INTRODUCTION

The present invention is directed to compounds of formula (I), wherein X, Y, R1, R2, R3, R4, R5, and R6 are as defined herein. These compounds are useful for inhibiting the activity of a metalloproteinase by contacting the metalloproteinase with an effective amount of the inventive compounds.
<table>
<thead>
<tr>
<th>Code</th>
<th>Country</th>
<th>Language</th>
<th>Code</th>
<th>Country</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL</td>
<td>Albania</td>
<td>ES</td>
<td>LS</td>
<td>Lesotho</td>
<td></td>
</tr>
<tr>
<td>AM</td>
<td>Armenia</td>
<td>FI</td>
<td>LT</td>
<td>Lithuania</td>
<td></td>
</tr>
<tr>
<td>AT</td>
<td>Austria</td>
<td>FR</td>
<td>LU</td>
<td>Luxembourg</td>
<td></td>
</tr>
<tr>
<td>AU1</td>
<td>Australia</td>
<td>GA</td>
<td>LV</td>
<td>Latvia</td>
<td></td>
</tr>
<tr>
<td>AZ</td>
<td>Azerbaijan</td>
<td>GB</td>
<td>MC</td>
<td>Monaco</td>
<td></td>
</tr>
<tr>
<td>BA</td>
<td>Bosnia and Herzegovina</td>
<td>GE</td>
<td>MD</td>
<td>Republic of Moldova</td>
<td></td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>GH</td>
<td>MG</td>
<td>Madagascar</td>
<td></td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
<td>GN</td>
<td>MK</td>
<td>The former Yugoslav</td>
<td></td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>GR</td>
<td>ML</td>
<td>Mali</td>
<td></td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>HU</td>
<td>MN</td>
<td>Mongolia</td>
<td></td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
<td>IE</td>
<td>MR</td>
<td>Mauritania</td>
<td></td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>IL</td>
<td>MW</td>
<td>Malawi</td>
<td></td>
</tr>
<tr>
<td>BY</td>
<td>Belarus</td>
<td>IS</td>
<td>MX</td>
<td>Mexico</td>
<td></td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
<td>IT</td>
<td>NE</td>
<td>Niger</td>
<td></td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
<td>JP</td>
<td>NL</td>
<td>Netherlands</td>
<td></td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>KE</td>
<td>NO</td>
<td>Norway</td>
<td></td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td>KG</td>
<td>NZ</td>
<td>New Zealand</td>
<td></td>
</tr>
<tr>
<td>CI</td>
<td>Côte d'Ivoire</td>
<td>KP</td>
<td>PL</td>
<td>Poland</td>
<td></td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
<td>KR</td>
<td>PT</td>
<td>Portugal</td>
<td></td>
</tr>
<tr>
<td>CN</td>
<td>China</td>
<td>KZ</td>
<td>RO</td>
<td>Romania</td>
<td></td>
</tr>
<tr>
<td>CU</td>
<td>Cuba</td>
<td>LC</td>
<td>RU</td>
<td>Russian Federation</td>
<td></td>
</tr>
<tr>
<td>CZ</td>
<td>Czech Republic</td>
<td>LI</td>
<td>SD</td>
<td>Sudan</td>
<td></td>
</tr>
<tr>
<td>DE</td>
<td>Germany</td>
<td>LK</td>
<td>SE</td>
<td>Sweden</td>
<td></td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
<td>LR</td>
<td>SG</td>
<td>Singapore</td>
<td></td>
</tr>
<tr>
<td>EE</td>
<td>Estonia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.
HETEROARYL SUCCINAMIDES AND THEIR USE AS METALLOPROTEINASE INHIBITORS

Matrix metalloproteases ("MMPs") are a family of proteases (enzymes) involved in the degradation and remodeling of connective tissues. Members of this family of endopeptidase enzymes are secreted as proenzymes from various cell types that reside in or are associated with connective tissue, such as fibroblasts, monocytes, macrophages, endothelial cells, and invasive or metastatic tumor cells. MMP expression is stimulated by growth factors and cytokines in the local tissue environment, where these enzymes act to specifically degrade protein components of the extracellular matrix, such as collagen, proteoglycans (protein core), fibronectin and laminin. These ubiquitous extracellular matrix components are present in the linings of joints, interstitial connective tissues, basement membranes and cartilage.

The MMPs share a number of properties, including zinc and calcium dependence, secretion as zymogens, and 40-50% amino acid sequence homology. Eleven metalloenzymes have been well-characterized as MMP's in humans, including three collagenases, three stromelysins, two gelatinases, matrilysin, metalloelastase, and membrane-type MMP, as discussed in greater detail below.

Interstitial collagenases catalyze the initial and rate-limiting cleavage of native collagen types I, II and III. Collagen, the major structural protein of mammals, is an essential component of the matrix of many tissues, for example, cartilage, bone, tendon and skin. Interstitial collagenases are very specific matrix metalloproteases which cleave these collagens to give two fragments which spontaneously denature at physiological temperatures and therefore become susceptible to cleavage by less specific enzymes. Cleavage by the collagenases results in the loss of structural integrity of the target tissue, essentially an irreversible process. There are currently three known human collagenases, the first two of which are relatively well-characterized (FASEG
J., 5, 2145-54 (1991)). Human fibroblast-type collagenase (HFC, MMP-1, or collagenase-1) is produced by a wide variety of cells including fibroblasts and macrophages. Human neutrophil-type collagenase (HNC, MMP-8, or collagenase-2) has so far only been demonstrated to be produced by neutrophils. The most recently discovered member of this group of MMPs is human collagenase-3 (MMP-13), which was originally found in breast carcinomas (J. Biol. Chem., 269, 16,766-16,773) (1994)), but has since shown to be produced by chondrocytes (J. Clin. Invest., 97, 761-768, 1996).

The gelatinases include two distinct, but highly related, enzymes: a 72-kD enzyme (gelatinase A, HFG, MMP-2) secreted by fibroblasts and a wide variety of other cell types, and a 92-kD enzyme (gelatinase B, HNG, MMP-9) released by mononuclear phagocytes, neutrophils, corneal epithelial cells, tumor cells, cytotrophoblasts and keratinocytes. These gelatinases have been shown to degrade gelatins (denatured collagens), collagen types IV (basement membrane) and V, fibronectin and insoluble elastin.

Stromelysins 1 and 2 have been shown to cleave a broad range of matrix substrates, including laminin, fibronectin, proteoglycans, and collagen types IV and IX in their non-helical domains.

Matrilysin (MMP-7, PUMP-1) has been shown to degrade a wide range of matrix substrates including proteoglycans, gelatins, fibronectin, elastin and laminin. Its expression has been documented in mononuclear phagocytes, rate uterine explants and sporadically in tumors. Other less characterized MMPs include macrophage metalloelastase (MME, MMP-12), membrane type MMP (MMP-14), and stromelysin-3 (MMP-11).
Excessive degradation of extracellular matrix by MMPs is implicated in the pathogenesis of many diseases of both chronic and acute nature. For example, numerous studies, as reviewed in *Exp. Opin. Invest. Drugs*, 5, 323-335, (1996), have established that expression and activation of MMPs are critical events in tumor growth, invasion and metastasis. In addition, MMP activity has been found to be required for angiogenesis, which is necessary for tumor growth as well for other pathological conditions such as macular degeneration.

Inhibitors of MMPs are expected to provide useful treatments for the diseases described above in which degradation of the extracellular matrix by MMPs contributes to the pathogenesis of the disease. In general, selective MMP inhibitors of particular subsets of MMPs may offer therapeutic advantages, as it has been typically observed that a limited number of members of the MMP family are involved in any one of the disease states listed above. For example, the involvement of individual collagenases in the degradation of tissue collagens probably depends markedly on the tissue. The tissue distribution of human collagenases suggests that collagenase-3 is the major participant in the degradation of the collagen matrix of cartilage, while collagenase-1 is more likely to be involved in tissue remodeling of skin and other soft tissues. In addition, stromelysin-1 appears to be largely responsible for excessive loss of proteoglycan from cartilage. Thus, the inventive compounds disclosed herein that are selective inhibitors for collagenase-3 and stromelysin over collagenase-1 are preferred for treatment of diseases associated with cartilage erosion, such as rheumatoid and osteoarthritis. Similarly, among the MMPs, metalloelastase has been specifically implicated in the pathology of pulmonary emphysema. See J. Biol. Chem. 270, 14568-14575 (1995).

The design and uses of MMP inhibitors are reviewed, for example, in J. Enzyme Inhibition, 2, 1-22 (1987); Progress in Medicinal Chemistry 29, 271-334 (1992); Current Medicinal Chemistry, 2, 743-762 (1995); Exp. Opin. Ther. Patents, 5, 1287-1296 (1995); and Drug Discovery Today, 1, 16-26 (1996). MMP inhibitors are also the subject of numerous patents and patent applications. In the majority of these publications, the preferred inventive compounds are hydroxamic acids, as it has been well-established that the hydroxamate function is the optimal zinc-coordinating functionality for binding to the active site of MMPs. For
example, the hydroxamate inhibitors described in the literature are generally 100 to 1000-fold more potent than the corresponding inhibitors wherein the hydroxamic acid functionality is replaced by a carboxylic acid functionality. Nevertheless, hydroxamic acids tend to exhibit relatively poor bioavailability. The preferred compounds disclosed herein are carboxylic acid inhibitors that possess inhibitory potency against certain of the MMPs that is comparable to the potency of the hydroxamic acid inhibitors that have been reported in the literature. The following patents and patent applications disclose carboxylic acid inhibitors that are, as are the inventive carboxylic acid inhibitors disclosed herein, monoamine derivatives of substituted succinic acids: Celltech Ltd.: EP-A-0489577 (WO 92/099565), EP-A-0489579, WO 93/24475, WO 93/244449; British Biotech Pharmaceuticals Ltd.: WO 95/32944, WO 95/19961; Sterling Winthrop, Inc.: US 5,256,657; Sanofi Winthrop, Inc.: WO 95/22966; and Syntex (U.S.A.) Inc. WO 94/04735, WO 95/12603, and WO 96/16027.

SUMMARY OF THE INVENTION

The present invention is directed to compounds of the formula I:

![Chemical Structure](image)

wherein
X is a single bond or a straight or branched, saturated or unsaturated chain containing 1 to 6 carbon atoms, wherein one or more of the carbon atoms are optionally independently replaced with O or S, and wherein one or more of the hydrogen atoms are optionally replaced with F;

Y is a single bond, -CH(OH)-, or -C(O)-;

R₁ is H, an alkyl group, an aryl group, a heteroaryl group, a cycloalkyl group, or a heterocycloalkyl group;

R₂ is H, an alkyl group, an aryl group, a heteroaryl group, a cycloalkyl group, a heterocycloalkyl group, or C(O)R₁₀

wherein R₁₀ is H, an O-alkyl group, an alkyl group, an aryl group, a heteroaryl group, a cycloalkyl group, a heterocycloalkyl group, an O-aryl group, an O-alkyl group, or NR₁₁R₁₂;

wherein R₁₁ is H, an alkyl group, an O-alkyl group, an aryl group, a heteroaryl group, a cycloalkyl group, or a heterocycloalkyl group, and

wherein R₁₂ is H, an alkyl group, an aryl group, a heteroaryl group, a cycloalkyl group, or a heterocycloalkyl group,

or wherein R₁₁ and R₁₂ form, together with the nitrogen to which they are attached, a heteroaryl group or a heterocycloalkyl group; and

R₃ is H, an alkyl group, an aryl group, a heteroaryl group, a cycloalkyl group, a heterocycloalkyl group, NR₁₁R₁₂, or OR₁₁, wherein R₁₁ and R₁₂ are as defined above,

or R₂ and R₃, together with the atom(s) to which they are attached, form a cycloalkyl group or a heterocycloalkyl group;
R₄ is H or any suitable organic moiety;

R₅ is C(O)NHOH, C(O)OR₁₃, SH, N(OH)CHO, SC(O)R₁₄, P(O)(OH)R₁₅, or P(O)(OH)OR₁₅;

R₁₃ is H, an alkyl group, or an aryl group,

R₁₄ is an alkyl group or an aryl group, and

R₁₅ is an alkyl group; and

is a heteroaryl group having five ring atoms, including 1, 2 or 3 heteroatoms selected from O, S, and N;

and pharmaceutically acceptable salts and solvates thereof, and pharmaceutically acceptable prodrugs thereof, said prodrugs being different from compounds of the formula (I); with the proviso that if the compound of formula (I) is:

![Chemical Structure](image)

wherein R₁, R₄, and R₅ are as defined above, W is H, OH, a halo group, an alkyl group, or an O-alkyl group, and further wherein

when m is 2, 3, or 4, n is 1, 2, 3, or 4, and A is CH₂, O, NH, or N-alkyl; and

7
when \(m \) is 4, 5, or 6, \(n \) is 0, and \(A \) is -CHJ-, wherein J is carboxy, alkoxy carbonyl, or carbamoyl;

or a pharmaceutically acceptable salt or solvate thereof, or a pharmaceutically acceptable prodrug thereof, said prodrug being different from a compound of the formula (I); then

\[
\text{is pyrrolyl.}
\]

The present invention is further directed to pharmaceutical compositions comprising a therapeutically effective amount of a compound of formula 1, or a pharmaceutically acceptable salt or solvate thereof, or a pharmaceutically acceptable prodrug thereof, said prodrug being different from a compound of the formula (I).

The present invention is even further directed to methods of using the the compounds of formula (I), and pharmaceutically acceptable salts and solvates thereof, and pharmaceutically acceptable prodrugs thereof, said prodrug being different from a compound of the formula (I).
DETAILED DESCRIPTION OF THE INVENTION

The present invention is directed to compounds of the formula I:

(I)

wherein

X is a single bond or a straight or branched, saturated or unsaturated chain containing 1 to 6 carbon atoms, wherein one or more of the carbon atoms are optionally independently replaced with O or S, and wherein one or more of the hydrogen atoms are optionally replaced with F;

Y is a single bond, -CH(OH)-, or -C(O)-;

R₁ is H, an alkyl group, an aryl group, a heteroaryl group, a cycloalkyl group, or a heterocycloalkyl group;

R₂ is H, an alkyl group, an aryl group, a heteroaryl group, a cycloalkyl group, a heterocycloalkyl group, or C(O)R₁₀,

wherein R₁₀ is H, an alkyl group, an aryl group, a heteroaryl group, a cycloalkyl group, a heterocycloalkyl group, an O-aryl group, an O-alkyl group, or NR₁₁R₁₂;

wherein R₁₁ is H, an alkyl group, an O-alkyl group, an aryl group, a heteroaryl group, a cycloalkyl group, or a heterocycloalkyl group, and
wherein R_{12} is H, an alkyl group, an aryl group, a heteroaryl group, a cycloalkyl group, or a heterocycloalkyl group,

or wherein R_{11} and R_{12} form, together with the nitrogen to which they are attached, a heteroaryl group or a heterocycloalkyl group; and

R_3 is H, an alkyl group, an aryl group, a heteroaryl group, a cycloalkyl group, a heterocycloalkyl group, $NR_{11}R_{12}$, or OR_{11}, wherein R_{11} and R_{12} are as defined above,

or R_2 and R_3, together with the atom(s) to which they are attached, form a cycloalkyl group or a heterocycloalkyl group;

R_4 is H or any suitable organic moiety;

R_5 is $C(O)\text{NHOH}$, $C(O)\text{OR}_{13}$, SH, N(OH)CHO, SC(O)R_{14}, P(O)(OH)R_{15}, or P(O)(OH)OR_{13},

wherein R_{13} is H, an alkyl group, or an aryl group;

R_{14} is an alkyl group or an aryl group; and

R_{15} is an alkyl group; and

is a heteroaryl group having five ring atoms, including 1, 2 or 3 heteroatoms selected from O, S, and N;
and pharmaceutically acceptable salts and solvates thereof, and pharmaceutically acceptable prodrugs thereof, said prodrugs being different from compounds of the formula (I); with the proviso that if the compound of formula (I) is:

![Chemical Structure](image)

wherein R_1, R_4, and R_5 are as defined above, W is H, OH, a halo group, an alkyl group, or an O-alkyl group, and further wherein

- when m is 2, 3, or 4, n is 1, 2, 3, or 4, and A is CH_2, O, NH, or N-alkyl; or
- when m is 4, 5, or 6, n is 0, and A is $-\text{CHJ}$, wherein J is carboxy, alkoxy carbonyl, or carbamoyl;

or a pharmaceutically acceptable salt or solvate thereof, or a pharmaceutically acceptable prodrug thereof, said prodrug being different from a compound of the formula (I), said prodrug being different from a compound of the formula (I); then

\[\text{is pyrrolyl.}\]
More preferably the compounds of the present invention are selected from compounds of the formula I wherein

X is a single bond;

Y is a single bond, -CH(OH)- or -C(O)-;

R₁ is an aryl group or a heteroaryl group;

R₂ is H, an alkyl group, an aryl group, a heteroaryl group, a cycloalkyl group, a heterocycloalkyl group, or C(O)R₁₀, wherein R₁₀ is as defined above;

R₃ is H, an alkyl group, a heteroaryl group, NR₁₁R₁₂ or OR₁₁, wherein R₁₁ and R₁₂ are as defined above

or R₂ and R₃, together with the atoms to which they are attached, form a cycloalkyl group or heterocycloalkyl group;

R₄ is H, an alkyl group, OH, an O-alkyl group, NH₂, NH-alkyl, or a cycloalkyl group;

R₅ is C(O)NH₂H, C(O)OR₁₃, SH, or SC(O)R₁₄,

wherein R₁₃ is H, an alkyl group, or an aryl group, and R₁₄ is an alkyl group or an aryl group; and

is pyrrolyl, imidazolyl, pyrazolyl, furyl, thiényl, thiazolyl, oxazolyl, isoxazolyl, isothiazolyl, oxadiazolyl, or triazolyl;

or a pharmaceutically acceptable salt or solvate thereof, or a pharmaceutically acceptable prodrug thereof, said prodrug being different from a compound of the formula (I).

In the compounds of the present invention, and the pharmaceutically acceptable salts and solvates thereof, and pharmaceutically acceptable prodrugs thereof, preferably X is a single bond.
In particularly preferred embodiments, when Y is -CH(OH)-, preferably R_3 is H or an alkyl group or together with R_2 and the atom(s) to which R_2 and R_3 are attached forms a cycloalkyl group or heterocycloalkyl group, and more preferably R_3 is H. When Y is -C(O)-, preferably R_3 is an alkyl group, NR$_{11}$R$_{12}$, or OR$_{11}$, wherein R_{11} and R_{12} are as defined above, or together with R_2 and the atoms to which R_2 and R_3 are attached, forms a cycloalkyl group or heterocycloalkyl group. When Y is a single bond, preferably R_3 is a heteroaryl group, more preferably the heteroaryl group:

![Diagram](image)

wherein R_{21} and R_{22} are independently any suitable organic moiety or together with the carbon atoms to which they are attached form an aryl group, a heteroaryl group, a cycloalkyl group, or a heterocycloalkyl group. Preferably R_{21} and R_{22} are selected from hydrogen, an alkyl group, an aryl group, a heteroaryl group, a halo group, a C(O)O-alkyl group, a carbamoyl group, a cycloalkyl group, or a heterocycloalkyl group.

Preferably R_1 is an aryl group or a heteroaryl group. More preferably R_1 is an aryl group of the formula:

![Diagram](image)
wherein Z is H, halogen, an alkyl group, an O-alkyl group, a cyano group, a hydroxy group, an aryl group, a heteroaryl group, or a heterocycloalkyl group.

Preferably \(R_4 \) is H, an alkyl group, or OH. More preferably \(R_4 \) is H or an alkyl group selected from \(\text{CHR}_{16}\text{OH} \) and \(\text{CH(NHR}_{17}\text{)}\text{R}_{16} \), wherein \(R_{16} \) is H, an alkyl group, an aryl group, a heteroaryl group, a cycloalkyl group, or a heterocycloalkyl group, and \(R_{17} \) is \(\text{C(O)R}_{18} \), \(\text{SO}_2\text{R}_{18} \), H, an alkyl group, an aryl group, a heteroaryl group, a cycloalkyl group, or a heterocycloalkyl group, or \(R_{16} \) and \(R_{17} \), together with the atoms to which they are attached, form a heterocycloalkyl group; wherein \(R_{18} \) is H, an alkyl group, an aryl group, a heteroaryl group, a cycloalkyl group, a heterocycloalkyl group, an O-aryl group, an O-alkyl group, or \(\text{NR}_{19}\text{R}_{20} \);

wherein \(R_{19} \) and \(R_{20} \) independently are H, an alkyl group, an aryl group, a heteroaryl group, a cycloalkyl group, or a heterocycloalkyl group, or \(R_{19} \) and \(R_{20} \), together with the nitrogen atom to which they are attached, form a heterocycloalkyl group.

Preferably

\[
\text{HET}
\]

is pyrrolyl, imidazolyl, pyrazolyl, furyl, thieryl, thiazolyl, oxazolyl, isoxazolyl, isothiazolyl, oxadiazolyl, or triazolyl, more preferably is pyrrolyl, fuyl or thieryl, and most preferably is pyrrolyl.

Preferably \(R_5 \) is \(\text{C(O)NH}_{10} \) or \(\text{C(O)OR}_{13} \), wherein \(R_{13} \) is hydrogen.

Particularly preferred compounds according to the invention include:

\[
\text{N-[2,2-Dimethyl-1(S)-(methylcarbamoyl)propyl]-3(R)-(3-phenyl-1H-pyrrol-1-yl)succinamic Acid};
\]
N-(8-Oxo-4-oxa-1,7-diazatricyclo[9.6.1.012,17]octadeca-11(18),12,14,16-tetraen-9(S)-yl)-3(R)-(3-phenyl-1H-pyrrol-1-yl)succinamic Acid;
N-[2,2-Dimethyl-1(S)-(methylcarbamoyl)propyl]-3(R)-[3-(pyridin-4-yl)-1H-pyrrol-1-yl]succinamic Acid;
3(R)-[3-(Biphenyl-4-yl)-1H-pyrrol-1-yl]-N-[2,2-dimethyl-1(S)-(methylcarbamoyl)propyl]succinamic Acid;
3(R)-[3-(Biphenyl-4-yl)-1H-pyrrol-1-yl]-N-[2-hydroxy-1(S)-[1H-imidazol-4-yl]methyl]ethylsuccinamic Acid;
N-[2,2-Dimethyl-1(S)-(methylcarbamoyl)propyl]-3(R)-[3-(4-propylphenyl)-1H-pyrrol-1-yl] succinamic Acid;
3(R)-[3-(4-Cyanophenyl)-1H-pyrrol-1-yl]-N-[2,2-dimethyl-1(S)-(methylcarbamoyl)propyl] succinamic Acid;
N-[2,2-Dimethyl-1(S)-(hydroxymethyl)propyl]-3(R)-[3-[4-(pyridin-4-yl)phenyl]-1H-pyrrol-1-yl]succinamic Acid;
N-(2-Hydroxy-1(S)-phenylethyl)-3(R)-[3-[4-(pyridin-4-yl)phenyl]-1H-pyrrol-1-yl]succinamic Acid;
3(R)-[3-(4'-Cyanobiphenyl-4-yl)-1H-pyrrol-1-yl]-N-[2,2-dimethyl-1(S)-(methylcarbamoyl)propyl]succinamic Acid;
3(R)-[3-(4'-Cyanobiphenyl-4-yl)-1H-pyrrol-1-yl]-N-[2,2-dimethyl-1(S)-(pyridin-4-ylcarbamoyl)propyl]succinamic Acid;
3(R)-[3-(4'-Carbamoyl)biphenyl-4-yl)-1H-pyrrol-1-yl]-N-[2,2-dimethyl-1(S)-(methylcarbamoyl)propyl]succinamic Acid;
3(R)-[3-(4'-Carbamoyl biphenyl-4-yl)-1H-pyrrol-1-yl]-N-[2,2 dimethyl-1(S)-(pyridin-4-yl-carbamoyl)propyl]succinamic Acid;
3(R)-[3-(4'-Cyanobiphenyl-4-yl)-1H-pyrrol-1-yl]-N-[2,2 dimethyl-1(S)-(hydroxymethyl)propyl] succinamic Acid;
N-(2(R)-Hydroxyindan-1(R)-yl)-3(R)-[3-[4-(pyridin-4-yl)phenyl]-1H-pyrrol-1-yl] succinamic Acid;
N-(2,2-Dimethyl-1(S)-(methylcarbamoyl)propyl)-3(R)-[3-(4-(pyridin-4-yl)phenyl)-1H-pyrrol-1-yl] succinamic Acid;
N-(4,4-Dimethyl-2-oxo-tetrahydrofuran-3(S)-yl)-3(R)-[3-[4-(pyridin-4-yl)phenyl]-1H-pyrrol-1-yl] succinamic Acid;
N-(8-Oxo-4-oxa-1,7-diazatricyclo[9.6.1.0^12,17]octadeca-11(18),12,14,16-tetraen-9(S)-yl)-3(R)-[3-[4-(pyridin-4-yl)phenyl]-1H-pyrrol-1-yl] succinamic Acid;
N-[2,2-Dimethyl-1(S)-(pyridin-4-ylcarbamoyl)propyl]-3(R)-[3-[4-(pyridin-4-yl)phenyl]-1H-pyrrol-1-yl] succinamic Acid;
N-[1(S)-(IH-Imidazol-2-yl)-3-methylbutyl]-3(R)-[3-[4-(pyridin-4-yl)phenyl]-1H-pyrrol-1-yl] succinamic Acid;
N'-[2,2-Dimethyl-1(S)-(hydroxymethyl)propyl]-N^4-hydroxy-2(R)-[3-[4-(pyridin-4-yl)phenyl]-1H-pyrrol-1-yl] succinamide;
N-[2,2-Dimethyl-1(S)-(methylcarbamoyl)propyl]-3(S)-[1-(4-fluorophenyl)-1H-pyrrol-3-yl] succinamic Acid;
3(S)-[1-(4'-Cyanobiphenyl-4-yl)-1H-pyrrol-3-yl]-N-[2,2 dimethyl-1(S)-(methylcarbamoyl)propyl] succinamic Acid;
3(S)-[1-(4'-Cyanobiphenyl-4-yl)-1H-pyrrol-3-yl]-N-[1(S)-(1H-imidazol-2-yl)-3-
methylbutyl]succinic Acid;

3(S)-[1-(4'-Cyanobiphenyl-4-yl)-1H-pyrrol-3-yl]-N-(4,4-dimethyl-2-oxo-tetrahydrofuran-
3(S)-yl)succinic Acid;

3(R)-[3-(4'-Cyanobiphenyl-4-yl)-1H-pyrrol-1-yl]-N-[1(S)-(1H-imidazol-2-yl)-3-
methylbutyl]succinic Acid;

3(R)-[3-(4-Cyanophenyl)-1H-pyrrol-1-yl]-N-[1(S)-(1H-imidazol-2-yl)-3-
methylbutyl]succinic Acid;

N-[2,2-Dimethyl-1(S)-(hydroxymethyl)propyl]-3(S)-[1-[4-(pyridin-4-yl)phenyl]-1H-
pyrrol-3-yl] succinic Acid;

3(R)- [3-[2-(4-Cyanophenyl)ethynyl]-1H-pyrrol-1-yl]-N-[2,2-dimethyl-
1(S)(methylcarbamoyl)-propyl] succinic Acid;

3(R)- [3-[2-(4-Cyanophenyl)ethyl]-1H-pyrrol-1-yl]-N-[2,2-dimethyl-
1(S)(methylcarbamoyl)-propyl] succinic Acid;

N'-Hydroxy-N'-methyl-3(R)-[3-(4-(pyridin-4-yl)phenyl)-1H-pyrrol-1-yl]succinamide;

3(R)- [3-(4'-Cyanobiphenyl-4-yl)-1H-pyrrol-1-yl]-2(S)-cyclopropyl-N-(2,2-dimethyl-
1(S)(methylcarbamoyl)propyl)succinic Acid;

3(S)-[2-(4'-Cyanobiphenyl-4-yl)furan-4-yl]-N-[2,2-dimethyl-1(S)-(methylcarbamoyl-
propyl)succinic Acid;

3(S)-[1-(4'-Cyanobiphenyl-4-yl)-1H-pyrrol-3-yl]-N-(2,2-dimethyl-1(S)-
(methylcarbamoyl)propyl)-2(R)-(hydroxymethyl)succinic Acid;
3(S)-[1-(4'-Cyanobiphenyl-4-y1)-1H-pyrrol-3-y1]-N-(2,2-dimethyl-1(S)-
(methylcarbamoyl)propyl)-2(S)-(hydroxy)succinamic Acid;

3(R)-[3-(4'-Cyanobiphenyl-4-y1)-1H-pyrrol-1-y1]-N-(2,2-dimethyl-1(S)-
(methylcarbamoyl)propyl)-2(S)-(hydroxy)succinamic Acid;

and the pharmaceutically acceptable salts and solvates thereof, and the pharmaceutically
acceptable prodrugs thereof.

As used in the present application, the following definitions apply:

An "alkyl group" is intended to mean a straight or branched chain monovalent radical of
saturated and/or unsaturated carbon atoms and hydrogen atoms, such as methyl, ethyl, propyl,
isopropyl, butyl, isobutyl, t-butyl, ethenyl, pentenyl, butenyl, propenyl, ethynyl, butynyl,
propynyl, pentynyl, hexynyl, and the like, which may be unsubstituted (i.e., containing only
carbon and hydrogen) or substituted by one or more suitable substituents as defined below.

An "O-alkyl group" is intended to mean an oxygen bonded to an alkyl group, wherein the
alkyl group is as defined above.

A "cycloalkyl group" is intended to mean a non-aromatic, monovalent monocyclic,
bicyclic, or tricyclic radical containing 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, or 14 carbon ring atoms,
each of which may be saturated or unsaturated, and which may be unsubstituted or substituted by
one or more suitable substituents as defined below, and to which may be fused one or more
heterocycloalkyl groups, aryl groups, or heteroaryl groups, which themselves may be
unsubstituted or substituted by one or more suitable substituents. Illustrative examples of
cycloalkyl groups include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl,
cyclopentenyl, cyclohexyl, cyclohexenyl, cycloheptyl, cyclooctyl, bicyclo[2.2.1]heptyl,

A "heterocycloalkyl group" is intended to mean a non-aromatic, monovalent monocyclic, bicyclic, or tricyclic radical, which is saturated or unsaturated, containing 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, or 18 ring atoms, and which includes 1, 2, 3, 4, or 5 heteroatoms selected from nitrogen, oxygen and sulfur, wherein the radical is unsubstituted or substituted by one or more suitable substituents as defined below, and to which may be fused one or more cycloalkyl groups, aryl groups, or heteroaryl groups, which themselves may be unsubstituted or substituted by one or more suitable substituents. Illustrative examples of heterocycloalkyl groups include, but are not limited to, azetidinyl, pyrrolidyl, piperidyl, piperazinyl, morpholinyl, tetrahydro-2H-1,4-thiazinyl, tetrahydrofuryl, dihydrofuryl, tetrahydropyranyl, dihydropyranyl, 1,3-dioxolanyl, 1,3-dioxanyl, 1,4-dioxany1, 1,3-oxathiolanyl, 1,3-oxathianyl, 1,3-dithianyl, azabicyclo[3.2.1]octyl, azabicyclo[3.3.1]nonyl, azabicyclo[4.3.0]nonyl, oxabicyclo[2.2.1]heptyl, 1,5,9-triazacyclobdocdecyl, and the like.

An "aryl group" is intended to mean an aromatic, monovalent monocyclic, bicyclic, or tricyclic radical containing 6, 10, 14, or 18 carbon ring atoms, which may be unsubstituted or substituted by one or more suitable substituents as defined below, and to which may be fused one or more cycloalkyl groups, heterocycloalkyl groups, or heteroaryl groups, which themselves may be unsubstituted or substituted by one or more suitable substituents. Illustrative examples of aryl groups include, but are not limited to, phenyl, naphthyl, fluoren-2-yl, indan-5-yl, and the like.

A "heteroaryl group" is intended to mean an aromatic monovalent monocyclic, bicyclic, or tricyclic radical containing 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, or 18 ring atoms,
including 1, 2, 3, 4, or 5 heteroatoms selected from nitrogen, oxygen and sulfur, which may be unsubsti-
tuted or substituted by one or more suitable substituents as defined below, and to which may be fused one or more cycloalkyl groups, heterocycloalkyl groups, or aryl groups, which themselves may be unsubsti-
tuted or substituted by one or more suitable substituents. Illustrative examples of heteroaryl groups include, but are not limited to, pyrrolyl, imidazolyl, pyrazolyl, furyl, thienyl, thiazolyl, oxazolyl, isoxazolyl, isothiazolyl, oxadiazolyl, triazolyl, tetrazolyl, pyrazinyl, pyridyl, pyrimidyl, pyridazinyl, indolyl, isoindolyl, benzimidazolyl, benzofurlyl, isobenzofurlyl, benzothienyl, quinolyl, isoquinolyl, phthalazinyl, carbazolyl, purinyl, pteridinyl, acridinyl, phenanthrolinyl, phenoxazinyl, phenothiazinyl, and the like.

An "acyl group" is intended to mean a -C(O)-R- radical, wherein R is any suitable sub-
tiuent as defined below.

A "sulfonyl group" is intended to mean a -S(O)(O)-R- radical, wherein R is any suitable sub-
tiuent as defined below.

The term "suitable substituent" is intended to mean any of the substituents recognizable to those skilled in the art as not adversely affecting the inhibitory activity of the inventive com-
ounds. Illustrative examples of suitable substituents include, but are not limited to, oxo groups, alkyl groups, hydroxy groups, halo groups, cyano groups, nitro groups, cycloalkyl groups, heterocycloalkyl groups, aryl groups, heteroaryl groups, trialkylsilyl groups,
groups of formula (A)

wherein R_a is hydrogen, an alkyl group, a cycloalkyl group, a heterocycloalkyl group, an aryl group, or a heteroaryl group,

groups of formula (B)

wherein R_a is hydrogen, an alkyl group, a cycloalkyl group, a heterocycloalkyl group, an aryl group, or a heteroaryl group,

groups of formula (C)

wherein R_b and R_c are independently hydrogen, an alkyl group, a cycloalkyl group, a heterocycloalkyl group, an aryl group, or a heteroaryl group,

groups of formula (D)

wherein R_d is hydrogen, an alkyl group, a cycloalkyl group, a heterocycloalkyl group, an aryl group, a heteroaryl group, a hydroxy group, an alkoxy group, an amino group, an alkylamino
group, a dialkylamino group, or an acylamino group; and R₄ is hydrogen, an alkyl group, a
cycloalkyl group, a heterocycloalkyl group, an aryl group, a heteroaryl group, an amino group, an
alkylamino group, or a dialkylamino group,
groups of formula (E)

\[\text{O} \quad \text{S} - R_4 \quad \text{O} \] \quad (E)

wherein R₄ is an alkyl group, a cycloalkyl group, a heterocycloalkyl group, an aryl group, or a
heteroaryl group,
groups of formula (F)

\[\text{O} \quad \text{S} - N - R_5 \quad \text{R}_6 \quad \text{O} \] \quad (F)

wherein R₅ and R₆ are independently hydrogen, an alkyl group, a cycloalkyl group, a
heterocycloalkyl group, an aryl group, or a heteroaryl group,
groups of formula (G)

\[\text{O} \quad \text{R}_7 \] \quad (G)

wherein R₇ is an alkyl group, a cycloalkyl group, a heterocycloalkyl group, an aryl group, a
heteroaryl group, or a group of formula (A), formula (B), formula (C), formula (H), or formula
(K),

22
groups of formula (H)

\[
\begin{align*}
\text{wherein } R_j & \text{ is hydrogen, an alkyl group, a cycloalkyl group, a heterocycloalkyl group, an aryl } \\
& \text{ group, a heteroaryl group, a hydroxy group, an alkoxy group, an amino group, or a group of } \\
& \text{ formula (A), formula (B), formula (C) or formula (D); and wherein } R_k \text{ is hydrogen, an alkyl } \\
& \text{ group, a cycloalkyl group, a heterocycloalkyl group, an aryl group, a heteroaryl group, or a group } \\
& \text{ of formula (A), formula (B), formula (C), formula (D), formula (E), or formula (F), } \\
& \text{ groups of formula (J)}
\end{align*}
\]

\[
\begin{align*}
\text{wherein } R_i & \text{ is hydrogen, an alkyl group, a cycloalkyl group, a heterocycloalkyl group, an aryl } \\
& \text{ group, a heteroaryl group, or a group of formula (C), and } \\
& \text{ groups of formula (K)}
\end{align*}
\]

\[
\begin{align*}
\text{wherein } R_m & \text{ and } R_n \text{ are independently an alkyl group, a cycloalkyl group, a heterocycloalkyl } \\
& \text{ group, an aryl group, a heteroaryl group, a hydroxy group, an alkoxy group, an amino group, an } \\
& \text{ alkylamino group, or a dialkylamino group.}
\end{align*}
\]
The term "suitable organic moiety" is intended to mean any organic moiety recognizable to those skilled in the art as not adversely affecting the inhibitory activity of the inventive compounds. Illustrative examples of suitable organic moieties include, but are not limited to oxo groups, alkyl groups, hydroxy groups, halo groups, cyano groups, nitro groups, cycloalkyl groups, heterocycloalkyl groups, aryl groups, heteroaryl groups, trialkylsilyl groups, and groups of formulas (A), (B), (C), (D), (E), (F), (G), (H), (J), and (K), as defined above.

A "hydroxy group" is intended to mean the radical \(-\text{OH}\).

An "oxo group" is intended to mean the divalent radical \(=\text{O}\).

A "halo group" is intended to mean any of the radicals \(-\text{F}\), \(-\text{Cl}\), \(-\text{Br}\), or \(-\text{I}\).

A "cyano group" is intended to mean the radical \(-\text{C}≡\text{N}\).

A "nitro group" is intended to mean the radical \(-\text{NO}_2\).

A "trialkylsilyl group" is intended to mean the radical \(-\text{Si}R_pR_qR_s\), where \(R_p\), \(R_q\), and \(R_s\) are each independently an alkyl group.

A "carboxy group" is intended to mean a group of formula (B) wherein \(R_t\) is hydrogen.

A "alkoxycarbonyl group" is intended to mean a group of formula (B) wherein \(R_t\) is an alkyl group as defined above.

A "carbamoyl group" is intended to mean a group of formula (C) wherein \(R_t\) and \(R_r\) are both hydrogen.

An "amino group" is intended to mean the radical \(-\text{NH}_2\).

An "alkylamino group" is intended to mean the radical \(-\text{NHR}_\text{a}\), wherein \(R_a\) is an alkyl group as defined above.
A "dialkylamino group" is intended to mean the radical -NR₂R₃, wherein R₂ and R₃, which are the same or different, are each an alkyl group as defined above.

A "pharmaceutically acceptable prodrug" is intended to mean a compound that may be converted under physiological conditions or by solvolysis to a compound of the formula I.

A "pharmaceutically acceptable solvate" is intended to mean a solvate that retains the biological effectiveness and properties of the biologically active components of compounds of formula I.

Examples of pharmaceutically acceptable solvates include, but are not limited to, compounds of formula I in combination with water, isopropanol, ethanol, methanol, DMSO, ethyl acetate, acetic acid, or ethanolamine.

In the case of solid formulations, it is understood that the inventive compounds may exist in different forms, such as stable and metastable crystalline forms and isotropic and amorphous forms, all of which are intended to be within the scope of the present invention.

A "pharmaceutically acceptable salt" is intended to mean those salts that retain the biological effectiveness and properties of the free acids and bases and that are not biologically or otherwise undesirable.

Examples of pharmaceutically acceptable salts include, but are not limited to, sulfates, pyrosulfates, bisulfates, sulfites, bisulfites, phosphates, monohydrogen phosphates, dihydrogen phosphates, metaphosphates, pyrophosphates, chlorides, bromides, iodides, acetates, propionates, decanoates, caprylates, acrylates, formates, isobutyrates, caproates, heptanoates, propiolates, oxalates, malonates, succinates, suberates, sebacates, fumarates, maleates, butyne-1,4-dioates, hexyne-1,6-dioates, benzoates, chlorobenzoates, methyl benzoates, dinitrobenzoates,
hydroxybenzoates, methoxybenzoates, phthalates, sulfonates, xylenesulfonates, phenylacetates, phenylpropionates, phenylbutyrates, citrates, lactates, γ-hydroxybutyrates, glycolates, tartrates, methanesulfonates, propanesulfonates, naphthalene-1-sulfonates, naphthalene-2-sulfonates, and mandelates.

If the inventive compound is a base, the desired salt may be prepared by any suitable method known to the art, including treatment of the free base with an inorganic acid, such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid and the like, or with an organic acid, such as acetic acid, maleic acid, succinic acid, mandelic acid, fumaric acid, malonic acid, pyruvic acid, oxalic acid, glycolic acid, salicylic acid, pyranosidyl acids such as glucuronic acid and galacturonic acid, alpha-hydroxy acids such as citric acid and tartaric acid, amino acids such as aspartic acid and glutamic acid, aromatic acids such as benzoic acid and cinnamic acid, sulfonic acids such a p-toluenesulfonic acid or ethanesulfonic acid, or the like.

If the inventive compound is an acid, the desired salt may be prepared by any suitable method known to the art, including treatment of the free acid with an inorganic or organic base, such as an amine (primary, secondary or tertiary), an alkali metal or alkaline earth metal hydroxide or the like. Illustrative examples of suitable salts include organic salts derived from amino acids such as glycine and arginine, ammonia, primary, secondary and tertiary amines, and cyclic amines such as piperidine, morpholine and piperazine, and inorganic salts derived from sodium, calcium, potassium, magnesium, manganese, iron, copper, zinc, aluminum and lithium.

The inventive compounds may exist as single stereoisomers, racemates and/or mixtures of enantiomers and/or diastereomers. All such single stereoisomers, racemates and mixtures thereof are intended to be within the scope of the present invention. Preferably, the compounds
of the present invention are used in a form that contains at least 90% of a single isomer (80% enantiomeric or diastereomeric excess), more preferably at least 95% (90% e.e. or d.e.), even more preferably at least 97.5% (95% e.e. or d.e.), and most preferably at least 99% (98% e.e. or d.e.). Compounds identified herein as single stereoisomers are meant to describe compounds used in a form that contains at least 90% of a single isomer.

The present invention is further directed to methods of inhibiting matrix metalloproteinase activity that comprise contacting the protease with an effective amount of a compound of formula I or a pharmaceutically acceptable prodrug or a pharmaceutically acceptable salt or solvate thereof. For example, one can inhibit matrix metalloproteinase activity in mammalian tissue by administering a compound of formula I or a pharmaceutically acceptable prodrug or a pharmaceutically acceptable salt or solvate thereof.

The activity of the inventive compounds as inhibitors of matrix metalloproteinase activity may be measured by any of the methods available to those skilled in the art, including in vivo and in vitro assays. Examples of suitable assays for activity measurements include the fluorometric determination of the hydrolysis rate of a fluorescently-labelled peptide substrate, which is described herein.

Administration of the compounds of the formula I, or their pharmaceutically acceptable prodrugs or pharmaceutically acceptable salts or solvates, may be performed according to any of the accepted modes of administration available to those skilled in the art. Illustrative examples of suitable modes of administration include, but are not limited to, oral, nasal, intraocular, parenteral, topical, transdermal and rectal.
The inventive compounds of formula I, and their pharmaceutically acceptable prodrugs and pharmaceutically acceptable salts and solvates, may be administered as a pharmaceutical composition in any suitable pharmaceutical form recognizable to the skilled artisan. Suitable pharmaceutical forms include, but are not limited to, solid, semisolid, liquid, or lyophilized formulations, such as tablets, powders, capsules, suppositories, suspensions and aerosols. The pharmaceutical composition may also include suitable excipients, diluents, vehicles and carriers, as well as other pharmaceutically active agents, depending upon the intended use.

Acceptable methods of preparing suitable pharmaceutical forms of the pharmaceutical compositions are known to those skilled in the art. For example, pharmaceutical preparations may be prepared following conventional techniques of the pharmaceutical chemist involving steps such as mixing, granulating and compressing when necessary for tablet forms, or mixing, filling and dissolving the ingredients as appropriate, to give the desired products for oral, parenteral, topical, intravaginal, intranasal, intrabronchial, intraocular, intraural and/or rectal administration.

Solid or liquid pharmaceutically acceptable carriers, diluents, vehicles or excipients may be employed in the pharmaceutical compositions. Illustrative solid carriers include starch, lactose, calcium sulphate dihydrate, terra alba, sucrose, talc, gelatin, pectin, acacia, magnesium stearate, and stearic acid. Illustrative liquid carriers may include syrup, peanut oil, olive oil, saline solution, and water. The carrier or diluent may include a suitable prolonged-release material, such as glyceryl monostearate or glyceryl distearate, alone or with a wax. When a liquid carrier is used, the preparation may be in the form of a syrup, elixir, emulsion, soft gelatin capsule, sterile injectable liquid (e.g. solution), or a nonaqueous or aqueous liquid suspension.
A dose of the pharmaceutical composition contains at least a therapeutically effective amount of the active compound (i.e., a compound of formula I or a pharmaceutically acceptable prodrug or a pharmaceutically acceptable salt or solvate thereof) and preferably is made up of one or more pharmaceutical dosage units. The selected dose may be administered to a mammal, for example, a human patient, in need of treatment mediated by inhibition of matrix metalloproteinase activity, by any known method of administering the dose including topical, for example, as an ointment or cream; orally, rectally, for example, as a suppository; parenterally by injection; or continuously by intravaginal, intranasal, intrabronchial, intraural or intraocular infusion.

A "therapeutically effective amount" is intended to mean that amount of a compound of formula I or II that, when administered to a mammal in need thereof, is sufficient to effect treatment for disease conditions alleviated by the inhibition of the activity of one or more matrix metalloproteinases, such as tumor growth, invasion or metastasis, osteoarthritis, rheumatoid arthritis, osteoporosis, periodontitis, gingivitis, chronic dermal wounds, corneal ulcerations, degenerative skin disorders, multiple sclerosis, stroke, diabetic retinopathy, macular degeneration, angiofibromas, hemangiomas, chronic obstructive pulmonary disease, such as emphysema, atherosclerosis, glomerular disease, cardiac arrhythmia, endometriosis or disease conditions characterized by unwanted angiogenesis. The amount of a given compound of formula I that will correspond to a "therapeutically effective amount" will vary depending upon factors such as the particular compound, the disease condition and the severity thereof, and the identity of the mammal in need thereof, but can nevertheless be readily determined by one of skill in the art.
"Treating" or "treatment" is intended to mean at least the mitigation of a disease condition in a mammal, such as a human, that is alleviated by the inhibition of the activity of one or more matrix metalloproteinase, such as tumor growth, invasion or metastasis, osteoarthritis, rheumatoid arthritis, osteoporosis, periodontis, gingivitis, chronic dermal wounds, corneal ulcerations, degenerative skin disorders, multiple sclerosis, stroke, diabetic retinophathy, macular degeneration, angiofibromas, hemangiomas, or disease conditions characterized by unwanted angiogenesis, and includes:

(a) prophalactic treatment in a mammal, particularly when the mammal is found to be predisposed to having the disease condition but not yet diagnosed as having it;

(b) inhibiting the disease condition; and/or

(c) alleviating, in whole or in part, the disease condition.

The inventive compounds, and their salts, solvates and prodrugs, may be prepared by employing the techniques available in the art using starting materials that are readily available. Certain novel and exemplary methods of preparing the inventive compounds are described below.
METHODS FOR PREPARING CARBOXYLATE MATRIX METALLOPROTEASE INHIBITORS

PREPARATION OF COMPOUNDS OF FORMULA I

The methods of preparing compounds of Formula I, where R₅ is carboxyl, culminate in the deprotection of esters (1) to the corresponding carboxylates as illustrated in Reaction Scheme I below. Appropriate types of esters (1) and the cleavage of R₅ are described, for example, in Greene, T; Wuts, P.G.M. "Protective Groups in Organic Synthesis," Wiley: 1991 and Kocienski, P.J. "Protecting Groups," Thieme: 1994, which are incorporated herein by reference. Some examples and conditions encountered herein are given below.
As an example of a typical ester cleavage, an ester of Formula (1) where \(R_6 \) is benzyl is placed in a suspension with solvent, for example, ethyl acetate also containing metal catalyst, preferably palladium(0) in a hydrogen source such as hydrogen gas at one atmosphere or above, at ambient temperature for 30 minutes to three days, preferably four hours. The carboxylates of Formula I, where \(R_5 \) is -COOH, are amenable to customary isolation and purification.

For esters of Formula (1) where \(R_6 \) is t-butyl, the ester (1) is deprotected in a solution of solvent, preferably chloroform or dichloromethane, with excess trifluoroacetic acid, at ambient temperature for 15 minutes to 12 hours to obtain a carboxylate of Formula I.

For esters of Formula (1) where \(R_6 \) is allyl, the ester (1) undergoes cleavage in an inert solvent, preferably acetonitrile, with a catalytic amount of palladium catalyst, such as tetrakis(triphenylphosphine)-palladium(0), with an excess of secondary amine, such as morpholine, for 15 minutes to 12 hours at ambient temperature.
Where the above conditions are incompatible with functional groups contained in either \(R_4 \) or \(R_5 \), other protective strategies may be used. For example, simultaneous protection where \(R_4 \) is olefinic and \(R_5 \) is carboxylate may occur through their connection as in a halolactone of Formula (2) where \(X \) is halogen, as displayed in Reaction Scheme II below. The halolactone (2) undergoes reductive opening to compounds of Formula I, where \(R_4 \) is allyl and \(R_5 \) is carboxylate.

REACTION SCHEME II

![Reaction Scheme II](image)

Preparation of Compounds of Formula I, where \(R_4 \) is Allyl and \(R_5 \) is Carboxylate

A solution of halolactone (2) is exposed to a reductive environment, preferably excess zinc powder in acetic acid. The resulting carboxylate of Formula I where \(R_4 \) is allyl is isolated and purified via conventional methods.

Compounds (5) of Formula I where \(R_5 \) is hydroxamic acid (-C(O)NHOH) may be obtained from compounds (3) of Formula I where \(R_5 \) is carboxyl. Any of the numerous commercially available coupling reagents can be used for conversion either to a protected version
of a compound of Formula (4) where R_7 is alkyl or directly to hydroxamate (5), as outlined by the Reaction Scheme III below:

REACTION SCHEME III

![Reaction Scheme III](image)

Step 1 - Preparation of Compounds of Formula (4) or (5)

Carboxylic acids of Formula (3) and hydroxylamine or its O-alkyl derivatives in inert solvent, preferably dimethylformamide (DMF), are coupled with any of the numerous available coupling reagents, preferably benzotriazol-1-yloxytris(dimethylamino)-phosphonium hexafluorophosphate (BOP), at ambient temperature for one to 24 hours to provide either hydroxamates (5) or O-alkyl hydroxamates (4), respectively. The products are amenable to routine handling and purification.

Step 2 - Preparation of Compounds of Formula (5) from Compounds of Formula (4)

Protected hydroxamates of Formula (4) are deprotected as determined by the nature of the protecting group R_7. Where R_7 is a trialkylsilyl, mild acid hydrolysis or fluoride cleavage in protic or aprotic solvent at ambient temperature or below for one to 12 hours is sufficient. Where
R_7 is benzyl, selective deprotection without N-O bond cleavage proceeds in the presence of palladium on carbon, with a hydrogen source, such as hydrogen gas at atmospheric pressure, in a suitable solvent, such as dimethylformamide or methanol.

PREPARATION OF COMPOUNDS OF FORMULA II

Pyrrole compounds of Formula II can be prepared from cyclocondensation of amines of Formula (6) with tetrahydrofurans of Formula (7), as shown below in Reaction Scheme IV:

REACTION SCHEME IV

\[
\begin{align*}
\text{R}_5\text{NH}_3^+\text{X} & \quad + \quad \text{MeO} \quad \xrightarrow{\text{Y-R}_3} \quad \text{R}_5\text{H} \quad \text{N} \quad \text{Y-R}_3 \\
(6) & \quad \text{O} & \quad \text{OMe} & \quad \text{II} \\
(7) &
\end{align*}
\]

Preparation of Compounds of Formula II

Condensation of amine salts of Formula (6) and 2,5-dimethoxytetrahydrofurans of Formula (7) may be carried out in acetic acid for a period of one to 24 hours at temperatures from 40°-90°C. Another effective set of conditions includes heating a solution of compounds (6) and (7) in inert organic solvent, for example 1,2-dichloroethane, with or without acid, such as trifluoroacetic acid, and with or without stoichiometric amounts of water, for a period of one to 48 hours at 40°-90°C. The product of Formula II is isolated and purified by conventional means.
ALTERNATE PREPARATION OF COMPOUNDS OF FORMULA II

Another method for preparation of pyrrole compounds of Formula II involves earlier ring formation. Cyclocondensation of D-amino acids of Formula (8) with tetrahydrofurans of Formula (7) and subsequent coupling is shown below in Reaction Scheme V:

REACTION SCHEME V

![Reaction Scheme V](image)

(8) + (7) $\xrightarrow{\text{step 1}}$ (9)

(9) + $\text{H}_2\text{N}Y\text{R}_3$ $\xrightarrow{\text{step 2}}$ II
Step 1 - Preparation of Compounds of Formula (9)

Amino acids of Formula (8) and 2,5-dimethoxytetrahydrofurans of Formula (7) are dissolved or suspended in solution in an inert organic solvent, for example 1,2-dichloroethane, with chlorotrimethylsilane, with or without acid, such as trifluoroacetic acid, and with or without a base, such as pyridine, for a period of one to 48 hours at ambient temperature to 80°C, preferably the latter. The product (9) is isolated and purified by conventional means.

Step 2 - Preparation of Compounds of Formula II from Compounds of Formulas (9) and (10)

Carboxylates of Formula (9) and amines of Formula (10) are coupled under typical coupling conditions. Acids of Formula (9) may first be converted to a corresponding activated ester (i.e., acid fluoride) or used with a reagent, for example BOP, along with the amine (10) in an inert solvent such as chloroform, and with or without a base such as N-methylmorpholine (NMM), for a period of one to 48 hours at 0°C to ambient temperature, preferably the latter. The product II is isolated and purified by conventional means.

PREPARATION OF STARTING MATERIALS

Preparation of Amines of Formula (6)

Amines of Formula (6), where \(R_4 \) is hydrogen and \(R_5 \) is an ester (-COOR_6) are available after two steps as shown in Reaction Scheme VI: coupling of commercially available D-aspartate derivatives (11) and various amines (10) of commercial or synthetic origin. Subsequent deprotection of protected amines (12) furnish amine salts (6).
Step 1 - Preparation of Compounds of Formula (12)

Carboxylates of Formula (11) and amines (10) are condensed as described above for the preparation of a compounds of formula II according to Reaction Scheme V. Typical coupling reagents, for example BOP, are used in an inert solvent such as chloroform, and with or without a base such as N-methylmorpholine, at 0°C to ambient temperature, preferably the latter, for a period of one to 48 hours to furnish the product of Formula (12), which is isolated and purified by conventional means.

Step 2 - Preparation of Amines of Formula (6)

t-Butoxycarbonylamines of Formula (12) are deprotected traditionally, for example, in an inert solvent, preferably dichloromethane or chloroform, with an excess of trifluoroacetic acid, at 0°C to ambient temperature, preferably the former, for 30 minutes to 18 hours to obtain amine salts (6), which can be immediately used without further purification but are amenable to customary handling and purification.
Preparation of Compounds of Formula (18)

Aspartates of Formula (8) where R_4 is hydrogen are available for purchase, or from synthesis according to methods understood by those skilled in the art, such as those described in the literature. However, aspartates of Formula (8) where R_4 is alkyl must be synthesized. An example of this synthesis is shown in Reaction Scheme VII below. D-Aspartate (13) is converted via diallyl ester (14) to aspartate (15), which undergoes Ireland-Claisen rearrangement of the β-ester to allyl compound (16). Appropriate processing provides carboxylates of Formula (18) where R_4 is allyl, which are suitable for later conversion to lower alkyls, for example, reduction to where R_4 is propyl.

