

(12) United States Patent Lev et al.

(10) Patent No.:

(58) Field of Classification Search

US 9,339,438 B2

(45) **Date of Patent:**

May 17, 2016

(54) TELESCOPIC FEMALE DRUG VIAL **ADAPTER**

(71) Applicant: MEDIMOP Medical Projects Ltd.,

Ra'anana (IL)

Inventors: Nimrod Lev, Savion (IL); Igor

Denenburg, Gedera (IL); Mordechai

Bukhman, Netanya (IL)

Assignee: Medimop Medical Projects Ltd.,

Ra'anana (IL)

Subject to any disclaimer, the term of this (*) Notice:

patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

(21) Appl. No.: 14/425,482

(22) PCT Filed: Oct. 17, 2012

(86) PCT No.: PCT/IL2012/050407

§ 371 (c)(1),

Mar. 3, 2015 (2) Date:

(87) PCT Pub. No.: WO2014/041529

PCT Pub. Date: Mar. 20, 2014

(65)**Prior Publication Data**

> US 2015/0231034 A1 Aug. 20, 2015

(30)Foreign Application Priority Data

(IL) 221920

(51) Int. Cl.

A61J 1/20 (2006.01)

(52) U.S. Cl.

CPC A61J 1/2055 (2015.05); A61J 1/2051 (2015.05); A61J 1/2075 (2015.05); A61J 1/2082 (2015.05) CPC A61J 1/2055; A61J 1/2051 See application file for complete search history.

(56)**References Cited**

U.S. PATENT DOCUMENTS

62,333 A 2/1867 Holl 3/1912 1,021,681 A Jennings 1,704,817 A 3/1929 Ayers 1,930,944 A 10/1933 Schmitz, Jr. 2,326,490 A 8/1943 Perelson 2,931,668 A 4/1960 Baley 2,968,497 A 1/1961 Treleman 3,059,643 A 10/1962 Barton

(Continued)

FOREIGN PATENT DOCUMENTS

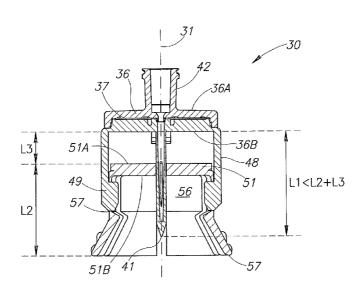
CN1950049 A 4/2007 DE. 1913926 A1 9/1970

(Continued)

OTHER PUBLICATIONS

U.S. Appl. No. 29/478,723 by Lev, filed Jan. 8, 2014.

(Continued)


Primary Examiner — Leslie Deak Assistant Examiner — Kai Weng

(74) Attorney, Agent, or Firm — Panitch Schwarze Belisario & Nadel LLP

ABSTRACT

A telescopic female drug vial adapter including a spike component telescopically mounted on a skirt component for snap fit on and puncturing a drug vial in an actuated position. The telescopic female drug vial adapter is particularly suitable for implementation in a vented version to avoid wetting of its air filter during aspiration of liquid contents from a drug vial.

5 Claims, 7 Drawing Sheets

US 9,339,438 B2

Page 2

(56)		Referen	ces Cited	4,804,366			Zdeb et al.
	U.S	S. PATENT	DOCUMENTS	4,832,690 4,834,152	A		Howson et al.
				D303,013			Konopka Russell
D198,4			Harautuneian Waterman	4,857,062 4,865,592			Rycroft
3,225,7 3,484,3			Huebner et al.	4,871,463			Taylor et al.
3,618,6			Santomieri	4,898,209		2/1990	
3,757,9			Harris, Sr. et al.	4,909,290		3/1990	
3,788,			Davis et al.	4,931,040 4,932,944	Α Δ		Haber et al. Jagger et al.
3,822,7 3,826,2			Pennington Killinger	4,967,797	A	11/1990	
3,872,9		3/1975	-	D314,050		1/1991	
3,885,6		5/1975		D314,622			Andersson et al. Van der Heiden et al.
3,938,; 3,957,0			Scislowicz et al. Topham	4,997,430 5,006,114			Rogers et al.
3,937,		8/1976		5,035,686			Crittenden et al.
3,993,0	063 A		Larrabee	5,041,105			D'Alo et al.
4,020,		5/1977		5,045,066 5,049,129			Scheuble et al. Zdeb et al.
4,051,3 D248,3		10/1977 7/1978		5,053,015		10/1991	
4,109,0		8/1978		5,061,248		10/1991	
4,121,	585 A	10/1978	Becker, Jr.	5,088,996			Kopfer et al.
4,161,			Genese	5,096,575 5,104,387			Cosack Pokorney et al.
4,187,3 4,203,0		2/1980 5/1980	Fitzky et al.	5,113,904			Aslanian
4,203,4			Genese	5,122,124	Α		Novacek et al.
4,210,	173 A		Choksi et al.	5,125,908		6/1992	
D257,2			Folkman	5,125,915 D328,788			Berry et al. Sagae et al.
4,253, 4,296,		3/1981 10/1981	Brignola	5,171,230		12/1992	Eland et al.
4,303,0			Connolly et al.	5,201,705			Berglund et al.
4,312,		1/1982		5,201,717 5,203,771			Wyatt et al. Melker et al.
4,314,: 4,328,			Folkman Curley et al.	5,203,775			Frank et al.
4,335,			Bujan et al.	5,211,638		5/1993	Dudar et al.
D267,	199 S	12/1982	Koenig	5,232,029			Knox et al.
4,376,0	534 A		Prior et al.	5,232,109 5,242,432			Tirrell et al. DeFrank
D268, 4,392,			Benham et al. Elias et al.	5,247,972	A		Tetreault
D270,		8/1983		D341,420		11/1993	
4,410,			Pearson et al.	5,269,768 5,270,219		12/1993	Cheung DeCastro et al.
4,411,6 D271,4		10/1983	Pearson Fetterman	5,279,576			Loo et al.
4,434,			Hudspith	5,288,290	A	2/1994	Brody
4,465,4	471 A	8/1984	Harris et al.	5,300,034			Behnke et al.
4,475,9		10/1984		5,301,685 5,304,163			Guirguis Bonnici et al.
4,493,3 4,505,7			Lemmons Froning et al.	5,304,165			Haber et al.
4,507,		3/1985	Dunlap	5,308,483			Sklar et al.
D280,0		8/1985		5,312,377 5,328,474		5/1994 7/1994	
4,532,9 4,564,0		8/1985 1/1986	Kwaan Gustavsson	D349,648			Tirrell et al.
4,573,9			Hoag et al.	5,334,163	Α		Sinnett
4,576,	211 A	3/1986	Valentini et al.	5,334,179			Poli et al.
4,581,0			Millerd et al.	5,342,346 5,344,417		8/1994 9/1994	Honda et al. Wadsworth, Jr.
4,588,4 4,588,4			Stroebel et al. Weiss et al.	5,348,548	A	9/1994	Meyer et al.
D284,	503 S	7/1986	Loignon	5,350,372			Ikeda et al.
4,604,0			Brown et al.	5,364,386 5,364,387			Fukuoka et al. Sweeney
4,607,6 4,614,4			Aalto et al. Buehler	5,374,264			Wadsworth, Jr.
4,638,9			Iuchi et al.	5,385,547	A		Wong et al.
4,639,0		1/1987	Mittleman	5,397,303 D357,733		3/1995	Sancoff et al.
4,667,9 4,676,5			Oscarsson Nordgren et al.	5,429,614		4/1995 7/1995	Matkovich Fowles et al.
4,683,9			Booth et al.	5,433,330		7/1995	
4,697,0	522 A	10/1987	Swift et al.	5,445,630			Richmond
4,721,			Sundblom	5,445,631 D362,718			Uchida Deily et al.
4,729,4 4,735,0		3/1988 4/1988	Raines Sardam	5,451,374			Molina
4,743,	229 A	5/1988		5,454,805		10/1995	
4,743,	243 A	5/1988	Vaillancourt	5,464,111	A	11/1995	Vacek et al.
4,752,			Lopez et al.	5,464,123		11/1995	
4,758,7 4,759,7	235 A	7/1988	Tu Forman et al.	5,466,219 5,466,220			Lynn et al. Brenneman
4,739,			Velde et al.	5,470,327			Helgren et al.
4,787,	898 A	11/1988		5,471,994		12/1995	Guirguis
4,797,	898 A	1/1989	Martinez	5,472,022	A	12/1995	Michel et al.

