
O. PRICE.

MOLDED STONE BUILDING SLAB.

APPLICATION FILED JUNE 29, 1905.

UNITED STATES PATENT OFFICE.

ORVEY PRICE, OF PLAINFIELD, NEW JERSEY.

MOLDED STONE BUILDING-SLAB.

No. 833,629.

Specification of Letters Patent.

Patented Oct. 16, 1906.

Application filed June 29, 1905. Serial No. 267,486.

To all whom it may concern:

Be it known that I, ORVEY PRICE, a citizen of the United States, residing in Plainfield, in the county of Union and State of New Jersey, have invented certain new and useful Improvements in Molded Stone Building-Slabs, of which the following is a specifi-

This invention relates to exterior surface 10 finish for frame and other buildings, the object being to provide an improved slab or block molded from cement or other suitable material to resemble and have some or all of the qualities of stone and provided with a me-15 tallic stiffening-frame embedded therein, with parts projecting beyond an edge or edges of the slab for the reception of fastening-means to fasten the slab in position, the organization of such projecting portions and the edges 20 of the block being such that the blocks can be readily interlocked in assembling without the destruction of the edges, while also permitting the quick removal thereof from the wood.

In the drawings accompanying and form-25 ing part of this specification, Figure 1 is a perspective view of a series of these improved slabs or blocks assembled, being assembled in this instance without a base. Fig. 2 is a sectional view taken in line 2 2, Fig. 1. Fig. 30 3 is a perspective view of one form of metallic stiffening-frame, the block being shown in dotted lines. Fig. 4 is a horizontal partlysectional view of several of the slabs or blocks assembled. Fig. 5 is a perspective view of one of the slabs or blocks. Fig. 6 is a partly-sectional view illustrating a modified form of the slabs or blocks, and Fig. 7 is a modified form of one of the stiffening members.

Similar characters of reference indicate 40 corresponding parts in the different figures of

the drawings.

The slab 2, which is an improvement on that shown and described in my copending application filed June 9, 1905, Serial No. 45 264,524, for a reissue of Patent No. 788,944, dated May 2, 1905, is molded of a suitable plastic material to resemble and give it some or all of the qualities of stone—such, for instance, as cement—with a metallic stiffening 50 frame 3—such, for instance, as that shown in Fig. 4—substantially embedded therein. the present form, however, the edges of the slab are formed with a rabbet of peculiar construction. I have demonstated by prac-55 tical experience that the ordinary rabbetthat is, the angularly-formed rabbet or rab-

bet made up of straight surfaces—is not entirely satisfactory, for the reason that when each slab is provided at its rear with projecting means for the reception of fastening de- 60 vices, which is essential in the making of a practicable block, and as such projecting means of an upper slab must overlap the rear side of a rabbet of an under slab, while the rabbet of such upper slab overlaps the front sur- 65 face of a part of the rabbet of such under slab, this interlocking is not practicable for several reasons, among others that it is difficult to make the slabs or blocks so that they can be properly assembled and also because the edges 70 will frequently break off when it is attempted to assemble them. To avoid these disadvantages, I have formed a rabbet 4 in the present instance of curved formation—that is to say, one side and end is of convex form 5, 75 while the other side and end is of concave formation 6, which enables the assemblage of the slabs quickly and without requiring that precision in the molding of the slabs which would otherwise be necessary. By forming 80 the rabbet in this manner the block can be more quickly and easily manufactured, since it can be more quickly removed from the mold, while there is less strain and pressure on the edges of the rabbet when the blocks are as- 85 sembled. As, however, I believe I am the first to provide an improved building-slab especially constructed of a material and of a size and form which particularly adapts it for use as an exterior surface finishing for 90 frame and other buildings with a metallic stiffening-frame embedded therein, parts of which project so as not only to receive fastening devices, but overlap a companion slab at the rear thereof, while the front surface of such 95 first slab overlaps a part of an under slab, I consider within the purview of my invention the various forms of rabbet which may be used, although the preferred form thereof is the one herein shown and described. The stiffening-frame may be of various

forms, but that which I prefer to use is that shown and described in my prior application hereinbefore referred to and comprises a pair of cross-bars or members 7, preferably of angular formation, although they could be made up in the form shown in Fig. 7, and bonded or tied together, preferably by a plurality of members or rods 8, which in the form shown project through openings 9 in 110 the angular portions of the cross-bars. ends 10 of the cross-bars project at the rear

of the slab beyond the rabbeted edges thereof and are provided with openings 12 for the reception of fastening devices, although other means of attaching the projections to the studding or sheathing may be used, if preferred. The organization shown and described particularly adapts the slab, as hereinbefore stated, for use as weather-boarding or as an exterior surface finishing for frame

10 buildings.