REACTION SCHEME VII

Step 1: Preparation of Compounds of Formula (14)

D-Aspartate dual esters can be produced in any of a variety of ways. For example, D-aspartate (13) is esterified with an excess of allyl alcohol, preferably in inert solvent such as
benzene with stoichiometric amounts of acid, such as p-toluenesulfonic acid, for one to 12 hours, at reflux under conditions to azeotropically remove water. The salt (14) precipitates or is otherwise isolated and purified by conventional means.

Step 2 - Preparation of Compounds of Formula (15)

Protection of an amine is well documented and understood by those skilled in the art. For example, amine salt (14) is treated with excess di-t-butyl-dicarbonate in appropriate solvent, preferably dichloromethane, in the presence of base, preferably triethylamine for one to 24 hours at ambient temperature. The product (15) is isolated and purified by conventional means.

Step 3 - Preparation of Compounds of Formula (16)

Esters of Formula (15) are treated with a specified stoichiometric amount of hindered lithium amide base, preferably two equivalents of lithium hexamethyldisilazide, in an inert aprotic solvent, preferably tetrahydrofuran, at -78°C for 15 to 45 minutes, whereupon preferably two equivalents or more of trialkylsilyl chloride, preferably chlorotrimethylsilane, are added and the reaction solution is subsequently warmed at 50 to 70°C or reflux for 30 minutes to 4 hours, then allowed to cool, and quenched with methanol. Subsequent routine aqueous workup leads to isolation of allyl compound (16), which is purified by conventional means.

Step 4 - Preparation of Compounds of Formula (17)

Acids of formula (16) are esterified to distinguish carboxyl termini. This esterification can be carried out by any of a number of means understood by those skilled in the art, preferably with an appropriate isourea to prevent racemization, for example with O-benzyl-N,N'-diisopropylurea, in inert solvent such as chloroform, at reflux for 3 to 6 hours. The diester (17) is isolated and purified by conventional means.
Step 5 - Preparation of Compounds of Formula (18)

Selective mono-deprotection of diesters of Formula (17) is effected preferentially by means of routine allyl ester cleavage conditions, as discussed above for Reaction Scheme I. A solution of the diester (17) is placed in polar aprotic solvent, preferably acetonitrile, with palladium catalyst, for example with palladium (0) tetrakis-(triphenylphosphine) and excess secondary amine base, preferably morpholine at ambient temperature for 15 minutes to four hours, preferably 30 minutes. The product acid of Formula (18) is isolated and purified in routine manner.

Preparation of Compounds of Formula (2)

For the simultaneous protection of R₄ and R₅ functionality for certain compounds of Formula I, for example where R₄ is allyl and R₅ is carboxyl, the halolactone-amide of Formula (2) is prepared. The synthesis of these compounds of Formula (2) uses methods described for Formula II in Reaction Scheme V, as shown in Reaction Schemes VIII and IX below.

In Reaction Scheme VIII, the monoacid (19) undergoes conventional coupling (as described for Reaction Scheme V) with amine of Formula (10) to give amide of Formula (20), which is deprotected to amine of Formula (21). The pyrrole ring is formed (as in the preparation of pyroles in Reaction Scheme V) on amine (21) with dimethoxy-furan (7) to obtain products of Formula (2).
Step 1 - Preparation of Compounds of Formula (20)

The coupling of acid (19) and amine (10) is accomplished with the routine peptide amide forming conditions as described above in Reaction Scheme V, Step 2.

Step 2 - Preparation of Compounds of Formula (21)

The deprotection of amine (20) to amine salt (21) is accomplished as described above for the preparation of amines of Formula (6) in Reaction Scheme VI, Step 2.

Step 3 - Preparation of Compounds of Formula (2)

The formation of pyrroles of Formula (2) from (21) and (7) can be accomplished as described above in Reaction Scheme V, Step 1.

An alternate route to compounds of Formula (2) proceeds via formation of pyrrole (23) prior to a coupling, as illustrated by Reaction Scheme IX below:
Step 1 - Preparation of Compounds of Formula (22)

The deprotection of monoacid (19) to amine salt (22) is as described above for the preparation of amines of Formula (6) in Reaction Scheme VI, Step 2.

Step 2 - Preparation of Compounds of Formula (23)

The condensation and cyclization of compounds (22) and (7) provides pyrroles of
Formula (23) in the same manner as discussed above for Reaction Scheme V, Step 1.

Step 3 - Alternate Preparation of Compounds of Formula (2)

The coupling of acid (23) and amine (10) is accomplished with the routine peptide amide formation conditions described above for Reaction Scheme V, Step 2.

For the preparation of late stage intermediates of Formula (2), aspartate derivatives of Formula (19) are needed. As shown in Reaction Scheme X below, intermediate (16) is alternatively cyclized to afford halolactones (25), which simultaneously protect the ultimate R₅ carboxylate and olefin of R₄ at an early stage.

REACTION SCHEME X

![Reaction Scheme X](image)

Step 1: Preparation of Compounds of Formula (25)

Carboxy-olefins of Formula (16) in a suspension of inert solvent, for example tetrahydrofuran or acetonitrile, and excess aqueous alkali, preferably sodium bicarbonate, are exposed to excess halogen, preferably iodine, initially at -10 to 0°C, then allowed to warm and equilibrate at ambient temperature over a period of 2 to 24 hours. The product halolactone (25) is isolated and purified according to routine methods.
Step 2: Preparation of Compounds of Formula (19)

Compound (19) is prepared from compound of Formula (25) in a manner identical to that described above for the preparation of compounds of Formula (18) in Reaction Scheme VII, Step 5.

Preparation of Tetrahydrofurans of Formula (7)

The tetrahydrofuran of Formula (7) where \(R_1 \) is hydrogen and \(X \) is a single bond is commercially available. More often 3-substituted furans (26) are treated with bromine in methanol to provide 2,5-dimethoxy-dihydrofurans (27), which are in turn hydrogenated to produce tetrahydrofurans (7). The overall approach is illustrated in Reaction Scheme XI below:

![Reaction Scheme XI](image)

Step 1 - Preparation of Compounds of Formula (27)

Furans of Formula (26) are treated with stoichiometric amounts of bromine in methanol as solvent or in mixtures with less polar solvents, at temperatures of -20°C to ambient temperature, preferably -10°C, for 10 minutes to 8 hours, preferably for 90 minutes. The products (27) are isolated and purified by conventional means.
Step 2 - Preparation of Compounds of Formula (7)

Olefins of Formula (27) are reduced in a suitable protic or aprotic solvent under hydrogen at one atmosphere or above in the presence of metal catalyst, preferably rhodium on alumina or palladium on carbon, in the temperature range from about 0°C to 40°C, for about 1-8 hours, preferably 3 hours. Compounds (7) are isolated and purified by conventional means.

The tetrahydrofuran (7a) of Formula (7) where X is a single bond and R₁ is formyl (−CHO) is commercially available. Construction of various X and R₁ combinations are possible through elaboration upon the carboxaldehyde. One possible scenario is displayed in Reaction Scheme XII below.

REACTION SCHEME XII

![Reaction Scheme XII](image)

Step 1 - Preparation of the Compound of Formula (28)

As an example, the aldehyde of Formula (7a) is added to a mixture with at least two equivalents of the reagent formed from carbon tetrabromide, triphenylphosphine, and zinc.
powder in dichloromethane over 24 hours at ambient temperature. After 60 minutes at ambient temperature, the desired intermediate 1,1-dibromoolefin can be isolated and purified in conventional manner. The alkyne product of Formula (28) is produced from treatment of 1,1-dibromoolefin with alkyllithium, preferably n-butyllithium, in inert, aprotic solvent, preferably tetrahydrofuran, at low temperature, -78°C to 0°C after 60 minutes, and subsequent capping with trialkylstannyl halide, such as chlorotributyl-tin (IV). The product (28) can be handled and purified with routine methods.

Step 2 - Preparation of the Compounds of Formula (29)

The alkyne (28) is elaborated through an alkylation with the corresponding anion for compounds of Formula (7) where X is -C≡C- and R₁ is alkyl, or the alkyne (28) is coupled in a Stille-type reaction to a compound of Formula (7) where X is a -C≡C- and R₁ is aryl. For the former compounds of Formula (29) where R₁ is alkyl, a solution of the alkyne (28) in inert solvent at low temperature, ambient or below, undergoes metal exchange with a suitable alkyllithium, and is subsequently alkylated with a suitable alkylating reagent, for example primary alkyl halides. For compounds of Formula (29) where R₁ is vinyl or aryl, the alkyne (28) and vinyl or aryl halide couple in the presence of palladium catalyst, such as tetrakis-(triphenylphosphine)palladium(0), with aprotic solvent at below or above ambient temperature. The products of Formula (29) are isolable and can be purified by conventional techniques.

Step 3 - Preparation of the Compounds of Formula (7b)

The alkyne (29) can be hydrogenated in suitable solvent, with a hydrogen source, such as hydrogen gas at atmospheric pressure, in the presence of a catalyst, such as palladium on carbon,
to furnish, for example, compounds (7b) of Formula (7) where X is \(-\text{CH}_2\text{CH}_2\). The products of Formu
hours. Suitable metal catalysts include palladium(0) tetrakis(triphenylphosphine) or palladium(II) acetate as examples. The product (32) is isolable and can be processed in routine fashion.

Alternatively, the roles of the reaction partners can be reversed, for example as shown in Scheme XIV below wherein furan-3-yl-boronic acid (33) and unsaturated halides of Formula (34), where X is bromide, iodide, or triflate and R₈ is vinyl or aryl, couple to result in compounds (32).

REACTION SCHEME XIV

![REACTION SCHEME XIV](image)

Preparation of Compounds of Formula (32)

Furan-3-ylboronic acid (33) and vinyl or aryl halides of Formula (34) are reacted under conditions similar to those described above for Reaction Scheme XIII.

The Heck coupling represents additional useful methodology to introduce and elaborate substituents on unsaturated systems as displayed in Reaction Scheme XV as follows:

REACTION SCHEME XV

![REACTION SCHEME XV](image)
Alternate Preparation of Compounds of Formula (32)

3-Bromofuran (30) and olefinic compounds of Formula (35) where \(R_8 \) is aryl or vinyl, are placed in a suspension of inert solvent, in the presence of metal catalyst, preferably palladium(0) tetrakis(triphenylphosphine) or palladium(II) acetate with catalytic tertiary phosphine, preferably tri(o-toly)phosphine or tri(o-toly)arsine, at ambient to reflux temperature for one to 24 hours. The product (32) is isolable and can be processed in routine fashion.

For larger \(R_1 \) groups, further elaboration of smaller \(R_1 \) groups can be obtained from different coupling conditions, complimentary to those reactions depicted in Reaction Schemes XIII, XIV, and XV above. For example, once the above methods are used to prepare a furan of Formula (36), it can in turn be manipulated to join an additional vinyl or aryl group as shown in Reaction Scheme XVI below:

REACTION SCHEME XVI

![Reaction Scheme XVI](image)
Step 1: Preparation of Compounds of Formula (37)

Phenol of Formula (36) in a solution of inert solvent, for example chloroform, in the presence of amine base, preferably 2,6-lutidine, at a temperature of -10°C or above, preferably 0°C, is treated with a stoichiometric amount of trifluoromethanesulfonic anhydride. The product triflate (37) is potentially reactive; it may be isolated and purified under anhydrous conditions in inert atmosphere, and should be used quickly.

Step 2: Alternate Preparation of Compounds of Formula (32b)

Either triflate of Formula (37) or vinyl halide of Formula (37a) is coupled with trialkyl-vinyl or aryl tin(IV) of Formula (38) in a solution of inert solvent, such as benzene, in the presence of metal catalyst, such as palladium(II) acetate, with a stoichiometric amount of lithium chloride at ambient temperature or above. The coupled product (32b) is amenable to conventional isolation and purification.

The furan building components in Reaction Schemes XIII, XIV, XV, and XVI are readily available. 3-Bromofuran (30) can be purchased from Aldrich. Furan-3-yl-boronic acid can be prepared, for example, as described in Thompson, W. J.; Gaudino, G. *J. Org. Chem.* 1984, 49, 5237-5243. Furans of Formula (36) can be synthesized using the methodology outlined above for Reaction Schemes XIII, XIV, XV, and XVI. Boronic acids of Formula (31) are known in the literature or can be synthesized. Organotin(IV) compounds of Formula (38) are also known in the literature or can be synthesized.
PREPARATION OF COMPOUNDS OF FORMULAS III, IV, V, VI, VII, AND VIII

All compounds of Formulas III, IV, V, VI, VII, and VIII where \(R_5 \) is carboxyl can be produced from the corresponding esters as described, above for Formula I in Reaction Scheme I. Compounds of Formulas III, IV, V, VI, VII, and VIII where \(R_5 \) is N-hydroxycarbamoyl (-C(O)NHOH) can be produced by the method described above for Reaction Scheme II.

The heterocyclic acetic acid derivatives of Formula (40) where \(R_9 \) is alkoxy, alkylamino, or oxazolidin-3-yl, are alkylated with \(\alpha \)-haloesters of Formula (39) where \(X \) is chloride, bromide, iodide, or triflate to target esters of Formula (41) as shown below in Reaction Scheme XVII. The \(R_9 \) group of compounds of Formula (40) can serve as a chiral auxiliary to help establish the absolute stereochemistry of compounds of Formula (41).

REACTION SCHEME XVII

![Reaction Scheme XVII](image)

Solutions of compounds of Formula (40) in inert solvent, preferably tetrahydrofuran, are added to solutions with stoichiometric and/or defined amounts of a suitable base, for example, sodium hexamethyldisilazane or lithium diisopropylamide, in inert solvent, preferably tetrahydrofuran, at low temperature, preferably -78 to -15°C, for five minutes to one hour, are
suitable to effect formation of the corresponding anion. Then α-haloesters of Formula (39) are added alone or in a solution of inert solvent. The cold reaction mixture is allowed to stir for 30 minutes to 24 hours, preferably one hour, to form target esters (41), which are isolated and purified by routine methods.

For an example of the alkylation process outlined by Reaction Scheme XVII where R₉ is a chiral auxiliary, see Reaction Scheme XVIII below. According to this scheme, amides of Formula (40) where R₉ are chiral oxazolidines (see Formula (42) below) can undergo stereoselective alkylation to provide products of Formula (43), which in turn can furnish hydroxyethylamides of Formula (44) (Formula I where R₅ is an ester, Y is -CH(OH)-).

REACTION SCHEME XVIII

![Reaction Scheme XVIII Diagram](image-url)
Step 1 - Preparation of Compounds of Formula (43)

Compounds of Formula (43) are prepared from compounds of Formula (40) where \(R_s \) is a chiral oxazolidine under conditions identical to those described above for the preparation of compounds of Formula (41) from compounds of Formulas (39) and (40) in Reaction Scheme XVII, except with compounds of Formula (42) substituted for compounds of Formula (40). The product of Formula (43) is amenable to conventional isolation and purification.

Step 2 - Preparation of Compounds of Formula (44)

Compounds of Formula (43) in solvent, such as tetrahydrofuran, is treated with excess acid, preferably dilute, 0.5 molar aqueous hydrochloric acid, at ambient to reflux temperature, preferably the former. The product of Formula (44) is isolated and purified via routine methods.

The disubstituted heterocycles of Formula (41) may also be assembled in a variation in the order of execution shown above in Reaction Scheme XVIII. The alkylations in the above Schemes XVII and XVIII can precede the installation or elaboration of the portion that contains \(X \) and \(R_1 \). Late stages use appropriate sequences of coupling methods discussed in Reaction Schemes XIII, XIV, XV, and XVI. For example, in Reaction Scheme XIX below, monosubstituted heterocycle of Formula (46) might be halogenated to an appropriately disubstituted heterocycle of Formula (47), which in turn is a coupling partner for methodology outlined in Reaction Schemes XIII, XIV, XV, and XVI. In this example, a Suzuki coupling with boronic acid of Formula (31) is used to give a compound of Formula (48).
PREPARATION OF STARTING MATERIALS

\(\alpha \)-Haloesters of Formula (39) where \(R_4 \) is hydrogen are commercially available. When \(R_4 \) is alkyl, many compounds of Formula (39) can be prepared by syntheses described in literature. For example, many amino acids can be converted to optically active compounds of Formula (39) where \(R_4 \) is alkyl as described in Coppola, G. M., Schuster, H. F. *Asymmetric Synthesis: Construction of chiral molecules using amino acids*; J. Wiley & Sons: New York, 1987.

Certain heterocyclic acetic acid derivatives of Formula (40) are commercially available in certain cases (for example, 2- or 3-thiophene acetic acid), but usually must be synthesized in various ways, as described below.
Direct alkylation on the nitrogen of an appropriate heterocycle of Formula (49), where T, U, and V are each independently carbon or nitrogen, by the α-haloacetic acid derivatives of Formula (50), where X is halogen or triflate, produces the desired intermediates of Formula (51), as shown in Reaction Scheme XX below:

REACTION SCHEME XX

\[
\begin{align*}
&\text{U} = \text{V} = \text{X} \rightarrow \text{R}_1 \\
&\text{H} \\
&(49) \\
&\text{X} \rightarrow \text{R}_9 \\
&\text{H} \\
&(50) \\
&\text{U} = \text{V} = \text{X} \rightarrow \text{R}_1 \\
&\text{H} \\
&(51)
\end{align*}
\]

Step 1 - Preparation of Compounds of Formula (51)

Nitrogen-containing heterocycles of Formula (49) (for example, pyrazole) are placed in aprotic solvent such as N,N-dimethylformamide, and if warranted, deprotonated with a base such as sodium hydride and treated with α-haloacetamides of Formula (50) where X is halogen or triflate, at room temperature or above for one to 24 hours. The products of Formula (51) are amenable to routine techniques for isolation and purification.

An analogous straightforward substitution of the heterocyclic ring involves the alkylation of an organometallic derivative of Formula (53) where M is, for example, lithium,
magnesium, or copper, with an α-haloacetic acid derivative of Formula (50), as shown in Reaction Scheme XXI below:

REACTION SCHEME XXI

![Reaction Scheme](image)

Step 1 - Preparation of Compounds of Formula (53)

Heterocyclic metallo derivatives of Formula (53) are available in customary fashion from a heterocycle of Formula (52). Principal methods include deprotonation of parent of Formula (52) where W is hydrogen, or from halogen-metal exchange of the corresponding halo-heterocycle of Formula (52) where W is halogen. These reactions are typically carried out in inert, aprotic solvent such as tetrahydrofuran, at ambient temperature or below, in 15 minutes to 24 hours. The organometallics of Formula (53) are typically unstable to atmosphere and moisture. They are routinely formed *in situ* and used immediately without isolation.
Step 2 - Alternate Preparation of Compounds of Formula (40)

The organometallics of Formula (53) are alkylated by stoichiometric or excess amounts of acetate or acetamide of Formula (50) in inert solvent, preferably tetrahydrofuran, at low temperatures of -78 to 0°C, in ten to 90 minutes. The product of Formula (40) is isolated and purified with routine methods.

As another alternative, an acylation can be carried out with oxalates or oxamates of Formula (54) where R₁₀ is, for example, halogen, alkoxy, or imidazol-1-yl, to ketoesters or ketoamides of Formula (55), which are subsequently deoxygenated in several steps to ester or amides of Formula (40), as shown in Reaction Scheme XXII below.
Step 1 - Preparation of Compounds of Formula (55)

Heterocyclic organometallic derivatives of Formula (53) where M is lithium can be prepared as shown in Reaction Scheme XXI above and acylated by an oxalate or oxamate of Formula (54) where \(R_{10} \) is typically halogen, alkoxy, or imidazol-1-yl in inert solvent, preferably tetrahydrofuran, at low temperatures of -78 to 0°C, in ten to 90 minutes. The product of Formula (55) is isolated and purified with routine methods.

Step 2 - Preparation of Compounds of Formula (56)

The ketoester or amide of Formula (55) in solvent, preferably ethanol, at temperatures of -15 to 0°C, is treated with hydride reducing agent, preferably sodium borohydride, for five minutes to four hours to provide products of Formula (56), which are isolable and purified with conventional techniques.
Step 3 - Preparation of Compounds of Formula (57)

Alcohols of Formula (56) can be processed for deoxygenation by conversion to various moieties designated Q, preferably where Q is an ester or halide. Typically they are acylated in aprotic solution, for example chloroform, with excess acylating agent, for example acetic anhydride or acetyl chloride in the presence of excess amine base, preferably pyridine, with or without catalytic amounts of (4-dimethylamino)pyridine to give acetates of Formula (57) where Q is acetoxy, which are handled and purified in usual fashion.

Step 4 - Preparation of Compounds of Formula (40)

α-Halides or acetates of Formula (57) where Q is halogen or acetoxy, respectively, are reduced to products of Formula (40) with a metal catalyst, preferably palladium on carbon, and a source of hydrogen, preferably ammonium formate. The products (40) are handled and purified in customary manner.

The disubstituted heterocycles of Formula (40) can also be constructed in a differently ordered sequence: late formation of the portion that contains X and R1 utilizing appropriate sequences of coupling methods discussed in Reaction Schemes XIII, XIV, XV, and XVI.

Many of the monosubstituted heterocycles that are commercially available bear only one carbon in the substituent, and additional processing is necessary to prepare disubstituted heterocycles of Formula (40), as shown in Reaction Scheme XXIII below. Commercially available mono-substituted heterocycles of Formula (58) where R11 is hydrogen, hydroxy, or alkoxy (for example, 3-furan carboxaldehyde or 3-furfural, where R11 is hydrogen) can be homologated through any of numerous suitable methods known to those skilled in the art, for example, that described in Martin, S. F. Synthesis 1979, 633-665, to furnish 2-heterocyclic acetic
acid derivatives (59), which can be further substituted, for example as a halide of Formula (60). Alternatively, the heterocycles Formula (58) are substituted as halides of Formula (61), then homologated to derivatives of Formula (60). Subsequent linkage of a compound of Formula (60) with an appropriate coupling partner such as a compound of Formula (31) gives esters or amides of Formula (62). As recognized by those skilled in the art, the versatility of the methods in Reaction Scheme XXIII allows interchangability of the steps. For example, the substitution of halides of Formula (61) with boronic acids of Formula (31) may precede a homologation to desired intermediates of Formula (62) (not shown).

REACTION SCHEME XXIII

![Diagram](attachment:image.png)
Step 1 - Preparations of Compounds of Formulas (59) and (60)

The heterocycles of Formulas (58) and (61) are homologated to compounds of Formulas (59) and (60), respectively, depending upon the nature of R_{11} and R_9. See, for example, Martin, S. F. *Synthesis* 1979, 633-665. As an example, for compounds (58) and (61) when R_{11} is hydrogen, the anion of 2-trimethylsilyl-1,3-dithiane is used in inert aprotic solvent, preferably tetrahydrofuran at low temperature, 0°C to -78°C for 30 minutes to several hours, to obtain the corresponding dithiane adduct, which is subsequently converted through any of a variety of methods to derivatives of Formula (59). An example of dithiane removal uses mercuric chloride in water and alcohol to afford an ester of Formula (59) where R_9 is alkoxy. The products of Formula (59) are amenable to conventional handling and purification.

Step 2 - Preparations of Compounds of Formulas (60) and (61)

As an example of the introduction of the second heteroaromatic substituents, compounds of Formulas (59) and (58) in an inert solvent are halogenated, for example, with a bromine source, such as bromine or N-bromosuccinimide, at ambient temperature or below, for an hour to a day. The resultant heteroaryl halides of Formulas (60) and (61), respectively, are subject to routine purification and manipulation.

Step 3 - Preparations of Compounds of Formula (62)

The coupling of heteroaryls of Formula (60) are carried out analogous to that described for Reaction Schemes XIII, XV, or XVI to obtain compounds of Formula (62).

Amides with the generic Formula (40) where R_9 is alkylamino are often available from the corresponding carboxylic acid or activated esters of Formula (40) where R_9 is alkoxy or hydroxy, as exemplified in Reaction Scheme XXIV below:

62
The formation of amides (64) (i.e., Formula (40) where R₃ is alkylamine) results from acids of Formulas (63) coupling with amines of Formula (10) under the same conditions as described above for Reaction Scheme V, Step 2. The products of Formula (64) are isolated and purified by conventional methods.

Oxazolidines of Formula (42) can be made from the acetamides of Formula (65) where Y in terms of formula I is -CH(OH)-, as shown in Reaction Scheme XXV below:
The hydroxyamides of Formula (65) are placed in solution containing acetone or its equivalent, preferably 2-methoxypropene, with a catalytic amount of acid, such as p-toluenesulfonic acid, under dehydrating conditions, such as trapping of water with a Dean-Stark apparatus, at ambient temperature to reflux, for a suitable amount of time to convert starting material (65). The product (42) is amenable to routine processing for isolation and purification.

A preferable avenue to oxazolidines of Formula (42) involves coupling of oxazolidines of Formula (67) to acetic acids of Formula (63), as shown in Reaction Scheme XXVI below. The oxazolidines (67) in turn originate from amino-alcohols of Formula (66) of commercial and synthetic origin.

REACTION SCHEME XXVI
Step 1 - Preparation of Compounds of Formula (67)

Compounds of Formula (67) are prepared from compounds of Formula (66) using a method similar to that described above for the preparation of compounds of Formula (42) Reaction Scheme XXV, except lower temperatures are preferred. The products of Formula (67) can be somewhat unstable and are routinely used in situ or immediately in the next reaction without purification.

Step 2 - Alternative Preparation of Compounds of Formula (42)

Conditions for the formation of amides with typical coupling reagents as discussed above for Reaction Scheme V, Step 2, apply to the preparation of compounds of Formula (42).

For mono-substituted heterocycles that are not available commercially, the rings may be constructed. For example, for the compounds of Formula III, as shown below in Reaction Scheme XXVII, tetrahydrofurans of Formula (68) where \(R_{12} \) is hydrogen or alkyl are condensed with amines of Formula (69) to provide pyrroles of Formula (70). Depending on the nature of \(X \) and \(R_1, R_{12} \) of pyrrole (70) may be converted from hydrogen to a halogen and subsequently an alkyl (as in Reaction Scheme XXII, for example).

REACTION SCHEME XXVII

![Diagram of Reaction Scheme XXVII]
Preparation of Compounds of Formula (70)

Compounds of Formula (70) can be prepared from compounds of Formulas (68) and (69) using the conditions identical to those described for the preparation of pyrroles of Formula II in Reaction Scheme IV.

EXAMPLES

The following examples are merely illustrative of the invention and should not be construed as limiting the invention. The examples include preferred embodiments of the inventive compounds. One skilled in the art can make, without undue experimentation, various substitutions and variations.
Example 1(a). N-(1(S)-Benzy1-2-hydroxyethyl)-3(R)-[3-(biphenyl-4-yl)-1H-pyrrrol-1-yl]succinamic Acid

A suspension of 10% Pd/C (wet DeGussa type, 15 mg) and N-(1(S)-benzyl-2-hydroxyethyl)-3(R)-[3-(biphenyl-4-yl)-1H-pyrrrol-1-yl]succinamic acid benzyl ester (68 mg, 0.12 mmol) in EtOAc (5 mL) was stirred under H₂ for 20 hours. The catalyst was filtered onto Celite and rinsed with MeOH. The filtrate was concentrated under reduced pressure to give a yellow oil, which was purified via flash column chromatography with a 1% HOAc/2-5% MeOH/CH₂Cl₂ stepwise gradient elution to provide 47 mg (82%) of N-(1(S)-benzyl-2-hydroxyethyl)-3(R)-[3-(biphenyl-4-yl)-1H-pyrrrol-1-yl]succinamic acid as a white solid. ¹H NMR (CDCl₃): δ 7.66-7.48 (m, 3H), 7.42 (t, 2H, J = 7.2 Hz), 7.34-7.28 (m, 1H), 7.21-7.12 (m, 2H), 7.04-6.96 (m, 1H), 6.94 (bs, 1H), 6.68 (dd, 1H, J = 2.5, 2.5 Hz), 6.55 (dd, 1H, J = 1.6, 1.6 Hz), 5.78 (bd, 1H, J = 7.5 Hz), 4.90 (t, 1H, J = 7.2 Hz), 4.36-4.02 (m, 1H), 3.68 (dd, 1H, J = 3.4, 11.2 Hz), 3.50 (dd, 1H, J = 5.3, 9.0 Hz), 3.31 (dd, J = 5.9, 7.4 Hz), 3.12 (dd, 1H, J = 7.2, 17.1 Hz), 2.74 (dddd, 1H, J = 6.2, 14.3, 14.3 Hz), 2.68 (dddd, J = 8.7, 14.0, 14.3 Hz). IR (film): 3387, 3028, 2931, 1715, 1660, 1532, 1494, 1204, 702, 698 cm⁻¹. HRFABMS: Calculated for C₂₉H₂₈N₂O₄Cs (M + Cs⁺): 643.1209. Found: 643.1185. Anal. calculated for C₂₉H₂₈N₂O₄ • 0.1 CHCl₃ • 0.35 H₂O: C, 71.80; H, 5.96; N, 5.75. Found: C, 71.92; H, 5.87; N, 5.77.
The starting material, N-(1(S)-benzyl-2-hydroxyethyl)-3(R)-[3-(biphenyl-4-yl)-1H-pyrrrol-1-yl] succinamic acid benzyl ester, was prepared as follows:

To a solution of N-t-butoxycarbonyl-D-aspartic acid β-benzyl ester (2.00 g, 6.20 mmol) in CHCl₃ (80 mL) at 0°C was added in succession 1-(3-dimethylaminopropyl)-3-ethyl-carbodiimide hydrochloride (EDC, 1.30 g, 6.82 mmol) and N-hydroxybenzotriazole hydrate (HOBt • H₂O, 1.04 g, 6.82 mmol). After 10 min at 0°C, 2S-amino-3-phenyl-1-propanol (936 mg, 6.20 mmol) was added and the resultant mixture was allowed to warm to ambient temperature overnight. After 20 hours, the mixture was stirred with 10% aqueous HCl (5 mL) and saturated aqueous NH₄Cl (25 mL). The separated aqueous layer was extracted with more CHCl₃ (2 x 10 mL). The combined organic extracts were washed with saturated aqueous NaHCO₃:H₂O (25:25 mL) two times, dried over Na₂SO₄, and concentrated in vacuo to a yellow foam, 2.84 g, which was recrystallized from EtOAc/hex in successive crops to afford 2.34 g (83%) of N-(1(S)-benzyl-2-hydroxyethyl)-3(R)-(t-butoxycarbonylamino)succinamic acid benzyl ester as white microneedles, mp 94-95°C. ¹H NMR (CDCl₃): δ 7.40-7.10 (m, 10H), 6.81 (d, 1H, J = 10.8 Hz), 5.55 (d, 1H, J = 7.2 Hz), 5.11 (ddd, 2H, J = 1.2, 6.9, 7.4 Hz), 4.50-4.32 (bm, 1H), 4.21-4.04 (m, 1H), 3.68 (dd, 1H, J = 3.4, 11.2 Hz), 3.52 (dd, 1H, J = 5.3, 11.5 Hz), 3.03 (dd, 1H,
$J = 4.7, 17.1 \text{ Hz}$, 2.86 (dd, 1H, $J = 7.2, 13.7 \text{ Hz}$), 2.83 (dd, 1H, $J = 7.2, 13.7 \text{ Hz}$), 2.64 (dd, 1H, $J = 5.9, 17.1 \text{ Hz}$), 1.43 (s, 9H). IR (KBr): 3442, 3381, 3307, 1729, 1676, 1656, 1554, 1522, 1300, 1164, 1041, 701 cm$^{-1}$. Anal. Calculated for C$_{22}$H$_{32}$N$_2$O$_6$: C, 65.77; H, 7.07; N, 6.14. Found: C, 65.74; H, 7.10; N, 6.20.

4-Biphenylboronic acid was prepared differently than described in the literature (see Yabroff, D. L.; Branch, G. E.; Bettman, B. J. Am. Chem. Soc. 1934, 56, 1850-1857). To a solution of 4-bromobiphenyl (2.00 g, 8.58 mmol) in THF (20 mL) at -78°C was added n-butyllithium (4.0 mL of 2.5 M in hexanes) in a slow stream via syringe. After 15 minutes, triisopropylborate (3.0 mL, 13 mmol) was added in a slow stream via syringe. After 10 minutes, the resultant homogeneous solution was allowed to warm to ambient temperature over 45 minutes and partitioned between EtOAc (50 mL) and 10% aqueous HCl (50 mL). The aqueous layer was separated and extracted with more EtOAc. The combined organic layers were washed with brine, dried over Na$_2$SO$_4$ and concentrated to give a crude product which was triturated with hexanes to yield 1.53 g (90%) of 4-biphenylboronic acid as a white solid. 1H NMR (DMSO-d$_6$): δ 8.05 (s, 2H), 7.83 (d, 2H, $J = 8.5 \text{ Hz}$), 7.65 (d, 2H, $J = 7.0 \text{ Hz}$), 7.60 (d, 2H, $J = 8.1 \text{ Hz}$), 7.43 (t, 2H, $J = 7.4 \text{ Hz}$), 7.33 (t, 1H, $J = 7.2 \text{ Hz}$). Anal. C$_{12}$H$_{11}$BO$_2$: C, 72.78; H, 5.60. Found: C, 72.51; H, 5.62.
3-(Biphenyl-4-yl)furan

A biphasic mixture of 3-bromofuran (2.90 mL, 32.1 mmol), benzene (70 mL), and 2N aqueous Na₂CO₃ (50 mL) was degassed and purged with argon. Tetrakis(triphenylphosphine) palladium(0) (3.7 g, 3.2 mmol) and a solution of 4-biphenylboronic acid (6.36 g, 32.1 mmol) in EtOH (50 mL) were added sequentially. The mixture was heated at 80°C for 18 hours, allowed to cool, and partitioned between CH₂Cl₂ and H₂O. The aqueous layer was separated and extracted with CH₂Cl₂ two times. The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated to a crude product, which was dissolved in a minimal amount of CH₂Cl₂ and applied to a flash chromatography column packed with hexanes. Elution with 10% CH₂Cl₂/hex led to some mixed fractions, which were rechromatographed. A total of 5.37 g (76%) of 3-(biphenyl-4-yl)furan was obtained as a pale yellow oil. ¹H NMR: δ 8.28 (s, 1H), 7.64-7.55 (m, 6H), 7.50 (s, 1H), 7.45 (t, 2H, J = 7.35 Hz), 7.40 (t, 1H, J = 7.35 Hz), 6.75 (s, 1H). Anal. calculated for C₁₆H₁₂O: C, 87.25; H, 5.49. Found: C, 87.15; H, 5.52.
3-(Biphenyl-4-yl)-2,5-dihydro-2,5-dimethoxyfuran

To a slurry of 3-(biphenyl-4-yl)furan (100 mg, 0.450 mmol) and Na₂CO₃ (48 mg, 0.45 mmol) in benzene (1 mL) and MeOH (1 mL) at -10°C was added bromine (22 μL, 0.43 mmol) dropwise via syringe. After 30 minutes at -10°C, the mixture was diluted with EtOAc and filtered twice. The filtrate was concentrated to give a crude solid which was purified via flash column chromatography with a 0-1% EtOAc/CH₂Cl₂ gradient eluant to provide 90 mg (74%) of a diastereomeric mixture of 3-(biphenyl-4-yl)-2,5-dihydro-2,5-dimethoxyfuran as a colorless oil.

¹H NMR (CDCl₃): δ 7.70-7.28 (m, 9H), 6.35 (dd, 0.75H, major isomer, J = 0.9, 0.9 Hz), 6.30 (d, 0.25H, minor isomer, J = 6.0 Hz), 6.04-6.03 (m, 1H, major+minor isomer), 5.71 (d, 0.75H, major isomer, J = 0.9Hz), 3.60-3.40 (m, 6H). Anal. Calculated for C₁₈H₁₈O₃: C, 76.57; H, 6.43. Found: C, 76.52; H, 6.38.

3-(Biphenyl-4-yl)-2,5-dimethoxytetrahydrofuran

A mixture of 3-biphenyl-4-yl-2,5-dihydro-2,5-dimethoxyfuran (1.00 g, 3.55 mmol) and 5% Pd/C (300 mg) in EtOH:EtOAc (1:2) was stirred under H₂ atmosphere for 1.75 hours. The catalyst was filtered onto Celite. The filtrate was concentrated to provide 0.97 g (97%) of a diastereomeric mixture of 3-biphenyl-4-yl-2,5-dimethoxy-tetrahydro-furan as a colorless oil which was typically used without purification. ¹H NMR: δ 7.60-7.53 (m, 4H), 7.45-7.28 (m,
5H), 5.26 (t, 1H, J = 5.5 Hz), 5.02 (d, 1H, J = 4.4 Hz), 3.54 (s, 3H), 3.36 (s, 3H), 2.63-2.53 (m, 1H), 2.41-2.30 (m, 1H). Anal. calculated for C_{18}H_{20}O_{3}: C, 76.03; H, 7.09. Found: C, 75.74; H, 6.92.

N-(1(S)-Benzyl-2-hydroxyethyl)-3(R)-(3-(biphenyl-4-yl)-1H-pyrrol-1-yl)succinamic Acid Benzyl Ester

To a solution of N-(1(S)-benzyl-2-hydroxyethyl)-3(R)-(t-butoxycarbonylamino) succinamic acid benzyl ester (389 mg, 0.851 mmol) in CH₂Cl₂ (5 mL) was added trifluoroacetic acid (1 mL). After 2.5h at ambient temperature, the solvent was removed in vacuo to give 3(R)-amino-N-(1(S)-benzyl-2-hydroxyethyl)succinamic acid benzyl ester trifluoroacetate salt as a yellow foam that was placed with 3-(biphenyl-4-yl)-2,5-dimethoxytetrahydrofuran (182 mg, 0.641 mmol) in HOAc (1 mL) and heated to 50°C. After 2 hours, the mixture was allowed to cool, carefully stirred with saturated aqueous NaHCO₃ (25 mL), and extracted into CHCl₃ (3 x 15 mL). The combined organic layers were dried over Na₂SO₄ and evaporated to give a brown oil, 685 mg. Flash column chromatography with 10% MeOH/CH₂Cl₂ as eluant provided 276 mg (64%) of N-(1(S)-benzyl-2-hydroxyethyl)-3(R)-(3-(biphenyl-4-yl)-1H-pyrrol-1-yl)succinamic acid benzyl ester as a yellow solid. ¥H NMR (CDCl₃): δ 7.70-7.48 (m, 10H), 7.44 (dd, 2H, J = 7.2, 7.8 Hz), 7.38-7.12 (m, 5H), 7.08-6.98 (m, 2H), 6.89 (bm, 1H), 6.63 (dd, 1H, J = 2.5, 2.5 Hz), 6.54 (dd, 1H, J = 1.2, 1.2 Hz), 5.76 (d, 1H, J = 7.5 Hz), 5.10 (dd, 2H, J = 12.1, 15.9 Hz), 4.95
(dd, 1H, J = 5.0, 8.7 Hz), 4.34-4.00 (bm, 1H), 3.66 (dd, 1H, J = 3.7, 11.2 Hz), 3.49 (dd, 1H, J = 5.3, 11.2 Hz), 3.37 (dd, 1H, J = 5.0, 16.8 Hz), 3.18 (dd, 1H, J = 8.7, 16.8 Hz), 2.74 (ddd, 2H, J = 6.5, 13.7, 15.9 Hz). IR (KBr): 3314, 3029, 2925, 1731, 1658, 1548, 1495, 1355, 1196, 1165, 761, 698 cm\(^{-1}\); Anal. calculated for C\(_{36}\)H\(_{34}\)N\(_2\)O\(_4\) \(\cdot\) 0.5 H\(_2\)O: C, 76.17; H, 6.22; N, 4.94. Found: C, 76.24; H, 6.18; N, 4.97.

The following were prepared in a similar manner:

Example 1(b). N-[2,2-Dimethyl-1(S)-(methylcarbamoyl)propyl]-3(R)-(3-phenyl-1H-pyrrol-1-yl)succinamic acid

![Chemical structure](image)

According to the procedure described in Example 1(a), N-[2,2-dimethyl-1(S)-(methylcarbamoyl)propyl]-3(R)-(3-phenyl-1H-pyrrol-1-yl)succinamic acid benzyl ester (371 mg, 0.781 mmol) in MeOH (15 mL) was hydrogenolyzed to provide 301 mg (100%) of N-[2,2-dimethyl-1(S)-(methylcarbamoyl)propyl]-3(R)-(3-phenyl-1H-pyrrol-1-yl)succinamic acid as a yellow foam. \(^1\)H NMR (CDCl\(_3\)): δ 7.50-7.20 (m, 4H), 7.15 (tt, 1H, J = 1.2, 7.3 Hz), 7.06 (dd, 1H, J = 2.0, 2.0 Hz), 6.78 (dd, 1H, J = 2.5, 2.5 Hz), 6.48 (dd, 1H, J = 1.6, 2.8 Hz), 5.20 (t, 1H, J = 6.9 Hz), 4.20 (d, 1H, J = 9.3 Hz), 3.34 (dd, 1H, J = 6.9, 17.4 Hz), 3.06 (dd, 1H, J = 7.2, 17.4 Hz), 2.69 (d, 3H, J = 4.7 Hz), 0.93 (s, 9H); IR (KBr): 3318, 2966, 1718, 1654, 1559, 1542, 1202, 745 cm\(^{-1}\). HRFABMS: Caled for C\(_{21}\)H\(_{27}\)N\(_3\)O\(_4\)Cs (M + Cs\(^+\)): 518.1056. Found: 518.1037. Anal.

Calculated for C\(_{21}\)H\(_{27}\)N\(_3\)O\(_4\) \(\cdot\) 0.3 CHCl\(_3\): C, 60.73; H, 6.53; N, 9.97. Found: C, 60.70; H, 6.58; N, 9.84.
The starting material, N-[2,2-dimethyl-1(S)-(methylcarbamoyl)propyl]-3(R)-(3-phenyl-1H-pyrrol-1-yl)succinamic acid benzyl ester, was furnished as follows:

3(R)-t-Butoxycarbonylamino-N-(2,2-dimethyl-1(S)-(methylcarbamoyl)propyl)-succinamic Acid Benzyl Ester

![Chemical Structure](image)

To a solution of N-t-butoxycarbonyl-D-aspartic acid β-benzyl ester (2.19 g, 6.77 mmol) in DMF (40 mL) was added in succession 4-methylmorpholine (NMM, 13.5 mmol, 1.49 mL), 2-(1H-benzotriazole-1-yl)-N,N,N',N'-tetramethyluronium tetrafluoroborate (TBTU; 2.17 g, 6.77 mmol) and a solution of L-t-leucine N-methylamide (see Malon, P.; Pancoska, P.; Budesinsky, M.; Hlavacek, J.; Pospisek, J.; Blaha, K. *Coll. Czech. Chem. Commun.* 1983, 48, 2844-2861; 886 mg, 6.15 mmol) in DMF (10 mL). After 3 hours at ambient temperature, the mixture was stirred with 10% aqueous KHSO₄ (25 mL) and water (100 mL) and extracted with CHCl₃ (100 mL) three times. The CHCl₃ extracts were washed with 10% aqueous KHSO₄:H₂O (10:250 mL), saturated aqueous NaHCO₃:H₂O (100:200 mL), and water (200 mL) three times, dried over Na₂SO₄, and evaporated to give 2.49 g (90%) of 3(R)-t-butoxycarbonylamino-N-(2,2-dimethyl-1(S)-(methylcarbamoyl)propyl)succinamic acid benzyl ester as a yellow foam, typically used without further purification. Flash column chromatography with 3% MeOH/CHCl₃ as eluant afforded analytically pure amorphous solid. § H NMR: δ 7.40-7.30 (m, 5H), 7.03 (d, 1H, J = 9.0 Hz), 5.90 (bd, 1H, J = 4.7 Hz), 5.56 (bd, 1H, J = 8.5 Hz), 5.13 (dd, 2H, J = 2.5, 17.4 Hz), 4.56
(bd, 1H, J = 7.5 Hz), 4.11 (d, 1H, J = 9.0 Hz), 3.00 (dd, 2H, J = 4.0, 16.2 Hz), 2.85 (d, 3H, J = 4.7 Hz), 1.00 (s, 9H). Anal. Calculated for C_{23}H_{35}N_{2}O_{6}: C, 61.45; H, 7.85; N, 9.35. Found: C, 61.56; H, 7.83; N, 9.27.

2,5-Dihydro-2,5-dimethoxy-3-phenylfuran

According to the procedure described in Example 1(a) for the preparation of 3-biphenyl-4-yl-2,5-dihydro-2,5-dimethoxyfuran, 3-phenylfuran (see Pridgen, L. N.; Jones, S. S. *J. Org. Chem.* 1982, 47, 1590-1592 and Yang, Y.; Wong, H. N. C. *Tetrahedron* 1994, 32, 9583-9608; 848 mg, 5.89 mmol) provided 1.00 g (82%) of 2,5-dihydro-2,5-dimethoxy-3-phenylfuran as a yellow oil, which was an approximately 80:20 mixture of diastereomers by 1H NMR and used without further purification. 1H NMR (CDCl$_3$): δ 7.64-7.52 (m, 2H), 7.44-7.30 (m, 3H), 6.36-6.30 (m, 0.9H, major + minor isomer), 6.28 (dd, 0.1H, minor isomer, J = 1.2, 3.7 Hz), 6.04-6.00 (m, 0.9H, major + minor isomer), 5.70 (d, 0.8H, major isomer, J = 1.2 Hz), 3.52 (s, 2.2H, major isomer), 3.46 (s, 0.60H, minor isomer), 3.43 (s, 2.2H, major isomer), 3.40 (s, 0.60H, minor isomer); Anal. Calculated for C$_{12}$H$_{14}$O$_3$ • 0.04 Br$_2$: C, 67.78; H, 6.64. Found: C, 67.79; H, 6.45.
2,5-Dimethoxy-3-phenyl-tetrahydrofuran

\[
\begin{array}{c}
\text{H}_3\text{CC}_6\text{H}_4\text{OCH}_3.
\end{array}
\]

A mixture of 2,5-dihydro-2,5-dimethoxy-3-phenylfuran (590 mg, 2.86 mmol) and 10% Rh/Al\textsubscript{2}O\textsubscript{3} (110 mg) in EtOAc (10 mL) was stirred under H\textsubscript{2} atmosphere for 24 hours. The catalyst was filtered onto Celite and rinsed with EtOAc. The filtrate was concentrated in vacuo to afford 583 mg (98%) of 2,5-dimethoxy-3-phenyl-tetrahydrofuran as a colorless oil which was typically used without further purification. 1H NMR: \(\delta\) 7.40-7.18 (m, 5H), 5.30-4.80 (m, 2H), 3.70-3.40 (m, 6H), 2.78-2.43 (m, 1.2H), 2.34 (ddd, 0.75H, \(J = 5.6, 12.7, 18.3\)Hz), 2.17 (dd, 0.1H, \(J = 8.4, 12.8\) Hz). Anal. Calcd for C\textsubscript{12}H\textsubscript{16}O\textsubscript{3} \cdot 0.2 H\textsubscript{2}O: C, 68.03; H, 7.80. Found: C, 68.11; H, 7.60.

\[3\text{(R)}-\text{Amino-N-(2,2-dimethyl-1(S)-(methylcarbamoyl)propyl)succinamic Acid Benzyl Ester Trifluoroacetate Salt}\]

To a solution of 3(R)-butoxycarbonyl-amino-N-(2,2-dimethyl-1(S)-(methylcarbamoyl)propyl)succinamic acid benzyl ester (2.05 g, 4.57 mmol) in CH\textsubscript{3}Cl\textsubscript{3} (15 mL) was added trifluoroacetic acid (3 mL). After 2.5 hours at ambient temperature, more trifluoroacetic acid was added (3 mL), and after 90 minutes, the solvent was removed in vacuo to give crude 3(R)-amino-N-[2,2-dimethyl-1(S)-(methylcarbamoyl)propyl]succinamic acid benzyl ester trifluoroacetate salt as a yellow oil that was used without further purification. 1H NMR: \(\delta\)
7.50-7.20 (m, 5H), 5.14 (dd, 2H, J = 12.1, 15.6 Hz), 4.57 (t, 1H, J = 6.2 Hz), 4.33 (d, 1H, J = 8.7 Hz), 3.13 (d, 1H, J = 6.2 Hz), 2.74 (d, 3H, J = 4.7 Hz), 0.93 (s, 9H).

N-[2,2-Dimethyl-1(S)-(methylcarbamoyl)propyl]-3(R)-(3-phenyl-1H-pyrrol-1-yl)succinamic Acid Benzyl Ester

A solution of crude 3(R)-amino-N-[2,2-dimethyl-1(S)-(methylcarbamoyl)propyl]-succinamic acid benzyl ester trifluoroacetate salt (2.33 mmol), 2,5-dimethoxy-3-phenyl-tetrahydrofuran (583 mg, 2.80 mmol), trifluoroacetic acid (216 μL, 2.80 mmol), and water (50 μL, 2.8 mmol) in 1,2-dichloroethane (1 mL) was heated at 70°C. After 20 hours, the mixture was allowed to cool and concentrated in vacuo to give a brown oil, which was purified via flash column chromatography with 0.5% HOAc/55% EtOAc/hex as eluant to afford 407 mg (37%) of N-(2,2-dimethyl-1(S)-(methylcarbamoyl)propyl)-3(R)-(3-phenyl-1H-pyrrol-1-yl)succinamic acid benzyl ester as a yellow foam. ¹H NMR: δ 7.52-7.44 (m, 2H), 7.38-7.15 (m, 3H), 7.04 (dd, 1H, J = 1.8, 1.8 Hz), 6.78 (t, 1H, J = 2.5 Hz), 6.56 (dd, 1H, J = 1.6, 2.5 Hz), 6.42 (d, 1H, J = 9.0 Hz), 5.95 (bd, J = 4.0 Hz), 5.18-5.04 (m, 3H), 4.30 (d, 1H, J = 9.0 Hz), 3.38 (dd, 1H, J = 5.9, 16.8 Hz), 3.10 (dd, 1H, J = 8.4, 16.8 Hz), 2.72 (d, 3H, J = 5.0 Hz), 0.93 (s, 9H). IR: 3301, 2960, 1736, 1645, 1542, 1166, 752, 695 cm⁻¹. HRFABMS: Calculated for C₂₈H₃₃N₃O₄Cs (M + Cs⁺): 608.1525. Found: 608.1549. Anal. Calculated for C₂₈H₃₃N₃O₄ · 0.2 H₂O: C, 70.18; H, 7.03; N, 8.77. Found: C, 70.45; H, 6.99; N, 8.84.
Example 1(c). N-(8-Oxo-4-oxa-1,7-diazatricyclo[9.6.1.0^{12,17}]octadeca-11(18), 12,14,16-tetraen-9(S)-yl)-3(R)-(3-phenyl-1H-pyrrol-1-yl)succinic Acid

According to the procedure described in Example 1(a), N-(8-oxo-4-oxa-1,7-diazatricyclo[9.6.1.0^{12,17}]octadeca-11(18),12,14,16-tetraen-9(S)-yl)-3(R)-(3-phenyl-1H-pyrrol-1-yl)succinic acid benzyl ester was hydrogenolyzed to give in 94% yield N-(8-oxo-4-oxa-1,7-diazatricyclo[9.6.1.0^{12,17}]octadeca-11(18),12,14,16-tetraen-9(S)-yl)-3(R)-(3-phenyl-1H-pyrrol-1-yl)succinic acid as an amorphous solid. 1H NMR (CD$_3$CN): δ 7.65 (d, 1H, $J = 7.4$ Hz), 7.48 (d, 2H, $J = 7.7$ Hz), 7.39 (d, 1H, $J = 8.1$ Hz), 7.33 (t, 2H, $J = 7.7$ Hz), 7.23-7.13 (m, 3H), 7.11 (s, 1H), 6.97 (s, 1H), 6.78-6.71 (m, 2H), 6.43 (t, 1H, $J = 2.0$ Hz), 5.46-5.43 (bm, 1H), 5.11 (t, 1H, $J = 7.2$ Hz), 4.42-4.34 (m, 1H), 4.28-4.10 (m, 2H), 3.45-3.24 (m, 5H), 3.07-2.76 (m, 5H). Anal. Calcd for C$_{25}$H$_{30}$N$_4$O$_5$ • 0.35 H$_2$O • 0.1 MTBE: C, 66.89; H, 6.07; N, 10.58. Found: C, 66.99; H, 6.06; N, 10.33.
The starting material, N-(8-oxo-4-oxa-1,7-diaza-tricyclo[9.6.1.0^{12,17}]octadeca-
11(18),12,14,16-tetraen-9S-yl)-3(R)-(3-phenyl-1H-pyrrol-1-yl)succinamic acid benzyl ester, was
available as follows:

3(R)-t-Butoxycarbonylamino-N-(8-Oxo-4-oxa-1,7-diaza-tricyclo[9.6.1.0^{12,17}]octadeca-
11(18),12,14,16-tetraen-9S-yl)succinamic Acid Benzyl Ester

According to the procedure described in Example 1(b) for the preparation of 3(R)-amino-
N-(2,2-dimethyl-1(S)-(methylcarbamoyl)propyl)succinamic acid benzyl ester trifluoroacetate
salt, 9S-t-butoxycarbonylamino-4-oxa-1,7-diaza-tricyclo-[9.6.1.0^{12,17}]octadeca-
11(18),12,14,16-tetraen-8-one (see Castelhano, A. L.; Liak, T. J.; Horne, S.; Yuan, Z.; Krantz, A.
According to the procedure described in Example 1(b) for the preparation of N-(2,2-dimethyl-
1(S)-(methylcarbamoyl)propyl)-3(R)-t-butoxycarbonylaminosuccinamic acid benzyl ester, the
crude amine salt and N-t-butoxycarbonyl-D-aspartatic acid β-benzyl ester was coupled with
TBTU to afford in 70% yield 3(R)-t-butoxycarbonylamino-N-(8-oxo-4-oxa-1,7-diaza-tricyclo-
[9.6.1.0^{12,17}]octadeca-11(18),12,14,16-tetraen-9S-yl)succinamic acid benzyl ester. Trituration
with MTBE gave an off-white amorphous solid that was suitable for further use without
additional purification. 1H NMR (DMSO-d$_6$): δ 7.76 (d, 1H, J = 8.1 Hz), 7.49-7.28 (m, 8H),
7.14 (d, 1H, J = 8.1 Hz), 7.08 (s, 1H), 7.04 (d, 1H, J = 7.7 Hz), 6.98 (t, 1H, J = 7.0 Hz), 5.07 (s,
2H), 4.38-4.15 (m, 4H), 3.47-3.38 (m, 2H), 2.96-2.75 (m, 5H), 2.65-2.53 (m, 2H), 1.34 (s, 9H).

Anal. Calculated for C_{31}H_{38}N_{4}O_{7}: C, 64.34; H, 6.62; N, 9.68. Found: C, 64.24; H, 6.65; N, 9.61.