US 9,339,438 B2

Page 3

(56)	Referei	nces Cited		,921,419			Niedospial, Jr. et al.
U.S	. PATENT	DOCUMENTS	5	,924,584 ,925,029	A	7/1999	Hellstrom et al. Jansen et al.
				,935,112			Stevens et al.
5,478,337 A		Okamoto et al.		,941,848			Nishimoto et al. Nguyen et al.
5,492,147 A D369,406 S		Challender et al. Niedospial et al.		,954,104			Daubert et al.
5,505,714 A		Dassa et al.	5	,971,181	A	10/1999	Niedospial, Jr. et al.
5,509,433 A		Paradis		,971,965		10/1999	
5,520,659 A		Hedges		,989,237			Fowles et al. Thibault et al.
5,526,853 A 5,527,306 A		McPhee et al. Haining		,004,278			Botich et al.
5,531,695 A		Swisher		,019,750			Fowles et al.
5,547,471 A		Thompson et al.		,022,339			Fowles et al.
5,549,577 A		Siegel et al. Hedges		,030,171			Weinheimer et al. Mrotzek et al.
5,554,128 A 5,566,729 A		Grabenkort et al.		,039,302			Cote, Sr. et al.
5,569,191 A	10/1996			0422,357			Niedospial, Jr. et al.
5,573,281 A	11/1996			,063,068 0427,308		5/2000 6/2000	Fowles et al.
5,578,015 A 5,583,052 A	11/1996	Robb Portnoff et al.		0427,309		6/2000	
5,584,819 A	12/1996		6	,070,623	A	6/2000	Aneas
5,591,143 A	1/1997	Trombley, III et al.		,071,270			Fowles et al.
5,603,706 A		Wyatt et al.		,080,132 0428,141			Cole et al. Brotspies et al.
5,607,439 A 5,611,576 A	3/1997 3/1997	Guala		,086,762		7/2000	
5,616,203 A		Stevens		,089,541			Weinheimer et al.
5,636,660 A		Pfleiderer et al.		,090,091			Fowles et al. Thibault et al.
5,637,101 A 5,641,010 A	6/1997 6/1997	Shillington Major		,092,692		7/2000	
5,645,538 A		Richmond		0430,291			Jansen et al.
5,647,845 A		Haber et al.		,099,511			Devos et al.
5,651,776 A		Appling et al.		,113,068 ,113,583		9/2000 9/2000	Fowles et al.
5,653,686 A 5,674,195 A		Coulter et al. Truthan		,117,114			Paradis
5,676,346 A		Leinsing		0431,864		10/2000	
5,685,845 A		Grimard		,139,534			Niedospial, Jr. et al. Leinsing
D388,172 S	12/1997	Cipes Paradis		,142,446			Turnbull et al.
5,699,821 A 5,702,019 A		Grimard	6	,149,623	A		Reynolds
5,718,346 A	2/1998	Weiler		,156,025			Niedospial, Jr. et al.
D393,722 S		Fangrow, Jr. et al.		,159,192 ,168,037			Fowles et al. Grimard
5,738,144 A 5,743,312 A		Rogers Pfeifer et al.		,171,287			Lynn et al.
5,746,733 A		Capaccio et al.		,171,293			Rowley et al.
5,755,696 A		Caizza		,173,852 ,173,868			Browne DeJonge
5,766,211 A 5,772,630 A		Wood et al. Ljungquist		,174,304			Weston
5,772,652 A		Zielinski		,179,822			Niedospial, Jr.
RE35,841 E		Frank et al.		,179,823		1/2001 3/2001	Niedospial, Jr.
5,776,116 A 5,782,872 A		Lopez et al. Muller		,200,801		4/2001	
5,806,831 A		Paradis	6	,221,054	B1	4/2001	Martin et al.
5,810,792 A		Fangrow, Jr. et al.	6	,221,065	B1	4/2001	
D399,559 S		Molina Niedospial, Jr. et al.		,238,372			Zinger et al. Daw et al.
5,817,082 A 5,820,621 A		Yale et al.		0445,501			Niedospial, Jr.
5,827,262 A	10/1998	Neftel et al.		0445,895			Svendsen
5,832,971 A		Yale et al.		,253,804		7/2001 7/2001	Safabash Thilly
5,833,213 A 5,834,744 A	11/1998	Ryan Risman		,280,430			Neftel et al.
5,839,715 A		Leinsing	6	,290,688	B1		Lopez et al.
5,853,406 A		Masuda et al.		,296,621		10/2001 10/2001	Masuda et al.
D405,522 S 5,871,110 A		Hoenig et al. Grimard et al.		,299,131			Wessman et al.
5,873,872 A		Thibault et al.	6	,348,044	B1		Coletti et al.
5,879,337 A		Kuracina et al.		,358,236			DeFoggi et al.
5,879,345 A		Aneas Valoret al		,364,866			Furr et al. Thibault et al.
5,887,633 A 5,890,610 A		Yale et al. Jansen et al.		,378,714			Jansen et al.
5,891,129 A		Daubert et al.	6	,379,340	B1	4/2002	Zinger et al.
5,893,397 A		Peterson et al.		0457,954			Wallace et al.
5,897,526 A		Vaillancourt		,382,442			Thibault et al.
5,899,468 A 5,902,280 A		Apps et al. Powles et al.		,386,397			Brotspies et al. Laurent et al.
5,902,298 A	5/1999		6	,409,708	B1		Wessman
D410,740 S	6/1999	Molina	6	,440,107	B1	8/2002	Trombley, III et al.
5,911,710 A	6/1999			,453,949		9/2002	
5,919,182 A	7/1999	Avallone	6	,453,956	D 2	9/2002	Safabash

US 9,339,438 B2

Page 4

(56)	Referei	nces Cited	7,100,890 7,140,401			Cote, Sr. et al. Wilcox et al.
U.S	. PATENT	DOCUMENTS	7,150,735	B2	12/2006	Hickle
			7,192,423		3/2007	
6,474,375 B2		Spero et al.	7,195,623 7,241,285			Burroughs et al. Dikeman
6,478,788 B1 D468,015 S	11/2002 12/2002	Horppu	7,294,122			Kubo et al.
6,499,617 B1		Niedospial, Jr. et al.	7,306,199			Leinsing et al.
6,503,240 B1		Niedospial, Jr. et al.	D561,348 7,326,188			Zinger et al. Russell et al.
6,503,244 B2 6,520,932 B2		Hayman Taylor	7,326,194			Zinger et al.
6,524,278 B1		Campbell et al.	7,350,764			Raybuck
6,524,295 B2		Daubert et al.	7,354,422 7,354,427			Riesenberger et al. Fangrow
D472,316 S 6,530,903 B2		Douglas et al. Wang et al.	7,425,209			Fowles et al.
6,537,263 B1		Aneas	7,435,246	B2		Zihlmann
D472,630 S		Douglas et al.	D580,558 7,452,348			Shigesada et al. Hasegawa
6,544,246 B1 6,551,299 B2		Niedospial, Jr. Miyoshi et al.	7,470,257			Norton et al.
6,558,365 B2		Zinger et al.	7,470,265			Brugger et al.
6,571,837 B2		Jansen et al.	7,472,932 7,488,297			Weber et al. Flaherty
6,572,591 B2 6,575,955 B2		Mayer Azzolini	7,491,197			Jansen et al.
6,581,593 B1		Rubin et al.	7,497,848	B2	3/2009	Leinsing et al.
6,582,415 B1		Fowles et al.	7,523,967 7,530,546		4/2009 5/2009	
D476,731 S 6,591,876 B2		Cise et al. Safabash	D595,420			Suzuki et al.
6,599,273 B1		Lopez	D595,421	S		Suzuki et al.
6,601,721 B2	8/2003	Jansen et al.	7,540,863 7,540,865		6/2009	Haindl Griffin et al.
6,626,309 B1 6,638,244 B1		Jansen et al. Reynolds	7,544,191			Peluso et al.
D482,121 S		Harding et al.	D595,862	S	7/2009	Suzuki et al.
D482,447 S	11/2003	Harding et al.	D595,863			Suzuki et al.
6,651,956 B2	11/2003		7,611,487 7,611,502		11/2009	Woehr et al. Dalv
6,652,509 B1 D483,487 S		Helgren et al. Harding et al.	7,615,041	B2	11/2009	Sullivan et al.
D483,869 S	12/2003	Tran et al.	7,628,779		12/2009	
6,656,433 B2	12/2003		7,632,261 D608,900			Zinger et al. Giraud et al.
6,666,852 B2 6,681,810 B2		Niedospial, Jr. Weston	7,654,995	B2	2/2010	Warren et al.
6,681,946 B1	1/2004	Jansen et al.	7,670,326			Shemesh
6,682,509 B2		Lopez	7,695,445 D616,090		4/2010 5/2010	Yuki Kawamura
6,692,478 B1 6,692,829 B2		Paradis Stubler et al.	7,713,247	B2	5/2010	Lopez
6,695,829 B2	2/2004	Hellstrom et al.	7,717,886		5/2010	
6,699,229 B2 6,706,022 B1		Zinger et al. Leinsing et al.	7,722,090 D616,984		6/2010	Burton et al. Gilboa
6,706,031 B2		Manera	7,731,678	B2	6/2010	Tennican et al.
6,715,520 B2	4/2004	Andreasson et al.	7,743,799 7,744,581			Mosler et al. Wallen et al.
6,729,370 B2 6,736,798 B2		Norton et al. Ohkubo et al.	7,744,381		7/2010	
6,745,998 B2		Doyle	7,758,082	B2	7/2010	Weigel et al.
6,746,438 B1	6/2004	Arnissolle	7,762,524 7,766,304			Cawthon et al. Phillips
6,752,180 B2 D495,416 S		Delay Dimeo et al.	7,771,383			Truitt et al.
D495,410 S D496,457 S		Prais et al.	D624,641	S	9/2010	Boclet
6,802,490 B2	10/2004	Leinsing et al.	7,799,009			Niedospial, Jr. et al. Fangrow, Jr.
6,832,994 B2 6,852,103 B2		Niedospial, Jr. et al. Fowles et al.	7,803,140 D627,216			Fulginiti
6,875,203 B1		Fowles et al.	D630,732	S	1/2011	Lev et al.
6,875,205 B2	4/2005	Leinsing	7,862,537 7,867,215			Zinger et al. Akerlund et al.
6,878,131 B2 6,890,328 B2		Novacek et al. Fowles et al.	7,867,213		1/2011 2/2011	Zinger et al.
D506,256 S		Miyoshi et al.	D634,007	\mathbf{S}	3/2011	Zinger et al.
6,901,975 B2	6/2005	Aramata et al.	7,900,659 D637,713		3/2011	Whitley et al. Nord et al.
6,945,417 B2 6,948,522 B2		Jansen et al. Newbrough et al.	D637,713			Zinger et al.
6,949,086 B2		Ferguson et al.	7,985,216		7/2011	Daily et al.
6,951,613 B2		Reif et al.	D644,104			Maeda et al.
6,957,745 B2 RE38,996 E		Thibault et al. Crawford et al.	7,993,328 8,007,461		8/2011 8/2011	Whitley Huo et al.
6,994,315 B2		Ryan et al.	8,012,132			Lum et al.
6,997,916 B2	2/2006	Simas, Jr. et al.	8,016,809	B2	9/2011	Zinger et al.
6,997,917 B2		Niedospial, Jr. et al.	8,021,325			Zinger et al.
7,024,968 B2 7,070,589 B2		Raudabough et al. Lolachi et al.	8,025,653 8,029,472			Capitaine et al. Leinsing et al.
7,074,216 B2		Fowles et al.	8,038,123		10/2011	Ruschke et al.
7,083,600 B2	8/2006	Meloul	8,066,688	B2	11/2011	
7,086,431 B2	8/2006	D'Antonio et al.	8,070,739	В2	12/2011	Zinger et al.

