示的组件（即密封树脂的涂布对象）被置于台架 1701 上。台架 1701 能够在如箭头所示的 X 轴方向、Y 轴方向和 Z 轴方向上移动。

密封树脂涂布设备 1700 包括喷出装置 1702。填充有未固化的第一密封树脂 H1307 的注射器 1703 和填充有未固化的第二密封树脂 H1308 的注射器 1704 与喷出装置 1702 相连接。

能够喷出未固化的密封树脂的针 1703a 安装到注射器 1703 的末端，能够喷出未固化的密封树脂的针 1704a 安装到注射器 1704 的末端。针 1703a 的外径小于四部 H7001 和 H7002 的宽度。具体地，针 1703a 的外径可以比四部 H7001 和 H7002 的宽度小大约 0.2mm 到 0.6mm。

将参照图 6 描述用未固化的第一密封树脂 H 1307 填充四部 H7001 和 H7002 的方法。

首先，使注射器 1703 的针 1703a 位于四部 H7001 的如下的 A 部分的上方；在该 A 部分不包含第二部分 H6003b。针 1703a 的末端和电布线基板 H1300 的上表面之间的距离可以是大约 -0.2mm 到 0.3mm。在此状态下，未固化的第一密封树脂 H1307 连续地从针 1703a 的末端喷出，并且针 1703a 被移动到 A’ 部分。

这样，未固化的第一密封树脂 H 1307 被注射到 A 部分和 A’ 部分之间。类似地，未固化的第一密封树脂 H1307 被注射到 B 部分和 B’ 部分之间，C 部分和 C’ 部分之间以及 D 部分和 D’ 部分之间。由于四部 H7001 和 H7002 的位于 A 部分和 A’ 部分之间的、B 部分和 B’ 部分之间的 C 部分和 C’ 部分之间的以及 D 部分和 D’ 部分之间的底面是平坦的，所以能够防止空气混入到未固化的第一密封树脂 H1307 中。

从而，可以避免如下情况；因为混入到密封树脂中的气泡破裂，使得密封树脂附着到记录元件基板，而造成印刷品质下降，还可以通过提高生产率来实现成本削减。

被注射到四部 H7001 和 H7002 中的未固化的第一密封树脂 H1307 从第二部分 H6003b 和 H6004b 的末端进入槽 H6003 和 H6004，从而槽 H6003 和 H6004 被未固化的第一密封树脂 H1307 填充。

由于槽 H6003 的第二部分 H6003b 比第一部分 H6003a 宽，槽 H6004 的第二部分 H6004b 比第一部分 H6004a 宽，所以未固化的第一密封树脂 H1307 可以轻易地进入槽 H6003 和 H6004。第一密封树脂 H1307 在未固化的情况下可以具有低粘性和高流动性。

因为槽 H6003 的第一部分 H6003a 以及槽 H6004 的第一部分 H6004a 是窄的，所以由于毛细作用，未固化的第一密封树脂 H1307 轻易地扩散遍布槽 H6003 和 H6004。

如上所述，注入到四部 H7001 和 H7002 中的第一密封树脂填充槽 H6003 和 H6004
并且填充四部 H7001 和 H7002。

【0066】图 8 是在四部 H7001 和 H7002 被未固化的第一密封树脂 H1307 填充后沿着图 6 中的 V111-V111 线截取的截面图。如图 8 所示，未固化的第一密封树脂 H1307 到达布置在四部 H7001 和 H7002 上方的电极端子 H1302。

【0067】由于在图 6 所示的状态下，第二部分 H6003b 和 H6004b 的末端暴露在四部 H7001 和 H7002 中，所以未固化的第一密封树脂 H1307 可以快速地到达电极端子 H1302。

【0068】在四部 H7001 和 H7002 被未固化的第一密封树脂 H1307 填充后，如图 9 所示，利用注射器 1704 涂布未固化的第二密封树脂 H1308。

【0069】使注射器 1704 的针 1704a 的末端位于 E 部分的上方并且稍微地高于图 8 所示的电极端子 H1302。在此状态下，未固化的第二密封树脂 H1308 连续地从针 1704a 的末端喷出，并且针 1704a 被移动到 E’ 部分。

【0070】这样，未固化的第二密封树脂 H1308 被涂布在 E 部分和 E’ 部分之间。类似地，未固化的第二密封树脂 H1308 被涂布在 F 部分和 F’ 部分之间、G 部分和 G’ 部分之间以及 H 部分和 H’ 部分之间。

【0071】之后，第一密封树脂 H1307 和第二密封树脂 H1308 通过加热而固化。

【0072】在本实施方式中，第一密封树脂 H1307 和第二密封树脂 H1308 是热固性环氧树脂。加热恒温槽被用于加热密封树脂。密封树脂 H1307 和 H1308 可以在同一温度下固化。

【0073】图 10 示出了记录元件单元 H1002 和供墨单元 H1003 被组装的状态。记录元件单元 H1002、供墨单元 H1003 和盒保持件 H2000 被组装成液体喷出头 H1000。

【0074】尽管已经参照示例性实施方式描述了本发明，但是应当理解，本发明并不局限于所公开的示例性实施方式。所附权利要求书的范围应符合最宽泛的阐释，以涵盖全部的变形、等同结构以及功能。
图 1
图 4A

图 4B
图 6
图11C