N-(8-Oxo-4-oxa-1,7-diaza-tricyclo[9.6.1.0^{12,17}]octadeca-11(18),12,14,16-tetraen-9S-yl)-3(R)-(3-phenyl-1H-pyrrol-1-yl)succinamic Acid Benzy1 Ester

According to the procedure described in Example 1(b) for the preparation of 3(R)-amino-N-(2,2-dimethyl-1(S)-(methylcarbamoyl)propyl)succinamic acid benzyl ester trifluoroacetate salt, 3(R)-t-butoxycarbonylamino-N-(8-oxo-4-oxa-1,7-diaza-tricyclo-[9.6.1.0^{12,17}]octadeca-11(18),12,14,16-tetraen-9S-yl)succinamic acid benzyl ester (157 mg, 0.27 mmol) was deprotected with trifluoroacetic acid. A solution of dried crude amine salt and 2,5-dimethoxy-3-phenyl-tetrahydrofuran (67 mg, 0.32 mmol, from Example 1(b)) in anhydrous 1,2-dichloroethane (2 mL) was heated at ~75°C for 17 hours, allowed to cool, and partitioned between EtOAc/ pH7 phosphate buffer. The combined organic layers were dried over Na_{2}SO_{4} and concentrated to give a residue which was purified via flash column chromatography with 0-25% EtOAc/CH_{2}Cl_{2} gradient eluant and triturated with MTBE to provide 70 mg (43%) of N-(8-oxo-4-oxa-1,7-diaza-tricyclo-[9.6.1.0^{12,17}]octadeca-11(18),12,14,16-tetraen-9S-yl)-3(R)-(3-phenyl-1H-pyrrol-1-yl)succinamic acid benzyl ester as an off white solid, mp 163-6°C. \(^1\)H NMR (CDCl_{3}): δ 7.68 (d, 1H, J = 6.6 Hz), 7.37-7.13 (m, 12H), 6.95 (s, 1H), 6.64 (s, 1H), 6.45 (t, 1H, J = 2.2 Hz), 6.32 (s, 1H), 6.17 (d, 1H, J = 7.7 Hz), 5.14 (s, 2H), 4.96 (t, 1H, J = 7.2 Hz), 4.62-4.56 (m, 1H), 4.44-4.40
(m, 1H), 4.12 (t, 2H, J = 4.4 Hz), 3.49-3.40 (m, 3H), 3.35-3.26 (m, 1H), 3.09-2.96 (m, 3H), 2.92-2.85 (m, 2H), 2.77-2.69 (m, 1H). Anal. Calculated for C_{36}H_{36}N_{4}O_{5} • 0.4 H_{2}O: C, 70.66; H, 6.06; N, 9.16. Found: C, 70.69; H, 6.11; N, 8.99.

Example 1(d). N-[2,2-Dimethyl-1(S)-(methylcarbamoyl)propyl]-3(R)-[3-(pyridin-4-yl)-1H-pyrrol-1-yl]succinic acid

According to the procedure described in Example 1(a), N-[2,2-dimethyl-1(S)-(methylcarbamoyl)propyl]-3(R)-[3-(pyridin-4-yl)-1H-pyrrol-1-yl]succinic acid benzyl ester was hydrogenolyzed in MeOH to give 60 mg (95%) of N-[2,2-dimethyl-1(S)-(methylcarbamoyl)propyl]-3(R)-[3-(pyridin-4-yl)-1H-pyrrol-1-yl]succinic acid as a yellow powder, mp 145-8°C. ¹H NMR (CD_{3}OD): δ 8.48 (d, 2H, J = 6.2 Hz), 7.62 (d, 2H, J = 6.2 Hz), 7.58 (s, 1H), 6.94 (t, 1H, J = 2.5 Hz), 6.64 (t, 1H, J = 2.2 Hz), 5.30 (t, 1H, J = 7.3 Hz), 2.98 (dd, 1H, J = 7.2, 16.5 Hz), 2.64 (d, 3H, J = 3.7 Hz), 1.00 (s, 9H). IR (KBr): 3315, 2959, 1710, 1654, 1545, 1400, 1206 cm⁻¹. HRFABMS: Calculated for C_{26}H_{26}N_{4}O_{4}Cs (M + Cs)⁺: 519.1008. Found: 519.1026. Anal. Calcd for C_{26}H_{26}N_{4}O_{4} • 0.1 EtOAc • 0.2 CHCl₃: C, 59.03; H, 6.49; N, 13.37. Found: C, 59.24; H, 6.75; N, 13.10.
The starting materials were furnished as follows:

4-Furan-3-yl-pyridine

According to the procedure described in Example 1(a) for the preparation of 3-biphenyl-4-yl-furan, 4-bromopyridine hydrochloride (500 mg, 2.57 mmol) was coupled to fresh 3-furanboronic acid (see Thompson, W. J.; Gaudino, G. J. Org. Chem. 1984, 49, 5237-5243) to furnish 373 mg (100%) of crude 4-furan-3-yl-pyridine as an unstable solid that was used immediately. NMR and IR matched that of literature (see Ribereau, P.; Queguiner, G. Can. J. Chem. 1983, 61, 334-342 and Ishikura, M.; Ohta, T.; Terashima, M. Chem. Pharm. Bull. 1985, 33, 4755-4763).

4-(2,5-Dimethoxy-2,5-dihydro-furan-3-yl)pyridine

According to the procedure describe in Example 1(a) for the preparation of 3-biphenyl-4-yl-2,5-dihydro-2,5-dimethoxyfuran, crude 4-furan-3-yl-pyridine (2.57 mmol) was treated with bromine in MeOH at -15°C in the presence of Na₂CO₃ to provide 450 mg (85%) of a mixture of diastereomers of 4-(2,5-dimethoxy-2,5-dihydro-furan-3-yl)pyridine as a yellow oil, which was used without further purification: ¹H NMR (CDCl₃): δ 8.62 (d, 2H, J = 5.0 Hz), 7.44-7.38 (m, 2H), 6.52 (d, 1H, J = 0.9 Hz), 6.02 (dd, 0.5H, J = 0.9, 3.7 Hz), 6.00 (dd, 0.5H, J = 0.9, 3.7 Hz), 5.98 (s, 0.5H), 5.71 (d, 0.5H, J = 1.2 Hz), 3.48-3.40 (m, 6H). IR: 2933, 1597, 1547, 1438, 1369,
1193, 1118, 1039, 974, 918, 889, 821 cm\(^{-1}\). HRFABMS: Calculated for C\(_{11}\)H\(_{16}\)NO\(_3\) (M + H\(^+\)): 208.0974. Found: 208.0968.

4-(2,5-Dimethoxy-tetrahydro-furan-3-yl)pyridine

According to the procedure described in Example 1(a) for the preparation of 3-biphenyl-4-yl-2,5-dimethoxy-tetrahydro-furan, a mixture of 4-(2,5-dimethoxy-2,5-dihydro-furan-3-yl)pyridine (500 mg, 2.41 mmol) was hydrogenated in MeOH (2 mL) and EtOAc (8 mL) for 2 h to give 500 mg (100%) of a mixture of diastereomers by NMR of 4-(2,5-dimethoxy-tetrahydro-furan-3-yl)pyridine as a yellow oil. \(^1\)H NMR (CDCl\(_3\)): \(\delta\) 8.52-8.48 (m, 2H), 5.34-4.98 (m, 2H), 3.60-3.20 (m, 6H), 2.76-1.94 (m, 3H). IR (KBr): 2920, 1601, 1120, 988, 860 cm\(^{-1}\).

HRFABMS: Calculated for C\(_{11}\)H\(_{16}\)NO\(_3\) (M + H\(^+\)): 210.1130. Found: 210.1137.

N-(2,2-Dimethyl-1(S)-methylcarbamoylpropyl)-3(R)-(3-pyridin-4-yl-1H-pyrrol-1-yl)succinamic Acid Benzyl Ester

A solution of crude 3(R)-amino-N-(2,2-dimethyl-1(S)-methylcarbamoylpropyl)succinamic acid benzyl ester trifluoroacetate salt (0.44 mmol), 4-(2,5-dimethoxy-tetrahydro-furan-3-yl)pyridine (101 mg, 0.482 mmol), pyridine (156 \(\mu\)L, 1.92 mmol), and chlorotrimethylsilane (366 \(\mu\)L, 2.88 mmol) in 1,2-dichloroethane (5 mL) was heated at 90°C. After 3 days, the mixture was allowed to cool and concentrated \textit{in vacuo} to give a brown
oil which was purified via flash column chromatography with 0.5% HOAc/10% MeOH/CH₂Cl₂ as eluant to afford 90 mg (43%) of N-(2,2-dimethyl-1(S)-methylcarbamoylpropyl)-3(R)-(3-pyridin-4-yl-1H-pyrrol-1-yl)succinic acid benzyl ester as a pale yellow powder, mp 130-3°C.

¹H NMR (CD₃OD): δ 8.36 (bs, 2H), 7.98 (d, 2H, J = 4.4 Hz), 7.51 (d, 2H, J = 5.0 Hz), 7.48 (t, 1H, J = 1.8 Hz), 6.93 (t, 1H, J = 2.5 Hz), 6.61 (dd, 1H, J = 1.7, 3.0 Hz), 5.34 (t, 1H, J = 7.6 Hz), 5.10 (dd, 2H, J = 2.5, 14.3 Hz), 4.16 (s, 1H), 3.14 (dd, 1H, J = 7.8 Hz, 16.5 Hz), 2.60 (d, 3H, J = 3.4 Hz), 0.92 (s, 9H). IR (KBr): 3314, 2965, 1734, 1648, 1604, 1543, 1400, 1167 cm⁻¹.

HRFABMS: Calcd for C₂₇H₃₂N₄O₄Cs (M + Cs⁺): 609.1478. Found: 609.1499. Anal:

Calculated for C₂₇H₃₂N₄O₄ • 0.1 CH₂Cl₂ • MeOH: C, 65.27; H, 7.06; N, 10.83. Found: C, 65.52; H, 6.89; N, 10.52.

Example 1(c). 3(R)-[3-(Biphenyl-4-yl)-1H-pyrrol-1-yl]-N-[2,2-dimethyl-1(S)-(methylcarbamoyl)propyl]succinamic Acid

According to the procedure described in Example 1(a), 3(R)-[3-(biphenyl-4-yl)-1H-pyrrol-1-yl]-N-[2,2-dimethyl-1(S)-(methylcarbamoyl)propyl]succinamic acid benzyl ester was hydrogenolyzed to give 310 mg (95%) of 33(R)-[3-(biphenyl-4-yl)-1H-pyrrol-1-yl]-N-[2,2-dimethyl-1(S)-(methylcarbamoyl)propyl]succinamic acid as an amorphous solid. ¹H NMR (CDCl₃): δ 7.56 (d, 2H, J = 7.4 Hz), 7.51 (s, 4H), 7.40 (t, 2H, J = 7.4 Hz), 7.32-7.26 (m, 2H), 7.11 (s, 1H), 6.81 (s, 1H), 6.51 (s, 1H), 5.96-5.93 (bm, 1H), 5.23 (t, 1H, J = 6.8 Hz), 4.17 (d, 1H, J = 9.6 Hz), 3.34 (dd, 1H, J = 6.4, 17.1 Hz), 3.09 (dd, 1H, J = 7.6, 17.5 Hz), 2.71 (d, 3H, J = 4.8
Hz), 0.90 (s, 9H); Anal. Calculated for C_{27}H_{31}N_{3}O_{4} • 0.3 MTBE • 0.1 H_{2}O: C, 69.89; H, 7.16; N, 8.58. Found: C, 70.02; H, 7.33; N, 8.25.

The starting material was prepared as follows:

3(R)-[3-(Biphenyl-4-yl)-1H-pyrrol-1-yl]-N-[2,2-dimethyl-1(S)-(methylcarbamoyl)propyl]succinamic Acid Benzyl Ester

According to the procedure described in Example 1(c) for the preparation of N-(8-oxo-4-oxa-1,7-diaza-tricyclo-[9.6.1.0^{12,17}]-octa-deca-11(18),12,14,16-tetraen-9S-yl)-3(R)-(3-phenyl-1H-pyrrol-1-yl)succinamic acid benzyl ester, 3(R)-amino-N-(2,2-dimethyl-1(S)-(methylcarbamoyl)propyl)succinamic acid benzyl ester (prepared as described in Example 1(b)) was condensed with 3-biphenyl-4-yl-2,5-dimethoxy-tetrahydrofuran (prepared as described in Example 1(a)) in 1,2-dichloroethane with trifluoroacetic acid to provide in 35% yield 3(R)-[3-(biphenyl-4-yl)-1H-pyrrol-1-yl]-N-[2,2-dimethyl-1(S)-(methylcarbamoyl)propyl]succinamic acid benzyl ester as an amorphous solid. ^1H NMR (CDCl3): δ 7.63-7.57 (m, 6H), 7.44 (t, 2H, J = 7.6 Hz), 7.35-7.25 (m, 6H), 7.09 (s, 1H), 6.80 (t, 1H, J = 2.4 Hz), 6.61 (t, 1H, J = 2.0 Hz), 6.28 (d, 1H, J = 8.8 Hz), 5.99-5.71 (bm, 1H), 5.17-5.08 (m, 3H), 4.02 (d, 1H, J = 8.0 Hz), 3.40 (dd, 1H, J = 5.7, 16.7 Hz), 3.12 (dd, 1H, J = 8.5, 16.9 Hz), 2.76 (d, 3H, J = 4.8 Hz), 0.87 (s, 9H). Anal. Calculated for C_{34}H_{37}N_{3}O_{4}: C, 74.02; H, 6.76; N, 7.62. Found: C, 73.87; H, 6.93; N, 7.39.

85
Example 1(f). N-(1(S)-Benzy1-2-methoxyethyl)-3(R)-[3-(biphenyl-4-yl)-1H-pyrrol-1-yl]succinamic Acid

According to the procedure described in Example 1(a), N-(1(S)-benzy1-2-methoxyethyl)-3(R)-[3-(biphenyl-4-yl)-1H-pyrrol-1-yl]succinamic acid benzyl ester was hydrogenolyzed in 90% yield to N-(1(S)-benzy1-2-methoxy-ethyl)-3(R)-[3-(biphenyl-4-yl)-1H-pyrrol-1-yl]succinamic acid as an amorphous solid, mp 247°C. 1H NMR (CDCl$_3$): δ 7.64-7.53 (m, 6H), 7.44 (t, 2H, $J = 7.5$ Hz), 7.34 (t, 1H, $J = 7.4$ Hz), 7.25-7.19 (m, 3H) 7.10 (d, 2H, $J = 8.1$ Hz), 6.98 (s, 1H), 6.70 (s, 1H), 6.59 (s, 1H), 5.83 (d, 1H, $J = 7.7$ Hz), 4.97 (t, 1H, $J = 7.0$ Hz), 4.22-4.15 (m, 1H), 3.43 (dd, 1H, $J = 6.6$, 16.5 Hz), 3.29-3.16 (m, 5H), 3.00 (dd, 1H, $J = 7.4$, 16.9 Hz), 2.78 (d, 2H, $J = 7.0$ Hz). Anal. Calculated for C$_{30}$H$_{30}$N$_2$O$_4$ \bullet 0.25 H$_2$O: C, 73.97; H, 6.31; N, 5.75. Found: C, 73.99; H, 6.59; N, 5.45.

The starting materials were furnished as follows:

N-(1(S)-Benzy1-2-methoxyethyl)-3(R)-(t-butoxycarbonylamino)succinamic Acid Benzyl Ester
A mixture of N-t-butoxycarbonyl-D-aspartic acid β-benzyl ester (480 mg, 1.50 mmol), 2S-amino-1-methoxy-3-phenylpropane hydrochloride (300 mg, 1.50 mmol), benzotriazole-1-yloxytris(dimethylamino)phosphonium hexafluorophosphate (BOP; 663 mg, 1.50 mmol) and triethylamine (0.5 mL, 3.6 mmol) in DMF (5 mL) was stirred at ambient temperature for 4 hours. The mixture was poured into H₂O (75 mL) and extracted with EtOAc:hex (3:1; 2 x 50 mL). The combined organic extracts were washed with 1N aqueous NaHSO₄ (2 x 25 mL), saturated aqueous NaHCO₃ (25 mL) two times, and brine (25 mL), dried over NaSO₄, and evaporated to give upon hexane trituration 545 mg (76%) of N-(1(S)-benzyl-2-methoxyethyl)-3(R)-(t-butoxycarbonylamino)succinamic acid benzyl ester as a solid, mp 60-3 °C. ¹H NMR (CDCl₃): δ 7.37-7.16 (m, 10H), 6.74 (bs, 1H), 5.64 (bd, 1H, J = 6.6 Hz), 5.12 (dd, 2H, J = 12.1, 17.7 Hz), 4.48-4.46 (m, 1H), 4.25-4.20 (m, 1H), 3.34 (s, 3H), 3.31-3.23 (m, 2H), 2.98 (dd, 1H, J = 4.4, 16.9 Hz), 2.82 (d, 2H, J = 7.4 Hz), 2.62-2.57 (m, 1H), 1.44 (s, 9H). Anal. Calculated for C₂₆H₃₅N₂O₆

• 0.25 H₂O: C, 65.87; H, 7.12; N, 5.91. Found: C, 65.73; H, 7.29; N, 5.89.

N-(1(S)-Benzyl-2-methoxyethyl)-3(R)-[3-(biphenyl-4-yl)-1H-pyrrol-1-yl]succinamic Acid Benzyl Ester

According to the procedure described in Example 1(a) for the preparation of N-(1(S)-benzyl-2-hydroxyethyl)-3(R)-[3-(biphenyl-4-yl)-1H-pyrrol-1-yl]succinamic acid benzyl ester, N-(1(S)-benzyl-2-methoxy-ethyl)-3(R)-(t-butoxycarbonylamino)succinamic acid benzyl ester was
deprotected and the crude salt condensed in HOAc with 3-(biphenyl-4-yl)-2,5-
dimethoxytetrahydrofuran (prepared as described in Example 1(a)) to provide in 54% yield N-
(1(S)-benzyl-2-methoxyethyl)-3(R)-[3-(biphenyl-4-yl)-1H-pyrro1-1-yl]succinic acid benzyl
ester as an oil, which was used without further purification. 1H NMR (CDCl3): δ 7.65-7.62 (m,
6H), 7.57 (t, 2H, J = 7.4 Hz), 7.48-7.16 (m, 9H), 7.10 (d, 2H, J = 7.7 Hz), 6.98 (s, 1H), 6.69 (s,
1H), 6.57 (s, 1H), 5.78 (d, 1H, J = 8.5 Hz), 5.10 (s, 2H), 5.01 (dd, 1H, J = 5.5, 9.2 Hz), 4.20-4.16
(m, 1H), 3.43 (dd, 1H, J = 5.3, 16.7 Hz), 3.28-3.15 (m, 5H), 3.02 (dd, 1H, J = 9.2, 16.6 Hz), 2.76
(d, 2H, J = 7.4 Hz); IR: 3315, 3063, 3030, 2930, 2891, 1738, 1682, 1526, 1495, 1204, 1167,
764, 737, 698 cm⁻¹. HRFABMS: Calculated for C₃₇H₃₆N₂O₄ (M + H⁺): 572.2675. Found:
572.2674.

Example 1(g). 3(R)-[3-(Biphenyl-4-yl)-1H-pyrro1-1-yl]-N-[2-hydroxy-1(S)-[(1H-imidazol-4-
yl)methyl]ethyl]succinic Acid Trifluoroacetate Salt

According to the procedure described in Example 1(a), 3(R)-[3-(biphenyl-4-yl)-1H-
pyrro1-1-yl]-N-[2-hydroxy-1(S)-[(1H-imidazol-4-yl)methyl]ethyl]succinic acid benzyl ester
was hydrogenolyzed and, after purification via reversed-phase HPLC, (12%) of 3(R)-[3-
biphenyl-4-yl]-1H-pyrro1-1-yl]-N-[2-hydroxy-1(S)-[(1H-imidazol-4-yl)methyl]ethyl]succinic
acid trifluoroacetate salt was obtained as a rust-colored amorphous solid. 1H NMR (CD3OD): δ
8.74 (s, 1H), 7.61-7.51 (m, 6H), 7.41 (t, 2H, J = 7.5 Hz), 7.34-7.27 (m, 2H), 7.19 (s, 1H), 6.81 (t,
1H, J = 2.2 Hz), 6.48 (s, 1H), 5.00 (dd, 1H, J = 5.9, 8.8 Hz), 4.17-4.12 (m, 1H), 3.58-3.46 (m,
2H), 3.30-3.21 (m, 1H), 3.06 (dd, 1H, J = 4.8, 15.1 Hz), 2.95-2.87 (m, 2H). Anal. Calculated for
C_{26}H_{26}N_{4}O_{4} • 1.0 TFA • 1.4 H_{2}O • 0.15 C_{6}H_{14}: C, 56.84%; H, 5.27; N, 9.17. Found: C, 57.04; H, 5.00; N, 8.94.

The starting material was furnished as follows:

3(R)-[t-Butoxycarbonylamino]-N-[2-hydroxy-1(S)-[(1H-imidazol-4-yl)methyl]ethyl]succinic Acid Benzyl Ester

According to the procedure described in Example 1(b) for the preparation of 3(R)-t-butoxycarbonylamino-N-(2,2-dimethyl-1(S)-(methylcarbamoyl)propyl)succinic acid benzyl ester, N-t-butoxycarbonyl-D-aspartic acid β-benzyl ester and L-histidinol dihydrochloride were coupled with TBTU to furnish 410 mg (92%) of 3(R)-(t-butoxycarbonylamino)-N-[2-hydroxy-1(S)-[(1H-imidazol-4-yl)methyl]ethyl]succinic acid benzyl ester as a solid which was used without further purification.

3(R)-[3-[(Biphenyl-4-yl)-1H-pyrrol-1-yl]-N-[2-hydroxy-1(S)-[(1H-imidazol-4-yl)methyl]ethyl]succinic Acid Benzyl Ester

According to the procedure described in Example 1(e) for the preparation of N-(8-oxo-4-oxa-1,7-diaza-tricyclo-[9.6.1.0^{12,17}]-octadeca-11(18),12,14,16-tetraen-9S-yl)-3(R)-(3-phenyl-
1H-pyrrol-1-yl)succinamic acid benzyl ester, 3(R)-(t-butoxycarbonylamino)-N-[2-hydroxy-1(S)-[(1H-imidazol-4-yl)methyl]ethyl]succinamic acid benzyl ester was deprotected, and the resultant crude amine salt was condensed with 3-(biphenyl-4-yl)-2,5-dimethoxy-tetrahydrofuran (produced as described in Example 1(a)) in 1,2-dichloroethane in the presence of trifluoroacetic acid to give in 37% yield 3(R)-[3-(biphenyl-4-yl)-1H-pyrrol-1-yl]-N-[2-hydroxy-1(S)-[(1H-imidazol-4-yl)methyl]ethyl]succinamic acid benzyl ester as a yellow solid. \(^1\)H NMR (CDCl\(_3\)): \(\delta\) 7.65-7.59 (m, 4H), 7.53 (d, 2H, J = 8.5 Hz), 7.45 (t, 2H, J = 7.4 Hz), 7.37-7.26 (m, 7H), 6.95 (s, 1H), 6.70 (t, 1H, J = 2.2 Hz), 6.65 (s, 1H), 6.52 (s, 1H), 6.45 (bs, 1H), 5.10 (s, 2H), 5.06-5.02 (m, 1H), 4.13-4.11 (m, 1H), 3.69 (dd, 1H, J = 3.9, 11.6 Hz), 3.56 (dd, 1H, J = 4.8, 11.8 Hz), 3.42 (dd, 1H, J = 5.5, 16.9 Hz), 3.06 (dd, 1H, J = 8.8, 16.9 Hz), 2.84 (t, 2H, J = 4.8 Hz). Anal. Calculated for C\(_{33}\)H\(_{32}\)N\(_4\)O\(_4\) • 0.8 H\(_2\)O • 0.15 MTBE: C, 70.34%; H, 6.19%; N, 9.72. Found: C, 70.51%; H, 6.05%; N, 10.15.

Example 1(h). 3(R)-[3-(Biphenyl-4-yl)-1H-pyrrol-1-yl]-N-(2(R)-hydroxycyclohex-1(R)-yl)succinamic Acid

\[
\begin{array}{c}
\text{HO} \quad \text{NH} \quad \text{OH} \\
\end{array}
\]

According to the procedure described in Example 1(a), 3(R)-[3-(biphenyl-4-yl)-1H-pyrrol-1-yl]-N-(2(R)-hydroxycyclohex-1(R)-yl)succinamic acid benzyl ester was
generated as a yellow solid, yield 3(R)-[3-(biphenyl-4-yl)-1H-pyrrol-1-yl]-N-(2(R)-hydroxycyclohex-1(R)-yl)succinamic acid as an amorphous solid. \(^1\)H NMR (CD\(_3\)OD): \(\delta\) 8.00 (d, 1H, J = 8.9 Hz), 7.61 (d, 2H, J = 7.4 Hz), 7.56 (s, 4H), 7.40 (t, 2H, J = 7.5 Hz), 7.28 (t, 1H, J
= 7.5 Hz), 7.23 (s, 1H), 6.86 (t, 1H, J = 2.6 Hz), 6.48 (t, 1H, J = 2.2 Hz), 5.07 (t, 1H, J = 7.4 Hz),
3.59-3.53 (m, 1H), 2.98 (dd, 1H, J = 7.7, 16.9 Hz), 2.01-1.95 (m, 1H), 1.83-1.78 (m, 1H), 1.72-
1.61 (m, 2H), 1.34-1.11(m, 4H). Anal. Calculated for C_{26}H_{25}N_{2}O_{4} • 0.5 H_{2}O: C, 70.73; H,
6.62; N, 6.35. Found: C, 70.79; H, 6.61; N, 6.26.

The starting material was prepared as follows:

3(R)-t-Butoxycarbonylamino-N-(2(R)-hydroxycyclohex-1R-yl)succinamic Acid Benzyl Ester

According to the procedure described in Example 1(f) for the preparation of N-(1(S)-
benzyl-2-methoxyethyl)-3(R)-t-butoxycarbonylamino-succinamic acid benzyl ester, N-t-
butoxycarbonyl-D-aspartic acid β-benzyl ester and racemic trans-2-aminocyclohexanol were
coupled with BOP to give a crude solid which was triturated with MTBE/hex, and then
successively recrystallized from MTBE/isoctane and MTBE/cyclohexanes/isoctane to provide
260 mg (20%) of the single diastereomer 3(R)-t-butoxycarbonylamino-N-(2(R)-hydroxy-
cyclohex-1R-yl)succinamic acid benzyl ester as an off-white solid, mp 124-5°C. \(^1\)H NMR
(DMSO-d_6): \(\delta 7.52 \) (d, 1H, J = 7.0 Hz), 7.36-7.31 (m, 5H), 7.09 (d, 1H, J = 9.2 Hz), 5.08, 5.05
(AB quartet, 2H, J = 12.1 Hz), 4.48 (d, 1H, J = 5.2 Hz), 4.34-4.27 (m, 1H), 3.26-3.18 (m, 1H),
2.76 (dd, 1H, J = 4.4, 16.2 Hz), 2.56 (dd, 1H, J = 9.2, 16.2 Hz), 1.82-1.70 (m, 2H), 1.60-1.50 (m,
2H), 1.36 (s, 9H), 1.20-1.08 (m, 4H). Anal. Calculated for C_{22}H_{32}N_{2}O_{6}: C, 62.84; H, 7.67; N,
6.66. Found: C, 63.10; H, 7.69; N, 6.60.
3(R)-(3-(Biphenyl-4-yl)-1H-pyrrol-1-yl)-N-(2(R)-hydroxycyclohex-1(R)-yl)succinamic Acid Benzyl Ester

As described in Example 1(a) for the preparation of N-(1(S)-benzyl-2-hydroxyethyl)-3(R)-(3-(biphenyl-4-yl)-1H-pyrrol-1-yl)succinamic acid benzyl ester, 3(R)-t-butoxycarbonylamino-N-(2(R)-hydroxycyclohex-1(R)-yl)succinamic acid benzyl ester and 3-biphenyl-4-yl-2,5-dimethoxy-tetrahydrofuran (prepared as described in Example 1(a)) were condensed in acetic acid to furnish in 41% yield 3(R)-(3-(biphenyl-4-yl)-1H-pyrrol-1-yl]-N-(2(R)-hydroxycyclohex-1(R)-yl)succinamic acid benzyl ester as an amorphous off-white solid.

1H NMR (CDCl3): δ 7.63-7.54 (m, 6H), 7.45 (t, 2H, J = 7.5 Hz), 7.36-7.26 (m, 6H), 7.06 (s, 1H), 6.76 (t, 1H, J = 2.4 Hz), 6.58 (s, 1H), 5.46 (d, 1H, J = 7.0 Hz), δ 5.15-5.10 (m, 3H), 3.61-3.55 (m, 1H), 3.49 (dd, 1H, J = 5.5, 16.6 Hz), 3.27-3.21 (m, 1H), 3.06 (dd, 1H, J = 8.3, 16.7 Hz), 2.04-1.98 (m, 1H), 1.85-1.78 (m, 1H), 1.71-1.51 (m, 2H), 1.32-1.02 (m, 4H). Anal. Calcd for C$_{33}$H$_{34}$N$_2$O$_4$ • H$_2$O: C, 73.31; H, 6.71; N, 5.18. Found: C, 72.93; H, 6.72; N, 4.93.
Example 1(i). 3(R)-[3-(Biphenyl-4-yl)-1H-pyrrol-1-yl]-N-[2-hydroxy-1(S)-(hydroxymethyl)-2-methylpropyl]succinamic Acid

According to the procedure described in Example 1(a), a mixture of 3(R)-[3-(biphenyl-4-yl)-1H-pyrrol-1-yl]-N-[2-hydroxy-1(S)-(hydroxymethyl)-2-methylpropyl]succinamic acid benzyl ester (137 mg, 0.26 mmol) in EtOH (2.5 mL) and EtOAc (2.5 mL) was hydrogenolyzed after 110 minutes to give a white solid, which was triturated with CH$_2$Cl$_2$/hex to provide 85 mg (75%) of 3(R)-[3-(biphenyl-4-yl)-1H-pyrrol-1-yl]-N-[2-hydroxy-1(S)-(hydroxymethyl)-2-methylpropyl]succinamic acid as a white solid, mp 150-2°C. 1H NMR (acetone-d$_6$): δ 7.67-7.61 (m, 6H), 7.46-7.39 (m, 3H), 7.33 (t, 1H, J = 7.4 Hz), 7.09 (bd, 1H, J = 8.5 Hz), 6.97 (t, 1H, J = 2.4 Hz), 6.53 (t, 1H, J = 2.2 Hz), 5.28 (t, 1H, J = 7.2 Hz), 3.81-3.67 (m, 3H), 3.35 (dd, 1H, J = 7.4, 16.9 Hz), 3.02 (dd, 1H, J = 7.4, 16.9 Hz), 1.24 (s, 3H), 1.12 (s, 3H). Anal. Calculated for C$_{25}$H$_{28}$N$_2$O$_5$: C, 68.79; H, 6.47; N, 6.42. Found: C, 68.54; H, 6.50; N, 6.39.

The starting material was furnished as follows:

3-Benzyloxy carbonyl-2,2-dimethyl-4R-(1-hydroxy-1-methylethyl)oxazolidine

To a solution of methyl 2-(3-benzyloxy carbonyl-2,2-dimethyloxazolidin-4R-yl)acetate (see Delacotte, J.-M.; Galons, H.; Schott, D.; Morgat, J.-L. J. Labelled Comp. Radiopharm. 93
1991, 29, 1141-1146; 500 mg, 1.70 mmol) in dry THF (10 mL) at -78°C was added dropwise via syringe a solution of methylmagnesium bromide (1.5 mL of 3M in ether). After 15 minutes, the reaction vessel was placed in a 0°C ice bath. After 2 hours, the mixture was cooled to -78°C and more methylmagnesium bromide (0.5 mL of 3M in ether) was added. The mixture was allowed to warm to 0°C over 2 hours, then quenched with acetone (1 mL) and partitioned between EtOAc (50 mL) and 1M pH7 phosphate buffer (50 mL). The separated organic layer was washed with 1M pH7 phosphate buffer (50 mL) and brine (25 mL), dried over Na₂SO₄, and concentrated to a residue which was purified via flash column chromatography with 0-12% EtOAc/CH₂Cl₂ gradient eluant to furnish 280 mg (56%) of 3-benzyloxy carbonyl-2,2-dimethyl-4R-(1-hydroxy-1-methyl-ethyl)-oxazolidine as a colorless oil. ¹H NMR (CD₃CN): δ 7.52-7.45 (m, 5H), 5.35-5.2 (bm, 2H), 4.68 (bs, 1H), 4.15-3.95 (bm, 3H), 1.67 (s, 3H), 1.57 (s, 3H), 1.21 (s, 6H). Anal. Calculated for C₁₈H₂₃NO₄ • 0.3 H₂O: C, 64.32; H, 7.96; N, 4.69. Found: C, 64.48; H, 7.87; N, 4.67.

3(R)-t-Butoxycarbonylamino-N-[2-hydroxy-1(S)-(hydroxymethyl)-2-methylpropyl]succinamic Acid Benzyl Ester

3-Benzyl oxycarbonyl-2,2-dimethyl-4R-(1-hydroxy-1-methyl-ethyl)-oxazolidine was hydrogenolyzed in the presence of HCl according to conditions described in Example 1(a) to provide crude 2(R)-amino-3-methyl-butane-1,3-diol hydrochloride. According to the procedure described in Example 1(b) for the preparation of 3(R)-t-butoxycarbonylamido-N-(2,2-dimethyl-
1(S)-(methylcarbamoyl)propyl)succinic acid benzyl ester, the crude amine salt was coupled to N-t-butoxycarbonyl-D-aspartic acid β-benzyl ester with TBTU. Purification via column chromatography with EtOAc/CH₂Cl₂ (1:1) to 10% MeOH/CH₂Cl₂ gradient elution led to isolation in 52% yield of 3(R)-t-butoxycarbonylamino-N-[2-hydroxy-1(S)-(hydroxymethyl)-2-methylpropyl]succinic acid benzyl ester, which was used without further purification. ¹H NMR (CD₃CN): δ 7.51 (s, 5H), 6.99 (bs, 1H), 5.99 (bs, 1H), 5.25 (s, 2H), 4.57-4.50 (m, 1H), 3.83-3.76 (m, 3H), 3.00 (dd, 1H, J = 5.7, 16.4 Hz), 2.87 (dd, 1H, J = 7.2, 16.6 Hz), 1.55 (s, 9H), 1.34 (s, 3H), 1.22 (s, 3H). Anal. Calculated for C₂₁H₃₂N₂O₇ • 0.5 H₂O • 0.1 O=C[N(CH₃)₂]₂: C, 58.02; H, 7.74; N, 6.92. Found: C, 58.29; H, 7.75; N, 6.82.

3(R)-[3-(Biphenyl-4-yl)-1H-pyrrol-1-yl]-N-[2-hydroxy-1(S)-(hydroxymethyl)-2-methylpropyl]succinic Acid Benzyl Ester

According to the procedure described in Example 1(c) for N-(8-oxo-4-oxa-1,7-diazatricyclo-[9.6.1.0¹²,¹⁷]-octa-deca-11(18),12,14,16-tetraen-9S-yl)-3(R)-(3-phenyl-1H-pyrrol-1-yl)succinic acid benzyl ester, 3(R)-t-butoxycarbonylamino-N-(2-hydroxy-1(S)-hydroxymethyl-2-methyl-propyl)succinic acid benzyl ester was deprotected with trifluoroacetic acid. The crude amine salt and 3-biphenyl-4-yl-2,5-dimethoxy-tetrahydrofuran (prepared as described in Example 1(a)) were condensed in anhydrous 1,2-dichloroethane with trifluoroacetic acid to give in 11% yield 3(R)-[3-(biphenyl-4-yl)-1H-pyrrol-1-yl]-N-[2-hydroxy-1(S)-(hydroxymethyl)-2-methylpropyl]succinic acid benzyl ester as an amorphous solid. ¹H
NMR (acetone-\textit{d}_6): \delta 7.67-7.61 (m, 6H), 7.48 (t, 2H, J = 7.7 Hz), 7.39 (t, 1H, J = 1.8 Hz), 7.37-7.27 (m, 6H), 7.09 (bd, 1H, J = 9.2 Hz), 6.96 (t, 1H, J = 2.6 Hz), 6.53 (dd, 1H, J = 1.7, 2.8 Hz), 5.35 (t, 1H, J = 7.4 Hz), 5.11 (s, 2H), 3.81-3.62 (m, 3H), 3.39 (dd, 1H, J = 6.8, 16.4 Hz), 3.12 (dd, 1H, J = 7.7, 16.6 Hz), 1.24 (s, 3H), 1.21 (s, 3H). Anal. Calculated for C$_{32}$H$_{34}$N$_2$O$_5$: C, 72.98; H, 6.51; N, 5.32. Found: C, 72.83; H, 6.60; N, 5.24.

Example 1(j). N-[2,2-Dimethyl-1(S)-(methylcarbamoyl)propyl]-3(R)-[3-(4-proplyphenyl)-1H-pyrrol-1-yl]succinic Acid

![Chemical Structure](image)

According to the procedure described in Example 1(a), N-[2,2-dimethyl-1(S)-(methylcarbamoyl)propyl]-3(R)-[3-(4-proplyphenyl)-1H-pyrrol-1-yl]succinic acid benzyl ester in MeOH and EtOAc was hydrogenolyzed to provide 30 mg (91%) of N-[2,2-dimethyl-1(S)-(methylcarbamoyl)propyl]-3(R)-[3-(4-proplyphenyl)-1H-pyrrol-1-yl]succinic acid as a yellow powder, mp 104-6°C. 1H NMR (CD$_3$OD): \(\delta \) 7.95 (bs, 1H), 7.60 (bs, 1H), 7.48 (d, 2H, J = 7.5 Hz), 7.16 (bs, 1H), 7.08 (d, 2H, J = 7.5 Hz), 6.86 (bs, 1H), 6.42 (bs, 1H), 5.34 (t, 1H, J = 7.0 Hz), 4.15 (bd, 1H, J = 5.9 Hz), 2.83 (dd, 1H, J = 6.2, 16.0 Hz), 2.62 (s, 3H), 2.60-2.50 (m, 2H), 1.7-1.58 (m, 2H), 0.95 (s, 9H). IR (KBr): 3300, 2960, 1642, 1560, 1195, 775 cm$^{-1}$.

HRFABMS: Calculated for C$_{24}$H$_{33}$N$_3$O$_4$Cs (M +Cs$^+$): 560.1525. Found: 560.1509. Anal. Calculated for C$_{24}$H$_{33}$N$_3$O$_4$ • 0.3 EtOAc: C, 66.67; H, 7.86; N, 9.26. Found: C, 66.93; H, 7.78; N, 8.89.

The starting materials were made as follows:
3-(4-Propylphenyl)-furan

As described in Example 1(d) for the preparation of 4-furan-3-yl-pyridine, 1-iodo-4-propylbenzene (500 mg, 2.03 mmol) was coupled to 3-furanboronic acid to furnish in high yield 3-(4-propylphenyl)-furan as a light brown oil that was unstable and used immediately without further purification. \(^1\)H NMR (CDCl₃): \(\delta \) 7.69 (t, 1H, J = 0.9 Hz), 7.46 (t, 1H, J = 1.7 Hz), 7.40 (d, 2H, J = 8.1 Hz), 7.18 (d, 2H, J = 7.8 Hz), 6.68 (t, 1H, J = 0.9 Hz), 2.59 (t, 2H, J = 7.5 Hz), 1.66-1.60 (m, 2H), 0.95 (t, 3H, J = 7.5 Hz).

2,5-Dimethoxy-3-(4-propylphenyl)-2,5-dihydro-furan

As described in Example 1(a) for the preparation of 3-biphenyl-4-yl-2,5-dihydro-2,5-dimethoxy-tetrahydrofuran, crude 3-(4-propylphenyl)-furan was converted to 490 mg (98% from 1-iodo-4-propylbenzene) of 2,5-dimethoxy-3-(4-propylphenyl)-2,5-dihydro-furan as a light brown oil that was unstable and used immediately without further purification. \(^1\)H NMR (CDCl₃): \(\delta \) 7.47 (dd, 2H, J = 1.4, 8.1 Hz), 7.17 (d, 2H, J = 8.1 Hz), 6.25, (dd, 1H, J = 0.6, 1.2 Hz), 6.00 (d, 1H, J = 0.6 Hz), 5.69 (d, 1H, J = 1.6 Hz), 3.49 (s, 2H), 3.43 (s, 1H), 3.40 (s, 2H), 3.38 (s, 1H), 2.59 (t, 2H, J = 7.5 Hz), 1.64 (q, 2H, J = 7.5 Hz), 0.94 (t, 3H, J = 7.5 Hz). IR: 2930, 1514, 1464, 1192, 1105 cm\(^{-1}\).
2,5-Dimethoxy-3-(4-propylphenyl)-tetrahydrofuran

\[
\begin{align*}
\text{H}_2\text{CO} & \quad \text{O} \\
\text{OCH}_3 & \quad \text{Ph}
\end{align*}
\]

As described in Example 1(b) for the preparation of 2,5-dimethoxy-3-phenyl-tetrahydrofuran, 2,5-dihydro-2,5-dimethoxy-3-(4-propylphenyl)-furan (320 mg, 1.29 mmol) was hydrogenated to give 322 mg (100%) of a diastereomeric mixture of 2,5-dimethoxy-3-(4-propylphenyl)-tetrahydrofuran as a viscous colorless oil that was unstable and used immediately without further purification. \(^1\text{H}\) NMR (CDCl\(_3\)): \(\delta\) 7.24 (d, 2H, \(J = 8.1\) Hz), 7.12 (d, 2H, \(J = 8.1\) Hz), 5.24 (t, 1H, \(J = 5.9\) Hz), 3.60-3.30 (m, 6H), 2.59 (d, 1H, \(J = 7.5\) Hz), 2.52 (d, 1H, \(J = 8.1\) Hz), 2.32 (bs, 3H), 1.62 (q, 2H, \(J = 7.5\) Hz), 0.92 (t, 3H, \(J = 7.5\) Hz).

\[
\text{N-[2,2-Dimethyl-1(S)-methylcarbamoylpropyl]-3(R)-(4-propyl-3-phenyl-4-yl-1H-pyrrol-1-yl)succinamic Acid Benzyl Ester}
\]

As described in Example 1(d) for the preparation of N-(2,2-dimethyl-1(S)-methylcarbamoylpropyl)-3(R)-(3-pyridin-4-yl-1H-pyrrol-1-yl)succinamic acid benzyl ester, 3(R)-amino-N-[2,2-dimethyl-1(S)-(methylcarbamoyl)propyl]succinamic acid benzyl ester trifluoroacetate salt (prepared as described in Example 1(b); 522 mg, 1.16 mmol) was condensed with crude 2,5-dimethoxy-3-(4-propylphenyl)-tetrahydrofuran (1.29 mmol) in 1,2-dichloroethane with chlorotrimethylsilane at 90°C over 3 days. The crude dark oil was purified via flash column chromatography with 1% HOAc/10% MeOH/CH\(_2\)Cl\(_2\) as eluant to provide 40 mg (7%) of N-[2,2-dimethyl-1(S)-(methylcarbamoyl)propyl]-3(R)-[3-(4-propylphenyl)-1H-pyrrol-1-
yl]succinamic acid benzyl ester as a solid, mp 63-5°C: \(^1H \) NMR (CDCl3): \(\delta \) 7.40 (d, 2H, J = 8.1 Hz), 7.34 - 7.20 (m, 5H), 7.14 (d, 2H, J = 8.1 Hz), 7.00 (t, 1H, J = 1.9 Hz), 6.78 (t, 1H, J = 2.5 Hz), 6.56 (t, 1H, J = 1.9 Hz), 6.24 (d, 1H, J = 8.7 Hz), 5.70 (d, 1H, J = 4.7 Hz), 3.16-4.96 (m, 3H), 4.00 (d, 1H, J = 9.0 Hz), 3.38 (dd, 1H, J = 5.6, 16.8 Hz), 3.10 (dd, 1H, J = 8.7, 16.8 Hz), 2.76 (d, 3H, J = 5.0 Hz), 2.59 (d, 1H, J = 7.2 Hz), 2.56 (d, 1H, J = 7.8 Hz), 1.65 (q, 2H, J = 7.5 Hz), 0.96 (t, 3H, J = 7.5 Hz), 0.86 (s, 9H). IR (KBr): 3314, 2959, 1736, 1648, 1560, 1165, 697 cm\(^{-1}\). HRFABMS: Calculated for C\(_{31}\)H\(_{39}\)N\(_3\)O\(_4\)Cs (M +Cs\(^+\)): 650.1995. Found: 650.1977.

Anal: Calculated for C\(_{31}\)H\(_{39}\)N\(_3\)O\(_4\) \(\bullet \) 0.3 C\(_6\)H\(_{14}\): C, 72.33; H, 7.62; N, 7.71. Found: C, 72.36; H, 7.77; N, 7.38.

Example 1(k). 4-[2S-[2(R)-[3-(Biphenyl-4-yl)-1H-pyrrol-1-yl]-3-carboxy-propionylamino]-4-methyl-pentanoylamino]benzoic Acid Methyl Ester

![Chemical Structure Image]

According to the procedure described in Example 1(a), 4-{2S-[2(R)-(3-biphenyl-4-yl)-1H-pyrrol-1-yl]-3-carbobenzyloxy-propionyl-amino}-4-methyl-pentanoylamino]-benzoic acid methyl ester was hydrogenolyzed in quantitative yield to furnish 4-{2S-[2(R)-(3-biphenyl-4-yl)-1H-pyrrol-1-yl]-3-carbobenzyloxy-propionyl-amino]-4-methyl-pentanoylamino}-benzoic acid methyl ester as a solid, mp 209-11°C. \(^1H \) NMR (CD\(_3\)OD): \(\delta \) 7.81 (d, 2H, J = 8.8 Hz), 7.60-7.50 (m, 8H), 7.40 (t, 2H, J = 7.4 Hz), 7.28 (t, 1H, J = 7.4 Hz), 7.20 (s, 1H), 6.88 (s, 1H), 6.48 (s, 1H), 5.16 (t, 1H, J = 7.2 Hz), 4.54 (t, 1H, J = 7.2 Hz), 3.77 (s, 3H), 2.98 (dd, 1H, J = 6.4, 17.1 Hz) 1.75-1.64 (m, 3H), 0.95 (t, 6H, J = 5.9 Hz). Anal. Calculated for C\(_{34}\)H\(_{35}\)N\(_3\)O\(_6\) \(\bullet \) 0.6 H\(_2\)O: C,
68.92; H, 6.16; N, 7.09. Found: C, 68.98; H, 6.20; N, 6.98.

The starting material was available as follows:

4-[2S-(3-Benzylxocarbonyl-2(R)-t-butoxycarbonylamino-propionylamino)-4-methyl-pentanoyl-
amino]-benzoic Acid Methyl Ester

As described in Example 1(f) for the preparation of N-(1(S)-benzyl-2-methoxyethyl)-
3(R)-(t-butoxycarbonylamino)succinamic acid benzyl ester, N-t-butoxycarbonyl-D-aspartate β-
benzyl ester and 4-(2S-amino-4-methyl-pentanoylamino)benzoic acid methyl ester (Castelhano,
A. L.; Yuan, Z.; Horne, S.; Liak, T. J. WO95/12603-A1, May 11, 1995) were coupled with BOP
to furnish in 91% yield 4-[2S-(3-benzylxocarbonyl-2(R)-t-butoxycarbonylamino-
propionylamino)-4-methyl-pentanoyl-amino]-benzoic acid methyl ester, which was used crude,
without any purification. ¹H NMR (CDCl₃): δ 8.62 (s, 1H), 7.98 (d, 2H, J = 8.8 Hz), 7.73 (d,
2H, J = 8.8 Hz), 7.38-7.26 (m, 5H), 6.68 (bd, 1H, J = 8.5 Hz), 5.45 (bm, 1H), 5.09 (dd, 2H, J =
12.1, 29 Hz), 4.60-4.51 (m, 2H), 3.89 (s, 3H), 3.34-3.26 (m, 1H), 2.82 (dd, 1H, J = 4.8, 18.0 Hz),
2.01-1.95 (m, 1H), 1.70-1.53 (m, 2H), 1.45 (s, 9H), 0.98-0.93 (m, 6H); Anal. Calculated for
\(\text{C}_{36}\text{H}_{39}\text{N}_{3}\text{O}_{8} \cdot 0.4 \text{H}_{2}\text{O} \): C, 62.46; H, 6.95; N, 7.28. Found: C, 62.47; H, 6.98; N, 7.36.
4-[(2S)-3-Benzylloxy carbonyl-2(R)-(3-biphenyl-4-yl-1H-pyrrol-1-yl)-propionylamino]-4-methylpentanoylamino]-benzoic Acid Methyl Ester

As described in Example 1(b) for the preparation of 3(R)-amino-N-(2,2-dimethyl-1S-methylcarboxamoyl-propyl) succinamic acid benzyl ester, 4-[(2S-(3-benzylloxy carbonyl)-2(R)-t-butoxycarbonylamino-propionylamino)-4-methylpentanoylamino] benzoic acid methyl ester was deprotected with trifluoroacetic acid.

As described in Example 1(b) for the preparation of N-(2,2-dimethyl-1(S)-methylcarbamoylpropyl)-3(R)-(3-phenyl-1H-pyrrol-1-yl)succinamic acid benzyl ester, crude 4-[2S-(2(R)-amino-3-benzylloxy carbonyl-propionylamino)-4-methyl-pentanoyl-amino]-benzoic acid methyl ester trifluoroacetate salt and 3-biphenyl-4-yl-2,5-dimethoxy-tetrahydrofuran (prepared as described in Example 1(a)) were condensed in 1,2-dichloroethane with trifluoroacetic acid and water to give in 27% yield 4-[(2S-[3-benzylloxy carbonyl]-2(R)-(3-biphenyl-4-yl-1H-pyrrol-1-yl)-propionylamino]-4-methyl-pentanoylamino]-benzoic acid methyl ester as a solid, mp 186-8°C. 1H NMR (CDCl3): δ 8.49 (s, 1H), 7.95 (d, 2H, J = 8.8 Hz), 7.69-7.26 (m, 16H), 6.78 (s, 1H), 6.61 (s, 1H), 5.80 (s, 1H), 5.25-5.05 (m, 3H), 4.54-4.50 (m, 1H), 3.88 (s, 3H), 3.38-3.35 (m, 2H), 1.89-1.80 (m, 1H), 1.54-1.40 (m, 2H), 0.89 (d, 6H, J = 6.3 Hz).

Anal. Calculated for C₄₁H₄₁N₃O₆: C, 73.30; H, 6.15; N, 6.26. Found: C, 73.21; H, 6.16; N, 6.25.
Example 1(i). 3(R)-(3-Biphenyl-4-yl-1H-pyrrol-1-yl)-N-[1(S)-(N-methoxy-N-methylcarbamoyl)-3-methylbutyl]succinamic Acid benzylic ester was hydrogenolyzed to give 97% yield 3(R)-(3-biphenyl-4-yl-1H-pyrrol-1-yl)-N-[1(S)-(N-methoxy-N-methylcarbamoyl)-3-methyl-buty]succinamic acid as an amorphous solid. \(^1H \) NMR (CDCl3): \(\delta \) 7.59-7.53 (m, 6H), 7.40 (t, 2H, \(J = 7.2 \) Hz), 7.33-7.26 (m, 1H), 7.10 (s, 1H), 6.88 (bd, 1H, \(J = 9.2 \) Hz), 6.80 (s, 1H), 6.54 (s, 1H), 5.13 (t, 1H, \(J = 6.8 \) Hz), 5.03-5.00 (m, 1H), 3.76 (s, 3H), 3.39 (dd, 1H, \(J = 6.4, 17.5 \) Hz), 3.16 (s, 3H), 3.00 (dd, 1H, \(J = 7.2, 17.1 \) Hz), 1.60-1.42 (m, 3H), 0.92 (d, 3H, \(J = 6.6 \) Hz), 0.89 (d, 3H, \(J = 6.6 \) Hz). Anal. Calculated for \(C_{28}H_{33}N_3O_5 \) • 0.25 \(H_2O \) • 0.20 \(C_6H_{14} \): C, 68.32; H, 7.13; N, 8.19. Found: C, 68.28; H, 7.08; N, 7.93.

The starting material was available as follows:

3(R)-t-Butoxycarbonylamino-N-[1(S)-(N-methoxy-N-methylcarbamoyl)-3-methylbutyl]succinamic Acid Benzyl Ester
As described in Example 1(b) for the preparation of N-(2,2-dimethyl-1(S)-methylcarbamoylpropyl)-3(R)-(3-phenyl-1H-pyrrol-1-yl)succinamic acid benzyl ester, 2S-butoxycarbonylamino-N-methoxy-4-methyl-pentanoylamide was deprotected with trifluoroacetic acid. The resultant amine salt and N-t-butoxycarbonyl-D-aspartic acid β-benzyl ester were coupled with TBTU to provide in 89% yield 3(R)-t-butoxycarbonylamino-N-[1(S)-(N-methoxy-N-methylcarbamoyl)-3-methyl-butyl]succinamic acid benzyl ester as an oil, which was used without further purification. \(^1^H\) NMR (CDCl3): δ 7.34 (s, 5H), 6.90 (d, 1H, J = 8.5 Hz), 5.61 (d, 1H, J = 7.4 Hz), 5.13, 5.11 (AB quartet, 2H, J = 12.3 Hz), 5.04-4.98 (m, 1H), 4.61-4.54 (m, 1H), 3.76 (s, 3H), 3.19 (s, 3H), 3.02 (dd, 1H, J = 4.4, 16.6 Hz), 2.74 (dd, 1H, J = 5.2, 16.6 Hz), 0.93 (d, 3H, J = 6.4 Hz), 0.90 (d, 3H, J = 6.4 Hz). Anal. Calculated for C\(_{24}\)H\(_{37}\)N\(_3\)O\(_7\) • 0.3 H\(_2\)O: C, 59.44; H, 7.82; N, 8.66. Found: C, 59.41; H, 7.69; N, 8.63.

3(R)-(3-Biphenyl-4-yl-1H-pyrrol-1-yl)-N-[1(S)-(N-methoxy-N-methylcarbamoyl)-3-methyl-butyl]succinamic Acid Benzyl Ester

As described in Example 1(e) for the preparation of N-(8-oxo-4-oxa-1,7-diaza-tricyclo[9.6.1.0\(^{12,17}\)]-octadeca-11(18),12,14,16-tetraen-9-yl)-3-(3-phenyl-1H-pyrrol-1-yl)succinamic acid benzyl ester, 3(R)-amino-N-(1(S)-(N-methoxy-N-methylcarbamoyl)-3-methyl-butyl)succinamic acid benzyl ester was deprotected. The crude amine salt and 3-biphenyl-4-yl-2,5-dimethoxy-tetrahydrofuran (prepared as described in Example 1(a)) were condensed in anhydrous 1,2-dichloroethane with trifluoroacetic acid to provide in 48% yield 3(R)-(3-biphenyl-
4-yl-1H-pyrrol-1-yl]-N-[1(S)-(N-methoxy-N-methylcarbamoyl)-3-methyl-buty]succinamic acid benzyl ester as an amorphous solid. \(^1\)H NMR (CDCl3): \(\delta\) 7.62 (d, 2H, J = 7.4 Hz), 7.58 (s, 3H), 7.44 (t, 2H, J = 7.7 Hz), 7.35-7.21 (m, 7H), 7.10 (s, 1H), 6.80 (t, 1H, J = 2.2 Hz), 6.60 (bs, 1H), 5.17-1.13 (m, 1H), 5.10 (s, 2H), 4.97-4.92 (m, 1H), 3.77 (s, 3H), 3.44 (dd, 1H, J = 5.7, 17.1 Hz), 3.17 (s, 3H), 3.03 (dd, 1H, J = 8.8, 16.5 Hz), 1.67-1.36 (m, 3H), 0.92 (d, 3H, J = 6.25 Hz), 0.87 (d, 3H, J = 6.3 Hz). Anal. Calculated for C\(_{35}\)H\(_{39}\)N\(_3\)O\(_5\): C, 72.27; H, 6.76; N, 7.22. Found: C, 72.19; H, 6.78; N, 7.16.