US 9,339,438 B2Page 5

(56)	References Cited			2002/0173752		11/2002 12/2002	
	115	DATENIT	DOCUMENTS	2002/0193777 2003/0028156		2/2002	
	0.5.	IAIDNI	DOCUMENTS	2003/0036725			Lavi et al.
8,075,5	50 B2	12/2011	Nord et al.	2003/0068354			Reif et al.
8,096,5		1/2012		2003/0073971		4/2003	
8,105,3			Fangrow, Jr.	2003/0100866 2003/0109846			Reynolds Zinger et al.
D654,1		2/2012		2003/0109840			Jensen et al.
D655,0 8,122,9			Mosler et al. Kraus et al.	2003/0153895			Leinsing
8,123,7			Kraushaar et al.	2003/0187420			Akerlund et al.
8,157,7		4/2012	Rogers	2003/0191445			Wallen et al.
8,167,8		5/2012		2003/0195479 2003/0199846			Kuracina et al. Fowles et al.
8,172,8 8,177,7			Pfeifer et al. Leinsing	2003/0199847			Akerlund et al.
8,182,4			Mansour et al.	2004/0024354			Reynolds
8,187,2			Zihlmann	2004/0039365			Aramata et al.
8,196,6		6/2012		2004/0044327			Hasegawa
8,197,4			Jansen et al.	2004/0073189 2004/0143226			Wyatt et al. Marsden
8,211,0 8,225,9			Fangrow, Jr. Lambrecht	2004/0153047			Blank et al.
8,241,2			Whitley	2004/0181192	A1	9/2004	Cuppy
8,262,6			Fangrow, Jr.	2004/0204699			Hanly et al.
8,262,6			Vedrine et al.	2004/0217315 2004/0225274		11/2004	Doyle Jansen et al.
8,267,1		9/2012		2004/0223274			Jansen et al.
D669,9 8,287,5			Lev et al. Ellstrom et al.	2004/0255952			Carlsen et al.
D673,6		1/2013		2005/0015070	A1	1/2005	Delnevo et al.
D674,0			Lev et al.	2005/0016626			Wilcox et al.
D681,2			Mosler et al.	2005/0055008			Paradis et al.
8,454,5			Wyatt et al.	2005/0082828 2005/0124964			Wicks et al. Niedospial et al.
8,469,9 8,475,4			Fangrow, Jr. Foshee et al.	2005/0137566			Fowles et al.
8,480,6			Choudhury et al.	2005/0148994			Leinsing
8,480,6			Nord et al.	2005/0159724			Enerson
8,506,5	48 B2		Okiyama	2005/0182383		8/2005	
8,511,3			Kraus et al.	2005/0209554 2005/0261637		9/2005	Landau Miller
8,512,3			Shemesh et al.	2005/0277896			Messerli et al.
D690,4 8,523,8			Rosenquist Wiggins et al.	2006/0030832			Niedospial et al.
8,545,4		10/2013	Ariagno et al.	2006/0079834			Tennican et al.
8,551,0	67 B2	10/2013	Zinger et al.	2006/0089594			Landau
8,556,8			Okiyama	2006/0089603 2006/0095015			Truitt et al. Hobbs et al.
8,562,5		10/2013 12/2013	Tuckwell et al. Lev et al.	2006/0106360		5/2006	
8,608,7 8,628,5		1/2013	Weitzel et al.	2006/0135948		6/2006	
8,684,9			Sullivan et al.	2006/0155257			Reynolds
8,684,9	94 B2		Lev et al.	2006/0253084			Nordgren
8,752,5			Denenburg et al.	2007/0024995 2007/0060904			Hayashi Vedrine et al.
D714,9 D717,4	35 S			2007/0000904			Kraus et al.
D717,40			Stanley et al. Strong et al.	2007/0083164			Barrelle et al.
D719,6			Arinobe et al.	2007/0088252		4/2007	Pestotnik et al.
D720,0			Rosenquist	2007/0088293		4/2007	Fangrow
D720,4			Denenburg et al.	2007/0088313 2007/0106244			Zinger et al. Mosler et al.
D720,4 8,900,2		12/2014 12/2014		2007/0112324			Hamedi-Sangsari
D720,8			Hsia et al.	2007/0156112		7/2007	
D732,6		6/2015		2007/0167904			Zinger et al.
D732,6			Woehr et al.	2007/0191760			Iguchi et al.
D733,2		6/2015		2007/0191764 2007/0191767			Zihlmann Hennessy et al.
D733,2 D733,2		6/2015	Rogers Rogers	2007/0203451			Murakami et al.
D733,2			Kashmirian	2007/0219483			Kitani et al.
D750,2			Maurice	2007/0244447			Capitaine et al.
2001/00003			Hellstrom et al.	2007/0244461			Fangrow
2001/00256			Safabash	2007/0244462 2007/0244463			Fangrow Warren et al.
2001/00293/ 2001/00517		10/2001 12/2001	Miyoshi et al.	2007/0244403			Van Manen
2001/00317		2/2001		2007/0255202			Kitani et al.
2002/00667			Niedospial	2007/0265574	A1		Tennican et al.
2002/00871	18 A1	7/2002	Reynolds et al.	2007/0265581			Funamura et al.
2002/00871			Zinger et al.	2007/0270778			Zinger et al.
2002/00871			Zinger et al.	2007/0287953			Ziv et al.
2002/01214 2002/01237			Thiebault et al. Fowles et al.	2007/0299404 2008/0009789			Katoh et al. Zinger et al.
2002/01237		9/2002		2008/0009789			Enerson
2002/01271			Fathallah	2008/0135051		6/2008	
2002/01380	45 A1	9/2002	Moen	2008/0172024	A1	7/2008	Yow