The edges of the block may be so formed that a space or recess 13 is provided around each slab for the reception of pointing material, (see Fig. 2,) or each slab or block may 15 have its upper edge 14 (see Fig. 6) formed to provide a V-shaped recess, in which no pointing material is placed, since the inclined formation of the wall prevents the retention of moisture in the opening. This recess 13 20 is formed by making one rabbet at one side and end of the slab of greater width or area than that at the other side and end, so that a space is thus left between the edges of the slabs when assembled, with such parts of dif-25 ferent areas in juxtaposition.

By curving the edges of the slab or block in the manner indicated it will be seen that each slab will snugly fit a companion slab without destruction of the edges of either, 30 while it is not necessary to use such extreme care in molding the slabs, since while there is overlapping at both the rear and front faces of the rabbet-surface of an under slab by the projecting cross-bars and rabbet respectively 35 of an upper slab the curved formation of the rabbets permits the assemblage without the necessity of wedging the slabs into position, and therefore without the destruction of the

edges by such wedging action.
The stiffening-frame in the form shown in Figs. 1 to 6 is completely embedded within the slab, except those portions of the crossbars which receive the fastening devices which overlap and extend transversely of the 45 slab. In the form shown in Fig. 7, practically the entire bar would be embedded, except the ends which are provided for the reception of fastening devices, the bonding or tying bars or rods passing through the open-50 ings 15 in the twisted portions of such bars.

In practice a suitable base may be provided for the lower tier of slabs, this base be-

ing omitted in Fig. 1.

In assembling the slabs each slab after it 55 is properly molded and dried, with its stiffening-frame embedded therein, is located in position and the two upper ends of the crossbars nailed or otherwise fastened to the sheathing or studding. Another block or 60 slab is then located in position to break joint with a pair of slabs of an under row, with the lower ends of its two cross-bars in the rear of such slabs and its concave edge at the under side overlapping the convex edges of such 65 under slabs. The upper ends of the cross-

bars are then fastened as hereinbefore described, and the assemblage proceeded with in the manner described.

From the foregoing it will be seen that an improved composition building-block is pro- 70 vided, the top, bottom, and end edges of which have curved surfaces in cross-section, those of one edge and end of different formation—as, for instance, concave—from those of the other end and edge, which are, for in- 75 stance, convex, such curved surfaces extending partly through the block and terminating in one form of block in a plain or straight edge running around the block at the front portion thereof, and in another form of block, 80 Fig. 6, in a plain or straight edge at one side and end and in a beveled or inclined edge or surface at the other side and end.

I claim as my invention-

1. A building-block whose top and bottom 85 and end edges are provided respectively with rabbeted surfaces having oppositely-curved cross-sections, those of one edge and end extending partly through the block from its back face, and plain surfaces from thereon to 90 its front face, the plain surfaces at opposite edges of the block near the front face being at an angle to each other, whereby the plain surfaces of the adjacent blocks are out of contact.

2. A building-block whose top and bottom and end edges are provided with curved surfaces in cross-section, those of one edge and end having different formation from those of the other end and edge, and all extending in 100 cross-section partly through the block, a pair thereof terminating in plain or straight edges merging into the front face of the block and the other pair thereof terminating in inclined surfaces likewise merging into the 10 front of the block, whereby when a pair of blocks are assembled a space is formed be-

tween two adjacent blocks.

3. A building-block whose top and bottom and end edges are provided respectively with rabbeted surfaces having oppositely-curved cross-sections, those of one edge and end extending partly through the block from its back face, and plain surfaces from thereon to its front face, the plain surfaces at opposite 11 edges of the block near the front face being at an angle to each other, whereby the plain surfaces of the adjacent blocks are out of contact, and a strengthening-frame partly embedded in the block and having parts lo- 12 cated to project at the rear of the block to lie in the rear of a companion block.

4. A building-block whose top and bottom and end edges are provided with curved surfaces in cross-section, those of one edge and re end having different formation from those of the other end and edge, and all extending in cross-section partly through the block, a pair thereof from its back face and terminating in plain or straight edges continuing to the I

front surface of the block, and a strengthening-frame partly embedded in the block and having parts thereof located to project at the rear of the block to lie in the rear of a com-

5 panion block.

5. A building-block whose top and bottom and end edges are provided respectively with curved rabbeted surfaces in cross-section, all extending in cross-section partly through the 10 block, those of one edge and end having a concave curvature and those of the other end and edge having a convex curvature, a pair of such curved portions extending partly

through the block from its back surface and terminating in a plain or straight edge con- 15 tinuing to the front surface of the block, and a metallic strengthening-frame partly embedded in the block and having parts located to project at the rear of the block at opposite sides thereof to lie in the rear of a companion 20 block some for the recention of factoring do block, some for the reception of fastening de-

ORVEY PRICE.

Witnesses:

C. S. WEED, F. E. BOYCE.