Example 1(m). 3(R)-[3-(4-Cyanophenyl)-1H-pyrrol-1-yl]-N-[2,2-dimethyl-1(S)-(methylcarbamoyl)propyl]succinamic Acid

![Chemical Structure](image)

According to the procedure described in Example 1(a), 3(R)-[3-(4-cyanophenyl)-1H-pyrrol-1-yl]-N-[2,2-dimethyl-1(S)-(methylcarbamoyl)propyl]succinamic acid benzyl ester in MeOH and EtOAc was hydrogenolyzed to provide 1.2 g (90%) of 3(R)-[3-(4-cyanophenyl)-1H-pyrrol-1-yl]-N-[2,2-dimethyl-1(S)-(methylcarbamoyl)propyl]succinamic acid as a yellow powder, mp 138-40°C. \(^1\)H NMR (CD\(_3\)OD): \(\delta\) 7.98 (bs, 1H), 7.82 (bd, 1H, J = 8.4 Hz), 7.68 (d, 2H, J = 8.7 Hz), 7.50 (d, 2H, J = 8.4 Hz), 7.38 (t, 1H, J = 1.6 Hz), 6.92 (t, 1H, J = 2.5 Hz), 6.55 (t, 1H, J = 2.2 Hz), 5.28 (t, 1H, J = 7.5 Hz), 4.19 (d, 1H, J = 9.0 Hz), 2.98 (dd, 1H, J = 6.9, 16.5 Hz), 2.64 (d, 3H, J = 4.7 Hz), 0.98 (s, 9H). IR (KBr): 3317, 2963, 2225, 1648, 1550, 1410, 1180 cm\(^{-1}\). HRFABMS: Calculated for C\(_{22}\)H\(_{26}\)N\(_4\)O\(_4\)Cs (M +Cs\(^+\): 543.1008. Found 543.1021. Anal. Calculated for C\(_{22}\)H\(_{26}\)N\(_4\)O\(_4\) • 0.4 EtOAc: C, 63.60; H, 6.60; N, 12.57. Found: C, 63.80; H,
6.77; N, 12.57.

Starting materials were available as follows:

3-(4-Cyanophenyl)-furan

As described in Example 1(d) for the preparation of 3-(pyridin-4-yl)furan, 4-bromobenzonitrile (4.00 g, 22.0 mmol) was coupled to 3-furanboronic acid to furnish in high yield crude 3-(4-cyanophenyl)-furan as a brown solid, mp 55-7°C, which was used immediately without further purification. 1H NMR (CDCl3): δ 7.82 (bs, 1H), 7.67 (d, 2H, J = 8.4 Hz), 7.59 (d, 2H, J = 8.4 Hz), 7.52 (t, 1H, J = 1.9 Hz), 6.72 (bs, 1H). IR (KBr): 2214, 1608, 1160, 796 cm$^{-1}$. Anal. Calculated for C$_{11}$H$_7$NO • 0.1 C$_6$H$_5$: C, 78.72; H, 4.33; N, 7.91. Found: C, 78.32; H, 4.60; N, 7.65.

3-(4-Cyanophenyl)-2,5-dihydro-2,5-dimethoxyfuran

As described in Example 1(a) for the preparation of 3-biphenyl-2,5-dihydro-2,5-dimethoxy-tetrahydrofuran, crude 3-(4-cyanophenyl)furan was converted. Flash column chromatography with EtOAc:hex (30:70) as eluant furnished 3.8 g (73% from 4-bromobenzonitrile) of 3-(4-cyanophenyl)-2,5-dihydro-2,5-dimethoxyfuran as a yellow solid, mp 71-2°C. 1H NMR (CDCl3): δ 7.62 (s, 4H), 6.46 (d, 1H, J = 0.9 Hz), 6.22 (dd, 0.5H, 5 = 0.9, 3.7 Hz), 6.00 (dd, 0.5H, J = 0.9, 3.7 Hz), 5.97 (d, 0.5H, J = 0.6 Hz), 5.71 (d, 0.5H, J = 1.3 Hz), 3.48-3.40 (m, 6H). IR: 2933, 2832, 2227, 1607, 1505, 1369 cm$^{-1}$. Anal. Calculated for
C_{13}H_{13}NO_3: C, 67.52; H, 5.67; N, 6.06. Found: C, 67.39; H, 5.71; N, 6.14.

3-(4-Cyanophenyl)-2, 5-dimethoxy-tetrahydrofuran

As described in Example 1(a) for the preparation of 3-(biphenyl-4-yl)-2,5-dimethoxy-tetrahydrofuran, 3-(4-cyano-phenyl)-2,5-dihydroxy-2,5-dimethoxyfuran (3.8 g, 16.43 mmol) was reduced to give 3.70 g (97%) of a diastereomeric mixture of 3-(4-cyanophenyl)-2, 5-dimethoxy-tetrahydrofuran as an oily white solid, which was used without further purification. 1H NMR (CDCl$_3$): δ 7.60 (d, 2H J = 7.8 Hz), 7.42 (d, 2H, J = 8.1 Hz), 5.30-4.94 (m, 2H), 3.60-3.20 (m, 6H), 2.78-1.92 (m, 3H). IR: 2912, 2833, 2227, 1607, 1511 cm$^{-1}$.

3(R)-[3-(4-Cyanophenyl)-1H-pyrrol-1-yl]-N-[2, 2-dimethyl-1(S)-(methylcarbamoyl)propyl]succinamic Acid BenzyI Ester

According to the procedure described in Example 1(c) for the preparation of N-(1,7-diaza-4-oxa-8-oxo-tricyclo-[9.6.1.0^{12,17}]-octadeca-11(18),12,14,16-tetraen-9S-yl)-3(R)-(3-phenyl-1H-pyrrol-1-yl)-succinamic acid benzyl ester, crude 3(R)-amino-N-(2, 2-dimethyl-1(S)-methylcarbamoylpropyl)succinamic acid benzyl ester trifluoroacetate salt (prepared as described in Example 1(b)) and 3-(4-cyanophenyl)-2,5-dimethoxy-tetrahydrofuran were condensed. Drying the crude product via azeotrope with benzene gave 1.70 g (41%) of 3(R)-[3-(4-cyanophenyl)-1H-pyrrol-1-yl]-N-[2, 2-dimethyl-1(S)-(methylcarbamoyl)propyl]
succinamic acid benzyl ester as a yellow solid, mp 102-4°C. ^1H NMR (CDCl3): δ 7.60-7.55 (m, 4H), 7.30-7.25 (m, 5H), 7.12 (t, 1H, J = 2.2 Hz), 6.80 (t, 1H, J = 2.5 Hz), 6.56 (t, 1H, J = 2.8 Hz), 6.32 (d, 1H, J = 8.7 Hz), 5.60 (d, 1H, J = 5.0 Hz), 5.18-5.05 (m, 3H), 4.05 (d, 1H, J = 9.0 Hz), 3.38 (dd, 1H, J = 5.9, 17.0 Hz), 3.08 (dd, 1H, J = 8.7, 16.8 Hz), 2.76 (d, 3H, J = 5.0 Hz), 0.92 (s, 9H). IR: 3310, 2958, 2227, 1736, 1648, 1547 cm⁻¹. HRFABMS:

Example 1(n). 4-[2S-(3-Carboxy-2(R)-1H-pyrrol-1-yl-propionylamido)-4-methyl-pentanoylamino]benzoic Acid Ethyl Ester

![Chemical Structure](image)

According to the procedure described in Example 1(a), 4-[2S-(3-carbomethoxy-2(R)-1H-pyrrol-1-yl-propionylamido)-4-methyl-pentanoylamino]-benzoic acid ethyl ester in EtOH and THF was hydrogenolyzed. The crude product was successively purified via flash column chromatography with a 20-40% EtOAc/hex-5% MeOH/CH₂Cl₂ stepwise gradient and preparative RPHPLC (C18) with 50% CH₃CN/1M aqueous NH₄OAc to provide 45 mg of 4-[2S-(3-carboxy-2(R)-1H-pyrrol-1-yl-propionyl-amido)-4-methyl-pentanoylamino]-benzoic acid ethyl ester as fluffy crystals, mp 111-4°C. FABMS: 444.1 (C₂₃H₃₀N₃O₆; M +H⁺).

The starting materials were available as follows:
4-[2S-(3-Benzylxoycarbonyl-2(R)-t-butoxycarbonylamino-propionylamino)-4-methylpentanoyl-amino]-benzoic Acid Ethyl Ester

According to the procedure described in Example 1(a) for the preparation of N-(1(S)-benzyl-2-hydroxyethyl)-3(R)-t-butoxycarbonylamino-succinamic acid benzyl ester, N-t-butoxycarbonyl-D-aspartate β-benzyl ester and 4-(2S-amino-4-methylpentanoylamino)benzoic acid ethyl ester (Castelhano, A. L.; Yuan, Z.; Horne, S.; Liak, T. J. WO95/12603-A1, May 11, 1995) were coupled with EDC to furnish 2.4 g (67%) of 4-[2S-(3-benzylxoycarbonyl-2(R)-t-butoxycarbonylamino-propionylamino)-4-methyl-pentanoyl-amino]-benzoic acid ethyl ester as a glassy solid, which was used without further purification.

4-[2S-(2(R)-Amino-3-benzylxoycarbonyl-propionylamino)-4-methyl-pentanoyl-amino]-benzoic Acid Ethyl Ester

As described in Example 1(b) for the preparation of 3(R)-amino-N-(2,2-dimethyl-1(S)-(methylcarbamoyl)propyl)succinamic acid benzyl ester trifluoroacetate salt, 4-[2S-(3-benzylxoycarbonyl-2(R)-t-butoxycarbonylamino-propionylamino)-4-methyl-pentanoyl-amino]-benzoic acid ethyl ester was deprotected with trifluoroacetic acid, except that a solution of the resultant salt was neutralized by washing a CH₂Cl₂ solution with 1N aqueous
NaOH. Removal of the solvent under reduced pressure afforded 2.00 g (100%) of 4-[2S-(2(R)-amino-3-benzylxycarbonyl-propionyl-amino)-4-methyl-pentanoyl-amino]-benzoic acid ethyl ester as a viscous yellow oil, which was used without further purification.

4-[2S-(3-Carbobenzylxy-2(R)-1H-pyrrol-1-yl-propionylamido)-4-methyl-pentanoylamino]-benzoic Acid Ethyl Ester

A mixture of 4-[2S-(2(R)-amino-3-benzylxycarbonyl-propionyl-amino)-4-methyl-pentanoyl-amino]-benzoic acid ethyl ester (150 mg, 0.310 mmol), 2,5-dimethoxy-tetrahydrofuran (43 mg, 0.33 mmol), sodium acetate (153 mg, 1.86 mmol), and glacial HOAc (3 mL) was heated at reflux for 30 minutes. The mixture was allowed to cool, poured onto ice, diluted with H2O (30 mL), and extracted with EtOAc (2 x 50 mL). The combined extracts were washed with brine, dried over MgSO4, and concentrated in vacuo. Flash column chromatography with 15-20-25-30% EtOAc/hex stepwise gradient furnished 107 mg (65%) of 4-[2S-(3-carbobenzylxy-2(R)-1H-pyrrol-1-yl-propionylamido)-4-methyl-pentanoylamino]-benzoic acid ethyl ester.

Example 1(o). N-(9-Oxo-1,8-diaza-tricyclo[10.6.1.013,18]nonadeca-12(19),13,15,17-tetraen-10S-yl)-3(R)-1H-pyrrol-1-yl-succinamic Acid

According to the procedure described in Example 1(a), N-(9-oxo-1,8-diaza-
tricyclo[10.6.1.0^{13,18}]nonadeca-12(19),13,15,17-tetraen-10S-yl)-3(R)-1H-pyrrol-1-yl-
succinamic acid benzyl ester was hydrogenolyzed in EtOH and THF. Crystallization from
CH$_2$Cl$_2$ provided 120 mg (36%) of N-(9-oxo-1,8-diaza-tricyclo[10.6.1.0^{13,18}]nonadeca-
12(19),13,15,17-tetraen-10S-yl)-3(R)-1H-pyrrol-1-yl-succinamic acid as fluffy colorless
crystals, mp 139-44°C. FABMS: 451 (C$_{23}$H$_{31}$N$_4$O$_4$; M +H$^+$).

Example 1(p). 3(R)-[3-[(4-Cyanophenyl)acetyl]-1H-pyrrol-1-yl]-N-[2,2-dimethyl-1(S)-
(methylcarbamoyl)propyl]succinamic Acid

![Chemical structure]

Routine allyl ester cleavage conditions were previously described by Friedrich-
of 3(R)-[3-[(4-cyanophenyl)acetyl]-1H-pyrrol-1-yl]-N-[2,2-dimethyl-1(S)-
(methylcarbamoyl)propyl]succinamic acid allyl ester (247 mg, 0.501 mmol) in acetonitrile (2
mL) was added in succession Pd(PPh$_3$)$_4$ (29 mg, 0.026 mmol) and morpholine (226 µL, 2.60
mmol). The resultant mixture was carefully purged with argon. After 30 min, the resultant
green mixture was stirred with 10% aqueous KHSO$_4$ (20 mL) and extracted with CHCl$_3$ (35
mL). The organic layer was washed with 10% aqueous KHSO$_4$ (20 mL), dried over Na$_2$SO$_4$, and concentrated. Flash column chromatography with 1% HOAc/3% MeOH/CHCl$_3$ and
drying via azeotrope with n-heptane gave 243 mg (94%) of 3(R)-[3-[(4-cyanophenyl)acetyl]-
1H-pyrrol-1-yl]-N-[2,2-dimethyl-1(S)-(methylcarbamoyl)propyl]succinamic acid as a yellow
solid. 1H NMR (CD$_3$OD): δ 8.09 (d, 1H, J = 8.7 Hz), 8.05 (dd, 1H, J = 2.8, 6.9 Hz), 7.78
(dd, 1H, J = 1.9, 1.9 Hz), 7.66 (d, 2H, J = 8.4 Hz), 7.46 (d, 2H, J = 8.4 Hz), 6.90 (dd, 1H, J = 2.2, 2.2 Hz), 6.59 (dd, J = 1.9, 3.1 Hz), 5.33 (t, 1H, J = 7.5 Hz), 4.22-4.15 (m, 3H), 3.24 (t, 1H, J = 8.7 Hz), 2.98 (dd, 1H, J = 5.3, 17.4 Hz), 2.66 (d, 3H, J = 4.7 Hz), 0.99 (s, 9H). IR (KBr): 3332, 2696, 2230, 1719, 1654, 1532, 1412, 1177 cm\(^{-1}\). HRFABMS: Calculated for C\(_{24}\)H\(_{29}\)N\(_4\)O\(_5\) (M +H\(^+\)): 453.2125. Found: 453.2125. Anal. Calculated for C\(_{24}\)H\(_{28}\)N\(_4\)O\(_5\) • 0.5 HOAc • 0.3 CHCl\(_3\): C, 58.62; H, 5.89; N, 10.81. Found: C, 58.41; H, 5.72; N, 10.50.

The starting materials were available as follows:

3(R)-(t-Butyloxycarbonylamino)-N-(2,2-dimethyl-1(S)-(methylcarbamoyl)propyl)succinic Acid Allyl Ester

\[\text{O} \quad \text{O} \quad \text{H} \quad \text{NH} \quad \text{NHCH}_3 \]

According to Example 1(b) for 3(R)-t-butyloxycarbonylamino-N-(2,2-dimethyl-1(S)-(methylcarbamoyl)propyl)succinic acid benzyl ester, β-allyl-N-t-butyloxycarbonyl-D-aspartate (Belshaw, P.; Mzengeza, S.; Lajoie, G. *Syn Commun* 1990, 20, 3157-3160; 2.00 g, 7.32 mmol) and L-t-leucine N-methylamide (Malon, P.; Pancoska, P.; Budesinsky, M.; Hlavacek, J.; Pospisek, J.; Blaha, K. *Coll. Czech. Chem Commun.* 1983, 48, 2844-2861; 1.05 g, 7.32 mmol) were coupled with TBTU. The resultant yellow oil was routinely used without further purification. Flash column chromatography with 2% MeOH/CH\(_2\)Cl\(_2\) provided 2.44 g (84%) of 3(R)-(t-butyloxycarbonylamino)-N-(2,2-dimethyl-1(S)-(methylcarbamoyl)propyl)succinic acid allyl ester as a pale yellow oil. \(^1\)H NMR (CDCl\(_3\)): \(\delta\) 7.05 (d, 1H, J = 9.0 Hz), 5.98 (d, 1H, J = 4.4 Hz), 5.77 (ddt, 1H, J = 5.6, 10.3, 16.2 Hz), 5.29 (ddd, 1H, J = 1.5, 2.8, 15.6 Hz), 5.23 (dd, 1H, J = 1.3, 10.5 Hz), 4.57 (dddd,
2H, J = 1.6, 3.1, 5.6, 12.1 Hz), 4.11 (d, 1H, J = 9.4 Hz), 2.77 (d, 3H, J = 5.0 Hz), 1.46 (s, 9H), 0.99 (s, 9H).

3(R)-Amino-N-(2,2-dimethyl-1(S)-(methylcarbamoyl)propyl)succinamic Acid Allyl Ester Trifluoroacetate Salt

As described in Example 1(b) for the preparation of 3(R)-amino-N-(2,2-dimethyl-1(S)-(methylcarbamoyl)propyl)succinamic acid benzyl ester trifluoroacetate salt, crude 3(R)-(t-butoxycarbonylamino)-N-(2,2-dimethyl-1(S)-(methylcarbamoyl)propyl)succinamic acid allyl ester was deprotected after 2 hours. Flash column chromatography with 0.5% TFA/7% MeOH/CHCl₃ gave 2.46 g (87%) of 3(R)-amino-N-(2,2-dimethyl-1(S)-(methylcarbamoyl)propyl)succinamic acid allyl ester trifluoroacetate salt as a colorless foam.

¹H NMR (CD₂OD): δ 5.96 (ddt, 1H, J = 5.6, 10.6, 17.1 Hz), 5.35 (ddd, 1H, J = 1.6, 3.1, 17.1 Hz), 5.25 (ddd, 1H, J = 1.2, 2.5, 10.3 Hz), 4.66 (ddd, 2H, J = 1.2, 1.3, 5.9 Hz), 4.34 (dd, 1H, J = 5.6, 7.8 Hz), 4.21 (s, 1H), 3.03 (dd, 1H, J = 5.6, 17.4 Hz), 2.94 (dd, 1H, J = 7.5, 17.4 Hz), 2.71 (d, 3H, J = 5.0 Hz), 1.46 (s, 9H), 0.99 (s, 9H). IR (KBr): 3413, 2966, 1672, 1656, 1207, 1143 cm⁻¹. HRFABMS: Calculated for C₁₄H₂₅N₃O₄Na (M + Na⁺): 322.1743. Found: 322.1747. Anal. Calculated for C₁₄H₂₅N₃O₄ • 2.5 F₃COOH • 0.5 CHCl₃: C, 36.36; H, 4.38; N, 6.52. Found: C, 36.34; H, 4.25; N, 6.51.

3-(2,2-Dibromoethenyl)-2,5-dimethoxy-tetrahydrofuran
A mixture of Zn powder (1.65 g, 25.0 mmol), triphenylphosphine (6.54 g, 25.0 mmol), and CBr₄ (8.30 g, 25.0 mmol) in dry CH₂Cl₂ (40 mL) was stirred at ambient temperature. After 24 hours, 2,5-dimethoxy-tetrahydrofuran-3-carboxaldehyde (2.00 g, 12.5 mmol) was added and an exothermic reaction ensued. After 30 minutes, pet ether (100 mL) was added and the resultant upper layer separated. The lower layer was twice diluted with CH₂Cl₂ (50 mL) and pet ether (50 mL), and the upper layer reserved. The combined upper layers were combined, passed through a pad of SiO₂, and concentrated under reduced pressure at 30°C or below to give 2.18 g (55%) of 3-(2,2-dibromoethyl)-2,5-dimethoxy-tetrahydrofuran as a volatile colorless oil, which was a mixture of diastereomers by ¹H NMR and used immediately without further purification.

![2,5-Dimethoxy-3-(2-tributylstannylyethynyl)-tetrahydrofuran](image)

To solution of crude 3-(2,2-dibromoethyl)-2,5-dimethoxy-tetrahydrofuran (1.78g, 5.64 mmol) in ether (30 mL) at -78°C was added n-butyllithium (9.02 mL of 1.25 M in hex). After 1 hour at -78°C, tributyltin chloride (1.68 mL, 6.20 mmol) was added, and the mixture was allowed to warm to ambient temperature. After 16 hours, ether (35 mL) and saturated aqueous NH₄Cl (30 mL) were added. The organic layer was separated, washed with saturated aqueous NH₄Cl (30 mL), H₂O (25 mL), and saturated aqueous NaHCO₃ (25 mL), dried over K₂CO₃, and evaporated to give an orange oil, which was purified via flash column chromatography with 2% MTBE/hex to furnish 1.92 g (77%) of 2,5-dimethoxy-3-(2-tributylstannylyethynyl)-tetrahydrofuran as a colorless oil. A mixture of diastereomers was
evident in the 1H NMR spectrum, which was used immediately without further purification.

IR: 2923, 1456, 1374, 1215, 1105, 1017, 967 cm$^{-1}$. Anal. Calculated for $C_{20}H_{38}O_2Sn$: C, 53.96; H, 8.60. Found: C, 54.21; H, 8.66.

3-[(2-(4-Cyanophenyl)-ethynyl]-2,5-dimethoxy-tetrahydrofuran

![Chemical structure](image)

A mixture of 2,5-dimethoxy-3-(2-tributylstannylethynyl)-tetrahydrofuran (1.86 g, 4.18 mmol), 4-iodobenzonitrile (1.15 g, 5.02 mmol), and tetrakis(triphenylphosphine)
palladium(0) (145 mg, 0.125 mmol) in toluene (25 mL) was heated at 100°C. After 5.5
hours, the resultant red solution was allowed to cool, and the solvent was removed under
reduced pressure. Flash column chromatography twice with 10% EtOAc/hex provided 1.10 g
(100%) of 3-[(2-(4-cyanophenyl)-ethynyl]-2,5-dimethoxy-tetrahydrofuran as an orange oil. A
mixture of diastereomers was observed by 1H NMR, which was used without further
purification. 1H NMR (CDCl$_3$): 3.12 (ddd, $J = 2.8, 6.6, 9.0$ Hz), 2.57 (ddd, $J = 5.6, 9.3, 13.4$
Hz), 2.08 (dd, $J = 2.5, 4.7$ Hz), 2.04 (dd, $J = 3.1, 4.3$ Hz). IR: 2227, 1603, 1216, 1102, 1012,
841 cm$^{-1}$. Anal. Calculated for $C_{15}H_{15}NO_3$: 0.1 EtOAc: C, 69.51; H, 5.98; N, 5.26.
Found: C, 69.52; H, 5.76; N, 5.32.
3(R)-[3-[(4-Cyanophenyl)acetyl]-1H-pyrrol-1-yl]-N-[2,2-dimethyl-1(S)-(methylcarbamoyl)propyl]succinic Acid Allyl Ester

As described in Example 1(c) for the preparation of N-(8-oxo-4-oxa-1,7-diazatricyclo[9.6.1.012,17]octadeca-11(18),12,14,16-tetraen-9-yl)-3-(3-phenyl-1H-pyrrol-1-yl)succinic acid benzyl ester, 3(R)-amino-N-(2,2-dimethyl-1(S)-(methylcarbamoyl)propyl)succinic acid allyl ester trifluoroacetate salt and 3-[2-(4-cyanophenyl)-ethynyl]-2,5-dimethoxy-tetrahydrofuran were heated with trifluoroacetic acid (1 equiv) at 70°C for 4 hours. Flash column chromatography twice with 0.5% HOAc/15% EtOAc/CH₂Cl₂ as eluant and azeotrope with n-heptane afforded 800 mg (36%, 43% based on recovered furan) of 3(R)-[3-[(4-cyanophenyl)acetyl]-1H-pyrrol-1-yl]-N-[2,2-dimethyl-1(S)-(methylcarbamoyl)propyl]succinic acid allyl ester as a brown oil. ¹H NMR (CDCl₃): δ 7.58 (d, 2H, J = 8.1 Hz), 7.47 (dd, 1H, J = 1.9, 1.9 Hz), 7.36 (d, 2H, J = 8.1 Hz), 6.84 (d, 1H, J = 9.0 Hz), 6.74 (dd, 1H, J = 2.8, 2.8 Hz), 6.63 (dd, 1H, J = 1.6, 2.8 Hz), 6.08 (dd, J = 2.8, 6.8 Hz), 5.82 (ddt, 1H, J = 5.9, 10.3, 17.1 Hz), 5.26 (ddd, 1H, J = 1.2, 2.8, 17.1 Hz), 5.19 (q, 1H, J = 7.2 Hz), 4.56 (dddd, 2H, J = 1.6, 2.8, 4.4, 15.9 Hz), 4.18 (d, 1H, J = 9.0 Hz), 4.05 (s, 2H), 3.34 (dd, 1H, J = 7.2, 16.8 Hz), 2.99 (dd, 1H, J = 7.2, 16.8 Hz), 2.72 (s, 3H, J = 5.0 Hz), 0.90 (s, 9H). ¹³C NMR (CDCl₃): δ 191.2, 170.2, 169.4, 168.0, 140.6, 132.2, 131.3, 130.3, 125.7, 125.7, 122.0, 119.0, 118.9, 110.5, 110.4, 110.4, 66.0, 61.0, 59.4, 46.1, 37.5, 34.8, 31.9, 29.0, 26.5, 26.0. IR (KBr): 3320, 2965, 229, 1736, 1648, 1531, 1173 cm⁻¹. HRFABMS:

115
Calculated for $\text{C}_{27}\text{H}_{33}\text{N}_4\text{O}_5$ (M +H$^+$): 493.2451. Found 493.2462. Anal. Calculated for $\text{C}_{27}\text{H}_{32}\text{N}_4\text{O}_5 \cdot 0.2 \text{H}_2\text{O} \cdot 0.2 \text{CH}_2\text{Cl}_2$: C, 63.66; H, 6.44; N, 10.92. Found: C, 63.86; H, 6.56; N, 10.58.

Example 2. N-((1(S)-Acetyl-3-methylbutyl)-3(R)-[3-(biphenyl-4-yl)-1H-pyrrol-1-yl)succinic Acid

![Chemical Structure]

To a solution of 3(R)-(3-biphenyl-4-yl-1H-pyrrol-1-yl)-N-[(1(S)-(N-methoxy-N-methylcarbamoyl)-3-methyl-butyl)succinic acid (prepared as described in Example 1(I); 209 mg, 0.425 mmol) in THF (5mL) at -78°C was added methylmagnesium bromide (3 M in ether, 0.7mL) dropwise via syringe. After 15 minutes at -70°C and 2 hours at 0°C, the mixture was quenched with acetone (50 µL), and then added to EtOAc/1N NaHSO$_4$. The aqueous phase was extracted with EtOAc. The combined organic layers were dried over Na$_2$SO$_4$ and concentrated. After 3 days at ambient temperature, the dark residue began to crystallize, and trituration with MTBE/hexanes provided 90 mg (46%) of pure N-(1(S)-acetyl-3-methylbutyl)-3(R)-[3-(biphenyl-4-yl)-1H-pyrrol-1-yl)succinic acid as an off-white solid. 1H NMR (CDCl$_3$): δ 7.62-7.55 (m, 6H), 7.44 (t, 2H, J = 7.5 Hz), 7.33 (t, 1H, J = 7.0 Hz), 7.11 (s, 1H), 6.81 (t, 1H, J = 2.4 Hz), 6.62 (dd, 1H, J = 1.3, 2.4 Hz), 6.07 (d, 1H, J = 8.5 Hz), 5.12 (t, 1H, J = 6.8 Hz), 4.61-4.54 (m, 1H), 3.46 (dd, 1H, J = 6.4, 16.7 Hz), 3.01 (dd, 1H, J = 7.4, 16.9 Hz), 2.16 (s, 3H), 1.58-1.51 (m, 2H), 1.33 (d, 1H, J = 7.4 Hz), 0.92 (d, 3H, J = 6.3 Hz), 0.87 (d, 3H, J = 6.3 Hz). Anal. Calculated for $\text{C}_{27}\text{H}_{39}\text{N}_2\text{O}_4 \cdot 0.5 \text{H}_2\text{O}$: C,
71.18; H, 6.86; N, 6.15. Found: C, 71.01; H, 6.78; N, 6.40.

Example 3. 3(R)-[3-(Biphenyl-4-yl)-1H-pyrrol-1-yl]-N-[1(S)-(1(RS)-hydroxy-ethyl)-3-methylbutyl]succinamic Acid

To a solution of N-(1(S)-acetyl-3-methylbutyl)-3(R)-(biphenyl-4-yl-1H-pyrrol-1-yl)succinamic acid (prepared as described in Example 2; 45 mg, 0.10 mmol) in THF (2 mL) and EtOH (1 mL) at -78°C was added a solution of NaBH₄ (19 mg, 0.50 mmol) in EtOH (1 mL). After 2 hours at -78°C, the reaction was quenched with acetone (0.5 mL) and concentrated in vacuo to afford a residue which was partitioned with EtOAc and pH 4.5 citrate buffer. The aqueous phase was further extracted with EtOAc. The combined organic layers were dried over Na₂SO₄ and evaporated to give a solid that was dissolved in MTBE and precipitated with hexanes to give 30 mg (67%) of 3(R)-[3-(biphenyl-4-yl)-1H-pyrrol-1-yl]-N-[1(S)-(1RS-hydroxy-ethyl)-3-methylbutyl]succinamic acid as an amorphous solid. ¹H NMR (CDCl₃): δ 7.60-7.56 (m, 6H), 7.44 (t, 2H, J = 7.4 Hz), 7.33 (t, 1H, J = 6.8 Hz), 7.11 (s, 1H), 6.82 (s, 1H), 6.61 (s, 1H), 5.70 (m, 1H, minor isomer), 5.49 (d, 1H, J = 8.1 Hz, major isomer), 5.05 (t, 1H, J = 6.3 Hz), 4.04-4.01 (m, 1H, major isomer), 3.86-3.82 (m, 1H), 3.76-3.74 (m, 1H, minor isomer), 3.41 (dd, 1H, J = 5.9, 16.9 Hz), 3.16 (dd, 1H, J = 6.6, 10.7 Hz), 1.75-1.42 (m, 1H), 1.28-1.13 (m, 2H), 1.08 (d, 3H, J = 6.3 Hz, minor isomer), 1.01 (d, 3H, J = 6.3 Hz, major isomer), 0.87 (d, 6H, J = 6.6 Hz). Anal. Calculated for C₂₇H₃₂N₂O₄ • 0.8 H₂O: C, 70.04; H, 7.32; N, 6.05. Found: C, 69.89; H, 7.33; N, 5.97.
Example 4(a). N-(1(S)-Benzyl-2-hydroxyethyl)-3(R)-[3-(4'-cyanobiphenyl-4-yl)-1H-pyrrol-1-yl]succinamic Acid

According to the procedure described in Example 1(a), N-(1(S)-benzyl-2-hydroxyethyl)-3(R)-[3-(4'-cyanobiphenyl-4-yl)-1H-pyrrol-1-yl]succinamic acid benzyl ester (50 mg, 0.070 mmol) hydrogenolyzed in MeOH:EtOAc (2:3 mL) after 2 hours to give a yellow powder, which was washed with CHCl₃ and hexane to furnish 35 mg (100%) of N-(1(S)-benzyl-2-hydroxyethyl)-3(R)-[3-(4'-cyanobiphenyl-4-yl)-1H-pyrrol-1-yl]succinamic acid as a yellow powder, mp 189-92°C: ¹H NMR (DMSO-d₆): δ 8.82-8.78 (bm, 1H), 7.90 (s, 4H), 7.72 (d, 2H, J = 8.1 Hz), 7.50 (d, 2H, J = 8.1 Hz), 7.20 (m, 6H), 6.82 (s, 1H), 6.45 (s, 1H), 4.95 (t, 1H, J = 7.2 Hz), 3.88-3.78 (m, 1H), 2.84 (d, 1H, J = 5.9 Hz), 2.75-2.60 (m, 3H). IR (KBr): 3396, 3029, 2925, 2229, 1654, 1602, 1560, 1495 cm⁻¹. HRFABMS: Calculated for C₃₀H₂₇N₃O₄Na (MH+ Na⁺): 516.1899. Found: 516.1912. Anal. Calculated for C₃₀H₂₇N₃O₄Na 0.81 CHCl₃: C, 62.69; H, 4.75; N, 7.12. Found: C, 62.64; H, 4.89; N, 7.23.
The starting material was made as follows:

4'-Bromo-biphenyl-4-carbonitrile

As described in Example 1(a) for the preparation of 3-biphenyl-4-yl-furan, 4-bromobenzonitrile (9.42 g, 51.8 mmol) and 4-bromophenylboric acid (5.20 g, 25.9 mmol) were coupled in EtOH to afford 4.50 g (67%) of 4'-bromo-biphenyl-4-carbonitrile as a grey powder, mp 147-8°C (lit 153-5°C; McNamara, J.; Gleason, W.B. *J. Org. Chem.* 1976, 41, 1071). The material had an NMR spectrum that matched literature (see Amatore, C.; Juland, A.; Negri, S. *J. Organomet. Chem.* 1990, 390, 389-398) and was typically used without further purification.

4'-(Furan-3-yl)-biphenyl-4-carbonitrile

As described in Example 1(a) for the preparation of 3-biphenyl-4-yl-furan, crude 4'-bromo-biphenyl-4-carbonitrile (200 mg, 0.775 mmol) and 3-furanboronic acid (see Thompson, W. J.; Gaudino, G. *J. Org. Chem.* 1984, 49, 5237-5243; 105 mg, 0.937 mmol) in MeOH (2 mL) were coupled to give a yellow solid, which was purified via preparative TLC. Elution with EtOAc:benzene (1:99) provided 100 mg (53%) of 4'-furan-3-yl-biphenyl-4-carbonitrile as a grey powder, mp 199-203°C. \(^1\)H NMR (CDCl3): \(\delta\) 7.81 (bs, 1H), 7.72 (d, 4H, J = 1.9 Hz), 7.61 (s, 4H), 7.51 (bs, 1H), 6.75 (s, 1H). IR (KBr): 2225, 1604, 1503, 1396, 1162, 1102, 1058 cm\(^{-1}\). Anal. Calculated for C\(_{17}\)H\(_{11}\)NO: C, 119
80.78; H, 5.05; N, 5.01. Found: C, 80.96; H, 4.88; N, 5.00.

4'-((2,5-Dimethoxy-2,5-dihydro-furan-3-yl)-biphenyl-4-carbonitrile

\[
\begin{array}{c}
\text{H}_2\text{CO} - \text{O} - \text{OCH}_3 \\
\end{array}
\]

According to the procedure for the preparation of 3-biphenyl-4-yl-furan described in Example 1(a), 4'-furan-3-yl-biphenyl-4-carbonitrile (1.29 g, 5.26 mmol) was converted into 4'-((2,5-dimethoxy-2,5-dihydro-furan-3-yl)-biphenyl-4-carbonitrile. The crude product was recrystallized from EtOAc/hex to furnish 1.03 g (64%) of a mixture of diastereomers by NMR as a pale white powder, mp 136-7°C. \(^{1}\)H NMR (CDCl₃): \(\delta\) 7.80-7.58 (m, 8H), 6.40 (s, 1H), 6.30 (d, 0.5H, \(J = 3.7\) Hz), 6.06 (s, 0.5H), 6.01 (d, 0.5H, \(J = 3.7\) Hz), 5.72 (d, 0.5H, \(J = 1.6\) Hz), 3.55 (s, 1.5 H), 3.48 (s, 1.5H), 3.44 (s, 1.5H), 3.02 (s, 1.5H). IR (KBr): 2933, 2831, 2229, 1654, 1604, 1560, 1498 cm\(^{-1}\). HRFABMS: Calculated for C\(_{19}\)H\(_{18}\)NO\(_3\) (M +H\(^{+}\)): 308.1287. Found: 308.1275. Anal. Calculated for C\(_{19}\)H\(_{17}\)NO\(_3\): C, 74.25; H, 5.58; N, 4.56. Found: C, 74.11; H, 5.63; N, 4.49.

4'-((2,5-Dimethoxy-tetrahydrofuran-3-yl)-biphenyl-4-carbonitrile

\[
\begin{array}{c}
\text{H}_2\text{CO} - \text{O} - \text{OCH}_3 \\
\end{array}
\]

As described in Example 1(a) for the preparation of 3-biphenyl-4-yl-2,5-dimethoxy-tetrahydrofuran, 4'-((2,5-dimethoxy-2,5-dihydro-furan-3-yl)-biphenyl-4-carbonitrile (260 mg, 0.846 mmol) was reduced in 2 hours to give 260 mg (99%) of 4'-((2,5-dimethoxy-tetrahydrofuran-3-yl)-biphenyl-4-carbonitrile as a white solid, mp 149-50°C, which was used
without further purification. 1H NMR (CDCl$_3$): δ 7.78-7.26 (m, 8H), 5.30-5.00 (m, 2H), 3.52-3.22 (m, 6H), 2.78-2.00 (m, 3H). IR (KBr): 2910, 2220. 1606, 1498, 1448, 1380, 1224, 1190 cm$^{-1}$. Anal. Calculated for C$_{19}$H$_{19}$NO$_3$ • 0.3 H$_2$O: C, 72.28; H, 6.28; N, 4.45. Found: C, 72.28; H, 6.19; N, 4.11.

N-(1(S)-Benzy1-2-hydroxyethyl)-3(R)-[3-(4'-cyanobiphenyl-4-y1)-1H-pyrrol-1-yl]succinamic Acid Benzyl Ester

As described in Example 1(b) for the preparation of 3(R)-amino-N-(2,2-dimethyl-1(S)-(methylcarbamoyl)propyl)succinamic acid benzyl ester trifluoroacetate salt, crude 3(R)-amino-N-(1(S)-benzyl-2-hydroxyethyl)succinamic acid benzyl ester trifluoroacetate salt (prepared as described in Example 1(a); 0.876 mmol) was condensed with 4'-[(2,5-dimethoxytetrahydrofuran-3-yl)-biphenyl-4-carbonitrile (326 mg, 1.05 mmol) in 1,2-dichloroethane (5 mL). The solution was heated at 85-90°C for 5 hours, allowed to cool, and evaporated to give a brown oil which was purified via flash column chromatography with 1% HOAc/30% EtOAc/hex as eluant. HOAc was removed via azeotrope with n-heptane layers to provide 200 mg (39%) of N-(1(S)-benzyl-2-hydroxyethyl)-3(R)-[3-(4'-cyanobiphenyl-4-y1)-1H-pyrrol-1-yl]succinamic acid benzyl ester as a pale yellow powder, mp 149-50°C. 1H NMR (CDCl$_3$): δ 7.74 (s, 4H), 7.59 (d, 4H, $J = 4.1$ Hz), 7.32-7.18 (m, 10H), 7.05 (bm, 2H), 6.94 (t, 1H, $J = 2.2$ Hz), 6.64 (t, 1H, 2.5 Hz), 6.58 (bm, 1H), 5.48 (d, 1H, $J = 7.8$ Hz), 5.10 (d, 2H, J
= 3.1 Hz), 5.00 (dd, 1H, J = 5.0, 9.3 Hz), 4.46-4.32 (m, 2H), 4.22-4.12 (m, 1H), 3.41 (dd, 1H, J = 5.3, 17.1 Hz), 3.04 (dd, 1H, J = 9.1, 17.1 Hz), 2.70-2.63 (m, 2H). IR: 3389, 3030, 2948, 2225, 1735, 1665, 1603, 1528, 1495 cm⁻¹. HRFABMS: Calculated for C₃₇H₃₉N₃O₄Cs (MH⁺ Cs⁺): 716.1525. Found: 716.1503. Anal. Calculated for C₃₇H₃₉N₃O₄
• 0.4 CH₂Cl₂: C, 72.73; H, 5.52; N, 6.80. Found: C, 72.67, H, 5.53; N, 6.81.

The following compounds were made in a similar manner:

Example 4(b). N-(1-Benzyl-2-hydroxyethyl)-3(R)-[3-(4'-carbamoylbiphenyl-4-yl)-1H-pyrrol-1-yl]succinic acid

![Chemical structure image]

According to the procedure described in Example 1(a), N-(1(S)-benzyl-2-hydroxyethyl)-3(R)-[3-(4'-carbamoylbiphenyl-4-yl)-1H-pyrrol-1-yl]succinic acid benzyl ester was hydrogenolyzed to N-(1(S)-benzyl-2-hydroxyethyl)-3(R)-[3-(4'-carbamoylbiphenyl-4-yl)-1H-pyrrol-1-yl]succinic acid in 95% yield, mp 218-20°C. ¹H NMR (DMSO-d₆): δ 8.12 (d, 1H, J = 8.5 Hz), 7.97 (s, 1H), 7.88 (d, 2H, J = 8.5 Hz), 7.72 (d, 2H, J = 8.5 Hz), 7.57 (d, 2H, J = 8.1 Hz), 7.33 (bs, 1H), 7.24 (s, 1H), 7.22-7.11 (m, 6H), 6.80 (bs, 1H), 6.42 (bs, 1H), 4.98-4.90 (bm, 1H), 4.80-4.72 (m, 1H), 3.82-3.76 (m, 1H), 2.82-2.70 (m, 2H), 2.62-2.50 (m, 1H). IR (KBr): 3402, 2925, 1658, 1601, 1400, 1202, 825, 782, 702, 633 cm⁻¹. HRFABMS: Calculated for C₃₀H₂₉N₃O₅Cs (M +Cs⁺): 644.1162. Found: 644.1147. Anal. Calculated for C₃₀H₂₉N₃O₅ • 0.3 CHCl₃: C, 66.49; H, 5.40; N, 7.68.
Found: C, 66.30; H, 5.50; N, 7.50.

The starting materials were furnished as follows:

\[
3-(4'\text{-Carboxamidobiphenyl-4-yl})\text{-2,5-dimethoxytetrahydrofuran}
\]

To a solution of 4'-(2,5-dimethoxy-tetrahydrofuran-3-yl)-biphenyl-4-carbonitrile (100 mg, 0.32 mmol) in 95% EtOH (1.5 mL) was added 30% hydrogen peroxide (114 μL, 1.12 mmol) and 6N aqueous NaOH (13 μL, 0.08 mmol). The resultant mixture was heated at 50°C for 5 hours, allowed to cool, neutralized to pH7 by pH paper with 5% H₂SO₄, diluted with water (10 mL), and extracted with CHCl₃ (2 x 30 mL). The organic layers were dried over MgSO₄ and evaporated under reduced pressure to give a solid, which was precipitated from EtOAc/hex to give 1.04g (100%) of 3-(4'-carboxamidobiphenyl-4-yl)-2,5-dimethoxytetrahydrofuran as a white powder, mp 184-6°C. ¹H NMR (CDCl₃): δ 7.87 (d, 2H, J = 8.1 Hz), 7.66 (d, 2H, J = 8.1 Hz), 7.56 (d, 2H, J = 8.1 Hz), 7.42 (d, 2H, J = 8.1 Hz), 5.26-5.00 (m, 2H), 3.54-3.29 (m, 6H), 2.78-2.00 (m, 3H); IR (KBr): 3383, 3191, 2908, 1654, 1612, 1400, 1116, 983, 857, 779 cm⁻¹. HRFABMS: Calculated for C₁₉H₂₂N₃O₄ (M +H⁺): 328.1549. Found: 328.1560. Anal. Calculated for C₁₉H₂₁NO₄: C, 69.69; H, 6.47; N, 4.28. Found: C, 69.68, H, 6.43; N, 4.19.
N-(1-Benzyl-2-hydroxyethyl)-3-[3-(4'-carbamoylbiphenyl-4-yl)-1H-pyrrol-1-yl]succinic Acid Benzyl Ester

![Chemical Structure Image]

As described in Example 4(a) for the preparation of N-(1(S)-benzyl-2-hydroxyethyl)-3(R)-[3-(4'-cyano-biphenyl-4-yl)-1H-pyrrol-1-yl]succinic acid benzyl ester, N-(1(S)-benzyl-2-hydroxyethyl)-3(R)-butoxycarbonyl-amino-succinic acid benzyl ester (0.320 mmol) was deprotected. A solution of the resultant crude N-(1(S)-benzyl-2-hydroxyethyl)-3(R)-amino-succinic acid benzyl ester trifluoroacetate salt and crude 3-(4'-carboxamidobiphenyl-4-yl)-2,5-dimethoxytetrahydrofuran (110 mg, 0.330 mmol) in 1,2-dichloroethane condensed in 18 hours to give a brown solid, which was purified via flash column chromatography with 5% MeOH/CH₂Cl₂ as eluant to provide 60 mg (31%) of N-(1-benzyl-2-hydroxyethyl)-3-[3-(4'-carbamoylbiphenyl-4-yl)-1H-pyrrol-1-yl]succinic acid benzyl ester as a pale yellow solid, mp 192-4°C. ¹H NMR (DMSO-d₆): δ 8.18 (d, 1H, J = 8.5 Hz), 8.00 (s, 1H), 7.94 (d, 2H, J = 8.1 Hz), 7.76 (d, 2H, J = 8.5 Hz), 7.68 (d, 2H, J = 8.5 Hz), 7.58 (d, 2H, J = 8.5 Hz), 7.36 -7.14 (bm, 7H), 6.84 (t, 1H, J = 2.2 Hz), 6.47 (s, 1H), 5.10-4.95 (m, 3H), 4.81 (t, 1H, J = 5.1 Hz), 3.88-3.75 (m, 1H), 3.00 (d, 2H, J = 7.4 Hz), 2.80 (dd, 1H, J = 5.5, 13.2 Hz), 2.67 -2.60 (m, 1H). IR (KBr): 3330, 2962, 1729, 1655, 1606, 1560, 1498, 1261, 1092 cm⁻¹. FABMS: 602 (M+H⁺). Anal. Calculated for C₃₇H₃₅N₃O₅ • 0.4 CH₂Cl₂: C, 70.67; H, 5.68; N, 6.61. Found: C, 70.78; H, 5.86; N, 6.98.
Example 4(c). 3(R)-(3-(4′-Carbamoylbiphenyl-4-yl)-1H-pyrrol-1-yl)-N-(1(S)-hydroxymethyl-2,2-dimethyl-propyl)succinamic Acid

According to the procedures described in Example 1(a), 3(R)-(3-(4′-carbamoylbiphenyl-4-yl)-1H-pyrrol-1-yl)-N-(1(S)-hydroxy-methyl-2,2-dimethyl-propyl)succinamic acid benzyl ester in MeOH and EtOAc was hydrogenolyzed to afford in 88% yield 3(R)-(3-(4′-carbamoylbiphenyl-4-yl)-1H-pyrrol-1-yl)-N-(1(S)-hydroxymethyl-2,2-dimethyl-propyl)succinamic acid as a white powder, mp 192-4°C. 1H NMR (CD3OD): δ 7.95 (d, 2H, J = 8.4 Hz), 7.72 (d, 2H, J = 8.1 Hz), 7.60 (s, 4H), 7.32 (d, 1H, J = 1.6 Hz), 6.92 (t, 1H, J = 2.5 Hz), 6.51 (s, 1H), 5.20 (t, 1H, J = 7.5 Hz), 3.85-3.75 (m, 2H), 3.02 (dd, 1H, J = 7.2, 17.0 Hz), 0.92 (s, 9H). IR (KBr): 3360, 2961, 1710, 1658, 1404, 1201, 770 cm⁻¹;

The starting materials were available as follows:

3(R)-(t-Butoxycarbonylamino)-N-(1(S)-hydroxymethyl-2,2-dimethyl-propyl)succinamic Acid Benzyl Ester
As described in Example 1(f) for the preparation of N-(1(S)-benzyl-2-methoxyethyl)-3(R)-(t-butoxycarbonylamino)succinic acid benzyl ester, N-t-butoxycarbonyl-D-aspartic acid β-benzyl ester (1.00 g, 3.10 mmol) and L-t-leucinol (400 mg, 3.40 mmol) were coupled with BOP to afford 1.20 g (90%) of 3(R)-(t-butoxycarbonylamino)-N-(1(S)-hydroxymethyl-2,2-dimethyl-propyl)succinic acid benzyl ester as a white powder, mp 186-7°C. ¹H NMR (CDCl₃): δ 7.22 (s, 5H), 6.52 (d, 1H, J = 9.3 Hz), 5.62-5.52 (m, 1H), 5.25 (dd, 2H, J = 12.1, 18.7 Hz), 4.58-4.48 (m, 1H), 3.90-3.78 (m, 2H), 3.58-3.50 (m, 1H), 3.22-3.10 (m, 1H), 2.78 (dd, 1H, J = 5.9, 17.7 Hz), 2.52-2.45 (m, 1H), 1.22 (s, 9H), 0.98 (s, 9H). IR: 3322, 2960, 1730, 1664 1528, 1367, 1249, 1165, 1050 cm⁻¹. Anal. Calculated for C₂₂H₃₄N₂O₆: C, 62.52; H, 8.12; N, 6.63. Found: C, 62.20; H, 8.13; N, 6.62.

3(R)-[3-(4'-Carbamoylbiphenyl-4-yl)-1H-pyrrol-1-yl]-N-(1(S)-hydroxymethyl-2,2-dimethyl-propyl)succinic Acid Benzyl Ester

As described for Example 4(a) for the preparation of N-(1(S)-benzyl-2-hydroxyethyl)-3(R)-[3-(4'-cyano-biphenyl-4-yl)-1H-pyrrol-1-yl]succinic acid benzyl ester, crude 3-(4'-carboxamidobiphenyl)-2,5-dimethoxy-tetrahydrofuran and 3(R)-amino-N-(1-hydroxymethyl-2,2-dimethyl-propyl)succinic acid benzyl ester trifluoroacetate salt were condensed in 1,2-dichloroethane to furnish 110 mg (41%) of 3(R)-[3-(4'-carbamoylbiphenyl-4-yl)-1H-pyrrol-1-yl]-N-(1(S)-hydroxymethyl-2,2-dimethyl-propyl)succinic acid benzyl ester as a solid, mp 201-3°C. ¹H NMR (CDCl₃): δ 7.88 (d, 2H, J = 8.1 Hz), 7.69 (d, 2H, J = 8.4 Hz), 7.61 (d, 2H, J = 8.4Hz), 7.56 (d, 2H, J = 8.7 Hz), 7.36-7.26 (m, 5H), 7.10 (d, 1H, J
= 1.9 Hz), 6.81 (d, 1H, J = 2.5 Hz), 6.61 (t, 1H, J = 1.6 Hz), 5.60-5.56 (m, 1H), 5.10-5.02 (m, 3H), 3.80-3.70 (m, 2H), 3.50-3.38 (m, 3H), 3.24 (dd, 1H, J = 4.0, 17.0 Hz), 0.80 (s, 9H). IR (KBr): 3356, 2961, 1735, 1655, 1606, 1560, 1542, 1406, 1200 cm⁻¹. Anal. Calculated for C₃₄H₇₇N₃O₅ • 0.25 CH₂Cl₂: C, 69.85; H, 6.42; N, 7.14. Found: C, 69.82, H, 6.67; N, 7.12.

Example 5(a). N-[2,2-Dimethyl-1(S)-(hydroxymethyl)propyl]-3(R)-[3-[4-(pyridin-4-yl)phenyl]-1H-pyrrol-1-yl]succinic Acid

A mixture of N-(1-benzyloxy carbonyloxy-3,3-dimethylbut-2(R)-yl)-3(R)-[3-[4-(pyridin-4-yl)phenyl]-1H-pyrrol-1-yl]succinic acid benzyl ester (140 mg, 0.212 mmol) and Pd(OH)₂ (60 mg of 20% Pd by content) in MeOH (1 mL) and EtOAc (9 mL) was stirred under H₂ atmosphere for 3 hours. The catalyst was filtered onto Celite and rinsed with 10% MeOH/CHCl₃ (75 mL). The filtrate was concentrated in vacuo to provide a yellow solid, which was precipitated from hot CHCl₃ solution with hexane to furnish 68 mg (95%) of N-[2,2-dimethyl-1(S)-(hydroxymethyl)propyl]-3(R)-[3-[4-(pyridin-4-yl)phenyl]-1H-pyrrol-1-yl]succinic acid as a yellow solid, mp 192-4°C. ¹H NMR (CD₃OD): δ 8.56 (d, 1H, J = 5.9 Hz), 7.78-7.60 (m, 7H), 7.37 (t, 1H, J = 1.9 Hz), 6.96 (t, 1H, J = 2.5 Hz), 6.54 (t, 1H, J = 1.6 Hz), 5.22 (dd, 1H, J = 2.5 Hz), 3.83-3.70 (m, 2H), 3.45-3.40 (m, 1H), 3.22 (d, 1H, J = 7.5 Hz), 3.02 (dd, 1H, J = 7.2, 16.8 Hz), 0.90 (s, 9H). IR (KBr): 3405, 2960, 1718, 1656, 1602, 1560, 1408, 1364, 1203, 922, 818, 783 cm⁻¹. HRFABMS: Calculated for C₂₅H₂₉N₃O₄Cs (M + Cs⁺): 568.1212. Found: 568.1189. Anal. Calculated for C₂₅H₂₉N₃O₄ • 0.10 CHCl₃:

The starting material was made as follows:

4-(4-Bromo-phenyl)-pyridine

According to the procedure described in Example 1(a) for the preparation of 3-biphenyl-4-yl-furan, 4-bromopyridine (700 mg, 3.00 mmol) underwent coupling to 4-bromophenylboronic acid to give 2.38 g (100%) of 4-(4-bromo-phenyl)-pyridine as a yellow solid, which had an NMR that matched literature (Boy, P.; Combellas, C.; Thiebault, A.; Amatore, C.; Jutand, A. Tetrahedron Lett. 1992, 33, 491-494) and was used without further purification. IR (KBr): 1593, 1474, 1412, 1075, 1006, 807, 756, 693, 498 cm⁻¹.

3-(4'-Pyridylphenyl-4-yl)furan

According to the procedure described in Example 1(a) for the preparation of 3-biphenyl-4-yl-furan, 4-(4-bromophenyl)pyridine (700 mg, 3.00 mmol) underwent coupling to 3-furanboronic acid (see Thompson, W. J.; Gaudino, G. J. Org. Chem. 1984, 49, 5237-5243). Purification via flash column chromatography with 2% MeOH/CH₂Cl₂ as eluant led to obtention of 640 mg (97%) of 3-(4'-pyridylphenyl-4-yl)furan as a yellow solid, which was used in the next reaction. ¹H NMR (CDCl₃): δ 8.68 (d, 2H, J = 5.9 Hz), 7.82 (dd, 1H, J = 0.6, 1.6 Hz), 7.76-7.43 (m, 7H), 6.76 (dd, 1H, J = 0.9, 1.8 Hz). Anal. Calculated for C₁₅H₁₁NO: C, 81.43; H, 5.01; N, 6.33. Found: C, 81.32, H, 5.08; N, 6.28.
2,5-Dihydro-2,5-dimethoxy-3-(4-(pyridin-4-yl)phenyl)furan

According to the procedure described in Example 1(a) for the preparation of 3-biphenyl-4-yl-2,5-dihydro-2,5-dimethoxyfuran, 3-(4'-pyridylphenyl-4-yl)furan (470 mg, 2.12 mmol) was converted and purified via flash column chromatography with 2% MeOH/CH₂Cl₂ as eluant to afford 600 mg (100%) of 2,5-dihydro-2,5-dimethoxy-3-(4-(pyridin-4-yl)phenyl)furan as a tan solid. \(^1H \) NMR (CDCl₃): \(\delta \) 8.68 (d, 2H, \(J = 4.0 \) Hz), 7.68 (s, 4H), 7.52 (d, 2H, \(J = 5.9 \) Hz), 6.40 (s, 1H), 6.30 (d, 0.5H, \(J = 3.7 \) Hz), 6.05 (s, 0.5H), 6.02 (d, 0.5H, \(J = 3.7 \) Hz), 5.72 (s, 0.5H), 3.52 (s, 1.5H), 3.48 (s, 1.5H), 3.45 (s, 1.5H), 3.43 (s, 1.5H). HRFABMS: Calculated for C₁₇H₁₈NO₃: (M +H⁺): 284.1287. Found: 284.1294. Anal. Calculated for C₁₇H₁₇NO₃: C, 72.07; H, 6.05 N, 4.94. Found: C, 71.97, H, 6.05; N, 4.95.