US 9,339,438 B2 Page 6

(56)		nces Cited	2015/00	352845 A1 082746 A1	3/2015	Lev et al. Ivosevic et al.
U.S	. PATENT	DOCUMENTS	2015/00	088078 A1	3/2015	Lev et al.
2008/0188799 A1 2008/0249479 A1		Mueller-Beckhaus et al. Zinger et al.		FOREI	GN PATE	ENT DOCUMENTS
2008/0249498 A1 2008/0262465 A1		Fangrow Zinger et al.	DE		22476 A1	1/1993
2008/0287905 A1	11/2008	Hiejima et al.	DE DE		04413 A1 12714 U1	8/1996 11/2004
2008/0294100 A1		de Costa et al.	DE		11019 U1	12/2010
2008/0306439 A1 2008/0312634 A1		Nelson et al. Helmerson et al.	EP		92661 A1	9/1986
2009/0012492 A1		Zihlmann	EP EP		95018 A1 58913 A2	9/1986 3/1988
2009/0082750 A1		Denenburg et al.	EP		16454 A2	3/1991
2009/0143758 A1 2009/0177177 A1		Okiyama Zinger et al.	EP		18397 A1	12/1992
2009/0177178 A1	7/2009	Pedersen	EP EP		21460 A1 37443 A1	1/1993 2/1995
2009/0187140 A1 2009/0216212 A1	7/2009	Racz Fangrow, Jr.	EP	073	37467 A1	10/1996
2009/0210212 A1 2009/0267011 A1		Hatton et al.	EP EP		51562 A1 55652 A1	3/1997 4/1997
2009/0299325 A1	12/2009	Vedrine et al.	EP EP		55853 A1	4/1997
2009/0326506 A1 2010/0010443 A1		Hasegawa et al. Morgan et al.	EP	080	06597 A1	11/1997
2010/0010443 A1 2010/0022985 A1		Sullivan et al.	EP EP		14866 A1 29248 A2	1/1998 3/1998
2010/0030181 A1		Helle et al.	EP		56331 A2	8/1998
2010/0036319 A1 2010/0076397 A1		Drake et al. Reed et al.	EP		32441 A2	12/1998
2010/0070397 A1 2010/0087786 A1		Zinger et al.	EP EP		87085 A2 97708 A2	12/1998 2/1999
2010/0137827 A1		Warren et al.	EP		98951 A2	3/1999
2010/0160889 A1 2010/0168664 A1		Smith et al. Zinger et al.	EP		50616 A2	12/1999
2010/0168712 A1		Tuckwell et al.	EP EP		08337 A1 29526 A1	6/2000 8/2000
2010/0179506 A1		Shemesh et al.	EP		34809 A1	9/2000
2010/0198148 A1 2010/0204670 A1		Zinger et al. Kraushaar et al.	EP		51988 A2	11/2000
2010/0241088 A1	9/2010	Ranalletta et al.	EP EP		23403 A1 29210 A1	7/2003 7/2003
2010/0274184 A1	10/2010	Chun Raday et al.	EP	139	96250 A1	3/2004
2010/0286661 A1 2010/0312220 A1		Kaday et ar. Kalitzki	EP EP		54609 A1 54650 A1	9/2004 9/2004
2011/0004184 A1		Proksch et al.	EP		98097 A2	1/2005
2011/0054440 A1 2011/0087164 A1		Lewis Mosler et al.	EP		72824 A1	1/2008
2011/0160701 A1		Wyatt et al.	EP EP		11432 A1 19432 A1	4/2008 5/2008
2011/0175347 A1		Okiyama	EP		30038 A2	6/2008
2011/0218511 A1 2011/0224640 A1		Yokoyama Kuhn et al.	EP EP		90278 A1 51548 A1	8/2009
2011/0230856 A1	9/2011	Kyle et al.	EP EP		51548 A1	8/2011 8/2011
2011/0264037 A1 2011/0264069 A1		Foshee et al. Bochenko	EP	240	52913 A1	6/2012
2011/0276007 A1	11/2011	Denenburg	FR FR		29242 A5 56660 A1	10/1970 12/2004
2011/0319827 A1		Leinsing et al.	FR		59795 A1	11/2005
2012/0022469 A1 2012/0053555 A1		Alpert Ariagno et al.	FR		31363 A1	11/2009
2012/0059346 A1	3/2012	Sheppard et al.	GB IL		44210 A 71662	7/1976 10/2005
2012/0067429 A1 2012/0078214 A1		Mosler et al. Finke et al.	JР	03-0	62426 B	9/1991
2012/00/8214 A1 2012/0123382 A1	5/2012		JP JP		29954 A 50656 U	11/1992 7/1994
2012/0184938 A1		Lev et al.	JР		00710 A	1/1996
2012/0215182 A1 2012/0220977 A1	8/2012 8/2012	Mansour et al. Yow	JP		04460 A	4/1997
2012/0220978 A1	8/2012	Lev et al.	JP JP		04461 A 18158 A	4/1997 5/1998
2012/0265163 A1		Cheng et al. Lev et al.	JP	H10-50	04736 A	5/1998
2012/0271229 A1 2012/0296307 A1		Holt et al.	JP JP		03627 T 19031 A	3/1999 11/1999
2012/0310203 A1		Khaled et al.	JР		08934 A	7/2000
2012/0323187 A1 2012/0323210 A1		Iwase et al. Lev et al.	JP		37278 A	9/2000
2013/0046269 A1		Lev et al.	JP JP		05083 A 35140 A	4/2001 2/2002
2013/0053814 A1		Mueller-Beckhaus et al.	JР		16160 A	6/2002
2013/0096493 A1 2013/0144248 A1		Kubo et al. Putter et al.	JP		55318 A	12/2002
2013/0199669 A1	8/2013	Moy et al.	JP JP		33441 A 02807 A	2/2003 4/2003
2013/0226100 A1 2013/0231630 A1	8/2013	Lev Kraus et al.	JР	2004-09	97253 A	4/2004
2013/0231630 A1 2013/0237904 A1		Deneburg et al.	JP JP		22541 A 79128 A	7/2004 8/2010
2013/0289530 A1	10/2013	Wyatt et al.	WO		01712 A1	3/1986
2014/0020793 A1		Denenburg et al.	WO	900	03536 A1	4/1990
2014/0096862 A1 2014/0150911 A1		Aneas Hanner et al.	WO WO		03373 A1 07066 A1	2/1994 3/1995
251.5150511 711	5, 2017			230		5, 13, 5

(56)	References Cited	Office Action issued Oct. 8, 2013 in CN Application No. 201080043825.1.
	FOREIGN PATENT DOCUMENTS	English translation of an Office Action issued Feb. 4, 2014 in JP
WO	0600052 41 1/1006	Application No. 2012-554468.
WO	9600053 A1 1/1996 9629113 A1 9/1996	Office Action issued Jan. 17, 2014 in CN Application No.
WO	9736636 A1 10/1997	201180006534.X.
WO	9832411 A1 7/1998	Int'l Search Report and Written Opinion issued May 8, 2014 in Int'l
WO	9837854 A1 9/1998	Application No. PCT/IL2013/050706.
WO	9961093 A1 12/1999	English translation of an Office Action issued Apr. 28, 2014 in JP
WO	0128490 A1 4/2001	Application No. 2013-537257.
WO	0130425 A1 5/2001	Int'l Preliminary Report on Patentability issued Jan. 14, 2014 in Int'l
WO	0132524 A1 5/2001	Application No. PCT/IL2012/050516.
WO	0160311 A1 8/2001	
WO	0191693 A2 12/2001	Office Action issued May 6, 2014 in U.S. Appl. No. 13/505,881 by
WO	0209797 A1 2/2002	Lev.
WO	0232372 A1 4/2002	U.S. Appl. No. 14/366,306 by Lev, filed Jun. 18, 2014.
WO	0236191 A2 5/2002	Office Action issued Apr. 17, 2014 in CN Application No.
WO	02066100 A2 8/2002	201080051201.4.
WO	02089900 A1 11/2002	Int'l Search Report and Written Opinion issued Jul. 16, 2014 in Int'l
WO	03051423 A2 6/2003	Application No. PCT/IL2014/050327.
WO WO	03070147 A2 8/2003	English translation of an Office Action issued Jun. 30, 2014 in CN
WO	03079956 A1 10/2003 2004041148 A1 5/2004	Application No. 201180052962.6.
WO	2005002492 A1 1/2005	Extended European Search Report issued Jun. 3, 2014 in EP Appli-
wo	2005041846 A2 5/2005	cation No. 08781828.2.
WO	2005105014 A2 11/2005	Written Opinion issued Jul. 1, 2013 in Int'l Application No. PCT/
WO	2006099441 A2 9/2006	IL2013/050180.
WO	2007015233 A1 2/2007	Int'l Preliminary Report on Patentability issued Apr. 1, 2014 in Int'l
WO	2007017868 A1 2/2007	Application No. PCT/IL2013/050180.
WO	2007052252 A1 5/2007	Written Opinion issued Jul. 31, 2013 in Int'l Application No. PCT/
WO	2007101772 A1 9/2007	IL2013/050313.
WO	2007105221 A1 9/2007	Int'l Preliminary Report on Patentability issued May 12, 2014 in Int'l
WO	2008081424 A2 7/2008	Application No. PCT/IL2013/050316.
WO	2008126090 A1 10/2008	Office Action issued Jul. 31, 2014 in U.S. Appl. No. 29/438,141 by
WO	2009026443 A2 2/2009	Gilboa.
WO WO	2009029010 A1 3/2009	U.S. Appl. No. 14/385,212 by Lev, filed Sep. 15, 2014.
WO	2009038860 A2 3/2009 2009040804 A2 4/2009	U.S. Appl. No. 29/502,037 by Lev, filed Sep. 11, 2014.
WO	2009040804 A2 4/2009 2009087572 A1 7/2009	U.S. Appl. No. 29/502,057 by Lev, filed Sep. 11, 2014.
WO	2009093249 A1 7/2009	U.S. Appl. No. 14/391,792 by Lev, filed Oct. 10, 2014.
wo	2009112489 A1 9/2009	
WO	2009146088 A1 12/2009	U.S. Appl. No. 14/504,979 by Lev, filed Oct. 2, 2014.
WO	2010061743 A1 6/2010	Int'l Search Report and Written Opinion issued Sep. 2, 2014 in Int'l
WO	2010117580 A1 10/2010	Application No. PCT/IL2014/050405.
WO	2011039747 A1 4/2011	Int'l Search Report and Written Opinion issued Oct. 17, 2014 in Int'l
WO	2011058545 A1 5/2011	Application No. PCT/IL2014/050680.
WO	2011058548 A1 5/2011	English translation of an Office Action issued Aug. 28, 2014 in JP
WO	2011077434 A1 6/2011	Application No. 2013-168885.
WO	2011104711 A1 9/2011	Written Opinion issued Jun. 5, 2013 in Int'l Application No. PCT/
WO	2012063230 A1 5/2012	IL2012/050407.
WO	2012143921 A1 10/2012 2013137813 A1 0/2013	Int'l Preliminary Report on Patentability issued Aug. 20, 2014 in Int'l
WO WO	2013127813 A1 9/2013 2013134246 A1 9/2013	Application No. PCT/IL2012/050407.
WO WO	2013154246 A1 9/2013 2013156944 A1 10/2013	Office Action issued Mar. 17, 2015 in U.S. Appl. No. 14/504,979 by
WO	2014033706 A2 3/2014	Lev.
WO	2014033700 A2 3/2014 2014033710 A1 3/2014	Office Action issued Apr. 9, 2015 in U.S. Appl. No. 13/883,289 by
,,,,		Lev.
	OTHER PUBLICATIONS	Office Action issued May 28, 2015 in U.S. Appl. No. 14/391,792 by

U.S. Appl. No. 29/478,726 by Lev, filed Jan. 8, 2014.

Office Action issued Jan. 2, 2014 in U.S. Appl. No. 13/505,881 by

Int'l Preliminary Report on Patentability issued Sep. 24, 2013 in Int'l Application No. PCT/IL2012/000354.

Office Action issued Feb. 13, 2014 in U.S. Appl. No. 13/884,981 by Denenburg.

U.S. Appl. No. 14/345,094 by Lev, filed Mar. 14, 2014.

Int'l Search Report and Written Opinion issued Jan. 7, 2014 in Int'l Application No. PCT/IL2012/050721.