2,5-Dimethoxy-3-(4-(pyridin-4-yl)phenyl)tetrahydrofuran

According to the procedure described in Example 1(a) for the preparation of 3-biphenyl-4-yl-2,5-dimethoxy-tetrahydrofuran, 2,5-dihydro-2,5-dimethoxy-3-(4-(pyridin-4-yl)phenyl)furan (300 mg, 1.06 mmol) was hydrogenated in MeOH after 6 hours to furnish 300 mg (100%) of 2,5-dimethoxy-3-(4-(pyridin-4-yl)phenyl)tetrahydrofuran as a yellow oil,
which was a mixture of diastereomers by NMR, and which was used without further purification. 1H NMR (CDCl₃): δ 8.68 (bs, 2H), 7.76-7.36 (m, 6H), 5.34-4.94 (m, 2H), 3.72-3.20 (m, 7H), 2.75 (ddd, 0.15H, minor isomer, J = 5.9, 10.0, 13.7 Hz), 2.35 (ddd, 0.74H, major isomer, J = 5.6, 12.8, 12.8 Hz), 2.20 (dd, 0.019H, minor isomer, J = 6.9, 12.0 Hz), 2.12 (ddd, 0.16H, minor isomer, J = 3.7, 5.9, 13.7 Hz); Anal. Calculated for C$_{17}$H$_{19}$NO$_3$ • 0.2 H$_2$O: C, 70.66; H, 6.77; N, 4.85. Found: C, 70.49; H, 6.74; N, 4.76.

N-(1(S)-Benzyloxy carbonyloxymethyl-2,2-dimethylpropyl)-3(R)-(t-butoxycarbonylamino)succinamic Acid Benzyl Ester

![Chemical Structure](image)

To a solution of 3(R)-(t-butoxycarbonylamino)-N-(2,2-dimethyl-1(S)-hydroxymethylpropyl)succinamic acid benzyl ester (1.27 g, 3.01 mmol; prepared as described in Example 4(c)) and DMAP (920 mg, 7.51 mmol) in CHCl₃ (5 mL) was added benzyl chloroformate (1.07 mL, 7.51 mmol). After 2 hours, 10% aqueous KHSO₄ (15 mL) was added. The aqueous layer was extracted with more CHCl₃ (15 mL) two times. The combined CHCl₃ layers were washed with 10% aqueous KHSO₄ (10 mL), saturated aqueous NaHCO₃ (10 mL), and H₂O (10 mL), dried over Na₂SO₄ and evaporated to give a crude solid, which was purified via flash column chromatography to afford 1.42 g (85%) of N-(1(S)-benzyloxy carbonyloxymethyl-2,2-dimethyl-propyl)-3(R)-(t-butoxycarbonylamino)succinamic acid benzyl ester as a white solid, mp 69-71°C. 1H NMR (CDCl₃): δ 7.37-7.27 (brm, 10H), 6.63 (d, 1H, J = 9.3 Hz), 5.61 (d, 1H, J = 7.5 Hz), 5.16 (s, 2H), 5.15 (d, 1H, J = 12.3 Hz), 4.97 (d, 1H, J = 12.3 Hz), 4.51 (d, 1H, J = 5.6 Hz), 4.29 (dd,
1H, J = 3.7, 11.2 Hz), 4.15 (dd, 1H, 7.8, 11.2 Hz), 4.05 (ddd, 1H, J = 3.7, 7.8, 9.6 Hz), 3.01 (dd, 1H, J = 4.7, 17.1 Hz), 2.72 (dd, 1H, J = 6.5, 17.1 Hz), 1.44 (s, 9H), 0.93 (s, 9H). IR: 3340, 2951, 1753, 1707, 1671, 1533, 1507, 1456, 1364, 1272, 1175, 790, 734 cm⁻¹.

HRLSIMS: Calculated for C₃₀H₄₀N₂O₈Cs (M +Cs⁺): 689.1839. Found: 689.1826. Anal. Calculated for C₃₀H₄₀N₂O₈: C, 64.72; H, 7.24; N, 5.03. Found: C, 64.82; H, 7.25; N, 4.98.

N-[(1-Benzyl oxycarbonyloxy-3,3-dimethylbut-2(R)-yl)-3(R)-[3-[4-(pyridin-4-yl)phenyl]-1H-pyrrol-1-yl]succinic Acid Benzy l Ester

According to the procedure described in Example 1(b) for the preparation of 3(R)-t-butoxycarbonylamino-N-(2,2-dimethyl-1(S)-methylcarbamoylpropyl)succinic acid benzyl ester, N-[(1R-benzyloxy-carbonyloxymethyl-2,2-dimethyl-propyl)-3(R)-t-butoxycarbonylamino)succinic acid benzyl ester was deprotected. The corresponding amine salt and 2,5-dimethoxy-3-(4'-pyridylphenyl-4-yl)-tetrahydro-furan was condensed in wet 1,2-dichloroethane at 80-90°C after 18 hours to furnish a crude product, which was purified via flash column chromatography with 1% HOAc/ 5% MeOH/CH₂Cl₂ as eluant to furnish 160 mg (54%) of N-[(1-benzyloxy carbonyloxy-3,3-dimethylbut-2(R)-yl)-3(R)-[3-[4-(pyridin-4-yl)phenyl]-1H-pyrrol-1-yl]succinic acid benzyl ester as a yellow solid, mp 74-6°C. ¹H NMR (CDCl₃): δ 8.65 (d, 2H, J = 5.9 Hz), 7.58 (d, 5H, J = 2.2 Hz), 7.55-7.43 (m, 4H), 7.34-7.22 (m, 7H), 7.08 (t, 1H, J 1.9 Hz), 6.74 (t, 1H, J = 2.5 Hz), 6.54 (dd, 1H, J = 1.9, 2.8 Hz), 5.46 (d, 1H, 9.3 Hz), 5.18-5.05 (m, 4H), 5.03 (s, 2H), 4.30 (dd, 1H, J = 2.5, 12.0
Hz), 4.00 (m, 2H), 3.46 (dd, 1H, J = 5.3, 15.0 Hz), 3.00 (dd, 1H, J = 9.3, 15.0 Hz), 0.83 (s, 9H). IR (KBr): 2961, 1748, 1666, 1600, 1560, 1263, 1118, 815, 783, 737, 695, 541 cm\(^{-1}\).

HRFABMS: Calculated for C\(_{40}\)H\(_{41}\)N\(_3\)O\(_6\)Cs (M +Cs\(^+\)): 792.2050. Found: 792.2034. Anal. Calculated for C\(_{40}\)H\(_{41}\)N\(_3\)O\(_6\) • 0.2 CHCl\(_3\) • 0.3 C\(_6\)H\(_{14}\): C, 71.10; H, 6.45; N, 5.92. Found: C, 71.01, H, 6.36; N, 5.59.

The following compounds were made in a similar manner:

Example 5(b). N-(2-Hydroxy-1(S)-phenylethyl)-3(R)-[3-[4-(pyridin-4-yl)phenyl]-1H-pyrrol-1-yl]succinamic Acid

![Chemical Structure](image)

According to the procedure described in Example 5(a), N-(2-benzyloxycarbonyloxy-1(S)-phenylethyl)-3(R)-[3-[4-(pyridin-4-yl)phenyl]-1H-pyrrol-1-yl]succinamic acid benzyl ester was hydrogenolyzed to afford 60 mg (68%) of N-(2-hydroxy-1(S)-phenylethyl)-3(R)-3(R)-[3-[4-(pyridin-4-yl)phenyl]-1H-pyrrol-1-yl]succinamic acid. \(^1\)H NMR (CD\(_3\)OD): \(\delta\) 8.56 (d, 2H, J = 5.9 Hz), 7.78-7.60 (m, 7H), 7.38 (t, 1H, J = 1.9 Hz), 6.95 (t, 1H, J = 2.5 Hz), 6.55 (dd, 1H, J = 1.6, 2.8 Hz), 5.22 (dd, 1H, J = 7.2, 7.4 Hz), 3.76-3.64 (bm, 2H), 3.02 (dd, 1H, J = 7.2, 16.8 Hz). IR (KBr): 3315, 1718, 1670, 1654, 1602, 1560, 1491, 1406, 1202 cm\(^{-1}\).

HRFABMS: Calculated for C\(_{27}\)H\(_{25}\)N\(_3\)O\(_4\)Cs (M +Cs\(^+\)): 588.0899. Found: 588.0914. Anal. Calculated for C\(_{27}\)H\(_{25}\)N\(_3\)O\(_4\) • 0.2 CHCl\(_3\): C, 68.15; H, 5.30; N, 8.77. Found: C, 68.19, H, 5.63; N, 8.38.
The starting materials were made as follows:

\[
3(R)-(t\text{-Butoxycarbonylamino})-N-(2\text{-hydroxy}-1(S)-phenyl-ethyl)succinic Acid Benzyl Ester
\]

\[
\begin{align*}
\text{O} & \quad \text{N} \\
\text{OH} & \quad \text{HN} \\
\text{O} & \quad \text{N} \\
\text{O} & \quad \text{HN}
\end{align*}
\]

According to the procedure described in Example 1(f) for the preparation of N-(1(S)-benzyl-2-methoxy-ethyl)-3(R)-t-butoxycarbonyl-amino-succinamic acid benzyl ester, N-t-butoxycarbonyl-D-aspartic acid β-benzyl ester and 2S-phenylglycinol were coupled with BOP to provide 290 mg (85%) of 3(R)-(t-butoxycarbonylamino)-N-(2-hydroxy-1(S)-phenyl-ethyl)succinamic acid benzyl ester, mp 117-8°C. \(^1\)H NMR (CDCl₃): \(\delta\) 7.40-7.22 (m, 10H), 7.10 (bd, 1H, \(J = 9.3\) Hz), 5.66 (bd, 1H, \(J = 9.3\) Hz), 5.14 (dd, 2H, \(J = 12.1, 18.4\) Hz), 5.08-5.02 (m, 1H), 4.58-4.50 (m, 1H), 3.94-3.80 (m, 2H), 3.12 (dd, 1H, \(J = 4.4, 17.1\) Hz), 2.75 (dd, 1H, \(J = 5.9, 17.4\) Hz), 2.42-2.36 (m, 1H), 1.20 (s, 9H). IR: 3322, 2965, 1730, 1660, 1367, 1166 cm\(^{-1}\). Anal. Calculated for C\(_{24}\)H\(_{30}\)N\(_2\)O\(_6\) • 0.25 H\(_2\)O: C, 64.49; H, 6.88; N, 6.27. Found: C, 64.34; H, 6.73; N, 6.29.

\[
N-(2\text{-Benzyloxy carbonyloxy}-1(S)-phenylethyl)-3(R)-t-(butoxycarbonylamino)Su\text{ccinamic Acid Benzyl Ester}
\]

\[
\begin{align*}
\text{O} & \quad \text{N} \\
\text{OH} & \quad \text{HN} \\
\text{O} & \quad \text{N} \\
\text{O} & \quad \text{HN}
\end{align*}
\]

According to the procedure described in Example 5(a) for the preparation of N-(1R-
benzyloxy carbonyloxymethyl-2,2-dimethyl-propyl)-3(R)-(t-butoxycarbonylamino)succinic acid benzyl ester, N-(2-hydroxy-1(S)-phenyl-ethyl)-3(R)-(t-butoxycarbonylamino)succinic acid benzyl ester was acylated to provide crude product, which was purified via flash column chromatography with 30% EtOAc/hex as eluant to give 333 mg (96%) of N-(2-benzyloxy carbonyloxy-1(S)-phenyl-ethyl)-3(R)-(t-butoxycarbonylamino)succinic acid benzyl ester as a white solid, mp 105-6°C. \[^1\text{H NMR (CDCl3): \delta}
\]
7.40-7.18 (m, 15H), 5.63 (bs, 1H), 5.24 (q, 1H, J = 6.6 Hz), 5.12 (s, 2H), 5.06 (q, 2H, J = 10.3 Hz), 4.50 (bs, 1H), 4.55 (ddd, 2H, J = 5.0, 6.8, 11.2 Hz), 2.99 (dd, 1H, J = 4.4, 17.0 Hz), 2.66 (dd, 1H, J = 6.2, 17.0 Hz), 2.42-2.36 (m, 1H), 1.40 (s, 9H). IR: 3320, 2981, 1742, 1692, 1518, 1458, 1394, 1313, 1277, 1171 cm\(^{-1}\). Anal. Calculated for C\(_{32}\)H\(_{36}\)N\(_2\)O\(_8\): C, 66.65; H, 6.29; N, 4.86. Found: C, 66.57; H, 6.31; N, 4.88.

N-(2-Benzyl oxycarbonyloxy-1(S)-phenyl-ethyl)-3(R)-(3-[4-(pyridin-4-yl)phenyl]-1H-pyrrol-1-yl)succinic Acid Benzyl Ester

![Diagram]

According to the procedure described in Example 1(b) for the preparation of N-(2,2-dimethyl-1(S)-methyl carbamoylpropyl)-3(R)-(3-phenyl-1H-pyrrol-1-yl)succinic acid benzyl ester, N-(2-benzyloxy carbonyloxy-1(S)-phenyl-ethyl)-3(R)-(t-butoxycarbonylamino)succinic acid benzyl ester and 2,5-dimethoxy-3-(4-pyridin-4-yl-phenyl)-tetrahydrofuran (prepared as described in Example 5(a)) were condensed in wet 1,2-dichloroethane at 80-90°C after 18 hours. Flash column chromatography with 4%
MeOH/CH₂Cl₂ as eluant gave 140 mg (56%) of N-(2-benzyloxy carbonyloxy-1(S)-phenylethyl)-3(R)-[3-[4-(pyridin-4-yl)phenyl]-1H-pyrrol-1-yl]succinic acid benzyl ester as a yellow solid, mp 138-40°C. ¹H NMR (CDCl₃): δ 8.66 (bs, 2H), 7.60 (s, 5H), 7.50 (d, 3H, J = 5.3 Hz), 7.34-7.22 (m, 10H), 7.19 (d, 1H, J = 2.2 Hz), 7.17 (d, 1H, J = 1.9 Hz), 7.09 (t, 1H, J = 1.9 Hz), 6.77 (dd, 1H, J = 2.5, 2.8 Hz), 6.57 (bt, 1H, J = 1.9, 2.5 Hz), 6.24 (d, 1H, J = 7.8 Hz), 5.26 (m, 1H), 4.25 (dd, 1H, J = 7.2, 11.5 Hz), 3.44 (dd, 1H, J = 7.2, 16.8 Hz), 3.00 (dd, 1H, 8.7, 16.8 Hz). IR (KBr): 2985, 1738, 1657, 1598, 1560, 1495, 1202, 815, 697 cm⁻¹.

Example 5(c). 3(R)-[3-[4'-Cyanobiphenyl-4-yl]-1H-pyrrol-1-yl]-N-[2,2-dimethyl-1(S)-(methylcarbamoyl)propyl]succinic Acid

According to the procedure described in Example 1(a), 3(R)-[3-(4'-cyanobiphenyl-4-yl)-1H-pyrrol-1-yl]-N-[2,2-dimethyl-1(S)-(methylcarbamoyl)propyl]succinic acid benzyl ester (58 mg, 0.101 mmol) was hydrogenolyzed to afford 31 mg (63%) of 3(R)-[3-(4'-cyanobiphenyl-4-yl)-1H-pyrrol-1-yl]-N-[2,2-dimethyl-1(S)-(methylcarbamoyl)propyl]succinic acid as a solid, mp 142-4°C. ¹H NMR (CDCl₃): δ 7.61 (dd, 4H, J = 8.4, 15.2 Hz), 7.45 (dd, 4H, J = 8.2, 16.6 Hz), 7.12 (s, 1H), 6.77 (s, 1H), 6.44 (s, 1H), 6.31 (bs, 1H), 5.26 (t, 1H, J = 6.8 Hz), 4.29 (d, 1H, J = 9.3 Hz), 4.03 (bs, 1H), 3.32 (dd, 1H, J = 6.5, 17.1 Hz), 3.07 (dd, 1H, J = 7.6, 17.3 Hz), 2.66 (d, 3H, J = 4.05 Hz),
0.92 (s, 9H). IR (KBr): 3354, 2955, 2367, 1737, 1719, 1655, 1561 cm\(^{-1}\). HRFABMS:

Calculated for \(\text{C}_{28}\text{H}_{31}\text{N}_{4}\text{O}_{4}\) (M +H\(^+\)): 487.2345. Found: 487.2356. Anal. Calculated for \(\text{C}_{28}\text{H}_{30}\text{N}_{4}\text{O}_{4} \cdot 1.2\text{EtOAc}:\) C, 66.51; H, 6.74; N, 9.46. Found: C, 66.57, H, 6.54; N, 9.28.

The starting material was available as follows:

3(R)-(3-(4'-Cyanobiphenyl-4-yl)-1H-pyrrol-1-yl)-N-[2,2-dimethyl-1(S)-
(methylcarbamoyl)propyl]succinic acid benzyl ester

According to the procedure as described in Example 1(e) for N-(1,7-diaza-4-oxa-8-
oxo-tricyclo-[9.6.1.012,17]-octadeca-11(18),12,14,16-tetraen-9S-yl)-3(R)-(3-phenyl-1H-
pyrrol-1-yl)succinic acid benzyl ester, crude 3(R)-amino-N-(2,2-dimethyl-1(S)-
methylcarbamoyl)propyl)succinic acid benzyl ester trifluoroacetate salt (prepared as
described in Example 1(b)) and 4'- (2,5-dimethoxy-tetrahydrofuran-3-yl)-biphenyl-4-
carbonitrile (prepared as described in Example 4(a)) were condensed to give 84 mg (48%) of
3(R)-(3-(4'-cyanobiphenyl-4-yl)-1H-pyrrol-1-yl]-N-[2,2-dimethyl-1(S)-
(methylcarbamoyl)propyl]succinic acid benzyl ester as a yellow solid, mp 120°C. \(^1\)H
NMR (CDCl3): \(\delta 7.72\) (s, 4H), 7.59 (s, 4H), 7.32-7.28 (m, 2H), 7.26 (s, 3H), 7.12 (t, 1H, J =
2.1 Hz), 6.82 (t, 1H, J = 2.7 Hz), 6.61 (dd, 1H, J = 1.8, 3.0 Hz), 6.27 (d, 1H, J = 9.0 Hz), 5.58
(m, 1H), 5.13 (s, 2H), 5.12 (m, 1H), 4.01 (d, 2H, 8.7 Hz), 3.41 (dd, 1H, J = 5.8, 16.7 Hz),
3.11 (dd, 1H, 8.7, 16.8 Hz), 2.78 (d, 3H, J = 5.0 Hz), 0.87 (s, 9H). IR (KBr): 2960, 2221,
1736, 1685, 1654, 1562, 1542 cm\(^{-1}\). HRFABMS: Calculated for \(\text{C}_{35}\text{H}_{37}\text{N}_{4}\text{O}_{4}\) (M +H\(^+\)): 136
577.2815. Found: 577.2832. Anal. Calculated for C$_{35}$H$_{36}$N$_4$O$_4$ • 0.2 DMF 0.5 H$_2$O: C, 71.23; H, 6.45; N, 9.80. Found: C, 71.14, H, 6.23; N, 10.19.

Example 5(d). 3(R)-[3-(4'-Cyanobiphenyl-4-yl)-1H-pyrrol-1-yl]-N-[2,2-dimethyl-1(S)-(pyridin-4-ylcarbamoyl)propyl]succinamic Acid Formate Salt

A mixture of palladium on carbon and 3(R)-[3-(4'-cyanobiphenyl-4-yl)-1H-pyrrol-1-yl]-N-[2,2-dimethyl-1(S)-(pyridin-4-ylcarbamoyl)propyl]succinamic acid benzyl ester (72 mg, 0.112 mmol) in MeOH with formic acid afforded 30 mg (49%) of 3(R)-[3-(4'-cyanobiphenyl-4-yl)-1H-pyrrol-1-yl]-N-[2,2-dimethyl-1(S)-(pyridin-4-ylcarbamoyl)propyl]succinamic acid formate salt as a solid, mp 134-6°C. 1H NMR (DMSO-d$_6$): δ 8.39-8.35 (m, 3H), 7.81 (d, 2H, J = 5.9 Hz), 7.63 (s, 2H), 7.34-7.23 (m, 4H), 7.28 (d, 2H, J = 10.3 Hz), 7.24 (s, 1H), 6.96-6.92 (m, 1H), 6.52 (dddd, 1H, J = 1.8, 2.9, 4.8, 7.4 Hz), 5.35-5.29 (m, 1H), 3.39-3.18 (bm, 1H), 3.09-2.91 (bm, 1H), 1.06 (s, 9H). IR (KBr): 2966, 2225, 1719, 1654, 1594, 1560, 1507, 1396, 1196 cm$^{-1}$. HRFABMS: Calculated for C$_{28}$H$_{31}$N$_4$O$_4$ (M + H$^+$): 550.2454. Found: 550.2450. Anal. Calculated for C$_{32}$H$_{31}$N$_5$O$_4$ • 1.0 HCO$_2$H • 2.5 CH$_3$OH: C, 63.10; H, 6.41; N, 10.36. Found: C, 63.03, H, 6.75; N, 10.38.

The starting material was available as follows:

2S-[t-Butoxycarbonylamino-3,3-dimethyl-N-pyridin-4-yl-butanamide
To a mixture of N-t-butoxycarbonyl-L-t-leucine (made according to Shiosaki, K.; Tasker, A. S.; Opgenorth, T. J. WO 92/13545, November 8, 1991 and matched with data from Pospisek, J.; Blaha, K. Coll. Czech. Chem. Commun. 1977, 42, 1069-1076; 200 mg, 0.860 mmol) and 4-aminopyridine (356 mg, 1.72 mmol) in anhydrous DMF was added morpholine (284 µL, 2.58 mmol). After cooling to 0°C, tetrafluoroformamidinium hexafluorophosphate (TFFH; see Carpino, L. A.; El-Faham, A. J. Am. Chem. Soc. 1995, 117, 5401-5402; 340 mg, 1.29 mmol) was added. The mixture was allowed to warm to ambient temperature and stirred overnight. The resultant mixture was diluted with CH₂Cl₂ (50 mL), washed with saturated aqueous NH₄Cl (25 mL), saturated aqueous NaHCO₃ (25 mL) and brine (25 mL), dried over MgSO₄ and concentrated at reduced pressure to provide a yellow solid, which was purified via flash column chromatography to give 167 mg (67%) of 2S-t-butoxycarbonylamino-3,3-dimethyl-N-pyridin-4-yl-butanamide as a white solid. ¹H NMR: δ 8.60 (bs, 1H), 8.42 (bs, 2H), 7.34 (bs, 2H), 5.34 (bd, 1H, J = 8.7 Hz), 4.08 (bs, 1H, J = 8.7 Hz), 1.42 (s, 9H), 1.02 (s, 9H). IR (KBr): 3286, 2971, 1682, 1594, 1518, 1367, 1169 cm⁻¹. HRFABMS: Calculated for C₁₆H₂₆N₃O₃ (M +H⁺): 308.1974. Found: 308.1967. Anal. Calculated for C₁₆H₂₅N₃O₃ • 0.37 H₂O: C, 61.19; H, 8.26; N, 13.38. Found: C, 61.52; H, 8.18; N, 12.99.

2S-aminocarbonylamino-3,3-dimethyl-N-pyridin-4-yl-butanamide

To a solution of 2S-t-butoxycarbonylamino-3,3-dimethyl-N-pyridin-4-yl-butanamide (3.00 g, 9.75 mmol) in CH₂Cl₂ (10 mL) was added trifluoroacetic acid (3 mL). After 3 hours
at ambient temperature, the solvent was removed in vacuo and azeotropically dried with hexane twice to furnish a colorless foam, which was dissolved in MeOH (50 mL) and neutralized upon stirring with IRA-400 anion exchange resin (HCO₃ form; 3 g) over 3 hours. The resin was filtered off and the solution concentrated in vacuo to furnish a white solid, which recrystallized from hexanes to give 1.18 g (90%) of 2S-amino-3,3-dimethyl-N-4-pyridinyl-butanamide as a white powder (cited in Chapman, K. T.; Hagmann, W. K.; Durette, P. L.; Esser, C. K.; Kopka, I. E.; Caldwell, C. G. WO 9412169, November 18, 1995).

\[^1H \text{NMR: } \delta 9.40 \text{ (bs, 1H), 8.50 (d, 1H, J = 4.7 Hz), 7.50 (d, 2H, J = 4.7 Hz), 3.15 (s, 3H), 1.02 (s, 9H). IR (KBr): 3250, 2962, 1686, 1592, 1517, 1418 cm}^{-1}. \]

Anal. Calculated for C\(_{11}\)H\(_{17}\)N\(_3\)O: C, 63.74; H, 8.27; N, 20.27. Found: C, 63.79; H, 8.23; N, 20.35.

3(R)-t-Butoxycarbonylamino-N-[2,2-dimethyl-1(S)-(N-pyridin-4-ylcarbamoyl)propyl]sucinamic Acid Benzyl Ester

![Chemical Structure]

To a solution of 2S-amino-3,3-dimethyl-N-4-pyridinyl-butanamide (100 mg, 0.482 mmol) and N-t-butoxycarbonyl-L-aspartate β-benzyl ester (156 mg, 0.482 mmol) in dry DMF (3 mL) at 0°C was added sequentially diethylcyanophosphonate (81 µL, 0.482 mmol) and triethylamine (200 µL, 1.46 mmol). After 30 minutes at 0°C, the mixture was allowed to warm to ambient temperature. After 4, the resultant orange mixture was stirred with saturated aqueous NaHCO₃ and extracted with EtOAc three times. The combined organic layers were washed with 5% aqueous citric acid, H₂O, and brine, dried over Na₂SO₄, and evaporated to give a viscous yellow oil, which was purified via flash column chromatography.
with EtOAc as eluant to afford 150 mg (61%) of 3(R)-t-butoxycarbonylamino-N-[2,2-
dimethyl-1(S)-(N-pyridin-4-yl-carbamoyl)-propyl]succinamic acid benzyl ester as a yellow
oil. 1H NMR: δ 9.11 (bs, 1H), 8.37 (d, 2H, J = 5.0 Hz), 7.43 (d, 2H, 4.7 Hz), 7.28 (m, 5H),
5.90 (bs, 1H), 5.09 (d, 1H, J = 12.1 Hz), 5.01 (d, 1H, J = 12.1 Hz), 4.60 (dd, 1H, J = 5.5, 12.6
Hz), 4.35 (d, 1H, 8.1 Hz), 3.03 (ddd, 1H, J = 4.6, 4.6, 17.1 Hz), 2.83 (dd, 1H, 5.6, 17.1 Hz),
1.47 (s, 9H), 1.05 (s, 9H). IR (KBr): 3319, 2966, 1737, 1719, 1701, 1666, 1596, 1525, 1420,
1367, 1290 cm$^{-1}$. HRFABMS: Calculated for C$_{27}$H$_{37}$N$_4$O$_6$ (M +H$^+$): 513.2713. Found:
513.2726. Anal. Calculated for C$_{27}$H$_{36}$N$_4$O$_6$: C, 63.26; H, 7.09; N, 10.92. Found: C,
63.11; H, 7.12; N, 10.89.

3(R)-[3-(4'-Cyanobiphenyl-4-yl)-1H-pyrrol-1-yl]-N-[2,2-dimethyl-1(S)-(pyridin-4-
ylcarbamoyl)propyl]succinamic Acid Benzyl Ester

According to the procedure described in Example 1(e) for the preparation N-(1,7-
diaza-4-oxa-8-oxo-tricyclo-[9.6.1.012,17]-octadeca-11(18),12,14,16-tetraen-9S-yl)-3(R)-(3-
phenyl-1H-pyrrol-1-yl)succinamic acid benzyl ester, crude 3(R)-amino-N-[2,2-dimethyl-
1(S)-(pyridin-4-ylcarbamoyl)propyl]succinamic acid benzyl ester trifluoroacetate salt and 4'-
(2,5-dimethoxy-tetrahydrofuran-3-yl)-biphenyl-4-carbonitrile were condensed to give 75 mg
(42%) of 3(R)-[3-(4'-cyanobiphenyl-4-yl)-1H-pyrrol-1-yl]-N-[2,2-dimethyl-1(S)-(pyridin-4-
ylcarbamoyl)propyl]succinamic acid benzyl ester as an off-white powder, mp 115-6°C. 1H
NMR: δ 8.42 (d, 2H, J = 5.6 Hz), 7.72 (s, 2H), 7.58 (s, 2H), 7.50 (d, 2H, J = 5.0 Hz), 7.31 (s,
2H), 7.26 (s, 7H), 7.12 (m, 1H), 6.85 (dd, 1H, J = 2.5, 2.5 Hz), 6.64 (dd, 1H, J = 1.6, 2.8 Hz),
6.25 (m, 1H), 5.20-5.10 (m, 3H), 4.15 (d, 1H, J = 8.1 Hz), 3.39 (dd, 1H, J = 5.5, 17.3 Hz),
3.25 (dd, 1H, J = 7.9, 17.3 Hz), 0.94 (s, 9H). IR (KBr): 3331, 2959, 2225, 1735, 1687, 1655,
1602, 1559, 1511, 1288, 1203, 825 cm⁻¹. HRFABMS: Calculated for C₃₃H₃₇N₄O₄ (M
70.76; H, 6.27; N, 9.51. Found: C, 70.73; H, 6.19; N, 9.16.

Example 5(e). 3(R)-[3-(4'-Carbamoylbiphenyl-4-yl)-1H-pyrrol-1-yl]-N-(2,2-dimethyl-1(S)-(methylcarbamoyl)propyl)succinic Acid

![Chemical structure diagram]

According to the procedure described in Example 5(a), 3(R)-[3-(4'-
carbamoylbiphenyl-4-yl)-1H-pyrrol-1-yl]-N-(2,2-dimethyl-1(S)-(methylcarbamoyl)propyl)succinic acid benzyl ester was hydrogenolyzed to provide 45
mg (90%) of 3(R)-[3-(4'-carbamoylbiphenyl-4-yl)-1H-pyrrol-1-yl]-N-(2,2-dimethyl-1(S)-(methylcarbamoyl)propyl)succinic acid as a yellow solid. ¹H NMR (CD₃OD): δ 7.98 (d,
2H, J = 8.1 Hz), 7.78 (d, 2H, J = 8.1 Hz), 7.62 (s, 4H), 7.30 (bs, 1H), 6.92 (bs, 1H), 6.54 (bs,
1H), 5.98 (1H, J = 2.8 Hz), 5.39 (t, 1H, J = 6.5 Hz), 4.19 (d, 1H, J = 9.3 Hz), 3.02 (dd, 1H, J
= 7.2, 16.5 Hz), 2.60 (s, 3H), 0.98 (s, 9H). IR (KBr): 3332, 2915, 1658, 1547, 1408 cm⁻¹.
Anal. Calculated for C₂₈H₃₂N₄O₅ • 0.7 H₂O: C, 65.03; H, 6.51; N, 10.83. Found: C, 65.10,
H, 6.74; N, 10.43.

The starting material was made as follows:

141
According to the procedure described in Example 1(b) for the preparation of N-(2,2-dimethyl-1(S)-methylcarbamoylpropyl)-3(R)-(3-phenyl-1H-pyrrol-1-yl)succinamic acid benzyl ester, 3(R)-t-butoxycarbonylamino-N-(2,2-dimethyl-1(S)-methylcarbamoylpropyl)succinamic acid benzyl ester was deprotected. The crude amine salt and crude 3-(4'-carboxamidobiphenyl-4-yl)-2,5-dimethoxy-tetrahydrofuran (prepared as described in Example 4(b)) were condensed in wet 1,2-dichloroethane at 90-100°C to yield 180 mg (55%) of 3(R)-[3-(4'-carbamoylbiphenyl-4-yl)-1H-pyrrol-1-yl]-N-(2,2-dimethyl-1(S)-(methylcarbamoyl)propyl)succinamic acid benzyl ester. ^1H NMR: δ 7.90 (d, 2H, J = 8.4 Hz), 7.70 (d, 2H, J = 8.7 Hz), 7.60 (dd, 3H, J = 8.7, 11.5 Hz), 7.38-7.22 (m, 8H), 7.10 (t, 1H, J = 2.2 Hz), 6.82 (t, 1H, J = 2.5 Hz), 6.62 (t, 1H, J = 3.0 Hz), 6.32 (d, 1H, J = 9.0 Hz), 5.63 (d, 1H, J = 4.70 Hz), 5.14 (d, 3H, J = 3.7 Hz), 4.00 (d, 1H, J = 8.7 Hz), 3.48 (dd, 1H, J = 7.2, 13.1 Hz), 3.39 (d, 1H, J = 5.9 Hz), 3.14 (dd, 1H, J = 8.7, 16.8 Hz), 2.78 (d, 3H, J = 4.7 Hz), 0.92 (s, 9H). IR (KBr): 3356, 2929, 1735, 1657, 1402 cm⁻¹. Anal. Calculated for C₃₅H₃₉N₄O₅ • 0.5 H₂O: C, 69.63; H, 6.51; N, 9.28. Found: C, 69.85, H, 6.46; N, 9.14.
Example 5(f). 3(R)-[3-(4'-Carbamoylbiphenyl-4-yl)-1H-pyrrol-1-yl]-N-[2,2-dimethyl-1(S)-(N-(pyridin-4-yl)carbamoyl)propyl]succinamic Acid

According to the procedure described in Example 5(a), 3(R)-[3-(4'-carbamoylbiphenyl-4-yl)-1H-pyrrol-1-yl]-N-[2,2-dimethyl-1(S)-(N-(pyridin-4-yl)carbamoyl)propyl]succinamic acid benzyl ester was hydrogenolyzed in MeOH/EtOAc to provide 35 mg (81%) of 3(R)-[3-(4'-carbamoylbiphenyl-4-yl)-1H-pyrrol-1-yl]-N-[2,2-dimethyl-1(S)-(N-(pyridin-4-yl)carbamoyl)propyl]succinamic acid as a yellow solid, mp 194-6°C. 1H NMR (CD$_3$OD): δ 8.35 (d, 2H, J = 6.5 Hz), 7.95 (d, 2H, J = 8.4 Hz), 7.75 (d, 3H, J = 8.4 Hz), 7.70-7.52 (m, 6H), 7.28 (t, 1H, J = 2.0 Hz), 6.90 (t, 1H, J = 2.8 Hz), 6.52 (dd, 1H, J = 6.9, 16.8 Hz), 1.20 (s, 9H). IR (KBr): 3400, 2962, 1665, 1606, 1511, 1402 cm$^{-1}$. HRFABMS: Calculated for C$_{32}$H$_{34}$N$_5$O$_5$ (M + H$^+$): 568.2560. Found: 568.2575. Anal. Calculated for C$_{32}$H$_{34}$N$_5$O$_5$: • 0.7 HOAc • 0.5 CHCl$_3$: C, 60.83; H, 5.47; N, 10.46. Found: C, 60.93, H, 5.88; N, 10.19.

The starting materials were made as follows:

3(R)-[3-(4'-Carbamoylbiphenyl-4-yl)-1H-pyrrol-1-yl]-N-[2,2-dimethyl-1(S)-(N-(pyridin-4-yl)carbamoyl)propyl]succinamic Acid Benzyl Ester

143
According to the procedure described in Example 1(b) for the preparation of N-(2,2-dimethyl-1(S)-methylcarbamoylpropyl)-3(R)-(3-phenyl-1H-pyrrol-1-yl)succinic acid benzyl ester, 3(R)-t-butoxycarbonylamino-N-[2,2-dimethyl-1(S)-(pyridin-4-yl)carbamoylpropyl]succinic acid benzyl ester was deprotected. The crude amine salt and crude 3-(4'-carboxamidobiphenyl-4-yl)-2,5-dimethoxy-tetrahydrofuran (prepared as described in Example 4(b)) were condensed in wet 1,2-dichloroethane at 90-100°C to yield 130 mg (36%) of 3(R)-[3-(4'-carbamoylbiphenyl-4-yl)-1H-pyrrol-1-yl]-N-[2,2-dimethyl-1(S)-(N-(pyridin-4-yl)carbamoyl)propyl]succinic acid benzyl ester. \(^1\)H NMR (CD\(_3\)OD): \(\delta 8.35\) (bs, 2H), 7.95 (d, 2H, J = 8.4 Hz), 7.72 (d, 2H, J = 8.7 Hz), 7.60 (dd, 6H), J = 8.7, 13.4 Hz), 7.28 (s, 5H), 6.90 (t, 1H, ZJ = 2.8 Hz), 6.52 (dd, 1H, 1.6, 2.8 Hz), 5.38 (t, 1H, J = 7.5 Hz), 5.12 (d, 2H, J = 1.9 Hz), 4.40 (s, 1H), 3.00 (s, 9H). IR (KBr): 2725, 1735, 1664, 1510 cm\(^{-1}\). Anal. Calculated for C\(_{39}\)H\(_{39}\)N\(_5\)O\(_3\) • 1.0 HOAc: C, 68.38; H, 6.05; N, 9.76. Found: C, 68.38, H, 6.05; N, 9.38.

Example 5(g). 3(R)-[3-(4'-Cyanobiphenyl-4-yl)-1H-pyrrol-1-yl]-N-[2,2-dimethyl-1(S)-(hydroxymethyl)propyl]succinic Acid Triethylammonium Salt

According to the procedure described in Example 1(a), a mixture of N-(2-benzyloxycarboxymethyl-1(S)-dimethylpropyl)-3(R)-[3-(4'-cyanobiphenyl-4-yl)-1H-pyrrol-1-yl]succinic acid benzyl ester and N-(2-benzyloxycarboxymethyl-1(S)-dimethylpropyl)-3(R)-[3-(4-cyanophenyl)-1H-pyrrol-1-yl]succinic acid benzyl ester was hydrogenolyzed to
give a mixture which was separated via preparative RPHPLC (C18) with

HOAc/Et$_3$N/MeOH/CH$_2$Cl$_2$ as eluant to give 50 mg of 3(R)-[3-(4'-cyanobiphenyl-4-yl)-1H-pyrrol-1-yl]-N-[2,2-dimethyl-1(S)-(hydroxymethyl)propyl]succinic acid as a solid, mp 110-2°C: 1H NMR (CD$_3$OD): δ 7.82 (d, 2H, J = 8.3 Hz), 7.77 (d, 2H, J = 8.3 Hz), 7.65-7.60 (bm, 4H), 7.34 (s, 1H), 6.93 (s, 1H), 6.50 (s, 1H), 5.19 (dd, 1H, J = 3.6, 3.6 Hz), 3.45 (dd, 1H, J = 8.2, 12.1 Hz), 3.16 (q, 6H, J = 7.4 Hz), 1.28 (t, 9H, J = 7.4 Hz), 0.91 (s, 9H). IR (KBr): 3389, 2955, 2226, 1655, 1601, 1561, 1396, 1367, 1202, 920, 826, 779 cm$^{-1}$.

HRFABMS: Calculated for C$_{27}$H$_{29}$N$_3$O$_4$Cs (MH+ Cs$^+$): 592.1212. Found: 592.1230.

Anal. Calculated for C$_{27}$H$_{29}$N$_3$O$_4$ • Et$_3$N • 2.5 H$_2$O: C, 65.42; H, 7.87; N, 9.11. Found: C, 65.43; H, 8.15; N, 9.25.

Example 5(h). 3(R)-[3-(4-Cyanophenyl)-1H-pyrrol-1-yl]-N-(2,2-dimethyl-1(S)-(hydroxymethyl)propyl)succinic Acid Triethylammonium Salt

Separation via preparative HPLC of the mixture obtained as described in Example 5(g) afforded 50 mg of 3(R)-[3-(4-cyanophenyl)-1H-pyrrol-1-yl]-N-[2,2-dimethyl-1(S)-(hydroxymethyl)propyl]succinic acid: 1H NMR: δ 7.66 (d, 2H, J = 8.1 Hz), 7.60 (d, 2H, J = 8.1 Hz), 7.42 (s, 1H), 6.94 (s, 1H), 6.51 (s, 1H), 5.18 (bs, 1H), 3.45 (dd, 1H, J = 9.2, 12.1 Hz), 3.16 (q, 6H, J = 7.4 Hz), 1.96 (bs, 1H), 1.28 (t, 9H, J = 7.4 Hz), 0.91 (s, 9H). IR (KBr): 3378, 2955, 2214, 1655, 1602, 1561, 1489, 1396, 1172, 1094, 920, 838, 785 cm$^{-1}$. FABMS: 516. Anal. Calculated for C$_{27}$H$_{25}$N$_3$O$_4$ • Et$_3$N • HOAc • 1.7 H$_2$O: C, 60.70; H, 8.05; N, 9.51. Found: C, 60.54; H, 8.30; N, 9.74.
Example 6(a). N-(2(R)-Hydroxyindan-1(R)-yl)-3(R)-[3-[4-(pyridin-4-yl)phenyl]-1H-pyrrolo-1-yl]succinamic Acid

According to the procedure described in Example 1(a), N-(2(R)-hydroxyindan-1(R)-yl)-3(R)-[3-[4-(pyridin-4-yl)phenyl]-1H-pyrrolo-1-yl]succinamic acid benzyl ester was hydrogenolyzed to obtain in 61% yield N-(2(R)-hydroxyindan-1(R)-yl)-3(R)-[3-[4-(pyridin-4-yl)phenyl]-1H-pyrrolo-1-yl]succinamic acid as a yellow amorphous solid. 1H NMR (DMSO-d$_6$): δ 12.52 (bs, 1H), 8.59 (d, 2H, J = 5.9 Hz), 8.24 (d, 1H, J = 8.5 Hz), 7.77 (d, 2H, J = 8.5 Hz), 7.71 (d 2H, J = 6.3 Hz), 7.64 (d, 2H, J = 8.5 Hz), 7.45 (s, 1H), 7.30-7.15 (m, 4H), 6.97 (t, 1H, J = 2.4 Hz), 6.51 (s, 1H), 5.34 (t, 1H, J = 7.5 Hz), 5.17 (dd, 1H, J = 5.0, 8.7 Hz), 5.11 (d, 1H, J = 3.7 Hz), 4.35 (d, 1H, J = 3.3 Hz), 3.27-2.94 (m, 2H), 2.76 (d, 1H, J = 16.0 Hz). Anal. Calculated for C$_{28}$H$_{25}$N$_3$O$_4$ • 0.2 EtOAc: C, 71.30; H, 5.53; N, 8.66. Found: C, 71.24; H, 5.59; N, 8.52.

The starting material was available as follows:

2(R)-[3-[4-(Pyridin-4-yl)phenyl]-1H-pyrrolo-1-yl]succinamic Acid 4-Benzyl Ester Hydrochloride

146
According to the procedure as described in Example 1(d) for the preparation of N-(2,2-dimethyl-1(S)-methylcarbamoylpropyl)-3(R)-(3-pyridin-4-yl-1H-pyrrolo-1-yl)succinamic acid benzyl ester, to a solution of D-aspartate β-benzyl ester (223 mg, 1.00 mmol) and 2,5-dimethoxy-3-(4-(pyridin-4-yl)phenyl)tetrahydrofuran (350 mg, 1.20 mmol; prepared as described in Example 5(a)) in 1,2-dichloroethane was added sequentially pyridine (0.16 mL, 2.0 mmol), trifluoroacetic acid (0.08 mL, 1 mmol), and chlorotrimethylsilane (0.38 mL, 3.0 mmol). After 17 hours at 80°C, the mixture was allowed to cool to ambient temperature. Filtration led to isolation of 408 mg (87%) of 2(R)-[3-[4-(pyridin-4-yl)phenyl]-1H-pyrrolo-1-yl]succinic acid 4-benzyl ester hydrochloride as a yellow solid, mp 203-5°C (d). ¹H NMR (DMSO-d₆): δ 8.86 (d, 2H, J = 6.3 Hz), 8.38 (d, 2H, J = 6.6 Hz), 8.02 (d, 2H, J = 8.5 Hz), 7.74 (d, 2H, J = 8.5 Hz), 7.58 (s, 1H), 7.31-7.24 (m, 5H), 6.96 (t, 1H, J = 2.4 Hz), 6.58 (s, 1H), 5.23 (t, 1H, J = 7.4 Hz), 5.10 (s, 2H), 3.36 (dd, 1H, J = 6.6, 16.6 Hz), 3.21 (dd, 1H, J = 7.7, 16.9 Hz). Anal. Calculated for C₂₆H₂₂N₂O₄ • HCl • 0.3 H₂O: C, 66.68; H, 5.08; N, 5.98; Cl, 7.57. Found: C, 66.56; H, 5.01; N, 5.98; Cl, 7.80.

N-(2(R)-Hydroxyindan-1(R)-yl)-3(R)-[3-[4-(pyridin-4-yl)phenyl]-1H-pyrrolo-1-yl]succinamic Acid Benzyl Ester

According to the procedure as described in Example 1(f) for 3(R)-t-butoxycarbonylamino-N-(1(S)-benzyl-2-methoxy-ethyl)succinamic acid benzyl ester, 2(R)-[3-(4'-pyridin-4-yl-phenyl)-1H-pyrrole-1-yl]succinic acid 4-benzyl ester hydrochloride and
1(S)-amino-2(R)-hydroxy-indane were coupled with BOP to afford in 60% yield N-(2(R)-hydroxy-indan-1(R)-yl)-3(R)-[3-[4-(pyridin-4-yl)phenyl]-1H-pyrrol-1-yl]succinamic acid benzyl ester as an off-white solid, mp 199-202°C (d). 1H NMR (DMSO-d6): δ 8.66 (d, 2H, J = 5.9 Hz), 8.34 (d, 1H, J = 8.8 Hz), 7.84 (d, 2H, J = 8.5 Hz), 7.79 (d, 2H, J = 6.3 Hz), 7.73 (d, 2H, J = 6.3 Hz), 7.69 (s, 1H), 7.36 (s, 5H), 7.29-7.21 (m, 4H), 7.04 (t, 1H, J = 2.2 Hz), 6.58 (s, 1H), 5.49 (t, 1H, J = 7.2 Hz), 5.25-5.12 (m, 4H), 4.43-4.39 (m, 1H), 3.48 (dd, 1H, J = 7.5, 16.5 Hz), 3.26 (dd, 1H, J = 7.7, 16.5 Hz), 3.09 (dd, 1H, J = 4.6, 15.6 Hz), 2.83 (d, 1H, J = 16.2 Hz). Anal. Calculated for C35H31N3O4 • 0.6 H2O: C, 73.95; H, 5.71; N, 7.39. Found: C, 73.70; H, 5.61; N, 7.26.

The following were made in a similar manner:

Example 6(b). N-(2,2-Dimethyl-1(S)-(methylcarbamoyl)propyl)-3(R)-[3-(4-(pyridin-4-yl)phenyl)-1H-pyrrol-1-yl]succinamic Acid

According to the procedure described in Example 1(a), N-(2,2-dimethyl-1(S)-(methylcarbamoyl)propyl)-3(R)-[3-(4-(pyridin-4-yl)phenyl)-1H-pyrrol-1-yl]succinamic acid benzyl ester was hydrogenolyzed in MeOH after 20 hours. Purification via flash column chromatography with 1% HOAc/10% MeOH/CHCl₃ as eluant and azeotrope with n-heptane furnished 24 mg (32%) of N-(2,2-dimethyl-1(S)-(methylcarbamoyl)propyl)-3(R)-[3-(4-(pyridin-4-yl)phenyl)-1H-pyrrol-1-yl]succinamic acid as yellow crystals. 1H NMR (CD₃OD): δ 8.54 (d, 2H, J = 5.6 Hz), 7.99 (bd, 1H, J = 4.4 Hz), 7.80-7.59 (m, 6H), 7.34 (t,
1H, J = 1.9 Hz), 6.92 (t, 1H, J = 2.5 Hz), 6.55 (dd, 1H, J = 1.9, 2.8 Hz), 5.28 (t, 1H, J = 7.2 Hz), 4.17 (s, 1H), 3.23 (dd, 1H, J = 7.5, 16.7 Hz), 3.01 (dd, 1H, J = 7.2, 16.7 Hz), 2.66 (d, 3H, J = 3.5 Hz), 0.95 (s, 9H). IR(KBr): 3422, 1654, 1598, 1562, 1535 cm⁻¹. HRFABMS: Calculated for C_{26}H_{31}N_{4}O_{4} (M + H⁺): 463.2345. Found: 463.2356. Anal. Calculated for C_{26}H_{30}N_{4}O_{4} • 1.15 H_{2}O • 0.1 CHCl₃: C, 63.30; H, 6.59; N, 11.31. Found: C, 63.28; H, 6.58; N, 11.08.

The starting material was available in the following manner:

N-(2,2-Dimethyl-1(S)-(methylcarbamoyl)propyl)-3(R)-[3-(4-(pyridin-4-yl)phenyl)-1H-pyrrol-1-yl]succinic Acid Benzyl Ester

![Chemical Structure](image)

According to the procedure described in Example 1(b) for the preparation of N-(2,2-dimethyl-1(S)-(methylcarbamoyl)propyl)-3(R)-t-butoxycarbonylamino-succinic acid benzyl ester, 2(R)-[3-(4'-pyridin-4-yl-phenyl)-1H-pyrrole-1-yl]succinic acid 4-benzyl ester hydrochloride and L-t-leucine-N-methylamide trifluoroacetate salt (prepared as described in Example 5(d)) were coupled with TBTU to provide in 86% yield N-(2,2-dimethyl-1(S)-(methylcarbamoyl)propyl)-3(R)-[3-(4-(pyridin-4-yl)phenyl)-1H-pyrrol-1-yl]succinic acid benzyl ester. ¹H NMR: δ 8.80-8.57 (bs, 2H), 7.76-7.50 (m, 6H), 7.36-7.22 (m, 5H), 7.12 (d, 1H, J = 1.6 Hz), 6.82 (t, 1H, J = 1.9 Hz), 6.60 (dd, 1H, J = 1.2, 1.2 Hz), 5.20-5.15 (m, 3H), 4.09 (dd, 1H, J = 2.8, 9.0 Hz), 3.41 (dd, 1H, J = 5.3, 16.5 Hz), 3.10 (dd, 1H, J = 8.4, 16.5 Hz), 2.76 (dd, 3H, J = 2.5, 4.4 Hz), 0.90 (s, 9H). IR (KBr): 3314, 2959, 1736, 1652, 1598, 1560,
1550, 1409, 1166 cm\(^{-1}\). LSIMS: 553 (MH\(^+\)). Anal. Calculated for C\(_{33}\)H\(_{36}\)N\(_4\)O\(_4\) • 0.5 H\(_2\)O: C, 70.56; H, 6.64; N, 9.98. Found: C, 70.70; H, 6.62; N, 9.78.

Example 6(c). N-(4,4-Dimethyl-2-oxo-tetrahydrofuran-3(S)-yl)-3(R)-[3-[4-(pyridin-4-yl)phenyl]-1H-pyrrol-1-yl]succinic Acid

![Chemical Structure](image)

According to the procedure described in Example 1(a), N-(4,4-dimethyl-2-oxo-tetrahydrofuran-3(S)-yl)-3(R)-[3-[4-(pyridin-4-yl)phenyl]-1H-pyrrol-1-yl]succinic acid benzyl ester was hydrogenolyzed to obtain in 70% yield N-(4,4-dimethyl-2-oxo-tetrahydrofuran-3(S)-yl)-3(R)-[3-[4-(pyridin-4-yl)phenyl]-1H-pyrrol-1-yl]succinic acid as an amorphous solid. \(^1\)H NMR (DMSO-d\(_6\)): \(\delta\) 12.60 (bs, 1H), 8.82 (d, 1H, \(J = 8.8\) Hz), 8.59 (d, 2H, \(J = 5.9\) Hz), 7.77 (d, 2H, \(J = 8.1\) Hz), 7.71 (d, 2H, \(J = 5.9\) Hz), 7.64 (d, 2H, \(J = 8.5\) Hz), 7.41 (s, 1H), 6.92 (s, 1H), 6.52 (s, 1H), 5.16-5.11 (m, 1H), 4.75 (d, 1H, \(J = 8.8\) Hz), 4.08, 4.00 (AB quartet, 2H, \(J = 8.3\) Hz), 3.22 (dd, 1H, \(J = 9.2, 16.6\) Hz), 2.93 (dd, 1H, \(J = 5.9, 16.9\) Hz), 1.05 (s, 3H), 0.96 (s, 3H). Anal. Calculated for C\(_{25}\)H\(_{23}\)N\(_5\)O\(_5\) • 0.2 MTBE • 0.2 H\(_2\)O: C, 66.62; H, 5.98; N, 8.97. Found: C, 66.55; H, 5.90; N, 8.98.

The starting material was available as follows:
N-(4,4-Dimethyl-2-oxo-tetrahydrofuran-3(S)-yl)-3(R)-[3-[4-(pyridin-4-yl)phenyl]-1H-pyrrro-1-yl]succinamic Acid Benzyl Ester

According to the procedure described in Example 1(f) for the preparation of 3(R)-3-butoxycarbonylamino-N-(1(S)-benzyl-2-methoxy-ethyl)succinamic acid benzyl ester, 2(R)-[3-[4'-pyridin-4-yl]-1H-pyrrole-1-yl]succinic acid 2-benzyl ester hydrochloride and 3(R)-amino-4,4-dimethyl-2-oxo-tetrahydrofuran (see Freskos, J. N. Syn. Commun. 1994, 24, 557-563) were coupled using BOP reagent to provide in 55% yield N-(4,4-dimethyl-2-oxo-tetrahydrofuran-3(S)-yl)-3(R)-[3-[4-(pyridin-4-yl)phenyl]-1H-pyrrol-1-yl]succinamic acid benzyl ester as a white solid, mp 175-7°C. 1H NMR: δ 8.64 (d, 2H, J = 6.3 Hz), 7.64 (d, 2H, J = 8.5 Hz), 7.59 (d, 2H, J = 8.8 Hz), 7.53 (d, 2H, J = 6.3 Hz), 7.32-7.26 (m, 5H), 7.13 (s, 1H), 6.83 (t, 1H, J = 2.4 Hz), 6.61 (dd, 1H, J = 1.7, 2.8 Hz), 5.23 (dd, 1H, J = 5.9, 8.5 Hz), 5.13 (s, 2H), 4.59 (d, 1H, J = 8.1 Hz), 4.01 (s, 2H), 3.50 (dd, 1H, J = 5.9, 16.9 Hz), 3.09 (dd, 1H, J = 8.5, 16.9 Hz), 1.20 (s, 3H), 0.86 (s, 3H). Anal. Calculated for C$_{32}$H$_{31}$N$_3$O$_5$: C, 71.49; H, 5.81; N, 7.82. Found: C, 71.57; H, 5.84; N, 7.77.
Example 7(a). N-(8-o xo-4-oxa-1,7-diazatricyclo[9.6.1.0^{12,17}]octadeca-11(18),12,14,16-tetraen-9(S)-yl)-3(R)-[3-[4-(pyridin-4-yl)phenyl]-1H-pyrrol-1-yl]succinamic Acid

To a solution of N-(8-oxo-4-oxa-1,7-diazatricyclo[9.6.1.0^{12,17}]octadeca-11(18),12,14,16-tetraen-9(S)-yl)-3(R)-[3-[4-(pyridin-4-yl)phenyl]-1H-pyrrol-1-yl]succinamic acid benzyl ester (185 mg, 0.280 mmol) in EtOAc/ EtOH/THF was added in succession 10% palladium on carbon (50 mg) and 88% formic acid (0.1 mL). After 1.5 hours, HOAc (1 mL) was added. After 16 hours, more 10% palladium on carbon (25 mg), 88% formic acid (0.1 mL), and HOAc (1 mL) was added. At 24 hours, more 10% palladium on carbon (25 mg) was added. After 25 hours total elapsed time, the catalyst was filtered off. The filtrate was concentrated to a crude solid. The product dissolved in a minimal amount of MeOH/EtOAc, and inorganic particulates were filtered away. The filtrate was concentrated to a solid that was triturated with CH₂Cl₂/hex to give 76 mg (46%) of N-(8-oxo-4-oxa-1,7-diazatricyclo[9.6.1.0^{12,17}]octadeca-11(18),12,14,16-tetraen-9(S)-yl)-3(R)-[3-[4-(pyridin-4-yl)phenyl]-1H-pyrrol-1-yl]succinamic acid as a yellow solid, mp >172°C (d). ¹H NMR (CD₃COOD): δ 8.91 (d, 2H, J = 6.6 Hz), 8.23 (d, 2H, J = 6.6 Hz), 7.93 (d, 2H, J = 8.5 Hz), 7.75 (d, 2H, J = 8.5 Hz), 7.62 (d, 1H, J = 7.4 Hz), 7.40-7.33 (m, 2H), 7.17 (t, 1H, J = 7.5 Hz), 7.10 (t, 1H, J = 7.4 Hz), 7.04 (s, 1H), 6.93 (t, 1H, J = 2.6 Hz), 6.79 (bm, 1H, partially
6.58 (s, 1H), 5.34 (t, 1H, J = 7.5 Hz), 4.72 (dd, 1H, J = 4.6, 11.2 Hz), 4.35-4.30 (m, 1H), 4.23-4.15 (m, 1H), 3.74-3.65 (m, 2H), 3.56-3.42 (m, 2H), 3.31-3.00 (m, 4H), 2.91-2.85 (m, 1H), 2.74-2.67 (m, 1H). Anal. Calculated for C_{34}H_{33}N_{2}O_{5} \cdot 0.4 \text{H}_{2}O: \text{C}, 68.19; \text{H}, 5.69; \text{N}, 11.70. \text{Found: C}, 68.13; \text{H}, 5.77; \text{N}, 11.81.

The starting material was available as follows:

\[
\text{N-(8-Oxo-4-oxa-1,7-diazatricyclo[9.6.1.0^{12,17}]octadeca-11(18),12,14,16-tetraen-9(S)-yl)-3(R)[3-[4-(pyridin-4-yl)phenyl]-1H-pyrrol-1-yl]succinamic Acid Benzyl Ester}
\]

According to the procedure described in Example 1(b) for N-(2,2-dimethyl-1(S)-(methylcarbamoyl)propyl)-3(R)-(t-butoxycarbonylamino)succinamic acid benzyl ester, 2(R)-[3-[4-(pyridin-4-yl)phenyl]-1H-pyrrol-1-yl)succinic acid 4-benzyl ester hydrochloride (prepared as described in Example 6(a)) and 9S-t-butoxycarbonylamino-4-oxa-1,7-diazatricyclo[9.6.1.0^{12,17}]octadeca-11(18),12,14,16-tetraen-8-one (see Castelhano, A. L.; Liak, T. J.; Horne, S.; Yuan, Z.; Krantz, A. Int. Patent Appl. WO95/04735-A1, Feb. 16 1995) were coupled with TBTU to provide in 77% yield, after purification via column chromatography with 5% MeOH/EtOAc and trituration with MTBE/hex, N-(8-oxo-4-oxa-1,7-diazatricyclo[9.6.1.0^{12,17}]octadeca-11(18),12,14,16-tetraen-9(S)-yl)-3(R)-[3-[4-(pyridin-4-}
yl)phenyl]-1H-pyrrol-1-yl]succinamic benzyl ester as a pale yellow amorphous solid. 1H NMR: δ 8.91 (d, 2H, $J = 6.6$ Hz), 8.23 (d, 2H, $J = 6.6$ Hz), 7.93 (d, 2H, $J = 8.5$ Hz), 7.74 (d, 2H, $J = 8.5$ Hz), 7.37-7.25 (m, 7H), 1.71 (t, 1H, $J = 7.4$ Hz), 7.10 (t, 1H, $J = 7.4$ Hz), 7.03 (s, 1H), 6.90 (t, 1H, $J = 2.2$ Hz), 7.89 (brd, 1H, partially exchanged), 6.57 (s, 1H), 5.37 (t, 1H, $J = 7.5$ Hz), 5.18 (s, 2H), 4.70 (ddd, 1H, $J = 5.0, 11.2$ Hz), 4.35-4.30 (m, 1H), 4.23-4.15 (m, 1H), 3.70-3.65 (m, 2H), 3.56-3.43 (m, 2H), 3.31-3.15 (m, 3H), 3.02 (t, 1H, $J = 12.7$ Hz), 2.91-2.84 (m, 1H), 2.72-2.67 (m, 1H). Anal. Calculated for C$_{41}$H$_{38}$N$_5$O$_5$ • 0.5 H$_2$O: C, 71.39; H, 5.70; N, 10.15. Found: C, 71.47; H, 5.82; N, 10.26.

The following were available in a similar manner:

Example 7(b). N-[2,2-Dimethyl-1(S)-(pyridin-4-ylcarbamoyl)propyl]-3(R)-[3-[4-(pyridin-4-yl)phenyl]-1H-pyrrol-1-yl]succinamic Acid

According to the procedure described in Example 7(a), N-[2,2-dimethyl-1(S)-(pyridin-4-ylcarbamoyl)propyl]-3(R)-[3-[4-(pyridin-4-yl)phenyl]-1H-pyrrol-1-yl]succinamic acid benzyl ester (185 mg, 0.280 mmol) was hydrogenolyzed in EtOH (10 mL) and HOAc (1 mL) and furnished a solid that was triturated with EtOAc to give 60 mg (41%) of N-[2,2-dimethyl-1(S)-(pyridin-4-ylcarbamoyl)propyl]-3(R)-[3-[4-(pyridin-4-yl)phenyl]-1H-pyrrol-1-yl]succinamic acid as a yellow solid. 1H NMR (CD$_3$OD): δ 8.54 (d, 2H, $J = 6.6$ Hz), 8.33 (d, 2H, $J = 6.6$ Hz), 7.73-7.68 (m, 4H), 7.64-7.59 (m, 4H), 7.32 (s, 1H), 6.91 (t, 1H, $J = 2.4$ Hz),
6.52 (dd, 1H, J = 1.8, 2.9 Hz), 5.31 (t, 1H, J = 7.5 Hz), 4.41 (s, 1H), 2.99 (dd, 1H, J = 6.8, 16.7 Hz), 1.03 (s, 9H). Anal. Calculated for C_{36}H_{31}N_{5}O_{4} • 0.6 H_{2}O • 0.2 EtOAc: C, 66.77; H, 6.15; N, 12.64. Found: C, 66.72; H, 5.99; N, 12.62.

The starting material was available as follows:

\[
\text{N-}[2,2\text{-Dimethyl}-1(S)-(pyridin-4-ylcarbamoyl)propyl]-3(R)-[3-[4-(pyridin-4-yl)phenyl]-1H-pyrrol-1-yl]succinamic Acid Benzyl Ester}
\]

According to the procedure described in Example 1(b) for the preparation of N-(2,2-dimethyl-1(S)-(methylcarbamoyl)propyl)-3(R)-t-butoxycarbonylamino-succinamic acid benzyl ester, 2S-t-butoxycarbonylamino-3,3-dimethyl-N-(pyridin-4-yl)-butanamide (prepared as described in Example 5(d)) was deprotected with trifluoroacetic acid. The crude amine salt and 2(R)-[3-[4-(pyridin-4-yl)phenyl]-1H-pyrrol-1-yl]succinic acid 4-benzyl ester hydrochloride (prepared as described in Example 6(a)) were coupled with TBTU to provide after purification via column chromatography with 5% MeOH/CH_{2}Cl_{2} and trituration with MTBE/hex, in 76% yield N-[2,2-dimethyl-1(S)-(pyridin-4-ylcarbamoyl)propyl]-3(R)-[3-[4-(pyridin-4-yl)phenyl]-1H-pyrrol-1-yl]succinic acid benzyl ester as a pale yellow amorphous solid, which was used without further purification. \(^1\)H NMR: \(\delta\) 8.65 (d, 2H, J = 5.9 Hz), 8.43 (d, 2H, J = 6.3 Hz), 8.26 (s, 1H), 7.64 (d, 2H, J = 8.5 Hz), 7.58 (d, 2H, J = 8.5 Hz), 7.53 (d, 2H, J = 6.3 Hz), 7.40 (d, 2H, J = 6.3 Hz), 7.32-7.24 (m, 5H), 7.12 (s, 1H), 6.85
(t, 1H, J = 2.4 Hz), 6.64 (dd, 1H, J = 1.8, 2.9 Hz), 6.23 (d, 1H, J = 8.1 Hz), 5.19-5.08 (m, 3H),
4.19 (d, 1H, J = 8.1 Hz), 3.39 (dd, 1H, J = 5.2, 16.9 Hz), 3.23 (dd, 1H, J = 8.1, 17.3 Hz), 0.93
(s, 9H). Anal. Calculated for C_{37}H_{37}N_{5}O_{4} • 0.9 H_{2}O: C, 70.32; H, 6.19; N, 11.08. Found:
C, 70.37; H, 6.11; N, 10.94.

Example 7(e). N-[1(S)-(1H-Imidazol-2-yl)-3-methylbutyl]-3(R)-[3-[4-(pyridin-4-yl)phenyl]-1H-pyrrol-1-yl]succinic Acid Formate Salt

According to the procedure described in Example 7(a), N-[1(S)-(1H-imidazol-2-yl)-3-
methylbutyl]-3(R)-[3-[4-(pyridin-4-yl)phenyl]-1H-pyrrol-1-yl]succinic acid benzyl ester
was hydrogenolyzed in EtOH:THF (1:1) to yield in 81% yield N-[1(S)-(1H-imidazol-2-yl)-3-
methylbutyl]-3(R)-[3-[4-(pyridin-4-yl)phenyl]-1H-pyrrol-1-yl]succinic acid formate salt
as a yellow amorphous solid. \(^1\)H NMR (DMSO-d$_6$): \(\delta\) 12.30 (bs, 1H), 8.65 (d, 1H, J = 8.1
Hz), 8.59 (d, 2H, J = 4.4 Hz), 8.13 (s, 1H), 7.75 (d, 2H, J = 8.5 Hz), 7.71 (d, 2H, J = 4.4 Hz),
7.60 (d, 2H, J = 8.5 Hz), 7.34 (s, 1H), 6.91-6.83 (m, 3H), 6.44 (s, 1H), 5.08 (t, 1H, J = 7.5
Hz), 4.97 (dd, 1H, J = 8.1, 16.2 Hz), 3.10 (dd, 1H, J = 8.1, 16.6 Hz), 2.90 (dd, 1H, J = 7.2,
16.7 Hz), 1.68 (t, 2H, J = 7.2 Hz), 1.52-1.45 (m, 1H), 0.86 (d, 3H, J = 7.0 Hz), 0.83 (d, 3H, J
= 6.6 Hz). Anal. Calculated for C$_{27}$H$_{29}$N$_{5}$O$_{3}$ • HCO$_2$H • 0.5 EtOAc: C, 64.15; H, 6.28; N,
12.47. Found: C, 64.21, H, 6.40; N, 12.60.
The starting materials were made as follows:

\[N-\{1(S)-(1H-Imidazol-2-yl)-3-methyl(butyl)-3(R)-[3-[4-(pyridin-4-yl)phenyl]-1H-pyrrol-1-yl]succinamic Acid Benzyl Ester \]

According to the procedure described in Example 1(b) for the preparation of 3(R)-t-butyloxycarbonylamino-N-(2,2-dimethyl-1(S)-(methylcarbamoyl)propyl)succinamic acid benzyl ester, 2-(1(S)-amino-3-methyl-butyl)-imidazole (See Chen, J.J.; Zhang, Y.; Hammond, S.; Dewdney, N.; Ho, T.; Browner, M.F.; Castelhano, A.L., submitted for publication; and Abel-Meguid, S.S.; Metcalf B.W.; Caw, T.J.; DeMarsh, P.; Des Jarlais, R.L.; Fisher, S.; Green, D.W.; et al. Biochemistry, 1994, 33, 11671-11677) and 2(R)-[3-[4-(pyridin-4-yl)phenyl]-1H-pyrrol-1-yl]succinic acid 4-benzyl ester hydrochloride (prepared as described in Example 7(a)) were coupled with TBTU. Flash column chromatography with 0-5% MeOH/CH_{2}Cl_{2} gradient eluant and recrystallization from EtOAc gave in 41% yield N-[1(S)-(1H-imidazol-2-yl)-3-methylbutyl]-3(R)-[3-[4-(pyridin-4-yl)phenyl]-1H-pyrrol-1-yl]succinamic acid benzyl ester as white crystals, mp 179-81°C (d). \(^1\)H NMR (DMSO-d\(_6\)):

\[\delta \text{ 11.84 (bs, 1H), 8.68 (d, 1H, J = 8.5 Hz), 8.59 (d, 2H, J = 4.4 Hz), 7.76 (d, 2H, J = 8.5 Hz), 7.71 (d, 2H, J = 6.3 Hz), 7.60 (d, 2H, J = 8.5 Hz), 7.36 (s, 1H), 7.30 (s, 5H), 6.94-6.80 (m, 3H), 6.46 (s, 1H), 5.17 (t, 1H, J = 7.5 Hz), 5.11, 5.05 (AB quartet, 2H, J = 12.7 Hz), 4.97 (dd, 1H, J = 7.7, 15.4 Hz), 3.24 (dd, 1H, J = 7.4, 12.9 Hz), 3.11 (dd, 1H, J = 7.7, 16.6 Hz), 1.67 (t, 2H, J = 7.7 Hz), 1.48-1.40 (m, 1H), 0.85 (d, 3H, J = 6.6 Hz), 0.81 (d, 3H, J = 6.6 Hz).} \]
Anal. Calculated for C_{34}H_{35}N_{5}O_{3}: C, 72.70; H, 6.28; N, 12.47. Found: C, 72.43, H, 6.33; N, 12.34.

Example 7(d). N-Methyl-3(R)-[3-[4-(pyridin-4-yI)phenyl]-1H-pyrrol-1-yl]succinamic Acid

![Chemical structure](image)

According to the procedure described in Example 7(a), N-methyl-3(R)-[3-[4-(pyridin-4-yI)phenyl]-1H-pyrrol-1-yl]succinamic acid benzyl ester was hydrogenolyzed in acetic acid to yield in 90% yield N-methyl-3(R)-[3-[4-(pyridin-4-yI)phenyl]-1H-pyrrol-1-yl]succinamic acid as a yellow amorphous solid. 1HNMR (DMSO-d$_6$): δ 8.58 (d, 2H, J=5.9 Hz), 7.75 (d, 2H, J=8.1 Hz), 7.71 (d, 2H, J=6.2 Hz), 7.61 (d, 2H, J=8.4 Hz), 7.29 (s, 1H), 6.77 (t, 1H, J=2.2 Hz), 6.42 (t, 1H, J=2.2 Hz), 4.80 (d, 1H, J=10.7 Hz), 3.16 (dd, 1H, J=15.8, 11.0 Hz), 2.36 (s, 3H). Anal. Calculated for C$_{20}$H$_{19}$N$_3$O$_5$•1.0 H$_2$O•0.33 AcOH: C, 64.08; H, 5.81; N, 10.85. Found: C, 64.23, 64.16; H, 5.66, 5.67; N, 10.83, 10.78.

The starting materials were made as follows:
N-Methyl-3(R)-[3-[4-(pyridin-4-yl)phenyl]-1H-pyrrol-1-yl]succinamic Acid Benzyl Ester

According to the procedure described in Example 1(b) for the preparation of 3(R)-t-butyloxycarbonylamino-N-(2,2-dimethyl-1(S)-(methylcarbamoyl)propyl)succinic acid benzyl ester, 2(R)-[3-[4-(pyridin-4-yl)phenyl]-1H-pyrrol-1-yl]succinic 4-benzyl ester hydrochloride (prepared as described in Example 7(a)) and excess 40% aqueous methylamine were coupled with TBTU. The solid that precipitated from the reaction mixture was washed with water and, after drying, with ethyl acetate to give 51% of N-methyl-3(R)-[3-[4-(pyridin-4-yl)phenyl]-1H-pyrrol-1-yl]succinamic acid benzyl ester as a yellow solid:

1HNMR (DMSO-d$_6$): δ 8.58 (d, 2H, J=4.4 Hz), 7.84 (br s, 1H), 7.76-7.70 (m, 4H), 7.60 (d, 2H, J=8.5 Hz), 7.29-7.25 (m, 6H), 6.76 (s, 1H), 6.40 (s, 1H), 5.03 (s, 2H), 4.67 (t, 1H, J=6.2 Hz), 3.20 (dd, 1H, J=15.8, 6.2 Hz), 2.86 (dd, 1H, J=16.0, 8.6 Hz), 2.32 (s, 3H); Anal.

Calculated for C$_{27}$H$_{25}$N$_3$O$_5$ • 1.3 H$_2$O: C, 70.05; H, 6.01; N, 9.08. Found: C, 69.98, 69.97; H, 5.98, 6.00; N, 9.01, 9.00.
Example 8(a). \(\text{N}^1\)-(1\textsc{(S)}-Benzy1-2-hydroxyethyl)-3\textsc{(R)}-\left(3\text{-}(\text{biphenyl}-4\text{-y1})\text{-}1\text{H}-\text{pyrrol}-1\text{-y1}\right)\text{-N}^4\text{-hydroxysuccinamide} \\

\(\text{HN}^{\text{N}}\text{H}^{\text{H}}\text{O} \text{NH}^{\text{O}} \text{NH}^{\text{H}}\text{OH} \text{HN}^{\text{N}}\text{H}^{\text{H}}\text{O} \text{NH}^{\text{O}} \text{NH}^{\text{H}}\text{OH} \text{HN}^{\text{N}}\text{H}^{\text{H}}\text{O} \text{NH}^{\text{O}} \text{NH}^{\text{H}}\text{OH} \)

To a solution of N-(1\textsc{(S)}-benzyl-2-hydroxyethyl)-3\textsc{(R)}-(3\text{-}(\text{biphenyl}-4\text{-y1})\text{-}1\text{H}-\text{pyrrol}-1\text{-y1})\text{succinamic acid (prepared as described in Example 1(a); 61 mg, 0.130 mmol) in CHCl}_3 (2 mL) was added in succession NMM (44 \text{ \textmu L}, 0.39 mmol), benzotriazole-1-yloxy-tris-1\text{H}-pyrrolidino-phosphonium hexafluorophosphate (PyBOP, 203 mg, 0.390 mmol), and hydroxylamine hydrochloride (27 mg, 0.390 mmol). After 20 hours at ambient temperature, 10\% aqueous HCl (2 mL) and saturated aqueous NH\(_4\)Cl (10 mL) were added, and the resultant mixture extracted with CHCl\(_3\) (15 mL) three times. The combined organic layers were washed with saturated aqueous NH\(_4\)Cl (10 mL), dried over Na\(_2\)SO\(_4\), and evaporated to provide a yellow solid, which was purified via flash column chromatography with 1\% HOAc/10\% MeOH/CHCl\(_3\) as eluant. Subsequent radial chromatography with a 1\% HOAc/5-10\%MeOH/CH\(_2\)Cl\(_2\) stepwise gradient eluant and azeotropic removal of HOAc with n-heptane gave 9 mg (14\%) of N\(^1\)-(1\textsc{(S)}-benzyl-2-hydroxyethyl)-3\textsc{(R)}-(3-biphenyl-4-y1)-1\text{H}-pyrrol-1-y1)-N\(^4\)hydroxysuccinamide as a yellow solid. \(^1\text{H} \text{NMR (CD}_3\text{OD); } \delta 6.90-6.79 (\text{m, 1H}), 6.58-6.76 (\text{m, 1H}), 5.18-5.02 (\text{m, 1H}), 4.19-4.01 (\text{m, 1H}), 3.00-2.84 (\text{m, 1H}), 2.84-2.70 (\text{m, 3H}). \text{IR (CHCl}_3\); 3244, 3018, 1659, 1208, 1201 cm\(^{-1}\). HRFABMS: Calculated for
C_{29}H_{30}N_{3}O_{4} (M +H^+): 483.2158. Found: 483.2139. Anal. Calculated for C_{29}H_{30}N_{3}O_{4} \cdot NH_{2}OH \cdot 0.2 \text{ CHCl}_3 \cdot 0.25 \text{ H}_2\text{O}: \text{ C}, 64.35; \text{ H}, 6.05; \text{ N}, 10.28. Found: \text{ C}, 64.13; \text{ H}, 5.69; \text{ N}, 10.56.

The following was made in a similar manner:

Example 8(b). N^{1}-(1(S)-Benzyl-2-methoxyethyl)-3(R)-[3-(biphenyl-4-yl)-1H-pyrrol-1-yl)-N^{4}-hydroxy succinam ide

![Chemical Structure](image)

According to the procedure described in Example 8 (a), N-(1(S)-benzyl-2-methoxyethyl)-3(R)-(3-biphenyl-4-yl-1H-pyrrol-1-yl)succinic acid (prepared as described in Example 1(f)) and hydroxylamine hydrochloride were coupled with BOP and triturated with MTBE/CH_{2}Cl_{2}/hex to give in 62% yield N^{1}-(1(S)-Benzyl-2-methoxyethyl)-3(R)-[3-(biphenyl-4-yl)-1H-pyrrol-1-yl)-N^{4}-hydroxy succinam ide as a solid, mp 180-2°C (d). 1H NMR (DMSO-d_{6}): \delta 8.80 (s, 1H), 8.26 (d, 1H, J = 8.5 Hz), 7.65-7.49 (m, 6H), 7.41 (t, 2H, J = 7.4 Hz), 7.31-7.12 (m, 7H), 6.73 (s, 1H), 6.40 (s, 1H), 5.06-5.01 (m, 1H), 4.00-3.95 (m, 1H), 3.19 (d, 2H, J = 5.2 Hz), 3.14 (s, 3H), 2.81-2.29 (m, 4H). Anal. Calculated for C_{30}H_{31}N_{3}O_{4}: C, 72.41; H, 6.28; N, 8.44. Found: C, 72.24; H, 6.29; N, 8.39.
Example 8(c). \(\text{N}^4\)-Hydroxy-\(\text{N}^1\)\-(9-oxo-1,8-diaza-tricyclo[10.6.1.0^{13,18}]\)nonadeca-12(19),13,15,17-tetraen-10S-yl)-3(R)-1H-(pyrrol-1-yl)succinamide

![Chemical Structure](image)

A mixture of \(\text{N}^1\)-benzyloxy-\(\text{N}^4\)\-(9-oxo-1,8-diaza-tricyclo[10.6.1.0^{13,18}]\)nonadeca-12(19),13,15,17-tetraen-10S-yl)-3(R)-1H-pyrrol-1-yl-succindiamide (180 mg, 0.324 mmol) and 10% Pd/C (40 mg) in THF (250 mL) with a minimal amount of EtOH was stirred under \(\text{H}_2 \) atmosphere. After 3.5 hours, the catalyst was filtered off and rinsed with THF and EtOH. The filtrate was concentrated to about 40 mL, whereupon product precipitated. Filtration provided \(\text{N}^4\)-hydroxy-\(\text{N}^1\)\-(9-oxo-1,8-diaza-tricyclo[10.6.1.0^{13,18}]\)nonadeca-12(19),13,15,17-tetraen-10S-yl)-3(R)-1H-(pyrrol-1-yl)succinamide as a solid, mp 158-65°C. FABMS: 466.1 (C\(_{25}\)H\(_{32}\)N\(_5\)O\(_4\); M +H\(^+\)).

Example 9. \(\text{N}^1\)\-[2,2-Dimethyl-1(S)-(hydroxymethyl)propyl]-\(\text{N}^4\)-hydroxy-2(R)-[3-[4-(pyridin-4-yl)phenyl]-1H-pyrrol-1-yl]succinamide

![Chemical Structure](image)

To a solution of \(\text{N}^4\)-t-butyldiphenyldisiloxo-\(\text{N}^1\)\-[2,2-Dimethyl-1(S)-(hydroxymethyl)propyl]-2(R)-[3-[4-(pyridin-4-yl)phenyl]-1H-pyrrol-1-yl]succinamide (112...
mg, 0.160 mmol) in THF (5 mL) was added a solution of tetra-n-butylammonium fluoride (0.20 mL of 1M in THF). After 1.25 hours at ambient temperature, the mixture was added dropwise to 1M pH7 phosphate buffer (40 mL). The resultant precipitate was collected by filtration and washed with H₂O. A solution in CH₂Cl₂/Methanol was passed through a 0.45 μ syringe filter, and the filtrate was concentrated to give a solid which was triturated with EtOH to yield 30 mg (42%) of \(N^1-[2,2\text{-Dimethyl-1(S)-(hydroxymethyl)propyl}]N^4\text{-hydroxy-2(R)}-[3\text{-[4-(pyridin-4-yl)phenyl]-1H-pyrrol-1-yl}]\text{succinamide} \) as an amorphous solid, which decomposed >200 °C. \(^1\text{H NMR (CD}_3\text{COOD)}: \delta 8.91 (d, 2H, J = 6.6 Hz), 8.23 (d, 2H, J = 7.0 Hz), 7.93 (d, 2H, J = 8.8 Hz), 7.76 (d, 2H, J = 8.5 Hz), 7.42 (s, 1H), 6.95 (s, 1H), 6.60 (s, 1H), 5.44 (t, 1H, J = 7.4 Hz), 3.92-3.88 (m, 2H), 3.63-3.55 (m, 1H), 3.21 (dd, 1H, J = 6.4, 14.5 Hz), 3.03 (dd, 1H, J = 8.1, 15.1 Hz), 0.93 (s, 9H). \) Anal: Calculated for \(\text{C}_{25}\text{H}_{30}\text{N}_4\text{O}_4 \cdot 0.4 \text{H}_2\text{O} \): C, 66.08; H, 6.96; N, 11.95. Found: C, 65.92; H, 6.79; N, 11.86.
The starting material was available as follows:

\[
\text{N}^4\text{-t-butyldiphenylsiloxy-N}^1\text{-[2,2-Dimethyl-1(S)-(hydroxymethyl)propyl]-2(R)-[3-[4-(pyridin-4-yl)phenyl]-1H-pyrrol-1-yl]succinamide}
\]

According to the procedure described in Example 1(b) for the preparation of 3(R)-t-butyloxy carbonylamino-N-(2,2-dimethyl-1(S)-(methylcarbamoyl)propyl)succinic acid benzyl ester, N-(2,2-dimethyl-1(S)-hydroxymethyl-propyl)-3(R)-[3-[4-(pyridin-4-yl)phenyl]-1H-pyrrol-1-yl]succinic acid (prepared as described in Example 5(a)) and t-butyldiphenylsiloxamine were coupled with TBTU. Flash column chromatography with 0-5% MeOH/CH₂Cl₂ gradient eluant furnished in 43% yield \(\text{N}^4\text{-t-butyldiphenylsiloxy-N}^1\text{-[2,2-Dimethyl-1(S)-(hydroxymethyl)propyl]-2(R)-[3-[4-(pyridin-4-yl)phenyl]-1H-pyrrol-1-yl]succinamide} \) as an amorphous solid. \(^1\text{H NMR (DMSO-\text{d}_6)}: \quad \delta 10.73 (s, 1H), 8.59 (d, 2H, J = 6.3 Hz), 7.85-7.70 (m, 5H), 7.65-7.56 (m, 6H), 7.45-7.34 (m, 6H), 7.29 (s, 1H), 6.79 (s, 1H), 6.43 (s, 1H), 5.20-5.14 (m, 1H), 4.38-4.36 (m, 1H), 3.54-3.50 (m, 2H), 2.82-2.70 (m, 1H), 0.99 (s, 9H), 0.84 (s, 9H).\) Anal: Calculated for \(\text{C}_{41}\text{H}_{48}\text{N}_4\text{O}_4\text{Si} \cdot 0.4 \text{H}_2\text{O} \): C, 70.74; H, 7.07; N, 8.05. Found: C, 70.83; H, 7.04; N, 8.33.
Example 10(a). 2S-[1R-(1(S)-Benzyl-2-hydroxyethylcarbamoyl)-(3-biphenyl-4-yl-1H-pyrrol-1-yl)-methyl]-pentanoic Acid

According to the procedure described in Example 1(a), 2S-[1R-(1(S)-benzyl-2-hydroxyethylcarbamoyl)-(3-biphenyl-4-yl-1H-pyrrol-1-yl)-methyl]-pent-4-enoic acid benzyl ester (50 mg, 0.08 mmol) was hydrogenolyzed in EtOAc (1 mL) and MeOH (1 mL). Radial chromatographic purification with 1% HOAc/1-2% MeOH/CH₂Cl₂ gradient eluant provided 24 mg (55%) of 2S-[1R-(1(S)-benzyl-2-hydroxyethylcarbamoyl)-(3-biphenyl-4-yl-1H-pyrrol-1-yl)-methyl]-pentanoic acid as a slightly pink powder, mp 179-81°C (d). ¹H NMR: δ 7.64-7.54 (m, 5H), 7.47-7.42 (m, 2H), 7.36-7.06 (m, 3H), 6.83 (bs, 1H), 6.54 (bs, 1H), 4.56 (d, 1H, J = 8.4 Hz), 4.27-4.10 (bm, 1H), 3.74-3.61 (bm, 1H), 3.50-3.39 (bm, 2H), 2.83 (dd, 1H, J = 6.2, 13.4 Hz), 2.70 (dd, 1H, J = 8.7, 13.4 Hz), 1.69-1.52 (bm, 1H), 0.87 (t, 3H, J = 7.1 Hz). HRLSIMS: Calculated for C₃₃H₃₄N₂O₄Cs (M +Cs⁺): 643.1573. Found: 643.1594. Anal. Calc'd for C₃₂H₃₄N₂O₄ • 0.5H₂O:C, 73.96; H, 6.79; N, 5.39. Found: C, 74.02; H, 6.79; N, 5.41.

The starting materials were made as follows:

Diallyl D-Aspartate p-Toluenesulfonate Salt
A mixture of D-aspartic acid (4.00g, 30.1 mmol), allyl alcohol (12.4 mL, 181 mmol), p-toluenesulfonic acid hydrate (7.15g, 37.6 mmol) and benzene (35 mL) was refluxed with removal of water via Dean-Stark trap. After 4 hours, the resultant yellow solution was allowed to cool and then concentrated in vacuo to a yellow solid, which was dissolved in a minimal amount of hot MeOH (~15 mL). The solution was diluted with Et₂O (200mL), and upon gradual addition of hexanes (~100 mL), pale yellow crystals were obtained. Filtration gave 10.00 g (86% yield) of diallyl D-aspartate p-toluenesulfonate salt as analytically pure crystals, mp 60-61°C. ¹H NMR: δ 8.40-8.10 (bm, 3H), 7.72 (d, 2H, J = 8.1 Hz), 7.12 (d, 2H, J = 8.1 Hz), 5.76 (dddd, 2H, J = 2.5, 2.5, 8.7, 13.1 Hz), 5.23 (ddd, 2H, J = 2.8, 8.7, 13.1 Hz), 5.18 (dd, 2H, J = 2.8, 13.1 Hz), 4.58 (ddd, 1H, J = 5.6, 13.1, 13.1 Hz), 4.49 (dd, 2H, J = 1.6, 4.4 Hz), 3.15 (ddd, 2H, J = 5.0, 18.1, 18.1 Hz), 3.09 (ddd, 2H, J = 5.2, 18.1, 18.1 Hz), 2.17 (s, 3H). IR (KBr): 3436, 2923, 1734, 1215, 1126, 1035, 1011, 685, 569 cm⁻¹. Anal. Calculated for C₁₇H₂₃NO₇S • 0.5 H₂O: C, 51.76; H, 6.13; N, 3.55; S, 8.13. Found: C, 51.61; H, 6.06; N, 3.60; S, 8.04.

Diallyl N-t-Butoxycarbonyl-D-Aspartate

![Diallyl N-t-Butoxycarbonyl-D-Aspartate](attachment:image)

To a solution of diallyl D-aspartate p-toluenesulfonate salt (5.00 g, 13.0 mmol) in CH₂Cl₂ (50 mL) was added triethylamine (1.99 mL, 14.3 mmol) and di-t-butyl dicarbonate (3.12 g, 14.3 mmol). After 20 hours at ambient temperature, the resultant mixture was stirred

166
with 10% aqueous HCl (5 mL) and H₂O (25 mL). The organic layer was separated, washed with saturated aqueous NaHCO₃·H₂O (2 x 25:25 mL), dried over Na₂SO₄, and evaporated to give a yellow oil, which was fractionally distilled under vacuum to remove t-BuOH as a forefracton and gave 3.33g (82%) of diallyl D-N-t-butoxycarbonyl-aspartate as a colorless oil, bp 160-170°C (1 mm Hg). ¹H NMR: δ 5.90 (dddd, 2H, J = 4.7, 10.5, 10.6, 17.1 Hz), 5.51 (bd, 1H, J = 8.7 Hz), 5.31 (dddd, 2H, J = 1.6, 1.6, 5.9, 17.1 Hz), 5.24, (dd, 2H, J = 1.3, 10.3 Hz), 4.68-4.55 (m, 5H), 3.05 (dd, 1H, J = 4.7, 17.1 Hz), 2.87 (dd, 1H, J = 4.7, 17.1 Hz), 1.45 (s, 9H). IR: 1736, 1719, 1501, 1368, 1166 cm⁻¹. Anal. Calculated for C₁₅H₂₃NO₆: C, 57.50; H, 7.40; N, 4.47. Found: C, 57.35; H, 7.39; N, 4.44.

\[\text{γ-Allyl 3(R)-Allyl-N-t-butoxycarbonyl-D-aspartate} \]

To a solution of diallyl N-t-butoxycarbonyl-D-aspartate (15.00 g, 47.9 mmol) in THF (300 mL) at -78°C was added a solution of lithium hexamethyldisilazide (96.0 mL of 1.0M in THF) dropwise via addition funnel over 10 minutes. After 30 minutes at -78°C, trimethylsilylchloride (12.2 mL, 96.0 mmol) was added dropwise via addition funnel over 7 minutes, and the resultant gold solution was allowed to warm slowly over 1 hour to ambient temperature. The solution was then heated at 55-65°C. After 1 hour, the mixture was allowed to cool, and MeOH (105 mL) was added, whereupon a yellow suspension resulted. After 5 minutes, the solvent was removed via evaporation at reduced pressure to give a
yellow solid, which was stirred with 10% aqueous KHSO₄ (100 mL), H₂O (100 mL), and extracted with CHCl₃ (100 mL) three times. The combined organic layers were washed with saturated aqueous NH₄Cl:H₂O (100:100 mL), dried over Na₂SO₄, and evaporated to give 16.2 g of brown oil, which was purified via flash column chromatography with silica gel. Elution with 1% HOAc/3% MeOH/CH₂Cl₂ provided 14.94 g (100%) of an (80:20) mixture of epimers by NMR of α-allyl 3(R)-allyl-N-t-butoxycarbonyl-D-aspartate as a light brown oil. This material was routinely used without further purification. ¹H NMR: δ 9.00-8.24 (bs, 1H), 5.99-5.72 (m, 2H), 5.53-5.08 (m, 4H), 4.71-4.55 (m, 2H), 3.25 (ddd, 0.2H, minor isomer, J = 3.4, 6.2, 7.5 Hz), 2.97 (ddd, 0.8H, major isomer, J = 4.7, 7.2, 11.8 Hz), 2.68-2.51 (m, 1H), 2.47-2.30 (m, 1H), 1.42 (s, 9H). IR: 3330, 3082, 2980, 1737, 1715, 1369, 1251, 1163 cm⁻¹. Anal. Calculated for C₁₅H₂₃NO₆ · 0.15 H₂O: C, 57.00; H, 7.43; N, 4.43. Found: C, 56.94; H, 7.45; N, 4.31.

α- Allyl, β-Benzyl 3(R)-Allyl-t-butoxycarbonyl-D-aspartate

To a solution of α-allyl 3(R)-allyl-N-t-butoxycarbonyl-D-aspartate (213 mg, 0.681 mmol) in CHCl₃ (2 mL) was added O-benzyl-N,N'-diisopropylisourea (see Mathias, L.J. Synthesis 1979, 561-576, 165 μL, 1.02 mmol). The resultant solution was heated at reflux for 5.5 hours, allowed to cool, filtered to remove urea byproduct, and evaporated to furnish a suspension, which was purified by passage through a pad of silica gel with 10% EtOAc/hex
as eluant to provide 270 mg (100%) of α-allyl, β-benzyl 3(R)-allyl-t-butoxycarbonyl-D-aspartate as a colorless oil. 1H NMR: δ7.36 (bs, 5H), 5.86 (ddt, 1H, J = 5.9, 10.6, 16.2 Hz), 5.76 (ddt, 1H, 6.9, 10.0, 17.1 Hz), 5.30 (ddd, 1H, J = 1.2, 2.8, 17.1 Hz), 5.31 (bs, 1H), 5.24 (ddd, 1H, J = 0.9, 1.2, 10.4 Hz), 5.11 (s, 2H), 5.07 (quintet, 1H, J = 1.6 Hz), 5.04 (bs, 1H), 4.66 (dd, 1H, J = 4.9, 8.9 Hz), 4.57 (d, 2H, J = 5.6 Hz), 3.00 (dq, 1H, J = 7.5 Hz), 2.59 (ddd, 1H, J = 7.5, 8.1, 14.6 Hz), 2.37 (ddd, 1H, J = 6.9, 13.7, 14.0 Hz), 1.43 (s, 9H). IR: 3374, 2979, 1730, 1504, 1368, 1163, 989 cm$^{-1}$. Anal. Calculated for C$_{22}$H$_{29}$NO$_6$: C, 65.49; H, 7.24; N, 3.47. Found: C, 65.46; H, 7.25; N, 3.45.

β-Benzyl 3(R)-Allyl-N-t-butoxycarbonyl-D-aspartate

As in Example 1(p), α-allyl, β-benzyl 3(R)-allyl-t-butoxycarbonyl-D-aspartate (216 mg, 0.535 mmol) was deprotected. Flash column chromatography with 1% HOAc/30% EtOAc/hex as eluant provided 154 mg (79%) of β-benzyl 3(R)-allyl-N-t-butoxycarbonyl-D-aspartate as a yellow oil. 1H NMR (CDCl$_3$): δ 7.40-7.20 (m, 5H), 6.75 (bs, 1H), 5.68 (dddd, 1H, J=7.2, 10.0, 10.0, 16.5 Hz), 5.98 (d, 1H, J=9.7 Hz), 5.18-4.95 (m, 2H), 4.47 (dd, 1H, J = 3.4, 10.0 Hz), 3.15 (ddd, 1H, J = 3.4, 5.9, 8.4 Hz) 2.45 (ddd, 1H, J = 6.3, 7.1, 13.5 Hz), 2.26 (ddd, 1H, J = 7.8, 8.7, 13.5 Hz), 1.38 (s, 9H). IR: 3425, 2978, 1722, 1499, 1164 cm$^{-1}$; Anal. Calcd for C$_{19}$H$_{31}$NO$_6$ • 0.15 C$_6$H$_{14}$: C, 63.51; H, 7.26; N, 3.72. Found: C, 63.50; H, 693; N, 3.44.
2S-[1R-(1(S)-Benzyl-2-hydroxyethylcarbamoyl)-1-(t-butoxycarbonylamino)methyl]-pent-4-enoic Acid Benzyl Ester

According to the procedure described in Example 1(a) for the preparation of N-(1(S)-benzyl-2-hydroxyethyl)-3(R)-t-butoxycarbonyl-amino-succinic acid benzyl ester, β-benzyl 3(R)-allyl-N-t-butoxycarbonyl-D-aspartate was coupled with EDC to 2S-amino-3-phenyl-1-propanol to give 2.30 g (67%) of 2S-[1R-(1(S)-benzyl-2-hydroxyethylcarbamoyl)-1-(t-butoxycarbonylamino)methyl]-pent-4-enoic acid benzyl ester as white solid. \(^1\)H NMR: \(\delta\)

7.31 (m, 5H), 7.20 (m, 5H), 6.59 (d, 1H, \(J = 8.1\) Hz), 5.78 (d, 1H, \(J = 9.0\) Hz), 5.71 (ddd, 1H, \(J = 6.9, 9.7, 16.5\) Hz), 5.09 (m, 4H), 4.31 (dd, 1H, \(J = 4.2, 9.0\) Hz), 4.10 (m, 1H), 3.63 (d, 1H, \(J = 11.8\) Hz), 3.48 (d, 1H, \(J = 11.8\) Hz), 3.28 (dd, 1H, \(J = 7.8, 10.9\) Hz), 2.83 (ddd, 2H, \(J = 7.3, 13.9, 21.6\) Hz), 2.46 (s, 1H), 2.39 (ddd, 1H, \(J = 6.5, 6.9, 13.7\) Hz), 2.20 (ddd, 1H, \(J = 7.8, 8.1, 15.0\) Hz), 1.44 (s, 9H). IR (KBr): 3319, 1735, 1686, 1654, 1560, 1542, 1522, 1297 cm\(^{-1}\).

HRLSIMS: Calculated for \(C_{28}H_{36}N_{2}O_{6}\)Cs (M +Cs\(^{+}\)): 629.1628. Found: 629.1603. Anal.

Calculated for \(C_{28}H_{36}N_{2}O_{6}\): C, 67.71; H, 7.32; N, 5.64. Found: C, 67.68; H, 7.37; N, 5.64.
2S-[1R-(1(S)-Benzy1-2-hydroxyethylcarbamoyl)-(3-biphenyl-4-yl-1H-pyrrol-1-yl)-methyl]-pent-4-enoic Acid Benzyl Ester

According to the procedure described in Example 1(a) for the preparation of N-(1(S)-benzy1-2-hydroxyethyl)-3(R)-(3-biphenyl-4-yl-1H-pyrrol-1-yl)succinamic acid benzyl ester, 2S-[1R-(1(S)-benzy1-2-hydroxyethylcarbamoyl)-1-(t-butoxycarbonylamino)methyl]-pent-4-enoic acid benzyl ester was deprotected and the crude amine salt condensed with 3-biphenyl-4-yl-2,5-dimethoxy-tetrahydrofuran in HOAc. Radial chromatography with 1% MeOH/CH₂Cl₂ as eluant provided 77 mg (30%) of 2S-[1R-(1(S)-benzy1-2-hydroxyethylcarbamoyl)-(3-biphenyl-4-yl-1H-pyrrol-1-yl)-methyl]-pent-4-enoic acid benzyl ester, mp 166-7°C. ¹H NMR: δ 7.68-6.97 (m, 20H), 6.69 (dd, 1H, J = 2.5, 2.8 Hz), 6.53 (dd, 1H, J = 1.6, 2.8 Hz), 5.79 (d, 1H, J = 7.5 Hz), 5.69 (dddd, 1H, J = 6.5, 8.2, 10.0, 16.9 Hz), 5.15-4.94 (m, 4H), 4.57 (d, 1H, J = 7.2 Hz), 4.28-4.19 (bm, 1H), 3.73-3.63 (bm, 2H), 3.50 (ddd, 1H, J = 5.3, 5.3, 11.5 Hz), 2.81 (dd, 1H, J = 6.2, 13.8 Hz), 2.68 (dd, 1H, J = 8.2, 13.8 Hz), 2.59-2.44 (m, 2H), 2.10 (ddd, 1H, J = 7.1, 7.1, 14.3 Hz). HRLSIMS: Calculated for C₃₉H₃₈N₂O₄Cs (M+Cs⁺): 731.1886. Found: 731.1853. Anal. Calculated for C₃₉H₃₈N₂O₄: C, 78.29; H, 6.42; N, 4.68. Found: C, 78.17; H, 6.43; N, 4.63.
The following compounds were made in a similar manner:

Example 10(b). 2(RS)-{1R-[1(S)-Benzyl-2-hydroxyethylcarbamoyl]-[3-(4'-cyano-biphenyl-4-yl)-1H-pyrrol-1-yl]-methyl}-pentanoic Acid

![Chemical Structure](image)

According to the procedure described in Example 1(a), 2(RS)-{1R-[1(S)-benzyl-2-hydroxyethylcarbamoyl]-[3-(4'-cyano-biphenyl-4-yl)-1H-pyrrol-1-yl]-methyl}-pent-4-enoic acid benzyl ester was hydrogenated in EtOAc and MeOH. Flash column chromatography with 1% HOAc/1% MeOH/CH₂Cl₂ as eluant gave 29 mg (69%) of 2(RS)-{1R-[1(S)-benzyl-2-hydroxyethylcarbamoyl]-[3-(4'-cyano-biphenyl-4-yl)-1H-pyrrol-1-yl]-methyl}-pentanoic acid as a yellow powder. \(^1\)H NMR: δ 7.72 (s, 4H), 7.60 (s, 5H), 7.21-6.99 (bm, 6H), 6.70 (s, 1H), 6.58 (s, 1H), 4.70 (d, 0.67H, minor isomer, J = 10.3 Hz), 4.62 (d, 0.33H, minor isomer, J = 6.5 Hz), 4.19 (bs, 0.33H, minor isomer), 4.02 (bs, 0.67H, major isomer), 3.25-3.14 (bm, 1H), 2.78 (d, 2H, J = 7.0 Hz). IR (KBr): 3334, 2226, 1652, 1604, 1558, 1496, 1200, 824 cm⁻¹. HRFABMS: Calculated for C₃₃H₃₄N₃O₄ (M + H⁺): 536.2549. Found: 536.2555; Anal. Calculated for C₃₃H₃₃N₃O₄ • 0.8 HOAc: C, 71.20; H, 6.25; N 7.20. Found: C, 71.21; H, 6.49; N, 7.25.
The starting material was available as follows:

\[2(RS)-[1(R)-[1(S)-Benzy1-2-(hydroxyethyl)carbamoyl]-1-[3-(4'-cyanobiphenyl-4-y1)-1H-pyrrol-1-yl]methyl]pent-4-enoic Acid Benzyl Ester \]

According to the procedure described in Example 1(e) for the preparation of N-(8-oxo-4-oxa-1,7-diaza-tricyclo[9.6.1.0^{12,17}]octadeca-11(18),12,14,16-tetraen-9S-yl)-3(R)-(3-phenyl-1H-pyrrol-1-yl)succinamic acid benzyl ester, \(\beta \)-benzyl 3(R)-allyl-N-t-butoxycarbonyl-D-aspartate was deprotected. The corresponding amine salt and 4'(2,5-dimethoxy-tetrahydrofuran-3-yl)-biphenyl-4-carbonitrile were condensed in 1,2-dichloroethane with trifluoroacetic acid under anhydrous conditions and purified via radial chromatography with 0-20-30-40% EtOAc/hex stepwise gradient to give 168 mg (51%) of 2(RS)-[1(R)-[1(S)-Benzy1-2-(hydroxyethyl)carbamoyl]-1-[3-(4'-cyanobiphenyl-4-y1)-1H-pyrrol-1-yl]methyl]pent-4-enoic acid benzyl ester as a gold powder, mp 84°C, which was used without further purification. \(^1\)H NMR: \(\delta \) 7.72 (d, 2H, \(J = 3.1 \) Hz), 7.64-7.50 (m, 3H), 7.41-6.96 (m, 4H), 6.72 (t, 0.33H, minor isomer, \(J = 2.5 \) Hz), 6.68 (t, 0.67H, major isomer, \(J = 2.5 \) Hz), 6.57 (dd, 0.67H, major isomer, \(J = 1.8, 2.8 \) Hz), 6.52 (dd, 0.33H, minor isomer, \(J = 1.6, 2.8 \) Hz), 5.83 (d, 1H, \(J = 7.8 \) Hz), 5.62 (dddd, 1H, \(J = 6.5, 7.8, 10.3, 16.8 \) Hz), 5.18 (d, 2H, \(J = 1.2 \) Hz), 4.73 (d, 0.67H, major isomer, \(J = 10.6 \) Hz), 4.57 (d, 0.33H, minor isomer, \(J = 7.8 \) Hz), 4.15 (bm, 1H), 3.99 (dddd, 1H, \(J = 5.0, 7.5, 7.5, 10.9 \) Hz), 3.75-3.48 (m, 2H), 3.38 (dddd, 1H, \(J = 5.3, 5.3, 5.3, 7.8 \) Hz), 2.93-2.64 (m, 2H). IR: 3406, 2226, 1731, 1660, 1605
cm⁻¹. HRFABMS: Calculated for C₄₀H₃₇N₅O₄ (M +H⁺): 624.2862. Found: 624.2875.

Anal. Calculated for C₄₀H₃₇N₅O₄ • 0.25 EtOAc • 0.5 H₂O: C, 75.21; H, 6.16; N, 6.42.
Found: C, 75.29; H, 5.97; N, 6.42.

Example 10(c). 2S-[1R-(3-(4'-Cyanobiphenyl-4-yl)-1H-pyrrol-1-yl)-1-(2,2-dimethyl-1(S)-(hydroxymethyl)propylcarbamoyl)-methyl]-pentanoic Acid

According to the procedure described in Example 1(a), 2S-[1R-(3-(4'-cyanobiphenyl-4-yl)-1H-pyrrol-1-yl)-N-(2,2-dimethyl-1(S)-hydroxymethyl)propylcarbamoyl)-methyl)]-pentanoic acid benzyl ester was debenzylated in MeOH: EtOAc (2:3) after 18h to provide 30 mg (36%) of 2S-[1R-(3-(4'-cyanobiphenyl-4-yl)-1H-pyrrol-1-yl)-1-(2,2-dimethyl-1(S)-(hydroxymethyl)propylcarbamoyl)methyl)]-pentanoic acid as a white solid, mp 130-2°C. ¹H NMR: δ 7.70 (m, 4H), 7.60 (m, 4H), 7.15 (s, 1H), 6.85 (s, 1H), 6.75 (s, 1H), 5.72 (d, 1H, J = 8.7 Hz), 4.86 (d, 1H, J = 9.7 Hz), 3.90-3.82 (m, 2H), 3.45-3.38 (m, 1H), 3.30-3.20 (m, 1H), 1.45-1.10 (m, 4H), 0.95 (s, 3H), 0.90 (s, 9H). IR (KBr): 3406, 2962, 2227, 1719, 1664, 1604, 1560, 1497, 1367, 1200 cm⁻¹. FABMS: 502 (M +H⁺). Anal. Calculated for C₃₀H₃₅N₅O₄ • 0.15 CHCl₃: C, 69.70; H, 6.82; N, 8.09. Found: C, 69.71; H, 6.83; N, 8.01.

The starting material was furnished as follows:
Following the procedure described in Example 1(f) for the preparation of N-(1(S)-benzyl-2-methoxyethyl)-3(R)-t-butoxycarbonylamino-succinamic acid benzyl ester, β-benzyl 3(R)-allyl-N-t-butoxycarbonyl-D-aspartate (154 mg, 0.424 mmol) was coupled with BOP to L-t-leucinol (55 mg, 0.466 mmol). Flash column chromatography with 5% MeOH/CH₂Cl₂ as eluant provided 176 mg (90% yield) of 2S-[1R-(t-butoxycarbonylamino-(2,2-dimethyl-1(S)-(hydroxymethyl)propyl)carbamoyl]-methyl]-pent-4-enoic acid benzyl ester as waxy plates, mp 75-76°C. ¹H NMR: δ 7.43-7.20 (bs, 5H), 6.38 (d, 1H, J = 9.7 Hz), 5.73 (dddd, 1H, J = 7.2, 10.0, 10.3, 16.8 Hz), 5.60 (bm, 1H), 5.20-4.95 (m, 4H), 4.40 (dd, 1H, J = 7.2, 8.4 Hz), 3.78 (ddd, 2H, J = 3.4, 9.3, 9.3 Hz), 3.50 (dd, 1H, J = 0.9, 8.7, 11.2 Hz), 2.98 (q, 1H, J = 6.5 Hz), 2.55 (ddd, 2H, J = 7.2, 14.6, 14.6 Hz), 2.48 (ddd, 2H, J = 7.2, 14.6, 14.6 Hz), 2.18 (bs, 1H), 1.42 (s, 9H), 0.95 (s, 9H); IR (KBr): 3363, 2996, 1734, 1708, 1654, 1508, 1367, 1253, 1173, 1055 cm⁻¹. Anal. Calculated for C₂₅H₃₈N₂O₆: C, 64.91; H, 8.28; N, 6.06. Found: C, 65.02; H, 8.33; N, 6.11.
2S-{1R-[3-(4'-Cyanobiphenyl-4-yl)-1H-pyrrol-1-yl]-2,2-dimethyl-1(S)-(hydroxymethyl)propyl-carbamoyl]-methyl}-pent-4-enoic Acid Benzyl Ester

According to the procedure described in Example 4(a) for the preparation of N-(1(S)-benzyl-2-hydroxyethyl)-3(R)-[3-(4'cyano-biphenyl-4-yl)-1H-pyrrol-1-yl]succinic acid benzyl ester, 2S-{1R-[t-butoxycarbonylamino-(2,2-dimethyl-1(S)-hydroxymethyl-propylcarbamoyl)-methyl]}-pent-4-enoic acid benzyl ester was deprotected. The corresponding crude amine salt and 4'-((2,5-dimethoxy-tetrahydro-furan-3-yl)biphenyl-4-carbonitrile were condensed in 1,2-dichloroethane. Flash column chromatography with 1% HOAc/ 20% EtOAc/ hex as eluant afforded 160 mg (63%) of 2S-{1R-[3-(4'-cyanobiphenyl-4-yl)-1H-pyrrol-1-yl]-2,2-dimethyl-1(S)-(hydroxymethyl)propyl-carbamoyl]-methyl}-pent-4-enoic acid benzyl ester as a yellow foam, mp 74-6°C. 1H NMR: δ 7.70 (s, 4H), 7.50 (s, 4H), 7.20 (s, 5H), 7.05 (s, 1H), 6.80 (s, 1H), 6.60 (s, 1H), 5.60 (d, 1H, J = 8.1 Hz), 5.20 (d, 2H, J = 4.0 Hz), 5.05-4.82 (m, 3H), 3.86-3.68 (m, 2H), 3.30-3.10 (m, 2H), 2.30-2.20 (m, 1H), 1.70-1.50 (m, 2H), 0.90 (s, 9H). IR (KBr): 3358, 3067, 2962, 2226, 1732, 1682, 1604, 1557, 1496, 1360 cm⁻¹. Anal. Calculated for C₃₇H₃₉N₃O₄ • 0.35 CHCl₃: C, 70.69; H, 6.25; N, 6.62. Found: C, 70.81; H, 6.20; N, 6.70.
Example 11. 2S-[1R-(3-(Biphenyl-4-yl)-1H-pyrrol-1-yl)-1-(1(S)-hydroxymethyl-2,2-dimethyl-propylcarbamoyl)-methyl]-5-hydroxypentanoic acid

A suspension of palladium (II) hydroxide (20% Pd content on carbon, 30 mg) and 2S-[1R-(3-(biphenyl-4-yl)-1H-pyrrol-1-yl)-1-(1(S)-hydroxymethyl-2,2-dimethyl-propylcarbamoyl)-methyl]-5-hydroxypentanoic acid benzyl ester (120 mg, 0.141 mmol) in MeOH (20 mL) was stirred in an H₂ atmosphere for 2 hours. The catalyst was filtered onto Celite and rinsed with MeOH (20 mL). The filtrate was concentrated to afford 70 mg (100%) of 2S-[1R-(3-(biphenyl-4-yl)-1H-pyrrol-1-yl)-1-(1(S)-hydroxymethyl-2,2-dimethyl-propylcarbamoyl)-methyl]-5-hydroxypentanoic acid as white crystals. ¹H NMR (CD₃OD): δ 7.70-7.55 (m, 6H), 7.43 (t, 2H, J = 7.4 Hz), 7.38-7.27 (m, 2H), 6.93 (dd, 1H, J = 2.2, 2.2 Hz), 6.53 (brm, 1H), 3.80-3.77 (m, 3H), 2.75-1.23 (m, 4H), 0.97 (s, 9H). IR (KBr): 3406, 2958, 1719, 1656, 1200, 763 cm⁻¹. FABMS: 493 (M +H⁺), 515 (MH +Na⁺). Anal. Calculated for C₂₉H₃₆N₂O₅ • 0.2 CHCl₃: C, 67.90; H, 7.06; N, 5.42. Found: C, 67.85; H, 7.11; N, 5.41.
The starting materials were made as follows:

\[\text{2S-[1R-t-Butoxycarbonylamino-(2,2-dimethyl-1(S)-hydroxymethyl-propyl-carbamoyl)-methyl]-5-hydroxy-pent-4-enoic Acid Benzyl Ester} \]

To a solution of BH\textsubscript{3}•THF (6.93 mL of 1M in THF) at 0°C was added cyclohexene (1.40 mL, 13.9 mmol) dropwise via syringe. After 5 minutes, the white suspension was diluted with dry THF (5 mL). After 15 minutes at 0°C, the dicyclohexylborane suspension was cautiously added via cannula to a solution of 2S-[1R-t-butoxycarbonylamino-(2,2-dimethyl-1(S)-hydroxymethyl-propyl-carbamoyl)-methyl]-pent-4-enoic acid benzyl ester (1.07 g, 2.31 mmol) in dry THF (10 mL) at 0°C and vigorous gas evolution was observed. After 10 minutes at 0°C, the resultant suspension was allowed to warm to ambient temperature. After 90 minutes, the mixture was treated in succession with pH7 phosphate buffer (50 mL), EtOH (20 mL), and 30% aqueous H\textsubscript{2}O\textsubscript{2} (10 mL), and then allowed to stir overnight. After 20 hours at ambient temperature, the mixture was cooled to 0°C and stirred with fresh 10% aqueous Na\textsubscript{2}S\textsubscript{2}O\textsubscript{3} (100 mL). The mixture was allowed to warm to ambient temperature and extracted with CHCl\textsubscript{3} (75 mL) three times. The combined organic layers were stirred with p-TsOH•H\textsubscript{2}O (100 mg) for 15 minutes, then washed with saturated aqueous NaHCO\textsubscript{3}:H\textsubscript{2}O (100: 100 mL), dried over Na\textsubscript{2}SO\textsubscript{4}, and evaporated to give 1.96 g of yellow oil, which was purified via flash column chromatography with 5% MeOH/CHCl\textsubscript{3} as eluant to afford 500 mg (45%) of 2S-[1R-t-butoxycarbonylamino-(2,2-dimethyl-1(S)-
hydroxymethyl-propylcarbamoyl]-methyl]-5-hydroxy-pent-4-enoic acid benzyl ester as a white foam. \(^1\)H NMR: \(\delta\) 7.45-7.20 (bs, 5H), 6.56 (d, 1H, J = 9.7 Hz), 5.87 (d, 1H, J = 7.8 Hz), 5.23-5.05 (m, 2H), 4.56 (dd, 1H, J = 5.9, 8.4 Hz), 3.82 (ddd, 2H, J = 3.4, 9.3, 11.8 Hz), 3.70-3.39 (m, 4H), 3.06 (ddd, 1H, J = 5.9, 10.3, 10.3 Hz), 1.90-1.38 (m, 4H), 0.98 (s, 9H), 0.95 (s, 9H). IR: 3342, 2955, 1718, 1696, 1682, 1661, 1522, 1367, 1249, 1166 cm\(^{-1}\). Anal. Calculated for C\(_{25}\)H\(_{40}\)N\(_2\)O\(_7\) • 0.4 CHCl\(_3\): C, 57.74; H, 7.71; N, 5.30. Found: C, 57.74; H, 7.85; N, 5.42.