English translation of an Office Action issued Jan. 9, 2014 in JP Application No. 2010-526421.

English translation of an Office Action issued Dec. 4, 2013 in CN Application No. 201080051210.3.

English translation of an Office Action issued Dec. 25, 2013 in CN Application No. 201180006530.1.

Office Action issued Nov. 28, 2013 in IN Application No. 4348/ DELNP/2008.

Office Action issued Aug. 24, 2015 in U.S. Appl. No. 14/366,306 by

Office Action issued Mar. 10, 2015 in EP Application No. 12 812

395.7. Office Action issued Aug. 7, 2015 in JP Application No. 2015-

529206.

Written Opinion issued Apr. 10, 2015 in Int'l Application No. PCT/ IL2014/050405.

Response to Written Opinion dated Mar. 9, 2015 in Int'l Application No. PCT/IL2014/050405.

Int'l Preliminary Report on Patentability issued Aug. 24, 2015 in Int'l Application No. PCT/IL2014/050405.

U.S. Appl. No. 14/888,590 by Marks, filed Nov. 2, 2015.

U.S. Appl. No. 14/784,300 by Lev, filed Oct. 14, 2015.

Office Action issued Oct. 5, 2015 in U.S. Appl. No. 14/385,212 by

U.S. Appl. No. 29/544,969 by Ben Shalom, filed Nov. 9, 2015. Office Action issued Mar. 6, 2012 in U.S. Appl. No. 12/678,928.

(56) References Cited

OTHER PUBLICATIONS

Int'l Search Report issued Feb. 3, 2011 in Int'l Application No. PCT/IL2010/000777; Written Opinion.

Int'l Search Report issued Mar. 17, 2011 in Int'l Application No. PCT/IL2010/000854; Written Opinion.

Int'l Search Report issued Mar. 17, 2011 in Int'l Application No. PCT/IL2010/000915; Written Opinion.

U.S. Appl. No. 13/505,790 by Lev, filed May 3, 2012.

U.S. Appl. No. 13/505,881 by Lev, filed May 3, 2012.

U.S. Appl. No. 13/522,410 by Lev, filed Jul. 16, 2012.

U.S. Appl. No. 13/576,461 by Lev, filed Aug. 1, 2012

Office Action issued Jun. 14, 2012 in U.S. Appl. No. 29/376,980.

Office Action issued Jun. 15, 2012 in U.S. Appl. No. 29/413,170. Office Action issued Jun. 21, 2012 in U.S. Appl. No. 12/596,167.

Alaris Medical Systems Product Brochure, 4 pages, Issue 1, Oct. 11,

Smart Site Needle-Free Systems, Alaris Medical Systems Webpage, 4 pages, Feb. 2006.

Photographs of Alaris Medical Systems SmartSite.RTM. device, 5 pages, 2002.

Non-Vented Vial Access Pin with ULTRASITE.RTM. Valve, B. Braun Medical, Inc. website and product description, 3 pages, Feb. 2006

Int'l Search Report issued Aug. 16, 2012 in Int'l Application No. PCT/IL2012/000164.

U.S. Appl. No. 29/438,134 by Lev, filed Nov. 27, 2012.

U.S. Appl. No. 29/438,141 by Gilboa, filed Nov. 27, 2012.

Int'l Search Report issued Jan. 22, 2013 in Int'l Application No. PCT/II 2012/000354

Int'l Search Report issued Mar. 18, 2013 in Int'l Application No. PCT/IL2012/050516.

Office Action issued Apr. 2, 2013 in U.S. Appl. No. 13/505,790.

Int'l Search Report and Written Opinion issued Mar. 6, 2012 in Int'l Application No. PCT/IL2011/000834.

U.S. Appl. No. 13/883,289 by Lev, filed May 3, 2013.

Int'l Search Report & Written Opinion issued on Mar. 7, 2012 in Int'l Application No. PCT/IL2011/000829.

U.S. Appl. No. 13/884,981 by Denenburg, filed May 13, 2013.

Office Action issued May 31, 2013 in U.S. Appl. No. 13/505,790. Int'l Search Report issued Jun. 5, 2013 in Int'l Application No. PCT/IL2012/050407.

Int'l Search Report issued Jun. 19, 2013 in Int'l Application No. PCT/IL2013/050167.

Int'l Search Report issued Jul. 1, 2013 in Int'l Application No. PCT/ IL2013/050180.

Int'l Search Report issued Jul. 31, 2013 in Int'l Application No. PCT/IL2013/050313.

Int'l Search Report issued Jul. 26, 2013 in Int'l Application No. PCT/IL2013/050316.

English translation of an Office Action issued Jun. 19, 2013 in JP Application No. 2012-531551.

Office Action issued Aug. 20, 2013 in U.S. Appl. No. 13/576,461 by Lev.

Int'l Preliminary Report on Patentability issued Aug. 28, 2012 in Int'l Application No. PCT/IL2011/000186.

English translation of an Office Action issued Jul. 26, 2013 in JP

Application No. 2012-538464. International Search Report Issued Jan. 23, 2007 in Int'l Application No. PCT/IL/2006/001228.

IV disposables sets catalogue, Cardinal Health, Alaris® products, SmartSite® access devices and accessories product No. 10013365, SmartSite add-on bag access device with spike adapter and needle-

free valve bag access port, pp. 1-5, Fall edition (2007).

Drug Administration Systems product information sheets; http://www.westpharma.com/eu/en/products/Pages/Vial2Bag.aspx; pp. 1-3 (admitted prior art).

Office Action Issued Jun. 8, 2010 in U.S. Appl. No. 12/112,490 by Zinger.

Office Action issued Sep. 28, 2010 in U.S. Appl. No. 12/112,490 by Zinger.

Article with picture of West Pharmaceutical Services' Vial2Bag Needleless System, [on-line]; ISIPS Newsletter, Oct. 26, 2007]; retrieved from Internet Feb. 16, 2010]; URL:http://www.isips.org/reports/ISIPS_Newsletter_October_26_2007.html. (7 pages. see pp. 5-6).

Office Action issued Jun. 15, 2011 in JP Application No. 2008-538492.

Translation of Office Action issued Jun. 18, 2012 in JP Application No. 2008-538492.

Translation of Office Action issued Apr. 15, 2013 in JP Application No. 2008-538492.

Office Action issued Jul. 13, 2012 in U.S. Appl. No. 12/112,490 by Zinger

Office Action issued Jan. 23, 2013 in U.S. Appl. No. 12/112,490 by Zinger.

Int'l Preliminary Report on Patentability issued May 6, 2008 in Int'l Application No. PCT/IL2006/001228.

Written Opinion issued Aug. 16, 2012 in Int'l Application No. PCT/IL2012/000164.

English translation of an Office Action issued Sep. 10, 2013 in JP Application No. 2012-554468.

Office Action issued Nov. 11, 2013 in IL Application No. 218730. Grifols Vial Adapter Product Literature, 2 pages, Jan. 2002. cited by other

Novel Transfer, Mixing and Drug Delivery Systems, MOP Medimop Medical Projects Ltd. Catalog, 4 pages, Rev. 4, 2004. cited by other. Office Action Issued Oct. 6, 2003 in U.S. Appl. No. 10/062,796.

Office Action Issued Feb. 22, 2005 in U.S. Appl. No. 10/062,796.

Office Action Issued Oct. 5, 2005 in U.S. Appl. No. 10/062,796.

Office Action Issued Feb. 20, 2009 in U.S. Appl. No. 11/694,297. Int'l Search Report Issued Dec. 6, 2006 in Int'l Application No.

Int'l Search Report Issued Dec. 6, 2006 in Int'l Application No PCT/IL/2006/000912.

Int'l Preliminary Report on Patentability Issued Dec. 4, 2007 in Int'l Application No. PCT/IL2006/000912.

 $\label{lem:http://www.westpharma.com/en/products/Pages/Mixject.aspx} \\ (admitted prior art).$

http://www.westpharma.com/SiteCollectionDocuments/Recon/mixject%20product%20sheet.pdf; MIXJECT product information sheet pp. 1. (admitted prior art).

Int'l Search Report Issued Jul. 27, 2007 in Int'l Application No. PCT/IL2007/000343.

Int'l Preliminary Report on Patentability Issued Jun. 19, 2008 in Int'l Application No. PCT/IL2007/000343.

Int'l Search Report Issued Mar. 27, 2009 in Int'l Application No. PCT/US2008/070024.

Int'l Search Report Issued Oct. 17, 2005 in Int'l Application No. PCT/IL2005/000376.

 $Int'l\ Preliminary\ Report\ on\ Patentability\ Issued\ Jun.\ 19,2006\ in\ Int'l\ Application\ No.\ PCT/IL2005/000376.$

Written Opinion of ISR Issued Jun. 19, 2006 in Int'l Application No. PCT/IL2005/000376.

Int'l Search Report Issued Aug. 25, 2008 in Int'l Application No. PCT/IL2008/000517.

Written Opinion of the ISR Issued Oct. 17, 2009 in Int'l Application No. PCT/IL08/00517.

Int'l Preliminary Report on Patenability Issued Oct. 20, 2009 in Int'l Application No. PCT/IL2008/000517.

Written Opinion of the Int'l Searching Authority Issued Oct. 27, 2008 in Int'l Application No. PCT/US2008/070024.

Int'l Search Report Issued Mar. 12, 2009 in Int'l Application No. PCT/IL2008/001278.

Office Action Issued Jan. 20, 2010 in JP Application No. 2007-510229.

510229. Office Action Issued Apr. 20, 2010 in U.S. Appl. No. 11/997,569.

Int'l Search Report dated Nov. 20, 2006 in Int'l Application No. PCT/IL2006/000881.