5-Benzylxoxy-carboxy-2S-[1R-t-butoxycarbonylamino-(2,2-dimethyl-1(S)-hydroxymethyl-propylcarbamoyl)-methyl]-pentanoic Acid Benzyl Ester

According to the procedure described in Example 5(a) for the preparation of carbonic acid N-(1(S)-benzyloxy carbonyloxy methyl-2,2-dimethyl-propyl)-3(R)-(t-butoxycarbonylamino)succinamic acid benzyl ester, 2S-[1R-t-butoxycarbonylamino-(2,2-dimethyl-1(S)-(hydroxymethyl)propylcarbamoyl)methyl]-5-hydroxy-pent-4-enoic acid benzyl ester was initially acylated with benzyl chloroformate to give a yellow oil, which was purified via flash column chromatography with 4% MeOH/CHCl\(_3\) as eluant to furnish 172 mg (46%) of 5-benzylxoxy carboxy-2S-[1R-t-butoxycarbonylamino-(2,2-dimethyl-1(S)-(hydroxymethyl)propylcarbamoyl)methyl]-pentanoic acid benzyl ester as a colorless oil and 67 mg (17%) of 5-benzylxoxy carboxy-2S-[(1(S)-benzyloxy carbonyloxy methyl-2,2-dimethyl-
propylcarbamoyl)-t-butoxycarbonyl-amino-methyl]-pentanoic acid benzyl ester. ¹H NMR: δ 7.45-7.20 (m, 10H), 6.38 (d, 1H, J = 9.7 Hz), 5.48-5.32 (bm, 1H), 5.23-5.05 (m, 4H), 4.45-4.30 (m, 1H), 4.20-3.95 (m, 2H), 3.80-3.72 (m, 2H), 3.55-3.40 (m, 1H), 3.00-2.89 (m, 1H), 2.08-1.55 (m, 4H), 1.42 (s, 9H), 0.95 (s, 9H). IR (KBr): 3322, 2964, 1741, 1664, 1264, 1169 cm⁻¹. FABMS: (M +Cs⁺) 747.

5-Benzylxycarboxy-2S-[(1(S)-benzylxycarboxymethyl-2,2-dimethyl-propylcarbamoyl)-t-butoxycarbonyl-amino-methyl]-pentanoic Acid Benzyl Ester

![Chemical Structure](image)

To a solution of 5-benzylxycarboxy-2S-[1R-t-butoxycarbonylamoino-(2,2-dimethyl-1(S)-hydroxymethyl-propylcarbamoyl)methyl]-pentanoic acid benzyl ester (170 mg, 0.277 mmol) in CHCl₃ (3 mL) was added DMAP (68 mg, 0.692 mmol) and benzylxycloroformate (100 μL, 0.692 mmol). After 2.5 hours, the mixture was stirred with 10% KHSO₄ (15 mL) and extracted with CHCl₃ (10 mL two times). The CHCl₃ layers were washed with 10% aqueous KHSO₄ (10 mL) and saturated aqueous NaHCO₃:H₂O (10:10 mL), dried over Na₂SO₄, and evaporated to provide a yellow oil, which was purified via flash column chromatography with 10-20-30% EtOAc/hex stepwise gradient. In this fashion, 135 mg (65%) of 5-benzylxycarboxy-2S-[(1(S)-benzylxycarboxymethyl-2,2-dimethyl-propylcarbamoyl)-t-butoxycarbonylamoino-methyl]-pentanoic acid benzyl ester was
isolated as radial plates. 1H NMR: δ 7.35-7.25 (m, 15H), 6.40 (bd, 1H, $J = 8.4$ Hz), 5.22-5.04 (m, 6H), 4.48 (dd, 1H, $J = 6.9$, 8.7 Hz), 4.33 (q, 1H, $J = 7.3$ Hz), 4.16-3.95 (m, 4H), 3.67 (bm, 1H), 3.51 (dd, 1H, $J = 4.4$, 5.3 Hz), 2.91 (dd, 1H, $J = 3.7$, 7.2, 10.3 Hz), 1.80-1.50 (m, 4H), 1.41 (s, 9H), 0.93 (s, 9H). IR: 3330, 2964, 1743, 1263, 1170 cm$^{-1}$. HRFABMS:

Calculated for C$_{41}$H$_{52}$N$_2$O$_{11}$Cs (M + Cs$^+$): 881.2625. Found: 881.2631.

2S-[(R)-[3-(2-pheNYl)-4-yl]-1H-pyrrol-1-yl-([1(S)-hydroxymethyl-2,2-dimethylpropylcarbamoyl]-methyl]]-5-hydroxypentanoic Acid Benzyl Ester

To a solution of 5-benzyloxy carboxy-2S-[(1(S)-benzyloxy carboxymethyl-2,2-dimethyl-propylcarbamoyl)-t-butoxycarbonylamino-methyl]-pentanoic acid benzyl ester (135 mg, 0.180 mmol) in CHCl$_3$ (2 mL) was added trifluoroacetic acid (0.5 mL). After 4 hours at ambient temperature, the solvent was removed in vacuo to give a yellow oil that was placed with 3-biphenyl-4-yl-2,5-dimethoxytetrahydrofuran (66 mg, 0.23 mmol), trifluoroacetic acid (20 μL), and H$_2$O (20 μL) in CICH$_2$CH$_2$Cl (1 mL). The mixture was heated to 70°C for 90 minutes, allowed to cool, and evaporated to give a brown oil. Flash column chromatography with 1%HOAc/20% EtOAc/hex as eluant and removal of HOAc via n-heptane azeotrope
provided 126 mg (82%) of 2S-{1R-[3-(bi-phenyl-4-yl)-1H-pyrrol-1-yl-1(S)-hydroxymethyl-2,2-dimethyl-propyl(carbamoyl)methyl]}-5-hydroxypentanoic acid benzyl ester as a yellow solid. 1H NMR: δ 7.59-7.50 (m, 9H), 7.44 (t, 2H, $J = 7.4$ Hz), 7.38-7.20 (m, 13H), 7.04 (bm, 1H), 6.70 (dd, 1H, $J = 2.5$, 2.5 Hz), 6.49 (bm, 1H), 5.57 (d, 1H, $J = 9.6$ Hz), 5.22 (d, 1H, $J = 12.1$ Hz), 5.14 (d, 1H, $J = 12.1$ Hz), 5.05 (s, 2H), 4.97 (dd, 2H, $J = 12.1$, 15.5 Hz), 4.84 (d, 1H, $J = 10.3$ Hz), 4.26 (dd, 1H, $J = 2.9$, 11.0 Hz), 4.10-3.88 (m, 4H), 3.32-3.20 (m, 1H), 1.70-1.15 (m, 4H), 0.87 (s, 9H). IR (KBr): 2961, 1743, 1687, 1453, 1398, 1263, 1167, 763, 697 cm$^{-1}$. HRFABMS: Calculated for C$_{52}$H$_{54}$N$_2$O$_9$Cs (M +Cs$^+$): 983.2884. Found: 983.2861.

Anal. Calculated for C$_{52}$H$_{54}$N$_2$O$_9$ • 0.15 CHCl$_3$: C, 72.02; H, 6.28; N, 3.22. Found: C, 72.03; H, 6.43; N, 3.26.

Example 12. 2S, 2(1S)-[[3-(Biphenyl-4-yl)-1H-pyrrol-1R-yl]@[2,2-dimethyl-1(S)-(hydroxymethyl)propyl(carbamoyl)methyl]pent-4-enoic Acid

![Chemical Structure]

To a solution of 2R-[2(R)-(3-biphenyl-4-yl-1H-pyrrol-1-yl)-2-(5R-iodomethyl-2-oxo-tetrahydrofuran-3(S)-yl)acetylamino]-3,3-dimethylbutyl 2,2,2-trichloroethyl carbonate (100 mg, 0.129 mmol) in HOAc (2 mL) was added zinc powder (86 mg, 1.3 mmol). After 24 hours at ambient temperature, the resultant mixture was partitioned with H$_2$O (25 mL) and CHCl$_3$ (15 mL). The aqueous layer was adjusted to pH 5 with saturated aqueous
NaHCO₃ and extracted with CHCl₃ (10 mL) two times. The CHCl₃ layers were dried over Na₂SO₄ and evaporated to give a white solid, which was purified via radial chromatography with a 0.5% HOAc/5-10% MeOH/CHCl₃ stepwise gradient to furnish 32 mg (50%) of 2S, 2(1S)-[[3-(1phenyl-4-yl)-1H-pyrrol-1R-yl]-[2,2-dimethyl-1(S)- (hydroxymethyl)propylcarbamoyl]methyl]pent-4-enoic acid as a pale yellow solid. \(^1\)H NMR (DMSO-d₆): \(\delta 7.89 (d, 1H, J = 9.3 \text{ Hz})\), 7.80-7.50 (m, 6H), 7.44 (t, 2H, \(J = 7.8 \text{ Hz}\)), 7.36-7.23 (m, 2H), 6.88 (bm, 1H), 6.49 (bm, 1H), 5.68 (ddd, 1H, \(J = 7.5, 9.3, 16.8 \text{ Hz}\)), 5.03-4.78 (m, 2H), 2.09-1.85 (m, 2H), 0.83 (s, 9H). IR (KBr): 3384, 3240, 2960, 2916, 1743, 1717, 1651, 1562, 1456, 1362, 1240, 1196, 758 cm⁻¹. HRFABMS: Calculated for C₉₉H₃₃N₂O₄Cs (M + Cs⁺): 607.1573. Found: 607.1555. Anal. Calculated for C₉₉H₃₄N₂O₄ • 0.17 CHCl₃: C, 70.80; H, 6.96; N, 5.66. Found: C, 70.76; H, 7.03; N, 5.55.

The starting material was furnished as follows:

2(R)-t-Butoxycarbonylamino-2-(5R-iodomethyl-2-oxo-tetrahydro-furan-3(S)-yl)acetic Acid Allyl Ester

To a solution of 2S-allyl-3(R)-t-butoxycarbonylamino-succinic acid 4-allyl ester (230 mg, 0.734 mmol) in THF (10 mL) was added saturated aqueous NaHCO₃ (10 mL). After 20 minutes, the mixture was cooled to 0°C, and iodine (742 mg, 2.94 mmol) was added. The resultant mixture was allowed to slowly warm to ambient temperature overnight. After 20
hours, fresh 10% aqueous Na₂S₂O₃ (20 mL) was added, and the mixture was extracted with EtOAc (15 mL) three times. The combined organic layers were washed with 10% aqueous Na₂S₂O₃ (25 mL), dried over MgSO₄, and evaporated to give 322 mg (100%) of 2(R)-t-butoxycarbonylamino-2-(5R-iodomethyl-2-oxo-tetrahydro-furan-3(S)-yl)acetic acid allyl ester as a yellow oil, which was used without further purification. ¹H NMR: δ 5.80 (dddd, 1H, J = 6.3, 6.8, 11.1, 12.0 Hz), 5.58 (bs, 1H), 5.27-5.15 (m, 2H), 4.64-4.47 (m, 3H), 4.40 (ddddd, 1H, J = 5.0, 6.1, 8.6, 10.8 Hz), 3.41-3.04 (m, 3H), 2.65-2.47 (m, 1H), 2.02-1.45 (m, 2H), 1.32 (s, 9H). IR: 3374, 2976, 1774, 1714, 1507, 1367, 1161 cm⁻¹. Anal. Calculated for C₁₅H₂₂NO₆I • 0.25 EtOAc: C, 41.66; H, 5.24; N, 3.04; I, 27.51. Found: C, 41.93; H, 5.00; N, 3.04.

2(R)-t-Butoxycarbonylamino-2-(5R-iodomethyl-2-oxo-tetrahydrofuran-3(S)-yl)acetic Acid

According to the procedure described in Example 10(a) for the preparation of 3(R)-allyl-N-t-butoxycarbonyl-D-aspartate β-benzyl ester, 2(R)-t-butoxycarbonylamino-2-(5R-iodomethyl-2-oxo-tetrahydrofuran-3(S)-yl)acetic acid allyl ester (322 mg, 0.734 mmol) was deprotected to give 293 mg (100%) of 2(R)-t-butoxycarbonylamino-2-(5R-iodomethyl-2-oxo-tetrahydrofuran-3(S)-yl)acetic acid as a yellow oil, which was used without further purification. Analytical sample furnished upon flash column chromatography with 1%
HOAc/3-5% MeOH/CH₂Cl₂ gradient eluant and azeotrope with n-heptane. ¹H NMR: δ 9.30 (bs, 1H), 5.40 (d, 1H, J = 8.7 Hz), 4.84-4.36 (m, 3H), 3.64 (bt, 1H, J = 9.5 Hz), 3.56-3.15 (m, 4H), 2.67 (ddd, 1H, J = 4.1, 9.0, 13.1 Hz), 1.25 (s, 9H). IR: 3395, 2978, 1772, 1708, 1511, 1366, 1251, 1160 cm⁻¹. FABMS: 532 (M + Cs⁺). Anal. Calculated for C₁₂H₁₈NO₆*: • 0.12 C₇H₁₆: C, 37.50, H, 4.88, N, 3.41; I, 30.86. Found: C, 37.51; H, 4.78; N, 3.52; I, 30.94.

2(R)-t-Butoxycarbonylamino-N(3,3-dimethyl-1-hydroxy-but-2(R)-yl)-2-(5R-iodo-methyl-2-oxo-tetrahydrofuran-3(S)-yl)acetamide

According to the procedure described in Example 1(f) for the preparation of N-(1(S)-benzyl-2-methoxy-ethyl)-3(R)-t-butoxycarbonylamino-succinamic acid benzyl ester, 2(R)-t-butoxycarbonylamino-2-(5R-iodomethyl-2-oxo-tetrahydro-furan-3(S)-yl)acetic acid (293 mg, 0.734 mmol) was coupled to L-t-leucinol (55 mg, 0.466 mmol) with BOP. After column chromatography with silica gel and 1% HOAc/5% MeOH/CHCl₃ as eluant, azeotropic removal of HOAc with n-heptane, and crystallization from EtOAc/hex, 184 mg (50% yield) of 2(R)-t-butoxycarbonylamino-N(3,3-dimethyl-1-hydroxy-but-2(R)-yl)-2-(5R-iodo-methyl-2-oxo-tetrahydrofuran-3(S)-yl)acetamide was obtained as a white powder, mp 142-3°C. ¹H NMR: δ 6.78 (bd, 1H, J = 8.2 Hz), 6.23 (bd, 1H, J = 8.2 Hz), 3.88-3.68 (m, 2H), 3.60-3.40 (m, 2H), 3.40-3.25 (m, 2H), 3.15-2.99 (bm, 1H), 2.63 (ddd, 1H, J = 7.1, 10.5, 13.4 Hz), 2.37 (bs, 2H), 2.00 (q, 1H, J = 11.0 Hz), 1.44 (s, 9H), 0.94 (s, 9H). IR: 3319, 2965, 1774, 1665,
1530, 1367, 1153, 755 cm⁻¹. Anal. Calculated for C₁₈H₃₁N₂O₆I: C, 43.38; H, 6.27; N, 5.62; I, 25.46. Found: C, 43.13; H, 6.34; N, 5.54; I, 25.31.

2(R)-[2(R)-t-Butoxy-carbonylamino-2-(5R-iodomethyl-2-oxo-tetrahydrofuran-3(S)-yl)acetylamino]-3,3-dimethylbutyl 2,2,2-Trichloroethyl Carbonate

![Chemical Structure](image)

To a solution of 2(R)-t-butoxycarbonylamino-N-(3,3-dimethyl-1-hydroxy-but-2(R)-yl)-2-(5R-iodomethyl-2-oxo-tetrahydrofuran-3(S)-yl)acetamide (155 mg, 0.311 mmol) in CHCl₃ (5 mL) was added DMAP (84 mg, 0.68 mmol) and 2,2,2-trichloroethylchloroformate (86 µL, 0.62 mmol). After 2 hours at ambient temperature, the resultant mixture was stirred with 10% aqueous HCl (10 mL). The organic layer was separated, washed with 10% aqueous HCl (10 mL) and saturated aqueous NaHCO₃: H₂O (10:10 mL), dried over Na₂SO₄, and evaporated to provide a yellow oil, which was purified via flash column chromatography with 25% EtOAc/hex as eluant to afford 138 mg (66%) of 2(R)-[2(R)-t-butoxycarbonylamino-2-(5R-iodomethyl-2-oxo-tetrahydrofuran-3(S)-yl)acetylamino]-3,3-dimethylbutyl 2,2,2-trichloroethyl carbonate as a yellow oil. ¹H NMR: δ 6.82 (bd, 1H, J = 9.0 Hz), 6.17 (bd, 1H, J = 7.8 Hz), 4.77 (s, 2H), 4.60 (quintet, 1H), 4.49 (dd, 1H, J = 4.7, 8.7 Hz), 4.42 (dd, 1H, J = 3.1, 10.9 Hz), 4.20-4.00 (m, 2H), 3.48 (dd, 1H, J = 5.3, 10.0 Hz), 3.33 (q, 1H, J = 9.3 Hz), 3.04-2.90 (bm, 1H), 2.64 (ddd, 1H, J = 6.5, 10.0, 12.8 Hz), 1.99 (q, 1H, J = 12.2 Hz), 1.82-1.72 (bm, 1H), 1.46 (s, 9H), 0.97 (s, 9H). IR (KBr): 3386, 2966, 1764, 1650 cm⁻¹.
1703, 1683, 1676, 1521, 1369, 1244, 1165 cm⁻¹. Anal. Calculated for C₂₁H₂₂N₂O₈Cl₃I • 0.25 C₆H₁₄: C, 38.87; H, 5.15; N, 4.03; Cl, 15.30; I, 18.25. Found: C, 39.04; H, 5.13; N, 4.12; Cl, 15.64; I, 18.65.

2(R)-(2(R)-(3-Biphenyl-4-yl-1H-pyrrol-1-yl)-2-(5R-iodomethyl-2-oxo-tetrahydrofuran-3(S)-yl)acetyl-amino)-3,3-dimethylbutyl 2,2,2-Trichloroethyl Carbonate

According to the procedure described in Example 1(b) for the preparation of N-(2,2-dimethyl-1(S)-methylcarbamoylpropyl)-3(R)-(3-phenyl-1H-pyrrol-1-yl)succinamic acid benzyl ester, 2(R)-(2(R)-t-butoxycarbonylamino-2-(5R-iodomethyl-2-oxo-tetrahydrofuran-3(S)-yl)acetylamoino)-3,3-dimethylbutyl 2,2,2-trichloroethyl carbonate (105 mg, 0.156 mmol) was deprotected with trifluoroacetic acid and then condensed with 3-biphenyl-4-yl-2,5-dimethoxytetrahydrofuran (prepared as described in Example 1(a)) in 1,2-dichloroethane with H₂O and trifluoroacetic acid. Flash column chromatography with 0.5% HOAc/20% EtOAc/hex as eluant furnished 120 mg (99%) of 2(R)-(2(R)-(3-biphenyl-4-yl-1H-pyrrol-1-yl)-2-(5R-iodomethyl-2-oxo-tetrahydrofuran-3(S)-yl)acetyl-amino)-3,3-dimethylbutyl 2,2,2-trichloroethyl carbonate as a yellow solid, which was used in the next reaction. ¹H NMR: δ 7.74-7.54 (m, 5H), 7.48-7.19 (m, 4H), 7.16 (dd, 1H, J = 1.9, 1.9 Hz), 6.86 (dd, 1H, J = 2.5, 2.5 Hz), 6.59 (dd, 1H, J = 1.9, 2.5 Hz), 5.80 (d, 1H, J = 10.0 Hz), 5.20 (d, 1H, J = 3.4 Hz),
4.63 (dd, 2H, J = 12.1, 18.0 Hz), 4.53-4.35 (m, 2H), 4.21 (ddd, 1H, J = 3.4, 9.0, 9.0 Hz), 4.05 (dd, 1H, J = 9.0, 11.2 Hz), 3.73 (ddd, 1H, J = 3.1, 9.0, 12.1 Hz), 3.27 (dd, 1H, J = 4.7, 10.3 Hz), 3.02 (dd, 1H, J = 7.5, 9.3 Hz), 2.70 (ddd, 1H, J = 6.2, 9.3, 12.8 Hz), 1.74 (ddd, 1H, J = 9.7, 12.1, 12.8 Hz), 0.97 (s, 9H). IR (KBr): 1763, 1686, 1242, 1166, 819, 764 cm\(^{-1}\).

Example 13. N-(1(S)-Benzy1-2-hydroxyethyl)-3(S)-[3-(biphenyl-4-yl)-1H-pyrrol-3-yl]succinamic Acid

To a solution of N-(4(S)-benzyl-2,2-dimethyl-oxazolidin-3-yl)-3(S)-[3-(biphenyl-4-yl)-1H-pyrrol-3-yl]succinamic acid t-butyl ester (80 mg, 0.14 mmol) in THF (5 mL) was added 2M aqueous LiOH (5 mL). EtOH (few drops) and H\(_2\)O were added until a homogeneous solution was obtained. The resultant solution was heated at 50\(^{\circ}\)C. After 12 hours, the mixture was acidified with 6N HCl to pH1. After another 5.5 hours at 50\(^{\circ}\)C, the mixture was partitioned between EtOAc and 1M pH 7 phosphate buffer. The aqueous phase was separated and extracted with EtOAc two times. The combined organic layers were washed with brine, dried over Na\(_2\)SO\(_4\), and concentrated to a residue which, upon trituration with CH\(_2\)Cl\(_2\)/hex, provided 32 mg (49%) of pure N-(1(S)-benzyl-2-hydroxyethyl)-3(S)-[3-(biphenyl-4-yl)-1H-pyrrol-3-yl]succinamic acid as a white solid, mp 151-4\(^{\circ}\)C. \(^1\)H NMR: (DMSO-\(d_6\)): \(\delta\) 7.83 (d, 1H, J = 8.5 Hz), 7.74 (d, 2H, J = 8.8 Hz), 7.69 (d, 2H, J = 7.4 Hz), 7.59 (d, 2H, J = 8.8 Hz), 7.46 (t, 2H, J = 7.4 Hz), 7.38-7.31 (m, 2H), 7.28-7.13 (m, 6H), 6.22
(s, 1H), 4.81-4.70 (m, 1H), 3.89-3.78 (m, 2H), 2.85-2.69 (m, 2H). Anal. Calculated for
C$_{29}$H$_{28}$N$_2$O$_4$ ⋅ 0.4 H$_2$O: C, 73.21; H, 6.10; N, 5.89. Found: C, 73.39; H, 6.09; N, 5.93.

The starting material was furnished as follows:

\[\text{N-Biphenyl-4-yl-1H-pyrrole} \]

To a solution of 4-aminobiphenyl (1.0 g, 5.9 mmol) in 1,2-dichloroethane (20 mL)
was added TFA (0.46 ml, 5.9 mmol). To the resultant suspension of the TFA salt was added
2,5-dimethoxy-tetrahydrofuran (0.92 mL, 7.1 mmol). The suspension was heated at 75°C for
17 hours. The mixture was allowed to cool, partitioned between EtOAc and 1M pH 7
phosphate buffer, and the aqueous layer was extracted again with EtOAc. The
combined organic layers were dried over Na$_2$SO$_4$ and concentrated to a crude residue, which
was purified via flash column chromatography with 10-25% CH$_2$Cl$_2$/hex gradient eluent.
The purified material was triturated with MTBE/hex to give 800 mg (62%) of N-biphenyl-4-
yl-1H-pyrrole as an off-white solid, mp190-2°C. 1H NMR: δ 7.65 (d, 2H, $J = 8.5$ Hz), 7.61
(d, 2H, $J = 7.0$ Hz), 7.48-7.43 (m, 4H), 7.36 (t, 1H, $J = 7.0$ Hz), 7.14 (t, 2H, $J = 2.0$ Hz), 6.37
(t, 2H, $J = 2.0$ Hz). Anal. Calculated for C$_{18}$H$_{13}$N: C, 87.63; H, 5.98; N, 6.39. Found: C,
87.48; H, 6.01; N, 6.30.
N-(Biphenyl-4-yl)-3-bromo-1H-pyrrole

To a mixture of N-biphenyl-4-yl-1H-pyrrole (500 mg, 2.28 mmol), dimethylsulfide (0.25 mL, 3.4 mmol), CH$_2$Cl$_2$ (30 mL), and acetonitrile (10 mL) at -10°C was added dropwise a solution of bromine in CH$_2$Cl$_2$ (5 mL) over 15 minutes. The mixture was allowed to warm to 10°C over 2 hours. The resultant mixture was washed with 1M pH 7 phosphate buffer (50 mL) and extracted with CH$_2$Cl$_2$ (25 mL). The combined organic layers were dried over Na$_2$SO$_4$ and concentrated to a crude residue which was purified via flash column chromatography with 0-10% CH$_2$Cl$_2$/hex gradient eluant to furnish 240 mg (40%) of N-(biphenyl-4-yl)-3-bromo-1H-pyrrole as a white solid, mp 141-3°C. 1H NMR: δ 7.65 (d, 2H, J = 8.5 Hz), 7.59 (d, 2H, J = 8.1 Hz), 7.49-7.34 (m, 5H), 7.12 (s, 1H), 7.02 (t, 1H, J = 2.6 Hz), 6.36 (dd, 1H, J = 3.2, 1.7 Hz). Anal. Calculated for C$_{16}$H$_{12}$NBr: C, 64.45; H, 4.06; N, 4.70; Br, 26.80. Found: C, 64.37; H, 4.10; N, 4.64; Br, 26.69.

N-(4(S)-Benzyl-2,2-dimethyl-oxazolidin-3-yl)-oxamic Acid Ethyl Ester

MgSO$_4$ (4 g) was added to a solution of 2S-amino-3-phenyl-1-propanol (2.0 g, 3.12 mmol) in CH$_2$Cl$_2$ (30 mL) and acetone (15 mL). After 17 hours at ambient temperature, triethylamine (2 mL, 14.3 mmol) was added and the mixture cooled to -75°C. Ethyl oxalyl
chloride (1.5 mL) was added dropwise via syringe and the mixture was allowed to warm to ambient temperature over 4 hours. The mixture was filtered and the filtrate washed with 1M pH 7 phosphate buffer (50 mL). The aqueous layer was extracted with CH₂Cl₂ (25 mL). The combined CH₂Cl₂ layers were washed with brine, dried over Na₂SO₄, and concentrated to a minimal volume, which was diluted with MTBE and filtered. The filtrate was concentrated to an oily residue, which was dissolved in MTBE/ hex/ iso-octane and resulted in a gummy residue that was removed by decanting. The supernatant was concentrated to an oil which was passed through a short column of silica gel with 0-25%
EtOAc/ hex gradient eluant to provide 3.1 g (83%) of N-(4(S)-benzyl-2,2-dimethyl-oxazolidin-3-yl)-oxamic acid ethyl ester as a colorless oil. ¹H NMR: δ 7.35-7.22 (m, 3H), 7.19 (d, 2H, J = 7.4 Hz), 4.53-4.47 (m, 1H), 4.37-4.25 (m, 2H), 3.89 (m, 2H), 3.00 (dd, 1H, J = 4.4, 13.2 Hz), 2.82 (dd, 1H, J = 10.5, 13.1 Hz), 1.76 (s, 3H), 1.59 (s 3H), 1.38 (t, 3H, J = 7.0 Hz). Anal. Calculated for C₁₆H₂₁NO₄: C, 65.96; H, 7.26; N, 4.81. Found: C, 65.96; H, 7.26; N, 4.84.

1-(4(S)-Benzyl-2,2-dimethyl-oxazolidin-3-yl)-2-[1-(biphenyl-4-yl)-1H-pyrrol-3-yl]ethane-1,2-dione
To a solution of N-biphenyl-4-yl-3-bromo-1H-pyrrole (0.45g, 1.5 mmol) in dry THF (10 mL) at -78°C was added dropwise via syringe n-butyllithium (0.7 mL of 2.5M in hexanes). After 15 minutes at -78°C, the resultant mixture was transferred via cannula to a solution of N-(4(S)-benzyl-2,2-dimethyl-oxazolidin-3-yl)-oxamic acid ethyl ester (714 mg, 2.4 mmol) in dry THF at -90°C. The mixture warmed to -59°C over 15 minutes and then was cooled at -78°C for 45 minutes before quenching with saturated aqueous NH₄Cl (25 mL) and allowed to stir at ambient temperature. After 16 hours, the aqueous layer was separated and extracted with EtOAc (15 mL). The combined organic layers were washed with brine, dried over Na₂SO₄, and evaporated to give a residue which was purified via flash column chromatography with 0-1% EtOAc/CH₂Cl₂ gradient eluant. The purified product was triturated from MTBE/hex to obtain 300 mg (43%) of 1-(4(S)-benzyl-2,2-dimethyl-oxazolidin-3-yl)-2-[1-(biphenyl-4-yl)-1H-pyrrrol-3-yl]ethane-1,2-dione as an off-white solid, mp 150-2°C. ¹H NMR: δ 7.86 (s, 1H), 7.70 (d, 2H, J = 8.8 Hz), 7.61 (d, 2H, J = 7.0 Hz), 7.51-7.45 (m, 4H), 7.39 (t, 1H, J = 7.4 Hz), 7.32-7.23 (m, 2H), 7.17-7.13 (m, 3H), 7.10 (dd, 1H, J = 2.2, 2.9 Hz), 6.91 (dd, 1H, J = 1.7, 3.1 Hz), 4.53-4.48 (m, 1H), 3.87 (s, 2H), 3.00 (dd, 1H, J = 3.9, 12.7 Hz), 2.76 (dd, 1H, J = 10.7, 13.2 Hz), 1.85 (s, 3H), 1.67 (s, 3H). Anal. Calculated for C₃₀H₂₈N₂O₃: C, 77.56; H, 6.07; N, 6.03. Found: C, 77.61; H, 6.11; N, 6.05.
1-(4(S)-Benzyl-2,2-dimethyl-oxazolidin-3-yl)-2-[1-(biphenyl-4-yl)1H-pyrrol-3-yl]-2-hydroxy-ethanone

To a solution of 1-(4(S)-benzyl-2,2-dimethyl-oxazolidin-3-yl)-2-[1-(biphenyl-4-yl)-1H-pyrrol-3-yl]ethane-1,2-dione (250 mg, 0.54 mmol) in EtOAc (6 mL) and MeOH (2mL) at 0°C was added NaBH₄ (20 mg, 0.54 mmol). After 2.75 hours at 0°C, more NaBH₄ (20 mg, 0.54 mmol) was added. After 1.25 hours at 0°C, the reaction was quenched with HOAc (few drops) and H₂O (2mL). The pH was adjusted to 5 (by pH paper) with HOAc and partitioned between H₂O (25 mL) and EtOAc (25 mL). The organic layers were dried over Na₂SO₄ and concentrated to provide 0.25 g (99%) of 1-(4(S)-benzyl-2,2-dimethyl-oxazolidin-3-yl)-2-[1-(biphenyl-4-yl)1H-pyrrol-3-yl]-2-hydroxy-ethanone as a crisp foam.

¹H NMR: δ 7.65 (d, 2H, J = 8.5 Hz), 7.59 (d, 2H, J = 7.4 Hz), 7.48-7.19 (m, 10H), 7.14 (t, 1H, J = 2.0 Hz), 7.06 (t, 1H, J = 2.6 Hz), 6.31 (t, 1H, J = 2.4 Hz), 5.11 (d, 1H, J = 4.7 Hz), 4.29 (d, 1H, J = 6.6 Hz), 3.99-3.95 (m, 1H), 3.76 (d, 1H, J = 9.2 Hz), 3.60 (dd, 1H, J = 5.0, 8.6 Hz), 3.08-3.02 (m, 1H), 2.90 (dd, 1H, J = 10.5, 13.4 Hz), 1.82 (s, 3H), 1.60 (s, 3H). Anal. Calculated for C₃₀H₃₀N₂O₃ • 0.4 H₂O: C, 76.05; H, 6.55; N, 5.91. Found: C, 76.17; H, 6.66; N, 5.74.
2-Acetoxy-1-(4(S)-benzyl-2,2-dimethyl-oxazolidin-3-yl)-2-[(1-biphenyl-4-yl)-1H-pyrrol-3-yl]-ethanone

To a solution of 1-(4(S)-benzyl-2,2-dimethyl-oxazolidin-3-yl)-2-[1-(biphenyl-4-yl)1H-pyrrol-3-yl]-2-hydroxy-ethanone (867 mg, 1.86 mmol) in dry pyridine (5 mL) was added acetic anhydride (0.42 mL, 4.5 mmol). After 4.5 hours at ambient temperature, the mixture was partitioned between 1N aqueous NaHSO₄ (25 mL) and EtOAc (25 mL). The EtOAc layer was washed with 1N pH7 phosphate buffer (25 mL) two times, H₂O (25 mL), and brine (25 mL), dried over Na₂SO₄, and evaporated to give 0.91 g (100%) of 2-acetoxy-1-(4(S)-benzyl-2,2-dimethyl-oxazolidin-3-yl)-2-[1-(biphenyl-4-yl)-1H-pyrrol-3-yl]-ethanone as an amorphous solid that was used without further purification. An analytical sample was obtained upon flash column chromatography with 0-2% EtOAc/CH₂Cl₂ gradient eluent.

¹H NMR: δ 7.65 (d, 2H, J = 8.5 Hz), 7.62 (d, 2H, J = 7.0 Hz), 7.48-7.24 (m, 1H), 7.10 (t, 1H, J = 2.6 Hz), 6.46 (dd, 1H, J = 1.7, 2.8 Hz), 6.25 (s, 1H), 3.98-3.93 (m, 1H), 3.81 (d, 1H, J = 9.2 Hz), 3.64-3.60 (m, 1H), 3.42 (d, 1H, J = 13.6 Hz), 2.96 (dd, 1H, J = 11.6, 13.8 Hz), 2.22 (s 3H), 1.78 (s, 3H), 1.55 (s, 3H). Anal. Calculated for C₃₂H₃₂N₂O₄: C, 75.57; H, 6.34; N, 5.51. Found: C, 75.47; H, 6.37; N, 5.45.
To a mixture of crude 2-acetoxy-1-(4(S)-benzyl-2,2-dimethyl-oxazolidin-3-yl)-2-[1-(biphenyl-4-yl)-1H-pyrrol-3-yl]-ethanone (1.82 mmol) and 10% palladium on carbon (120 mg) in EtOAc (4.5 mL) and EtOH (4.5 mL) was added ammonium formate (0.58 g, 9.2 mmol). After 40 hours at ambient temperature, the resultant mixture was filtered and the filtrate concentrated to a residue which was dissolved in EtOAc, washed with 1M pH7 phosphate buffer, dried over Na₂SO₄, and evaporated under reduced pressure to give a crude product. Flash column chromatography with 0-4% EtOAc/CH₂Cl₂ gradient eluant yielded 220 mg (43%) of 1-(4(S)-benzyl-2,2-dimethyl-oxazolidin-3-yl)-2-[1-(biphenyl-4-yl)-1H-pyrrol-3-yl]-ethanone as a pale yellow amorphous solid. ¹H NMR: δ 7.62 (t, 4H, J = 9.4 Hz), 7.47 (d, 2H, J = 7.4 Hz), 7.42 (d, 2H, J = 8.5 Hz), 7.35 (t, 2H, J = 6.6 Hz), 7.30-7.21 (m, 4H), 7.08 (t, 1H, J = 2.6 Hz), 7.05 (s, 1H), 6.28 (t, 1H, J = 2.21 Hz), 4.16-4.10 (m, 1H), 3.82 (m, 2H), 3.62, 3.54 (AB quartet, 2H, J = 15.5 Hz), 3.07 (dd, 1H, J = 3.9, 13.8 Hz), 2.91 (dd, 1H, J = 9.9, 13.6 Hz), 1.78 (s, 3H), 1.59 (s, 3H). Anal. Calculated for C₃₆H₃₀N₂O₂ • 0.25 H₂O: C, 79.18; H, 6.76; N, 6.16. Found: C, 79.24; H, 6.79; N, 6.12.
N-(4(S)-Benzy1-2,2-dimethyl-oxazolidin-3-yl)-2[(S)-(biphenyl-4-yl]-1H-pyrrol-3-yl)succinamic Acid t-Butyl Ester

To a solution of 1-(4(S)-benzyl-2,2-dimethyl-oxazolidin-3-yl)-2-(biphenyl-4-yl-1H-pyrrol-3-yl)-ethanone (226 mg, 0.500 mmol) in dry THF (5 mL) at -78°C was added dropwise via syringe a solution of sodium hexamethyldisilazide (0.60 mL of 1M in THF). After 15 minutes at -78°C, to the resultant dark red mixture was added t-butyl bromoacetate (100 µL, 0.68 mmol). The mixture warmed to -50°C over 1 hour, then was quenched with 1M pH7 phosphate buffer, and allowed to warm to ambient temperature. The aqueous layer was separated and extracted with EtOAc. The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated to give a residue which was purified via flash column chromatography with 0-25% EtOAc/hex gradient eluant to afford 108 mg (38%) of N-(4(S)-benzyl-2,2-dimethyl-oxazolidin-3-yl)-2(R)-(biphenyl-4-yl-1H-pyrrol-3-yl)succinamic acid t-butyl ester as a colorless amorphous solid. ^1H NMR: δ 7.60 (t, 4H, J = 8.3 Hz), 7.46 (d, 2H, J = 7.4 Hz), 7.41 (d, 2H, J = 4.8 Hz), 7.36 (d, 2H, J = 8.1 Hz), 7.31 (d, 2H, J = 7.4 Hz), 7.21 (d, 2H, J = 8.1 Hz), 7.11 (t, 1H, J = 2.0 Hz), 7.03 (t, 1H, J = 2.6 Hz), 6.35 (dd, 1H, J = 1.7, 2.8 Hz), 4.56-4.50 (m, 1H), 4.33 (dd, 1H, J = 4.0, 10.3 Hz), 3.93-3.88 (m, 1H), 3.82 (d, 1H, J=9.2 Hz), 3.18 (dd, 1H, J = 10.5, 16.7 Hz), 2.96 (bd, 1H, J = 12.5 Hz),
2.73-2.63 (m, 2H), 1.71 (s, 3H), 1.57 (s, 3H), 1.44 (s, 9H). Anal. Calculated for C_{36}H_{40}N_{2}O_{4}: C, 76.57; H, 7.14; N, 4.96. Found: C, 76.31; H, 7.16; N, 4.93.

Example 14(a). N-[2,2-Dimethyl-1(S)-(methylcarbamoyl)propyl]-3(S)-[1-(4-fluorophenyl)-1H-pyrrol-3-yl]succinamic Acid

As described in Example 1(a), N-[2,2-dimethyl-1(S)-(methylcarbamoyl)propyl]-3(S)-[1-(4-fluorophenyl)-1H-pyrrol-3-yl]succinamic acid benzyl ester was hydrogenolyzed in EtOH after 1.5 hours. Trituration with MTBE/hex gave in quantitative yield N-[2,2-dimethyl-1(S)-(methylcarbamoyl)propyl]-3(S)-[1-(4-fluorophenyl)-1H-pyrrol-3-yl]succinamic acid as a colorless amorphous solid. \(^1\)H NMR: δ 7.27-7.23 (m, 2H), 7.07 (t, 2H, J = 8.6 Hz), 6.90-6.89 (m, 2H), 6.21 (t, 1H, J = 2.2 Hz), 6.13-6.10 (m, 1H), 4.24 (d, 1H, J = 9.6 Hz), 4.03 (dd, 1H, J = 5.2, 8.5 Hz), 3.14 (dd, 1H, J = 8.5, 16.6 Hz), 2.80 (dd, 1H, J = 5.7, 16.7 Hz), 2.72 (d, 3H, J = 4.8 Hz), 0.94 (s, 9H). Anal. Calculated for C_{21}H_{26}N_{2}O_{4}F: C, 63.17; H, 6.80; N, 10.09. Found: C, 62.89; H, 6.93; N, 9.81.
The starting material was prepared in the following fashion:

\[\text{2-(2,5-Dimethoxy-tetrahydrofuran-3-yl-methylidene)-1,3-dithiane} \]

According to a procedure described in Boger, D.L.; Brotherton, C.E. *J. Org. Chem.* 1984, 49, 4050-4055, to a solution of 2-trimethylsilyl-1,3-dithiane (1.2 mL, 6.3 mmol) in dry THF (40 mL) at 0°C was added n-butyllithium (4 mL of 1.6 M in hexanes). After 15 minutes at 0°C and 20 minutes at 4 mL of 1.6 M ambient temperature, a solution of 2,5-dimethoxtetrahydrofuran-3-carboxaldehyde (1.00 g, 6.00 mmol) in dry THF (10 mL) was added dropwise. After 17 hours at ambient temperature, the resultant mixture was treated with saturated aqueous NH₄Cl (10 mL) and partitioned between EtOAc and H₂O. The layers were separated and the aqueous phase was extracted with EtOAc:hex (1:1) two times. The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated to afford a residue which was purified via flash column chromatography with 10% EtOAc/hex as eluent to yield 1.06g (70%) of a mixture of diastereomeric 2-(2,5-dimethoxy-tetrahydrofuran-3-yl-methylidene)-1,3-dithiane as a yellow oil, which was used without any further purification. \(^1 \text{H NMR: } \delta \text{ 6.00 (d, 1H, } J = 9.6 \text{ Hz), 5.93 (d, 1H, } J = 9.6 \text{ Hz), 5.77 (d, 1H, } J = 9.6 \text{ Hz). Anal. Calculated for } C_{11}H_{18}O_3S_2: \text{ C, 50.35; H, 6.92; S, 24.44. Found: C, 50.07; H, 7.00; S, 24.33.} \)
Methyl 2-(2,5-Dimethoxy-tetrahydrofuran-3-yl)-acetate

Also according to a procedure from Boger, D.L.; Brotherton, C.E. J. Org. Chem. 1984, 49, 4050-4055, to a solution of 2-(2,5-dimethoxy-tetrahydrofuran-3-yl-methylidene)-1,3-dithiane (200 mg, 0.76 mmol) in a mixture of MeOH:THF:H₂O (8:1:1; 10 mL) was added mercuric chloride (450 mg, 1.66 mmol). Upon heating at 80°C, a white precipitate formed, and after 5 hours at 80°C, the mixture was filtered through Celite. The collected solid was washed with EtOAc followed by aqueous NH₄Cl. The filtrates were combined, and the biphasic mixture separated. The aqueous layer was extracted twice with EtOAc. The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated to yield 120 mg (77%) of methyl 2-(2,5-dimethoxy-tetrahydrofuran-3-yl)-acetate as an oil, which was a mixture of diastereomers as evident by NMR, and which was used without further purification. An analytical sample was obtained by flash column chromatography with 0-20% EtOAc/hex as gradient eluant. ¹H NMR: δ 3.68 (s, 3H), 3.67 (s, 3H). Anal. Calculated for C₉H₁₆O₅: C, 53.27; H, 7.90. Found: C, 53.11; H, 7.96.

2-[1-(4-Fluorophenyl)-1H-pyrrol-3-yl]-acetic Acid Methyl Ester

199
According to the procedure described in Example 1(e) for the preparation of N-(8-oxo-4-oxa-1,7-diaza-tricyclo[9.6.1.12,17]octadeca-11(18),12,14,16-tetraen-9-yl)-3-(3-phenyl-1H-pyrrol-1-yl)succinic acid benzyl ester, to a mixture of crude methyl 2-(2,5-dimethoxy-tetrahydrofuran-3-yl)-acetate (120 mg, -0.58 mmol) and 4-fluoroaniline (50 μL, 0.53 mmol) in 1,2-dichloroethane (10 mL) was added trifluoroacetic acid (0.2 mL, 0.26 mmol). After 16 hours at 80°C, the resultant mixture was partitioned between EtOAc and 1M pH 7 phosphate buffer. The separated aqueous layer was extracted with EtOAc. The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated to a crude oil, which was purified via flash column chromatography with 0-15% EtOAc/hex gradient eluant to yield 100 mg (77%) of 2-[1-(4-fluorophenyl)-1H-pyrrol-3-yl]-acetic acid methyl ester as an oil. ¹H NMR: δ 7.34-7.30 (m, 2H), 7.10 (t, 2H, J = 8.6 Hz), 6.96-6.94 (m, 2H), 6.28 (t, 1H, J = 2.2 Hz), 3.72 (s, 3H), 3.56 (s, 2H). Anal. Calculated for C₁₁H₁₂NO₂F • 0.6 H₂O: C, 63.98; H, 5.45; N, 5.74. Found: C, 64.01; H, 5.04; N, 5.65.

2-[1-(4-Fluorophenyl)-1H-pyrrol-3-yl]-acetic Acid

To a solution of 2-[1-(4-fluorophenyl)-1H-pyrrol-3-yl]-acetic acid methyl ester (100 mg, 0.43 mmol) in THF (1 mL) at 0°C was added dropwise 2N aqueous LiOH (0.5 mL). After warming to ambient temperature over 4 hours, the mixture was added dropwise to 0.5N
aqueous HCl (10 mL). The resultant light brown solid was collected by filtration, washed
with H₂O, and dried in vacuo over P₂O₅ to yield 700 mg (74%) of analytically pure 2-[(4-
fluorophenyl)-1H-pyrrol-3-yl]-acetic acid as a solid, mp 100-2°C. ¹H NMR: δ 7.34-7.30
(m, 2H), 7.10 (t, 2H, J = 8.6 Hz), 6.97-6.95 (m, 2H), 6.29 (t, 1H, J = 2.2 Hz), 3.60 (s, 2H).
Anal. Calculated for C₁₂H₁₀NO₂F • 0.15 H₂O: C, 64.95; H, 4.68; N, 6.31. Found: C,
65.03; H, 4.71; N, 6.25.

1-(4(S)-Benzyl-oxazolidin-2-on-3-yl)-2-[(4-fluorophenyl)-1H-pyrrol-3-yl]-ethanone

To a solution of (S)-(−)-4-benzyl-2-oxazolidinone (710 mg, 4 mmol) in dry THF (10
mL) at -78°C was added n-butyllithium (2.5 mL of 1.6 M in hexanes). In a separate reaction
vessel, to a solution of 2-[(4-fluorophenyl)-1H-pyrrol-3-yl]-acetic acid (920 mg, 4.2 mmol)
and triethylamine (0.7 mL, 5 mmol) in dry THF (20 mL) at -78°C was added dropwise
pivaloyl chloride (0.5 mL, 4 mmol). After stirring at -78° to 0°C over 1 hour, then recooling
to -78°C, the above solution was added via cannula. The resultant mixture was allowed to
warm to ambient temperature over 17 hours, then partitioned with EtOAc and aqueous
NH₄Cl. The separated aqueous phase was extracted with EtOAc. The combined
organic layers were washed with brine, dried over Na₂SO₄, and concentrated to an oil, which
was purified via flash column chromatography with 15-20% EtOAc/hex gradient eluant. The oily product crystallized from benzene to give 1.04 g (69%) of 1-(4(S)-benzyl-oxazolidin-2-on-3-yl)-2-[1-(4-fluorophenyl)-1H-pyrro1-3-yl]-ethanone as a solid, mp 106-8°C. 1H NMR: \(\delta\) 7.36-7.25 (m, 5H), 7.17-7.07 (m, 4H), 7.04 (s, 1H), 6.98 (t, 1H, \(J = 2.6\) Hz), 6.35 (dd, 1H, \(J = 1.8, 2.6\) Hz), 4.72-4.67 (m, 1H), 4.28-4.14 (m, 4H), 3.28 (dd, 1H, \(J = 3.3, 3.6\) Hz), 2.79 (dd, 1H, \(J = 9.4, 13.4\) Hz). Anal. Calculated for C\(_{22}\)H\(_{19}\)N\(_2\)O\(_3\)F: C, 69.83; H, 5.06; N, 7.40. Found: C, 69.80; H, 5.07; N, 7.30.

\textbf{1-(4(S)-Benzyl-oxazolidin-2-on-3-yl)-3(S)-(1-(4-fluorophenyl)-1H-pyrro1-3-yl)succinamic Acid Benzyl Ester}

According to the procedure described in Example 13 for the preparation of 1-(4(S)-benzyl-2,2-dimethyl-oxazolidin-3-yl)-3(S)-(1-biphenyl-4-yl-1H-pyrro1-3-yl)succinamic t-butyl ester, 1-(4(S)-benzyl-oxazolidin-2-on-3-yl)-2-[1-(4-fluoro-phenyl)-1H-pyrro1-3-yl]-ethanone was alkylated with benzyl bromoacetate to give 550 mg (50%) of 1-(4(S)-benzyl-oxazolidin-2-on-3-yl)-3(S)-(1-(4-fluorophenyl)-1H-pyrrol-3-yl)succinamic acid benzyl ester as an amorphous solid. 1H NMR: \(\delta\) 7.35-7.20 (m, 12H), 7.09 (t, 2H, \(J = 8.6\) Hz), 7.02 (t, 1H, \(J = 2.0\) Hz), 6.91 (t, 1H, \(J = 2.6\) Hz), 6.30 (dd, 1H, \(J = 1.8, 2.9\) Hz), 5.54 (dd, 1H, \(J = 4.0, 11.4\) Hz), 5.13 (s, 2H), 4.59-4.53 (m, 1H), 4.06 (d, 2H, \(J = 4.8\) Hz), 3.49 (dd, 1H, \(J = 11.4, 17.3\) Hz), 3.25 (dd, 1H, \(J = 2.8, 13.1\) Hz), 2.79 (dd, 1H, \(J = 4.1, 17.3\) Hz), 2.51 (dd, 1H, \(J = 10.1, 202\)
13.4 Hz). Anal. Calculated for C_{31}H_{27}N_{2}O_{3}F: C, 70.71; H, 5.17; N, 5.32. Found: C, 70.83; H, 5.27; N, 5.30.