Office Action Issued May 27, 2010 in U.S. Appl. No. 11/559,152. Decision to Grant mailed Apr. 12, 2010 in EP Application No. 08738307.1.

Office Action issued Jun. 1, 2010 in U.S. Appl. No. 11/568,421.

Office Action issued Nov. 12, 2010 in U.S. Appl. No. 29/334,697.

The MixJect transfer system, as shown in the article, "Advanced Delivery Devices," Drug Delivery Technology Jul./Aug. 2007 vol. 7

(56) References Cited

PCT/IL2010/000854

OTHER PUBLICATIONS

No. 7 [on-line]. [Retrieved from Internet May 14, 2010.] URL: http://www.drugdeiverytech-online.com/drugdelivery/200707/ ?pg=28pg28>. (3 pages).

Publication date of Israeli Patent Application 186290 [on-line].]Retrieved from Internet May 24, 2010]. URL:http://www.ilpatsearch.justrice.gov.il/UI/RequestsList.aspx. (1 page).

Int'l Search Report issued Nov. 25, 2010 in Int'l Application No. PCT/IL2010/000530.

Office Action issued Feb. 7, 2011 in U.S. Appl. No. 12/783,194. Office Action issued Dec. 20, 2010 in U.S. Appl. No. 12/063,176. Office Action issued Dec. 13, 2010 in U.S. Appl. No. 12/293,122. Office Action issued Nov. 29, 2010 in U.S. Appl. No. 11/568,421. Office Action issued Dec. 23, 2010 in U.S. Appl. No. 29/334,696. Int'l Search Report issued on Mar. 17, 2011 in Int'l Application No.

Overview—Silicone Rubber [retrieved from http://www.knovel.com/web/portal/browse/display?_EXT_KNOVEL_DISPLAY_bookid=1023&VerticalID=0 on Feb. 9, 2011].

Int'l Search Report issued on Mar. 17, 2011 in Int'l Application No. PCT/II.2010/00915.

Office Action Issued May 12, 2011 in U.S. Appl. No. 12/063,176. Office Action issued Jul. 11, 2011 in U.S. Appl. No. 12/293,122. Int'l Search Report issued Jul. 12, 2011 in Int'l Application No. PCT/IL2011/000187.

Int'l Search Report issued Jul. 12, 2011 in Int'l Application No. PCT/IL2011/000186.

Office Action issued Aug. 3, 2011 in JP Application No. 2008-525719.

Int'l Search Report issued Oct. 7, 2011 in Int'l Application No. PCT/IL2011/000511.

Int'l Search Report issued Mar. 6, 2012 in Int'l Application No. PCT/IL2011/000834; Written Opinion.

Office Action issued Mar. 1, 2012 in JP Application No. 2007-510229.

Int'l Search Report issued Mar. 7, 2012 in Int'l Application No. PCT/IL2011/000829; Written Opinion.

Office Action issued Mar. 13, 2012 in CA Application No. 2,563,643. Office Action issued Mar. 1, 2012 in CN Application No. 2008801108283.4.

Office Action issued Jan. 2, 2015 in U.S. Appl. No. 29/438,141 by Gilboa.

Office Action issued Jan. 5, 2015 in U.S. Appl. No. 29/413,220 by Lev.

Office Action issued Jan. 7, 2015 in U.S. Appl. No. 29/438,134 by Lev.

U.S. Appl. No. 14/423,595 by Lev, filed Feb. 24, 2015.

U.S. Appl. No. 14/423,612 by Lev, filed Feb. 24, 2015.

Office Action issued Dec. 9, 2015 in U.S. Appl. No. 29/478,723 by Lev.

West, Vial2Bag DC system, Oct. 2, 2014, https://web.archive.org/web/20141002065133/http://www.westpharma.com/en/products/Pages/Reconstitutionsystems.aspx.

Youtube.com, Vial2Bag DC, Aug. 21, 2014, https://www.youtube.com/watch?v=FEOkglxNBrs.

Office Action issued Dec. 9, 2015 in U.S. Appl. No. 29/478,726 by Lev.

Notice of Allowance issued Jan. 12, 2016 in U.S. Appl. No. 14/385,212 by Lev.

Notice of Allowance issued Mar. 17, 2016 in U.S. Appl. No. 29/502,037 by Lev.

Office Action issued Mar. 25, 2016 in U.S. Application No. 29/478,726 by Lev.

May 17, 2016

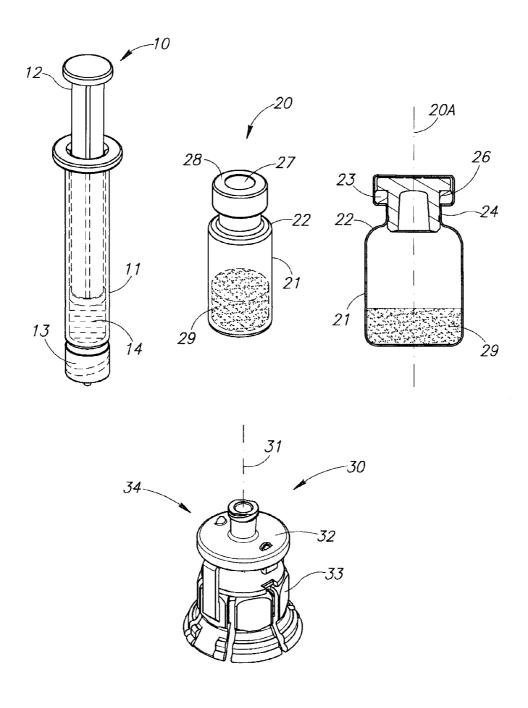
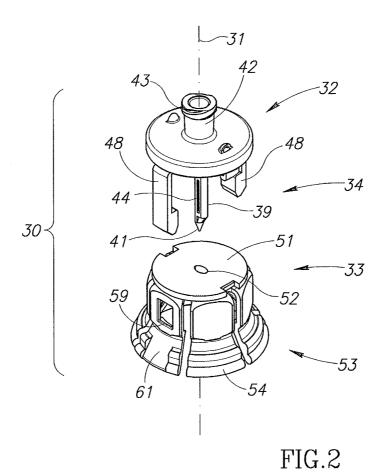
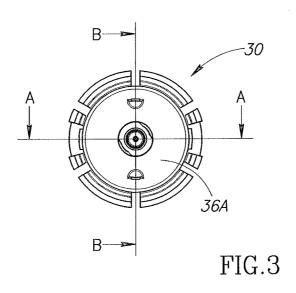
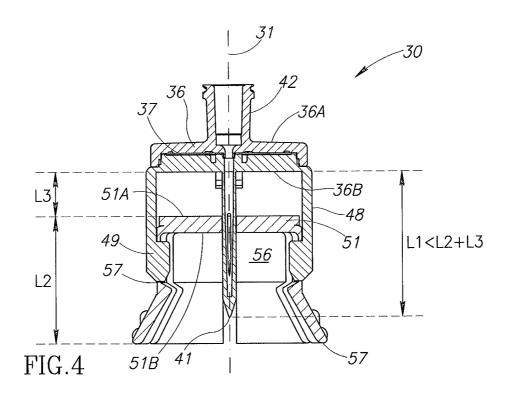





FIG.1

May 17, 2016

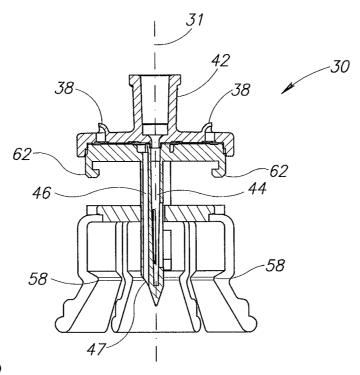
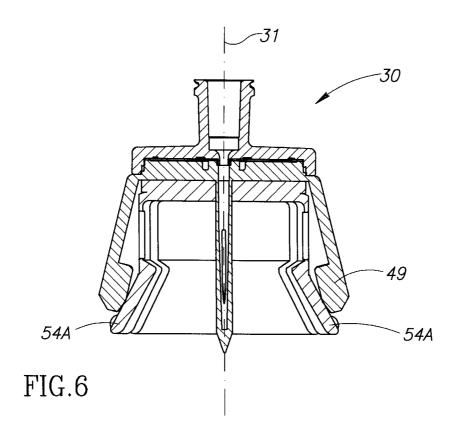



FIG.5

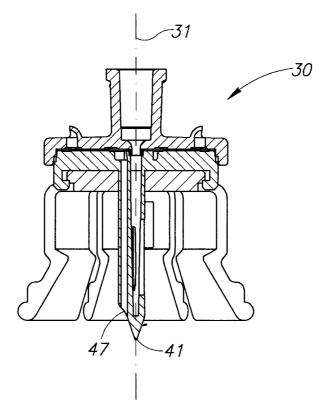


FIG.7

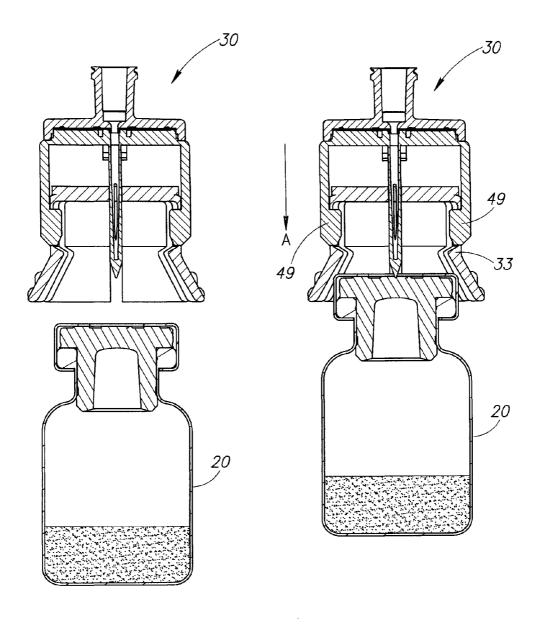
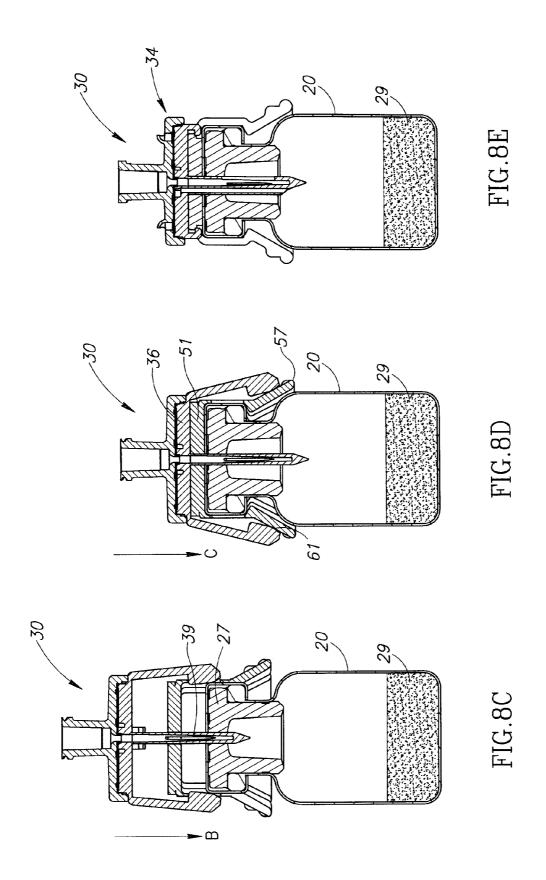
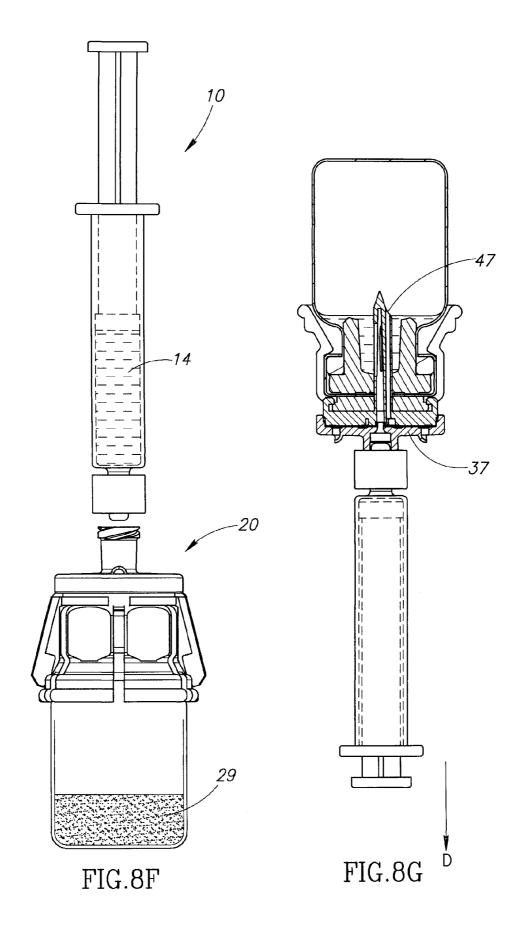




FIG.8A

FIG.8B

1

TELESCOPIC FEMALE DRUG VIAL **ADAPTER**

CROSS-REFERENCE TO RELATED APPLICATION

This application is a Section 371 of International Application No. PCT/IL2013/050407, filed Oct. 17, 2012, which was published in the English language on Mar. 20, 2014, under International Publication No. WO 2014/041529 A1, and the 10 disclosure of which is incorporated herein by reference.

FIELD OF THE INVENTION

The invention relates to drug vial adapters in general and 15 female drug vial adapters in particular.

BACKGROUND OF THE INVENTION

Commonly owned PCT International Application No. 20 PCT/IL2006/000912 entitled Liquid Drug Transfer Devices for Failsafe Correct Snap Fitting onto Medicinal Vials and published under PCT International Publication No. WO 2007/017868 illustrates and describes liquid drug transfer devices including a drug vial adapter designed for guided 25 alignment with a drug vial prior to snap fitting thereon and puncturing same for ensuring flow communication with the drug vial's interior. WO 2007/017868 FIG. 4 illustrates a vented female drug vial adapter for use with a needleless syringe.

A WO 2007/017868 drug vial adapter includes a top wall with a downward depending puncturing member and an opposite upright access port in flow communication with the puncturing member. The top wall is also formed with a downpuncturing member. The generally cylindrical skirt includes at least four axially directed flex members longer than the puncturing member to avoid the puncturing member contacting a drug vial's drug vial stopper prior to alignment of the drug vial adapter and the drug vial. The axially directed flex 40 members include two non-adjacent drug vial retention flex members for snap fitting over a drug vial opening for drug vial retention purposes and at least two non-adjacent drug vial guidance flex members longer than their counterpart drug vial retention flex members for guiding the drug vial adapter with 45 actuated position; respect to a drug vial prior to snap fitting thereon.

A WO 2007/017868 vented female drug vial adapter includes a dual lumen puncturing member having a liquid transfer lumen and a venting lumen. The liquid transfer lumen is in flow communication with a female connector for seal- 50 ingly receiving a needleless syringe. The venting lumen is in flow communication with a generally circular air filter formed in the top wall. Inversion of the vented female drug vial adapter for aspiration of its liquid drug contents leads to liquid drug contents undesirably entering the venting lumen and 55 wetting the air filter therefore considerably detracting from its ability to enable filtered air to pass therethrough for pressure equalization purposes during aspiration.

There is a need for female drug vial adapters for guided alignment relative to a drug vial prior to mounting thereon 60 and puncturing but with a longer puncturing member.

SUMMARY OF THE INVENTION

The present invention is directed toward female drug vial 65 adapters including a dual component construction having a spike component telescopically mounted on a skirt compo2

nent for manual displacement from a set-up position to an actuated position for snug mounting on and puncturing a drug vial. Manual displacement of the spike component towards the skirt component affords initial guided alignment of the drug vial adapter relative to a drug vial prior to being snugly mounted thereon and puncturing same.

The present invention is particularly advantageous for vented female drug vial adapters which can be provisioned with a long puncturing member having a venting lumen with a venting lumen aperture at its puncturing tip. The vented female drug vial adapters are intended to be used with needleless syringes filled with a predetermined volume of liquid contents such that, on inversion of a vented female drug vial adapter mounted on a drug vial with liquid drug contents for aspiration purposes, the venting lumen aperture is above the liquid level of the liquid drug contents in a manner resembling a swimming snorkel. By virtue of this arrangement, liquid drug contents are precluded from entering the venting lumen and wetting the air filter.

BRIEF DESCRIPTION OF DRAWINGS

In order to understand the invention and to see how it can be carried out in practice, a preferred embodiment will now be described, by way of a non-limiting example only, with reference to the accompanying drawings in which similar parts are likewise numbered, and in which:

FIG. 1 is a pictorial representation of a syringe, a drug vial including a longitudinal cross section, and a vented telescopic female drug vial adapter having a longitudinal drug vial adapter axis in a set-up position;

FIG. 2 is an exploded view of the vented telescopic female drug vial adapter;

FIG. 3 is a top plan view of the vented telescopic female ward depending generally cylindrical skirt surrounding the 35 drug vial adapter along the longitudinal drug vial adapter

> FIG. 4 is a longitudinal cross section of the vented telescopic female drug vial adapter along line A-A in FIG. 3 in a set-up position;

> FIG. 5 is a longitudinal cross section of the vented telescopic female drug vial adapter along line B-B in FIG. 3 in its set-up position:

> FIG. 6 is a longitudinal cross section of the vented telescopic female drug vial adapter along line A-A in FIG. 3 in an

> FIG. 7 is a longitudinal cross section of the vented telescopic female drug vial adapter along line B-B in FIG. 3 in its actuated position;

FIG. 8A is a longitudinal cross section of the vented telescopic female drug vial adapter and the drug vial along line A-A in FIG. 3 prior to use;

FIG. 8B is a longitudinal cross section of the vented telescopic female drug vial adapter and the drug vial along line A-A in FIG. 3 pursuant to an initial downward depression of the former toward the latter;

FIG. 8C is a longitudinal cross section of the vented telescopic female drug vial adapter and the drug vial along line A-A in FIG. 3 pursuant to continuing downward depression of the former toward the latter;

FIG. 8D is a longitudinal cross section of the vented telescopic female drug vial adapter fully mounted on and puncturing the drug vial along line A-A in FIG. 3;

FIG. 8E is a longitudinal cross section of the vented telescopic female drug vial adapter fully mounted on and puncturing the drug vial along line B-B in FIG. 3;

FIG. 8F is a longitudinal cross section of the vented telescopic female drug vial adapter and the drug vial along line 3

A-A in FIG. 3 on screw threading a needleless syringe on the former for injection purposes; and

FIG. **8**G is a longitudinal cross section of the vented telescopic female drug vial adapter and the drug vial along line A-A in FIG. **3** after inversion for aspiration purposes.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENT OF THE INVENTION

FIG. 1 shows a syringe 10 constituting a source of physiological fluid, a medicinal drug vial 20 and a vented telescopic female drug vial adapter 30 for use with the syringe 10 and the drug vial 20. The syringe 10 includes a barrel 11 with a plunger 12 and a male Luer lock connector 13. The syringe 10 can be formed with other types of male connectors. The 15 syringe 10 is filled with a liquid component 14. The liquid component 14 can be diluent only. Alternatively, the liquid component 14 can include an active component.

The drug vial 20 has a longitudinal drug vial axis 20A and includes a drug vial bottle 21 having a drug vial shoulder 22, 20 a drug vial rim 23 and an intermediate narrow drug vial neck 24. The drug vial rim 23 defines a drug vial opening 26 sealed by a drug vial stopper 27 capped by a band 28. The drug vial 20 contains a powder drug 29 under negative pressure or a liquid drug 29.

FIGS. 1 to 7 show the vented telescopic female drug vial adapter 30 has a longitudinal drug vial adapter axis 31 and includes a vented spike component 32, a skirt component 33 and a securing arrangement 34 for securing the spike component 32 on the skirt component 33 in an actuated position as 30 shown in FIGS. 6 and 7.

The vented spike component 32 includes a transversely directed spike component top wall 36 having a circular air filter 37 and a pair of vent apertures 38. The vented spike component 32 preferably includes protective hoods 38 as 35 illustrated and described in commonly owned PCT International Application No. PCT/2011/000187 entitled Liquid Drug Transfer Device with Vented Vial Adapter and published under PCT International Publication No. WO 2011/104712.

The spike component top wall 36 includes a downward depending dual lumen puncturing member 39 with a puncturing tip 41 for puncturing a drug vial stopper and an opposite upright female connector 42. The female connector 42 is preferably a female Luer connector with an external screw 45 thread 43. The dual lumen puncturing member 39 includes a liquid transfer lumen 44 in flow communication with the opposite upright female connector 42. The dual lumen puncturing member 39 includes a venting lumen 46 having a venting lumen aperture 47 adjacent the puncturing tip 41 and 50 in flow communication with the pair of vent apertures 38.

The spike component top wall 36 includes an uppermost spike component top wall surface 36A facing the upright female connector 42 and a lowermost spike component top wall surface 36B facing the dual lumen puncturing member 55 39. The puncturing member 39 has a length L1 defined between the lowermost spike component top wall surface 36B and the puncturing tip 41.

The spike component top wall 36 also includes a pair of opposite spaced apart downward depending spike component 60 legs 48 lateral to the puncturing member 39. The spike component legs 48 terminate at leg tips 49 inwardly protruding toward the puncturing tip 41.

The skirt component 33 includes a transversely directed skirt component top wall 51 having a central aperture 52 and a downward depending substantially cylindrical skirt 53. The skirt 53 includes a multitude of drug vial flex members 54

4

defining a drug vial rim cavity **56** for snugly receiving the drug vial rim **23** therein and a skirt component margin **57** remote from the skirt component top wall **51**. The drug vial flex members **54** preferably include inward directed projections **58** for snap fitting on the drug vial rim **23**.

The skirt component top wall 51 includes an uppermost skirt component top wall surface 51A facing the spike component 32 and a lowermost skirt component top wall surface 51B facing the skirt 53. The skirt 53 has a length L2 defined between the uppermost skirt component top wall surface 51A and the skirt component margin 57.

Two opposite drug vial flex members 54A have leg tip apertures 59 for initially receiving the leg tips 49 for initially spacing the spike component top wall 36 from the skirt component top wall 51 with the puncturing member 39 protruding through the central aperture 52 in a set-up position of the telescopic female drug vial adapter 30. The drug vial flex members 54A are preferably formed with smooth outside surfaces 61 beneath the leg tip apertures 59 to enable smooth sliding movement of the legs tips 49 towards the skirt component margin 57.

In the set-up position, the lowermost spike component top wall surface 36B and the uppermost skirt component top wall surface 51A are separated by a length L3. In the set-up position, L1<L2+L3 such that the puncturing tip 41 does not protrude beyond the skirt component margin 57 which would lead to the puncturing tip 41 contacting a drug vial stopper 27 prior to correct alignment of the vented telescopic female drug vial adapter 30 with a drug vial 20. The puncturing member 39 and the skirt 53 are preferably dimensioned such that L1>L2 such that the venting tip aperture 47 protrudes beyond the skirt component margin 57 in the actuated position in which the spike component 32 fully abuts the skirt component 33.

The securing arrangement 34 includes a pair of opposite snap fit clips 62 orthogonal to the pair of opposite spike component legs 48.

FIGS. 8A to 8G show the use of the needleless syringe 10, the drug vial 20 and the vented telescopic female drug vial adapter 30. The needleless syringe 10 is filled with a predetermined volume of liquid contents 29 to ensure a snorkel like effect such that liquid contents do not wet the circular air filter 37 as described hereinbelow with respect to FIG. 8G.

FIG. 8A shows the female drug vial adapter 30 in its set-up position and in co-axial alignment with the drug vial 20 ready for snap fitting thereon and puncturing same.

FIG. 8B shows an initial downward depression of the female drug vial adapter 30 toward the drug vial 20 as denoted by arrow A. The leg tips 49 impart a downward force to the skirt component 33. The flex members 54 ensure the spike component 32 is aligned with the skirt component 33 in case of misalignment before the puncturing tip 41 starts puncturing the drug vial stopper 27.

FIG. 8C shows continuing downward depression of the drug vial adapter 30 towards the drug vial 20 as denoted by arrow B causes the puncturing member 39 to puncture the drug vial stopper 27. The drug vial 20 urges the leg tips 49 radial outward from the leg tip apertures 59. In the case of negative pressure drug vial 20, air enters the drug vial 20 via both the liquid transfer lumen 44 and the venting lumen 46.

FIGS. 8D and 8E show complete downward depression of the drug vial adapter 30 towards the drug vial 20 until the former 30 snap fits on and punctures the drug vial stopper 27 as denoted by arrow C. The spike component 32 stops against the skirt component 33. The leg tips 49 slide along the smooth external surfaces 61 towards the skirt component margin 57.

5

The securing arrangement 34 is engaged to secure the drug vial adapter 30 and the drug vial 20.

FIG. 8F shows the syringe 10 ready for screw thread mounting on the female drug vial adapter 30 for injection of its liquid contents 29. The assemblage of the syringe 10, the 5 drug vial 20 and the female drug vial adapter 30 is gently agitated to ensure complete reconstitution of powder contents. On injection of the liquid contents, air exits from the drug vial 20 via the venting lumen 46 and the vent apertures

FIG. 8G shows inversion of FIG. 8F's assemblage for aspiration of the liquid drug contents from the drug vial 20 to the syringe 10 as denoted by arrow D for administration purposes. The venting lumen aperture 47 is above the liquid level of the drug liquid contents to resemble a swimming 15 snorkel such that the air filter 37 is not wetted. Air is drawn into the drug vial 20 via the vent apertures 38, the air filter 37 and the venting lumen 46.

While the invention has been described with respect to a limited number of embodiments, it will be appreciated that 20 many variations, modifications, and other applications of the invention can be made within the scope of the appended claims.

The invention claimed is:

- 1. A telescopic female drug vial adapter for use with a drug 25 vial including a drug vial bottle containing a medicament, and a drug vial rim defining a drug vial opening stopped by a drug vial stopper, the drug vial adapter having a longitudinal drug vial adapter axis and comprising:
 - (a) a spike component including a transversely directed 30 spike component top wall having
 - i) a downward depending puncturing member with a puncturing tip for puncturing the drug vial stopper and an opposite upright female connector in flow communication with said puncturing member, and
 - ii) at least two spaced apart downward depending spike component legs lateral to said puncturing member, said at least two spike component legs terminating at leg tips inwardly protruding toward said puncturing tip; and
 - (b) a skirt component including a transversely directed skirt component top wall having a central aperture, a downward depending substantially cylindrical skirt of a

6

multitude of drug vial flex members and a skirt component margin remote from said skirt component top wall, said multitude of drug vial flex members defining a drug vial rim cavity for snugly receiving the drug vial rim therein, said at least two drug vial flex members having leg tip apertures for initially receiving said leg tips in a set-up position of the telescopic female drug vial adapter for initially spacing said spike component top wall from said skirt component top wall with said puncturing member protruding through said central aperture,

- the arrangement being such that on urging the drug vial adapter towards a drug vial positioned below said drug vial adapter and manual sliding displacement of said spike component towards said skirt component for stopping thereagainst in an actuated position of the telescopic female drug vial adapter, said drug vial flex members snugly receive the drug vial rim in said drug vial rim cavity, said puncturing member punctures the drug vial stopper and said leg tips are urged radially outward from their corresponding leg tip apertures to slide downward along their corresponding drug vial flex members towards said skirt component margin.
- 2. The adapter according to claim 1 further comprising a securing arrangement for securing said spike component on said skirt component in said actuated position.
- 3. The adapter according to claim 2 wherein said spike component includes a pair of opposite spike component legs and said securing arrangement includes a pair of opposite snap fit clips orthogonal to said pair of opposite spike component legs.
- **4**. The adapter according to claim **1** wherein said puncturing member protrudes beyond said skirt component margin in said actuated position.
- 5. The adapter according to claim 1 wherein said spike component is vented, said spike component top wall includes a circular air filter and at least one vent aperture, and said puncturing member includes a liquid transfer lumen in flow communication with said opposite upright female connector and a venting lumen in flow communication with said air filter, and said venting lumen includes a venting lumen aperture adjacent said puncturing member tip.

* * * * *