2(S)-[1-(4-Fluorophenyl)-1H-pyrrol-3-yl]-succinic Acid 4-Benzyl Ester

To solution of 1-(4(S)-benzyl-oxazolidin-2-on-3-yl)-3(S)-[1-(4-fluorophenyl)-1H-pyrrol-3-yl]succinamic acid benzyl ester (900 mg, 1.7 mmol) in THF (15 mL) at 0°C was added 30% aqueous H_{2}O_{2} (0.8 mL, 6.8 mmol), followed by dropwise addition of 2N aqueous LiOH (1.7 mL). After stirring at 0°C for 1 hour, more 30% aqueous H_{2}O_{2} (0.04mL) and 2N aqueous LiOH (0.08 mL) were added. After 45 minutes at 0°C, the mixture was treated with a mixture of saturated aqueous NaHCO_{3} (10 mL) and 2N aqueous Na_{2}SO_{3} (5 mL). After 10 minutes at 0°C, the mixture was partitioned with EtOAc and 1M pH7 phosphate buffer. The aqueous phase was separated and extracted twice with EtOAc. The combined organic layers were washed with brine, dried over Na_{2}SO_{4}, and concentrated to an oil which was purified via flash column chromatography with a 0-5% MeOH/CH_{2}Cl_{2} gradient eluant to yield 320 mg (51%) of 2(S)-[1-(4-fluorophenyl)-1H-pyrrol-3-yl]succinic acid 4-benzyl ester as an oil. ^{1}H NMR: δ 7.36-7.26 (m, 7H), 7.10 (t, 2H, J = 8.6 Hz), 6.93-6.92 (m, 2H), 6.27 (t, 1H, J = 2.4 Hz), 5.14 (s, 2H), 4.14 (dd, 1H, J = 5.7, 9.4 Hz), 3.19 (dd, 1H, J = 9.6, 16.9 Hz),
2.81 (dd, 1H, J = 5.9, 16.9 Hz). Anal. Calculated for C_{21}H_{18}NO_{4}F · 0.5 H_2O: C, 67.01; H, 5.09; N, 3.72. Found: C, 66.96; H, 4.95; N, 3.63.

\[\text{N-[2,2-Dimethyl-1(S)-(methylcarbamoyl)propyl]-3(S)-(1-(4-fluorophenyl)-1H-pyrrolo-3-yl)succinic Acid Benzyl Ester} \]

According to the procedure described in Example 1(b) for the preparation of 3(R)-t-butoxycarbonylamo-N-(2,2-dimethyl-1(S)-(methylcarbamoyl)propyl)succinic acid benzyl ester, 2(S)-(1-(4-fluorophenyl)-1H-pyrrolo-3-yl)-succinic acid 4-benzyl ester and L-t-leucine N-methylamide (see Malon, P.; Pancoska, P.; Budesinsky, M.; Hlavacek, J.; Pospisek, J.; Blaha, K. *Coll. Czech. Chem. Commun.* **1983,** 48, 2844-2861) were coupled with TBTU. Flash column chromatography with 0-5% MeOH/CH_2Cl_2 as gradient eluant provided in 82% yield N-(2,2-dimethyl-1(S)-(methylcarbamoyl)propyl)-3(S)-(1-(4-fluorophenyl)-1H-pyrrolo-3-yl)succinic acid benzyl ester as a crisp foam. \(^1\text{H NMR: } \delta 7.34-7.26 \text{ (m, 7H), 7.10 (t, 2H, J = 8.6 Hz), 6.95 (t, 1H, J = 2.4 Hz), 6.89 (t, 1H, J = 2.0 Hz), 6.49 (d, 1H, J = 8.8 Hz), 6.23 (dd, 1H, J = 1.8, 3.0 Hz), 5.76-5.74 (m, 1H), 5.11 (s, 2H), 4.12 (d, 1H, J = 9.2 Hz), 4.00 (t, 1H, J = 7.2 Hz), 3.20 (dd, 1H, J = 7.7, 16.5 Hz), 2.84 (dd, 1H, J = 6.6, 16.6 Hz), 2.75 (d, 3H, J = 4.8 Hz), 0.95 (s, 9H). Anal. Calculated for C_{28}H_{32}N_{3}O_{4}F: C, 67.89; H, 6.55; N, 8.48. Found: C, 67.78; H, 6.52; N, 8.50.\]
The following compound was made in similar fashion:

Example 14(b). 3(S)-[1-(4'-Cyanobiphenyl-4-yl)-1H-pyrrol-3-yl]-N-[2,2-dimethyl-1(S)-(methylcarbamoyl)propyl]succinic Acid

![Chemical Structure](image)

According to the procedure described in Example 1(a), 3(S)-[1-(4'-cyanobiphenyl-4-yl)-1H-pyrrol-3-yl]-N-[2,2-dimethyl-1(S)-(methylcarbamoyl)propyl]succinic acid benzyl ester was hydrogenolyzed in EtOH/EtOAc after 6 hours to give in 87% yield 3(S)-[1-(4'-cyanobiphenyl-4-yl)-1H-pyrrol-3-yl]-N-[2,2-dimethyl-1(S)-(methylcarbamoyl)propyl]succinic acid as a colorless amorphous solid. 1H NMR: δ 7.74 (d, 2H, 8.5 Hz), 7.68 (d, 2H, 8.5 Hz), 7.63 (d, 2H, J = 8.5 Hz), 7.45 (d, 2H, J = 8.5 Hz), 7.08 (t, 1H, J = 2.4 Hz), 6.89-6.83 (m, 1H), 6.29 (t, 1H, J = 1.8 Hz), 5.77-5.71 (m, 1H), 4.17 (d, 1H, J = 9.2 Hz), 4.06-4.01 (m, 1H), 3.19 (dd, 1H, J = 8.6, 16.4 Hz), 2.85 (dd, 1H, J = 4.6, 16.4 Hz), 2.78 (d, 3H, J = 4.8 Hz), 0.96 (s, 9H). Anal. Calculated for $C_{28}H_{30}N_{4}O_{4}$ • 0.25 EtOAc • 0.2 $C_{6}H_{14}$: C, 68.98; H, 6.67; N, 10.66. Found: C, 68.91; H, 6.79; N, 10.64.
The starting material was furnished in the following fashion:

2-[1-(4'-Cyanobiphenyl-4-yl)-1H-pyrrol-3-yl]-acetic Acid Methyl Ester

According to the procedure described in Example 14(a) for the preparation of 2-[1-(4-fluorophenyl)-1H-pyrrol-3-yl]-acetic acid methyl ester, 4-amino-4-cyano-biphenyl (commercially available from TCI) and methyl 2-(2,5-dimethoxy-tetrahydrofuran-3-yl)acetate were condensed in 6 hours at 80°C to give a crude product. Successive flash column chromatography with EtOAc/CH₂Cl₂/hex gave in 60% yield 2-[1-(4'-cyanobiphenyl-4-yl)-1H-pyrrol-3-yl]-acetic acid methyl ester as an amorphous solid. ¹H NMR: δ 7.75 (d, 2H, J = 8.8 Hz), 7.69 (d, 2H, J = 8.8 Hz), 7.64 (d, 2H, J = 8.5 Hz), 7.48 (d, 2H, J = 8.8 Hz), 7.10-7.09 (m, 2H), 6.33 (t, 1H, J = 2.2 Hz), 3.73 (s, 3H), 3.58 (s, 2H). Anal. Calculated for C₂₀H₁₆N₂O₂: C, 75.93; H, 5.10; N, 8.86. Found: C, 75.86; H, 5.14; N, 8.90.

2-[1-(4'-Cyanobiphenyl-4-yl)-1H-pyrrol-3-yl]-acetic Acid

According to the procedure described in Example 14(a) for the preparation of 2-[1-(4-fluorophenyl)-1H-pyrrol-3-yl]-acetic acid, 2-[1-(4'-cyanobiphenyl-4-yl)-1H-pyrrol-3-yl]-
acetic acid methyl ester was hydrolyzed in 86% yield to 2-[(4'-cyanobiphenyl-4-yl)-1H-pyrrol-3-yl]-acetic acid as a solid, mp 201-204°C (d). 1H NMR (DMSO-d_6): δ 12.20 (bs, 1H), 7.92 (s, 4H), 7.84 (d, 2H, J = 8.8 Hz), 7.68 (d, 2H, J = 8.5 Hz), 7.40 (s, 1H), 7.35 (s, 1H), 6.22 (s, 1H), 3.41 (s, 2H). Anal. Calculated for C$_{19}$H$_{14}$N$_2$O$_2$: C, 74.81; H, 4.73; N, 9.18. Found: C, 74.90; H, 4.92; N, 9.12.

1-(4(S)-Benzyl-oxazolidin-2-on-3-yl)-2-[(4'-cyanobiphenyl-4-yl)-1H-pyrrol-3-yl]-ethanone

As in Example 14(a) for 1-(4(S)-benzyl-oxazolidin-2-on-3-yl)-2-[(4'-fluorophenyl)-1H-pyrrol-3-yl]-ethanone, 2-{1-(4'-cyanobiphenyl-4-yl)-1H-pyrrol-3-yl]-acetic acid and 4(S)-benzyl-2-oxazolidinone were coupled. Flash column chromatography with 10-25% EtOAc/hex to CH$_2$Cl$_2$ stepwise gradient eluant and subsequent trituration with EtOAc/MTBE/hex provided in 59% yield 1-(4(S)-benzyl-oxazolidin-2-on-3-yl)-2-[(4'-cyanobiphenyl-4-yl)-1H-pyrrol-3-yl]-ethanone as a pale yellow amorphous solid. 1H NMR: δ 7.75 (d, 2H, J = 8.8 Hz), 7.70 (d, 2H, J = 8.5 Hz), 7.65 (d, 2H, J = 8.8 Hz), 7.49 (d, 2H, J = 8.8 Hz), 7.32-7.25 (m, 3H), 7.17-7.15 (m, 3H), 7.12 (t, 1H, J = 2.8 Hz), 6.40 (dd, 1H, J = 1.7, 2.8 Hz), 4.74-4.68 (m, 1H), 4.31-4.16 (m, 4H), 3.29 (dd, 1H, J = 2.9, 13.6 Hz), 2.80 (dd, 1H J
\text{Anal. Calculated for C}_{29}\text{H}_{23}\text{N}_{3}\text{O}_{3}: C, 75.47; H, 5.02; N, 9.11. Found: C, 75.36; H, 5.08; N, 9.15.}

1-(4(S)-Benzyl-oxazolidin-2-on-3-yl)-3(S)-[1-(4'-cyanobiphenyl-4-yl)-1H-pyrrol-3-yl]succinic Acid Benzyl Ester

According to the procedure described in Example 14(a) for the preparation of 1-(4(S)-benzyl-oxazolidin-2-on-3-yl)-3(S)-[1-(4-fluorophenyl)-1H-pyrrol-3-yl]succinic acid benzyl ester, 1-(4(S)-benzyl-oxazolidin-2-on-3-yl)-2-[1-(4'-cyanobiphenyl-4-yl)-1H-pyrrol-3-yl]-ethanone was alkylated with benzyl bromoacetate. Flash column chromatography with 25\% EtOAc/hex and CH\textsubscript{2}Cl\textsubscript{2} as stepwise gradient eluant gave in 60\% yield 1-(4(S)-benzyl-oxazolidin-2-on-3-yl)-3(S)-[1-(4'-cyanobiphenyl-4-yl)-1H-pyrrol-3-yl]succinic acid benzyl ester as an amorphous solid. 1H NMR: δ 7.74 (d, 2H, J = 8.5 Hz), 7.68 (d, 2H, J = 8.8 Hz), 7.63 (d, 2H, J = 8.8 Hz), 7.45 (d, 2H, J = 8.5 Hz), 7.35-7.21 (m, 10H), 7.16 (t, 1H, J = 2.2 Hz), 7.05 (t, 1H, J = 2.8 Hz), 6.35 (dd, 1H, J = 1.8, 2.9 Hz), 5.57 (dd, 1H, J = 4.2, 11.2 Hz), 5.14 (s, 2H), 4.61-4.56 (m, 1H), 4.07 (d, 2H, J = 5.2 Hz), 3.51 (dd, 1H, J = 11.4, 17.3 Hz), 3.26 (dd, 1H, J = 2.9, 13.6 Hz), 2.81 (dd, 1H, J = 4.2, 17.1 Hz), 2.53 (dd, 1H, J = 10.1, 12.4 Hz).
13.4 Hz). Anal. Calculated for C_{38}H_{31}N_{3}O_{5}0.4\ H_{2}O: C, 73.98; H, 5.20; N, 6.81. Found: C, 73.87; H, 5.53; N, 6.63.

2(S)-[1-(4'-Cyanobiphenyl-4-yl)-1H-pyrrol-3-yl]succinic Acid 4-Benzyl Ester

According to the procedure described in Example 14(a) for the preparation of 2(S)-[1-(4-fluorophenyl)-1H-pyrrol-3-yl]succinic acid 4-benzyl ester, 1-(4(S)-benzyl-oxazolidin-2-on-3-yl)-3(S)-[1-(4'-cyanobiphenyl-4-yl)-1H-pyrrol-3-yl]succinamic acid benzyl ester was hydrolyzed and purified via flash column chromatography with a 25-75% EtOAc/hex to 5% MeOH/CH_{2}Cl_{2} gradient eluant to yield in 55% 2(S)-[1-(4'-cyanobiphenyl-4-yl)-1H-pyrrol-3-yl]succinic acid 4-benzyl ester as an oil, which had some residual 4(S)-benzyl-2-oxazolidine by NMR, and which was used without further purification. Analyses were performed on pure chromatography fractions. ^1H NMR: δ 7.74 (d, 2H, J = 8.5 Hz), 7.68 (d, 2H, J = 8.8 Hz), 7.63 (d, 2H, J = 8.5 Hz), 7.43 (d, 2H, J = 8.8 Hz), 7.32 (s, 5H), 7.07 (s, 1H), 7.06 (s, 1H), 6.33 (t, 1H, J = 2.4 Hz), 5.14 (s, 2H), 4.16 (dd, 1H, J = 5.7, 9.4 Hz), 3.21 (dd, 1H, J = 9.6, 16.9 Hz), 2.83 (dd, 1H, J = 5.9, 16.9 Hz). Anal. Calculated for C_{28}H_{22}N_{2}O_{4} \cdot 0.4\ H_{2}O: C, 73.48; H, 5.02; N, 6.12. Found: C, 73.38; H, 5.17; N, 6.00.
3(S)-[1-(4'-Cyanobiphenyl-4-yl)-1H-pyrrol-3-yl]-N-(2,2-dimethyl-1(S)-(methylcarbamoyl)propyl)succinamic Acid Benzyl Ester

According to the procedure described in Example 1(b) for the preparation of 3(R)-t-butoxycarbonylamino-N-(2,2-dimethyl-1(S)-(methylcarbamoyl)propyl)succinamic acid benzyl ester, 2(S)-[1-(4'-cyanobiphenyl-4-yl)-1H-pyrrol-3-yl]succinic acid 4-benzyl ester and L-t-leucine N-methylamide (see Malon, P.; Pancoska, P.; Budesinsky, M.; Hlavacek, J.; Pospisek, J.; Blaha, K. *Coll. Czech. Chem. Commun.* 1983, 48, 2844-2861) were coupled with TBTU. Successive flash column chromatography with 0-30% EtOAc/CH₂Cl₂ and 2-5% MeOH/CH₂Cl₂ gradient eluants, respectively, and radial chromatography with 0-40% EtOAc/hex gradient eluant furnished in 66% yield 3(S)-[1-(4'-cyanobiphenyl-4-yl)-1H-pyrrol-3-yl]-N-(2,2-dimethyl-1(S)-(methylcarbamoyl)propyl)succinamic acid benzyl ester as a crisp foam. ¹H NMR: δ 7.75 (d, 2H, J = 8.5 Hz), 7.69 (d, 2H, J = 8.5 Hz), 7.64 (d, 2H, J = 8.8 Hz), 7.44 (d, 2H, J = 8.5 Hz), 7.31 (s, 5H), 7.09 (t, 1H, J = 2.6 Hz), 7.04 (t, 1H, J = 1.8 Hz), 6.50 (bd, 1H, J = 9.6 Hz), 6.28 (dd, 1H, J = 1.7, 2.8 Hz), 5.70-5.67 (m, 1H), 5.12 (s, 2H), 4.13 (d, 1H, J = 9.2 Hz), 4.02 (t, 1H, J = 7.4 Hz), 3.23 (dd, 1H, J = 7.5, 16.7 Hz), 2.85 (dd, 1H, J = 6.8, 16.7 Hz), 2.76 (d, 3H, J = 4.8 Hz), 0.96 (s, 9H). Anal. Calculated for C₃₅H₃₆N₄O₄ • 0.5 H₂O: C, 71.77; H, 6.37; N, 9.57. Found: C, 71.73; H, 6.35; N, 9.54.

210
Example 14(c). 3(S)-[1-(4'-Cyanobiphenyl-4-yl)-1H-pyrrol-3-yl]-N-[1(S)-(1H-imidazol-2-yl)-3-methylbutyl]succinamic Acid

According to the procedure described in Example 1(a), 3(S)-[1-(4'-cyanobiphenyl-4-yl)-1H-pyrrol-3-yl]-N-[1(S)-(1H-imidazol-2-yl)-3-methylbutyl]succinamic acid benzyl ester was hydrogenolyzed in EtOH/THF for 3h to give a 54% yield of 3(S)-[1-(4'-cyanobiphenyl-4-yl)-1H-pyrrol-3-yl]-N-[1(S)-(1H-imidazol-2-yl)-3-methylbutyl]succinamic acid: mp 206-210 °C (dec); \(^1\)H NMR (DMSO-d\(_6\)): δ 12.0 (bs, 1H), 8.31 (d, 1H, J=8.45 Hz), 7.93 (s, 4H), 7.86 (d, 2H, J=8.5 Hz), 7.63 (d, 2H, J=8.8 Hz), 7.33-7.30 (m, 2H), 6.81 (s, 2H), 6.18 (s, 1H), 5.02 (dd, 1H, J=15.8, 8.8 Hz), 3.86 (dd, 1H, J=9.6, 4.8 Hz), 2.87 (dd, 1H, J=16.9, 10.3 Hz), 2.60 (dd, 1H, J=16.5, 4.8 Hz), 1.7-1.5 (m, 3H), 0.87 (d, 3H, J=6.6 Hz), 0.84 (d, 3H, J=5.9 Hz); HRFABMS Calculated for C\(_{29}\)H\(_{29}\)N\(_5\)O\(_3\)Cs (M+Cs): 628.1325 Found: 628.1335

The starting material was furnished in the following fashion:
3(S)-[1-(4'-Cyanobiphenyl-4-yl)-1H-pyrrol-3-yl]-N-[1(S)-(1H-imidazol-2-yl)-3-methylbutyl]succinamic Acid Benzyl Ester

According to the procedure described in Example 1(b) for the preparation of 3(R)-t-butoxycarbonylamino-N-(2,2-dimethyl-1(S)-(methylcarbamoyl)propyl)succinamic acid benzyl ester, 2(S)-[1-(4'-cyanobiphenyl-4-yl)-1H-pyrrol-3-yl]succinic acid 4-benzyl ester (prepared as described in Example 14(b)) and 2-(1(S)-amino-3-methyl-buty1)-imidazole (see Chen, J.J.; Zhang, Y.; Hammond, S.; Dewdney, N.; Ho, T.; Browner, M.F.; Castelhano, A.L., submitted for publication; and Abel-Meguid, S.S.; Metcalf B.W.; Caw, T.J.; DeMarsh, P.; Des Jarlais, R.L.; Fisher, S.; Green, D.W.; et al. Biochemistry, 1994, 33, 11671-11677) were coupled with TBTU to provide a 49% yield of 3(S)-[1-(4'-cyanobiphenyl-4-yl)-1H-pyrrol-3-yl]-N-[1(S)-(1H-imidazol-2-yl)-3-methylbutyl]succinamic acid benzyl ester: mp 186-188 °C (dec); 1H NMR (DMSO-d6) δ 11.79 (s, 1H), 8.40 (d, 1H, J=8.5 Hz), 7.92 (s, 4H), 7.85 (d, 2H, J=8.5 Hz), 7.62 (d, 2H, J=8.8 Hz), 7.34 (s, 5 H), 6.97 (s, 1H), 6.84 (s, 1H), 6.20 (s, 1H), 5.13-5.00 (m, 3H), 3.96 (dd, 1H, J=9.9, 5.5 Hz), 2.99 (dd, 1H, J=16.4, 10.8 Hz), 2.78 (dd, 1H, J=16.4, 5.0 Hz), 1.67-1.60 (m, 2H), 1.55-1.45 (m, 1H), 0.85 (d, 3H, J=6.6 Hz), 0.81 (d, 3H, J=6.3 Hz); Anal. Calculated for C_{36}H_{35}N_{5}O_{3}·H_{2}O: C, 71.62; H, 6.18; N, 11.60. Found: C, 71.50, 71.45; H, 5.97, 6.01; N, 11.51, 11.48.
Example 14(d). 3(S)[1-(4'-Cyanobiphenyl-4-yl)-1H-pyrrol-3-yl]-N-(4,4-dimethyl-2-oxo-tetrahydrofuran-3(S)-yl)succinic Acid

According to the procedure described in Example 1(a), 3(S)[1-(4'-cyanobiphenyl-4-yl)-1H-pyrrol-3-yl]-N-(4,4-dimethyl-2-oxo-tetrahydrofuran-3(S)-yl)succinic acid benzyl ester was hydrogenolyzed in EtOH/EtOAc for 3h to give a 81% yield of 3(S)[1-(4'-cyanobiphenyl-4-yl)-1H-pyrrol-3-yl]-N-(4,4-dimethyl-2-oxo-tetrahydrofuran-3(S)-yl)succinic acid: 1HNMR (DMSO-d$_6$): δ 12.2 (bs, 1H), 8.48 (d, 1H, J=8.8 Hz), 7.92 (s, 4H), 7.86 (d, 2H, J=8.5 Hz), 7.67 (d, 2H, J=8.5 Hz), 7.40 (s, 1H), 7.37 (s, 1H), 6.33 (s, 1H), 4.75 (d, 1H, J=8.8 Hz), 4.08, 4.00 (AB quartet, 2H, J=8.6 Hz), 3.97-3.92 (m, 1H), 3.01-2.92 (m, 1H), 2.64 (dd, 1H, J=16.54, 4.0 Hz), 1.05 (s, 3H), 0.97 (s, 3H); Anal. Calculated for C$_{27}$H$_{25}$N$_3$O$_5$•C$_5$H$_{12}$O (MTBE): C, 68.67; H, 6.66; N, 7.51. Found: 69.00, 68.91; H, 6.37, 6.42; N, 7.60, 7.52.
The starting material was furnished in the following fashion:

\[3(S)-[1-(4'-\text{Cyanobiphenyl}-4-yl)-1H-\text{pyrrol}-3-yl]-N-(4,4-\text{dimethyl}-2-\text{oxo-tetrahydrofuran}-3(S)-yl)\text{succinamic Acid Benzyl Ester} \]

According to the procedure described in Example 1(b) for the preparation 3(R)-t-butoxycarbonylamino-N-(2,2-dimethyl-1(S)-(methylcarbamoyl)propyl)succinic acid benzyl ester, 2(S)-[1-(4'-cyanobiphenyl-4-yl)-1H-pyrrol-3-yl]succinic acid 4-benzyl ester (prepared as described in Example 14(b)) and 3(R)-amino-4,4-dimethyl-2-oxo-tetrahydrofuran (see Freskos, J. N. Syn Commun. 1994, 24, 557-563) were coupled using TBTU with N-methylmorpholine as the base to provide a mixture of diastereomers which were separated using chromatography on silica gel column with 0 to 5% MeOH gradient in CH₂Cl₂. Mixed fraction was repurified on a chromatotron using 0-2.5% MeOH/CH₂Cl₂ then 0-1.25% MeOH/CH₂Cl₂ as eluent to obtain 3(S)-[1-(4'-cyanobiphenyl-4-yl)-1H-pyrrol-3-yl]-N-(4,4-dimethyl-2-oxo-tetrahydrofuran-3(S)-yl)succinamic acid benzyl ester in 29% yield as an amorphous solid: \(^1 \text{H NMR (CDCl}_3 \text{):} \delta 7.75 (d, 2H, 8.1 \text{ Hz}), 7.69 (d, 2H, J=8.5 \text{ Hz}), 7.64 (d, 2H, J=8.5 \text{ Hz}), 7.46 (d, 2H, J=8.5 \text{ Hz}), 7.32 (s, 5H), 7.13 (s, 1H), 7.09 (t, 1H, J=2.2 \text{ Hz}), 6.32 (s, 1H), 6.06 (d, 1H, J=7.7 \text{ Hz}), 5.13 (s, 2H), 4.67 (d, 1H, J=7.7 \text{ Hz}), 4.08-4.01 (m, 3H), 3.31 (dd, 1H, J=16.9, 8.5 \text{ Hz}), 2.82 (dd, 1H, J=16.7, 6.1 \text{ Hz}), 1.23 (s, 3H), 0.98
(s, 3H); Anal. Calculated for C₃₄H₃₁N₅O₅•0.2 H₂O: C, 72.25; H, 5.60; N, 7.43. Found: 72.32, 72.26; H, 5.88, 5.91; N, 7.07, 7.02.

Example 15(a). N-((1(S)-Benzy1-2-hydroxyethyl)-3(S)-(2-(biphenyl-4-yl)furan-5-yl)succinamic Acid

\[
\text{HO} \quad \text{NH} \quad \text{OH}
\]

To a solution of N-((4(S)-benzy1-2,2-dimethyl-oxazolidin-3-yl)-3(S)-(2-biphenyl-4-yl)furan-5-yl)succinamic acid t-butyl ester (240 mg, 0.42 mmol) in CH₂Cl₂ (6 mL) was added trifluoroacetic acid (3 mL). After 30 minutes at ambient temperature, the mixture was partitioned between CH₂Cl₂/pH7 phosphate buffer. The organic layer was washed with pH7 phosphate buffer and brine, dried over Na₂SO₄, and evaporated to give a residue which was purified via flash column chromatography with 0-1%HOAc/10%MeOH/CH₂Cl₂ gradient eluant. The purified product was triturated with CH₂Cl₂/hex to obtain 40 mg (20%) of N-((1(S)-benzy1-2-hydroxyethyl)-3(S)-(2-(biphenyl-4-yl)furan-5-yl)succinamic acid as a pale yellow solid. \(^1\)H NMR (DMSO-d₆): 6 8.12 (bm, 1H), 7.74-7.68 (m, 6H), 7.46 (t, 2H, J = 7.5 Hz), 7.35 (t, 1H, J = 7.4 Hz), 7.25-7.12 (m, 5H), 6.86 (d, 1H, J = 3.3 Hz), 6.26 (d, 1H, J = 3.0 Hz), 4.04 (t, 1H, J = 7.5 Hz), 3.89-3.84 (m, 1H), 2.83 (dd, 1H, J = 5.7, 13.8 Hz), 2.71-2.59 (m, 3H). Anal. Calculated for C₂₉H₂₉NO₅ • H₂O: C, 71.44; H, 6.00; N, 2.87. Found: C, 71.51; H, 5.78; N, 2.92.
The starting material was furnished in the following fashion:

2,4-Diphenyl-4-yl-furan

To a mixture of 4-bromobiphenyl (1.00 g, 4.80 mmol) and bis(triphenylphosphine)palladium(II) chloride (0.3 g, 0.4 mmol) in THF (10 mL) was added 2-tributylstannylfuran (1.6 mL, 5.0 mmol). After heating at reflux for 1 h, the resultant mixture was concentrated to a residue which was dissolved in minimal CH₂Cl₂ and applied to a flash chromatography column. Elution with 10% CH₂Cl₂/hex led to isolation of a mixture, which upon successive triturations with hexanes or pentane gave pure product. The mother liquor was partitioned with acetonitrile and hexanes. The separated acetonitrile layer was evaporated to obtain more pure product. A total of 0.55 g (58%) of pure 2-biphenyl-4-yl-furan as pale yellow solid, mp 155-7°C (d), was made. ¹H NMR: δ 7.75 (d, 2H, J = 8.1 Hz), 7.63 (d, 4H, J = 8.5 Hz), 7.49-7.43 (m, 3H), 7.35 (t, 1H, J = 7.0 Hz), 6.69 (d, 1H, J = 3.3 Hz), 6.50 (dd, 1H, J = 1.5, 3.3 Hz). Anal. Calculated for C₁₆H₁₂O: C, 87.25; H, 5.49. Found: C, 87.16; H, 5.49.
According to the procedure described in Example 13 for the preparation of 1-(4(S)-benzyl-2,2-dimethyl-oxazolidin-3-yl)-2-(biphenyl-4-yl-furan-5-yl)ethane-1,2-dione, 2-biphenyl-4-yl-furan was deprotonated and alkylated with N-(4(S)-benzyl-2,2-dimethyl-oxazolidin-3-yl)-oxamic acid ethyl ester to give in 57% yield 1-(4(S)-benzyl-2,2-dimethyl-oxazolidin-3-yl)-2-(2-biphenyl-4-yl-furan-5-yl)ethane-1,2-dione as a pale yellow amorphous solid. 1H NMR: δ 7.91 (d, 2H, $J = 8.1$ Hz), 7.69 (d, 2H, $J = 8.1$ Hz), 7.64 (d, 2H, $J = 8.1$ Hz), 7.49-7.36 (m, 4H), 7.25-7.10 (m, 5H), 6.85 (d, 1H, $J = 4.0$ Hz), 4.62-4.57 (m, 1H), 3.91 (m, 2H), 3.00 (dd, 1H, $J = 5.0$, 13.0 Hz), 3.82 (dd, 1H, $J = 10.1$, 13.2 Hz), 1.86 (s, 3H), 1.68 (s, 3H). Anal. Calculated for $C_{36}H_{27}NO_4$: C, 77.40; H, 5.85; N, 3.01. Found: C, 77.43; H, 5.88; N, 3.06.
1-(4(S)-Benzyl-2,2-dimethyl-oxazolidin-3-yl)-2-(2-biphenyl-4-yl-furan-5-yl)-2-hydroxy-ethanone

According to the procedure described in Example 13 for the preparation of 1-(4(S)-benzyl-2,2-dimethyl-oxazolidin-3-yl)-2-(biphenyl-4-yl-1H-pyrrol-3-yl)-2-hydroxy-ethanone, 1-(4(S)-benzyl-2,2-dimethyl-oxazolidin-3-yl)-2-(2-biphenyl-4-yl-furan-5-yl)ethane-1,2-dione was reduced with NaBH₄ to give in quantitative yield 1-(4(S)-benzyl-2,2-dimethyl-oxazolidin-3-yl)-2-(2-biphenyl-4-yl-furan-5-yl)-2-hydroxy-ethanone. ¹H NMR: δ 7.70 (d, 2H, J = 7.7 Hz), 7.61 (d, 4H, J = 8.5 Hz), 7.45 (t, 2H, J = 7.4 Hz), 7.38-7.19 (m, 6H), 6.64 (d, 1H, J = 2.9 Hz), 6.43 (d, 1H, J = 3.3 Hz), 5.08 (d, 1H, J = 6.6 Hz), 4.45 (d, 1H, J = 7.0 Hz), 3.88-3.85 (m, 1H), 3.78 (d, 1H, J = 8.8 Hz), 3.63 (dd, 1H, J = 5.2, 8.8 Hz), 3.03 (dd, 1H, J = 4.2, 13.1 Hz), 2.89 (dd, 1H, J = 9.8, 13.4 Hz), 1.83 (s, 3H), 1.58 (s, 3H). Anal. Calculated for C₃₀H₂₉NO₄ • 0.5 H₂O: C, 75.61; H, 6.34; N, 2.94. Found: C, 75.62; H, 6.32; N, 2.88.
2-Acetoxy-1-(4(S)-benzyl-2,2-dimethyl-oxazolidin-3-yl)-2-(2-biphenyl-4-yl-furan-5-yl)-ethanone

According to the procedure described in Example 13 for the preparation of 2-acetoxy-1-(4(S)-benzyl-2,2-dimethyl-oxazolidin-3-yl)-2-(biphenyl-4-yl-1H-pyrrol-3-yl)-ethanone, 1-(4(S)-benzyl-2,2-dimethyl-oxazolidin-3-yl)-2-(2-biphenyl-4-yl-furan-5-yl)-2-hydroxy-ethanone was acylated to furnish in quantitative yield 2-acetoxy-1-(4(S)-benzyl-2,2-dimethyl-oxazolidin-3-yl)-2-(2-biphenyl-4-yl-furan-5-yl)-ethanone as an off white solid, mp 120-8°C, which was used without further purification. \(^1\)H NMR: \(\delta\) 7.75 (d, 2H, \(J = 8.5\) Hz), 7.66-7.62 (m, 4H), 7.46 (t, 2H, \(J = 7.4\) Hz), 7.39-7.22 (m, 6H), 6.70 (d, 1H, \(J = 3.7\) Hz), 6.62 (d, 1H, \(J = 3.3\) Hz), 6.39 (s, 1H), 3.86-3.79 (m, 2H), 3.64-3.60 (m, 1H), 3.39 (d, 1H, \(J = 14.0\) Hz), 2.96 (dd, 1H, \(J = 11.4, 14.0\) Hz), 2.25 (s, 3H), 1.78 (s, 3H). Anal. Calculated for C\(_{32}\)H\(_{31}\)NO\(_5\): C, 75.42; H, 6.13; N, 2.75. Found: C, 75.27; H, 6.22; N, 2.65.
1-(4(S)-Benzyl-2,2-dimethyl-oxazolidin-3-yl)-2-(2-biphenyl-4-yl-furan-5-yl)-ethanone

According to the procedure described in Example 13 for the preparation of 1-(4(S)-benzyl-2,2-dimethyl-oxazolidin-3-yl)-2-(biphenyl-4-yl-1H-pyrrolo-3-yl)-ethanone, 2-acetoxy-1-(4(S)-benzyl-2,2-dimethyl-oxazolidin-3-yl)-2-(2-biphenyl-4-yl-furan-5-yl)-ethanone was hydrogenolyzed to provide in 42% yield 1-(4(S)-benzyl-2,2-dimethyl-oxazolidin-3-yl)-2-(2-biphenyl-4-yl-furan-5-yl)-ethanone as an amorphous solid. 1H NMR: δ 7.68 (d, 2H, $J = 8.1$ Hz), 7.62-7.58 (m, 4H), 7.44 (t, 2H, $J = 7.5$ Hz), 7.37-7.25 (m, 6H), 6.64 (d, 1H, $J = 3.3$ Hz), 6.32 (d, 1H, $J = 2.9$ Hz), 4.17-4.14 (m, 1H), 3.87 (m, 2H), 3.77, 3.65 (AB quartet, 2H, $J = 15.8$ Hz), 3.09 (dd, 1H, $J = 4.8, 13.6$ Hz), 2.94 (dd, 1H, $J = 9.6, 13.6$ Hz), 1.78 (s, 3H), 1.59 (s, 3H). Anal. Calculated for C$_{30}$H$_{29}$NO$_3$: C, 79.80; H, 6.47; N, 3.10. Found: C, 79.72; H, 6.49; N, 3.03.
N-(4(S)-Benzyl-2,2-dimethyl-oxazolidin-3-yl)-3(R)-(2-biphenyl-4-yl-furan-5-yl)succinamic Acid t-Butyl Ester

According to the procedure described in Example 13 for the preparation of N-(4(S)-benzyl-2,2-dimethyl-oxazolidin-3-yl)-3(R)-(1-biphenyl-4-yl-1H-pyrrol-3-yl)succinamic acid t-butyl ester, 1-(4(S)-benzyl-2,2-dimethyl-oxazolidin-3-yl)-2-(2-biphenyl-4-yl-furan-5-yl)-ethanone was deprotonated with sodium hexamethyldisilazide and alkylated to furnish in 74% yield N-(4(S)-benzyl-2,2-dimethyl-oxazolidin-3-yl)-3(R)-(2-biphenyl-4-yl-furan-4-yl)succinamic acid t-butyl ester. \(^1\)H NMR: 6 7.65 (d, 2H, J = 8.5 Hz), 7.57 (t, 4H, J = 8.3 Hz), 7.43 (t, 2H, J = 7.4 Hz), 7.35-7.22 (m, 6H), 6.63 (d, 1H, J = 3.3 Hz), 6.36 (d, 1H, J = 3.3 Hz), 4.88-4.52 (m, 2H), 3.96-3.87 (m, 2H), 3.24 (dd, 1H, J = 10.9, 17.1 Hz), 3.04 (d, 1H, J = 11.4 Hz), 2.88-2.81 (m, 2H), 1.72 (s, 3H), 1.44 (s, 3H). Anal. Calculated for C_{36}H_{39}NO_{5} \bullet 0.25 H_{2}O: C, 75.83; H, 6.98; N, 2.46. Found: C, 75.83; H, 6.97; N, 2.46.
Example 15(b). N-[2,2-Dimethyl-1(S)-(methylcarbamoyl)propyl]-3-(2-(biphenyl-4-yl)-furan-5-yl)succinic Acid

According to the procedure described in Example 15(a) for the preparation of N-(1(S)-benzyl-2-hydroxyethyl)-3(S)-(2-biphenyl-4-yl-furan-5-yl)succinic acid, N-[2,2-dimethyl-1(S)-(methylcarbamoyl)propyl]-3-(2-(biphenyl-4-yl)-furan-5-yl)succinic acid t-butyl ester was deprotected with trifluoroacetic acid in CH$_2$Cl$_2$ after 1 hour. Trituration of crude with MTBE/hex provided in 48% yield N-[2,2-dimethyl-1(S)-(methylcarbamoyl)propyl]-3-(2-(biphenyl-4-yl)-furan-5-yl)succinic acid as a rust-colored amorphous solid. 1H NMR (CD$_3$CN): δ 7.75 (d, 2H, J = 8.5 Hz), 7.69-7.66 (m, 4H), 7.47 (t, 2H, J = 7.2 Hz), 7.37 (t, 1H, J = 7.2 Hz), 6.91 (d, 1H, J = 7.7 Hz), 6.77 (d, 1H, J = 3.3 Hz), 6.56 (bs, 1H), 6.39 (d, 1H, J = 3.3 Hz), 4.24-4.19 (m, 1H), 4.12 (d, 1H, J = 9.2 Hz), 3.17-3.08 (m, 1H), 2.82 (dd, 1H, J = 5.0, 17.1 Hz), 2.67 (d, 3H, J = 4.8 Hz), 0.86 (s, 9H). HRFABMS: Calculated for C$_{27}$H$_{31}$N$_2$O$_5$ (M +H$^+$) 463.2233. Found: 463.2236.

The starting material was furnished in the following fashion:
2-(2-Biphenyl-4-y1-furan-5-y1)-2-oxoacetic Acid Ethyl Ester

According to the procedure described in Example 13 for the preparation of 1-(4(S)-
benzyl-2,2-dimethyl-oxazolidin-3-yl)-2-(biphenyl-4-y1-1H-pyrrol-3-yl)ethane-1,2-dione, 2-
biphenyl-4-y1-furan was deprotonated and alkylated with diethyl oxalate to give in 74% yield
2-(2-biphenyl-4-y1-furan-5-y1)-2-oxoacetic acid ethyl ester as a yellow solid, mp 91-94°C.

1H NMR: δ 7.94 (d, 2H, J = 8.5 Hz), 7.83 (d, 1H, J = 4.1 Hz), 7.69 (d, 2H, J = 8.1 Hz), 7.64
(d, 2H, J = 7.7 Hz), 7.47 (t, 2H, J = 7.4 Hz), 7.39 (t, 1H, J = 7.2 Hz), 6.90 (d, 1H, J = 4.2 Hz),
4.44 (q, 2H, J = 7.0 Hz), 1.45 (t, 3H, J = 7.2 Hz). Anal. Calculated for C$_{20}$H$_{16}$O$_4$: C, 74.99;
H, 5.03. Found: C, 75.11; H, 5.07.

2-(2-Biphenyl-4-y1-furan-5-y1)-2-hydroxy-acetic Acid Ethyl Ester

223
According to the procedure described in Example 13 for the preparation of 1-(4(S)-benzyl-2,2-dimethyl-oxazolidin-3-yl)-2-(biphenyl-4-yl-1H-pyrrol-3-yl)-2-hydroxy-ethanone, 2-(2-biphenyl-4-yl-furan-5-yl)-2-oxoacetic acid ethyl ester was reduced with NaBH₄ to give in quantitative yield 2-(2-biphenyl-4-yl-furan-5-yl)-2-hydroxy-acetic acid ethyl ester as a yellow solid, mp 75-80°C (d), which was used crude without purification. ¹H NMR: δ 7.73 (d, 2H, J = 8.5 Hz), 7.62 (d, 4H, J = 8.1 Hz), 7.45 (t, 2H, J = 7.4 Hz), 7.35 (t, 1H, J = 7.4 Hz), 6.66 (d, 1H, J = 3.3 Hz), 6.48 (d, 1H, J = 3.3 Hz), 5.24 (d, 1H, J = 5.9 Hz), 4.36-4.28 (m, 2H), 3.42 (d, 1H, J = 6.3 Hz), 1.30 (t, 3H, J = 7.2 Hz).

2-Acetoxy-2-(2-biphenyl-4-yl-furan-5-yl)-acetic Acid Ethyl Ester

According to the procedure described in Example 13 for the preparation of 2-acetoxy-1-(4(S)-benzyl-2,2-dimethyl-oxazolidin-3-yl)-2-(biphenyl-4-yl-1H-pyrrol-3-yl)-ethanone, 2-(2-biphenyl-4-yl-furan-5-yl)-2-hydroxy-acetic acid ethyl ester was acylated to furnish in 83% yield 2-acetoxy-2-(2-biphenyl-4-yl-furan-5-yl)-acetic acid ethyl ester which was used without purification. Flash column chromatography with 0-20% EtOAc/hex as eluant gave an analytically pure pink solid, mp 136-140°C. ¹H NMR: δ 7.74 (d, 2H, J = 8.5 Hz), 7.63 (d, 4H, J = 8.5 Hz), 7.46 (t, 2H, J = 7.4 Hz), 7.36 (t, 1H, J = 7.2 Hz), 6.68 (d, 1H, J = 3.7 Hz), 6.58
(d, 1H, J = 3.3 Hz), 6.57 (s, 1H), 4.29 (q, 2H, J = 7.0 Hz), 2.21 (s, 3H), 1.29 (t, 3H, J = 7.2 Hz). Anal. Calculated for C_{22}H_{20}O_{5}: C, 72.51; H, 5.53. Found: C, 72.61; H, 5.63.

2-(2-Biphenyl-4-yl-furan-5-yl)-acetic Acid Ethyl Ester

According to the procedure described in Example 13 for the preparation of (4(S)-benzyl-2,2-dimethyl-oxazolidin-3-yl)-2-(biphenyl-4-yl-1H-pyrrol-3-yl)-ethanone, 2-acetoxy-2-(2-biphenyl-4-yl-furan-5-yl)-acetic acid ethyl ester was hydrogenolyzed to provide in 61% yield 2-(2-biphenyl-4-yl-furan-5-yl)-acetic acid ethyl ester as a white solid, mp 77-78°C. \(^1\)H NMR: \(\delta\) 7.71 (d, 2H, J = 8.5 Hz), 7.63-7.59 (m, 4H), 7.45 (t, 2H, J = 7.4 Hz), 7.35 (t, 1H, J = 7.4 Hz), 6.64 (d, 1H, J = 2.9 Hz), 6.34 (d, 1H, J = 3.3 Hz), 4.22 (q, 2H, J = 7.2 Hz), 3.76 (s, 2H), 1.30 (t, 3H, J = 7.2 Hz). Anal. Calculated for C_{20}H_{18}O_{3}: C, 78.41; H, 5.92. Found: C, 78.16; H, 5.92.

2-(2-Biphenyl-4-yl-furan-5-yl)-acetic Acid
To a solution of 2-(2-biphenyl-4-y1-furan-5-yl)-acetic acid ethyl ester (0.465 g, 1.44 mmol) in THF (10 mL) at 0°C was added 2M aqueous LiOH (2 mL). The mixture was allowed to warm over 4 hours to ambient temperature and then poured into 0.5M aqueous HCl (50 mL). The resultant pale orange precipitate was filtered off, rinsed with water, and dried under vacuum over P₂O₅ to provide 400 mg (100%) of 2-(2-biphenyl-4-y1-furan-5-yl)-acetic acid as a light orange solid, mp 196-210°C, used without further purification. ¹H NMR (acetone-d₆): δ 7.78 (d, 2H, J = 8.1 Hz), 7.72-7.67 (m, 4H), 7.46 (t, 2H, J = 7.4 Hz), 7.35 (t, 1H, J = 7.4 Hz), 6.84 (d, 1H, J = 3.3 Hz), 6.41 (d, 1H, J = 3.3 Hz), 3.81 (s, 2H). Anal. Calculated for C₁₈H₁₄O₃: C, 77.68; H, 5.07. Found: C, 77.44; H, 5.16.

N-[2,2-Dimethyl-1(S)-(N-methyl-carbamoyl)-propyl]-2-(2-biphenyl-4-y1-furan-5-yl)-acetamide

According to the procedure described in Example 1(f) for the preparation of N-(1(S)-benzyl-2-methoxy-ethyl)-3(R)-t-butoxycarbonyl-amino-succinamic acid benzyl ester, 2-(2-biphenyl-4-y1-furan-5-yl)-acetic acid was coupled to L-t-leucine N-methylamide trifluoroacetic acid salt with BOP. Flash column chromatography with 0-5% MeOH/CH₂Cl₂ gradient eluant provided in 58% yield N-[2,2-dimethyl-1(S)-(N-methyl-carbamoyl)-propyl]-2-(2-biphenyl-4-y1-furan-5-yl)-acetamide as an orange foam, which decomposed >75°C and was used without further purification. ¹H NMR (acetone-d₆): δ 7.72 (d, 2H, J = 8.5 Hz), 7.61
(d, 4H, J = 7.7 Hz), 7.45 (t, 2H, J = 7.5 Hz), 7.35 (t, 1H, J = 7.4 Hz), 6.65 (d, 1H, J = 3.3 Hz), 6.56 (d, 1H, J = 9.2 Hz), 6.36 (d, 1H, J = 3.3 Hz), 5.93 (bs, 1H), 4.22 (d, 1H, J = 9.2 Hz), 3.71 (s, 2H), 2.79 (d, 3H, J = 4.5 Hz), 0.94 (s, 9H). Anal. Calculated for C_{25}H_{28}N_{2}O_{3} • 0.6 H_{2}O • 0.1 MTBE: C, 72.21; H, 7.23; N, 6.61. Found: C, 72.10; H, 6.97; N, 6.39.

N-(2,2-Dimethyl-1(S)-(methylcarbamoyl)propyl)-3-(2-(biphenyl-4-yl)-furan-5-yl)succinamic Acid t-Butyl Ester

![Chemical Structure]

According to the procedure described in Example 13 for the preparation of N-(4(S)-benzyl-2,2-dimethyl-oxazolidin-3-yl)-2(R)-(biphenyl-4-yl-1H-pyrrol-3-yl)succinamic acid t-butyl ester, but N-(2,2-dimethyl-1(S)-(N-methylcarbamoyl)-propyl)-2-(2-biphenyl-4-yl-furan-5-yl)-acetamide was instead deprotonated with n-butyllithium (3.1 equiv) and alkylated to furnish 17 mg (7%) of N-(2,2-dimethyl-1(S)-(methylcarbamoyl)propyl)-3-(2-(biphenyl-4-yl)-furan-5-yl)succinamic acid t-butyl ester as an amorphous solid. 1H NMR: δ 7.70 (d, 2H, J = 8.1 Hz), 7.62-7.59 (m, 4H), 7.45 (t, 2H, J = 7.5 Hz), 7.35 (t, 1H, J = 7.4 Hz), 6.63 (d, 1H, J = 3.3 Hz), 6.50 (d, 1H, J = 9.6 Hz), 6.33 (d, 1H, J = 3.3 Hz), 5.09 (bm, 1H), 4.19-4.10 (m, 2H), 3.15 (dd, 1H, J = 8.5, 16.6 Hz), 2.86-2.73 (m, 4H), 1.41 (s, 9H), 0.89 (s, 9H). HRMS: Calculated for C_{31}H_{39}N_{2}O_{5} (M +H^+): 519.2859. Found: 519.2865.
Example 16. N-(1(S)-Benzyl-2-hydroxyethyl)-3(R)-[4-(biphenyl-4-yl)-pyrazol-1-yl]succinamic Acid

According to the procedure described in Example 1(a), N-(1(S)-benzyl-2-hydroxyethyl)-3(R)-[4-(biphenyl-4-yl)pyrazol-1-yl]succinamic acid benzyl ester was hydrogenolyzed to obtain in 74% yield N-(1(S)-benzyl-2-hydroxyethyl)-3(R)-[4-(biphenyl-4-yl)pyrazol-1-yl]succinamic acid as a white solid, mp 154-9°C. \(^1\)H NMR (D\(_2\)COOD): \(\delta\) 8.17 (s, 1H), 8.06 (s, 1H), 7.64-7.67 (m, 6H), 7.49 (t, 2H, J = 7.5 Hz), 7.38 (t, 1H, J = 7.0 Hz), 7.29-7.16 (m, 5H), 5.60 (t, 1H, J = 7.2 Hz), 4.32-4.28 (m, 1H), 3.79-3.65 (m, 2H), 3.35 (d, 2H, J = 6.6 Hz), 2.96-2.83 (m, 2H). Anal. Calculated for C\(_{28}\)H\(_{27}\)N\(_3\)O\(_4\) \(\cdot\) 0.25 H\(_2\)O \(\cdot\) 0.25 C\(_6\)H\(_{14}\): C, 71.49; H, 6.31; N, 8.48. Found: C, 71.54; H, 6.30; N, 8.40.

The starting material was furnished in the following fashion:

2-Bromo-N-(1(S)-hydroxymethyl-2-phenylethyl)acetamide

To a solution of (S)-2-amino-3-phenyl-1-propanol (1.00 g, 6.61 mmol) and triethylamine (1 mL, 7.17 mmol) in THF (70 mL) at -78°C was added dropwise bromoacetyl
bromide (0.60 mL, 6.9 mmol). After 1.25 hours at -78°C, the resultant mixture was partitioned between 1M pH7 phosphate buffer (100 mL) and hexanes (100 mL). The aqueous layer was extracted with EtOAc:hex (2:1, 50 mL). The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated to give 1.59 g (85%) of 2-bromo-N-(1(S)-hydroxymethyl-2-phenylethyl)acetamide as a solid, mp 83-5°C. H NMR (DMSO-d₆): δ 8.15 (d, 1H, J = 8.1 Hz), 7.32 - 7.11 (m, 5H), 4.82 (t, 1H, J = 5.3 Hz), 3.83 - 3.74 (m, 3H), 2.80 (dd, 1H, J = 5.9, 13.6 Hz), 2.59 (dd, 1H, J = 8.9, 13.6 Hz). Anal. Calculated for C₁₁H₁₄NO₂Br: C, 48.55; H, 5.19; N, 5.15; Br, 29.36. Found: C, 48.69; H, 5.13; N, 5.13; Br, 29.30.

3-(2-Bromoacetyl)-2,2-dimethyl-4(S)- phenylmethyl-oxazolidine

To a mixture of 2-bromo-N-(1(S)-hydroxymethyl-2-phenylethyl)acetamide (1.55 g, 5.45 mmol) and p-toluenesulfonic acid monohydrate (100 mg) in CH₂Cl₂ (50 mL) was added 2-methoxypropene (1.50 mL, 15.7 mmol) dropwise via syringe. After 15 minutes at ambient temperature, the resultant mixture was washed with 1M pH7 phosphate buffer (25 mL) and brine (25 mL), dried over Na₂SO₄, and concentrated to give a dark solid, which was tritiated with MTBE/hex to provide 1.46 g (86%) of 3-(2-bromoacetyl)-2,2-dimethyl-4(S)-phenylmethyl-oxazolidine as a pale yellow solid. H NMR (DMSO-d₆): δ 7.33 - 7.17 (m, 229
5H), 4.21-4.15 (m, 1H), 4.04, 3.86 (AB quartet, 2H, J = 12.1 Hz), 3.79 (dd, 1H, J = 4.8, 9.2 Hz), 3.71 (d, 1H, J = 9.2 Hz), 2.99 (dd, 1H, J = 5.0, 13.4 Hz), 2.70 (dd, 1H, J = 9.2, 13.2 Hz), 1.55 (s, 3H), 1.38 (s, 3H). Anal. Calculated for C$_{14}$H$_{18}$NO$_2$Br: C, 53.86; H, 5.81; N, 4.49; Br, 25.59. Found: C, 53.91; H, 5.82; N, 4.47; Br, 25.58.

1-(4(S)-Benzyl-2,2-dimethyl-oxazolidinyl)-2-(4-iodopyrazol-1-yl)-ethanone

![Chemical structure](image_url)

To a suspension of hexane-washed sodium hydride (from 15 mg of 60% dispersion in oil, 0.38 mmol) in THF (2mL) at 0°C was added a solution of pyrazole (62 mg, 0.32 mmol) in THF (1 mL) dropwise via cannula. After 15 minutes at 0°C, a solution of 3-(2-bromoacetyl)-2,2-dimethyl-4(S)-phenylmethyl-oxazolidine (100 mg, 0.320 mmol) in THF (1 mL) was added via cannula. After 5 minutes at 0°C, the mixture was allowed to stir at ambient temperature for 30 minutes. The resultant mixture was partitioned between EtOAc and pH7 phosphate buffer. The aqueous layer was extracted with more EtOAc. The combined organic layers were dried over Na$_2$SO$_4$ and concentrated to an oily residue, which spontaneously crystallized. The crystals were triturated with MTBE/hex to obtain a white solid. The filtrate yielded another crop and in total 100 mg (75%) of 1-(4(S)-benzyl-2,2-dimethyl-oxazolidinyl)-2-(4-iodopyrazol-1-yl)-ethanone as white crystals, mp 117-20°C, were obtained. 1H NMR (DMSO-d$_6$): δ 7.76 (s, 1H), 7.51 (s, 1H), 7.37-7.24 (m, 5H), 5.25,
4.87 (AB quartet, 2H, J = 16.6 Hz), 4.35-4.30 (m, 1H), 3.86-3.81 (m, 1H), 3.76 (d, 1H, J = 8.8 Hz), 3.06 (dd, 1H, J = 4.0, 13.6 Hz), 2.80 (dd, 1H, J = 9.9, 13.6 Hz), 1.55 (s, 3H), 1.41 (s, 3H). Anal. Calculated for C$_{17}$H$_{20}$N$_{3}$O$_{2}$I: C, 48.01; H, 4.74; N, 9.88. Found: C, 48.28; H, 4.78; N, 9.79.

1-(4(S)-Benzyl-2,2-dimethyl-oxazolidinyl)-2-(4-biphenyl-4-yl-pyrazol-1-yl)-ethanone

According to the procedure described in Example 1(a) for the preparation of 3-biphenyl-4-yl-furan, 1-(4(S)-benzyl-2,2-dimethyl-oxazolidinyl)-2-(4-iodopyrazol-1-yl)-ethanone was coupled to 4-biphenylylboronic acid to provide in 39% yield 1-(4(S)-benzyl-2,2-dimethyl-oxazolidinyl)-2-(4-biphenyl-4-yl-pyrazol-1-yl)-ethanone as a white solid, mp 150-1°C. 1H NMR: δ 7.83 (s, 1H), 7.68 (s, 1H), 7.62-7.52 (m, 6H), 7.47-7.28 (m, 8H), 4.83, 4.38 (AB quartet, 2H, J = 15.6 Hz), 4.22-4.18 (m, 1H), 3.94 (m, 2H), 3.09 (dd, 1H, J = 6.4, 13.0 Hz), 2.97 (dd, 1H, J = 8.5, 13.2 Hz), 1.79 (s, 3H), 1.55 (s, 3H). Anal. Calculated for C$_{29}$H$_{29}$N$_{3}$O$_{2}$: C, 77.14; H, 6.47; N, 9.31. Found: C, 77.04; H, 6.52; N, 9.37.
4-(4(S)-Benzyl-2,2-dimethyl-oxazolidin-3-yl)-3(R)-(4-biphenyl-4-yl-pyrazol-1-yl)succinic acid Benzyl Ester

To a solution of diisopropylamine (0.10 mL, 0.76 mmol) in THF (2 mL) at 0°C was added n-butyllithium (0.4 mL of 2.5M in hexanes). After 30 minutes at 0°C, the solution was added dropwise to a solution of 1-(4(S)-benzyl-2,2-dimethyl-oxazolidinyl)-2-(4-biphenyl-4-yl-pyrazol-1-yl)-ethanone (325 mg, 0.720 mmol) in THF (8 mL) at -78°C. After 15 minutes at -78°C, the bright yellow solution was cooled to -100°C and benzyl 2-bromoacetate (freshly passed through Al₂O₃; 0.16 mL, 1.0 mmol) was added. After 1 hour at -100 to -70°C, the mixture was partitioned between EtOAc and water and the aqueous layer was extracted with more EtOAc. The combined organic layers were dried over Na₂SO₄ and concentrated to furnish a crude oil which was purified via flash column chromatography with 0-5% EtOAc/CH₂Cl₂ gradient eluant to give 150 mg (35%) of 4-(2,2-dimethyl-oxazolidin-3-yl)-3(R)-(4-biphenyl-4-yl-pyrazol-1-yl)succinic acid benzyl ester as an oil, which was used without further purification. An analytical sample was obtained after trituration with MTBE/hex and drying to an amorphous solid. ¹H NMR: δ 8.01 (s, 1H), 7.82 (s, 1H), 7.62-7.53 (m, 7H), 7.44 (t, 2H, J = 7.7 Hz), 7.36-7.30 (m, 10H), 5.83 (dd, 1H, J = 4.2, 10.5 Hz), 5.14 (s, 2H), 4.44-4.39 (m, 1H), 3.85 (d, 1H, J = 9.2 Hz), 3.79-3.74 (m, 1H).
3.57 (dd, 1H, J = 10.3, 16.9 Hz), 3.08 (dd, 1H, J = 3.1, 15.6 Hz), 2.79-2.64 (m, 2H), 1.67 (s, 3H), 1.50 (s, 3H). Anal. Calculated for C_{38}H_{37}N_{3}O_{4} • 0.2 H_{2}O: C, 75.65; H, 6.25; N, 6.97. Found: C, 75.74; H, 6.56; N, 6.90.

N-(1(S)-Benzy1-2-hydroxyethyl)-3(R)-(4-biphenyl-4-yl-pyrazol-1-yl)succinamic Acid Benzyl Ester

To a solution of 4-(4(S)-benzyl-2,2-dimethyl-oxazolidin-3-yl)-3(R)-(4-biphenyl-4-yl-pyrazol-1-yl)succinamic acid benzyl ester (174 mg, 0.290 mmol) in THF (3 mL) was added 0.5M aqueous HCl (1 mL). After 1 hour at ambient temperature with no apparent reaction, 6N HCl (4 drops) was added and the mixture was warmed to 45°C. After 17 hours, the mixture was partitioned between EtOAc and saturated aqueous NaHCO₃ and the aqueous layer was extracted with CH₂Cl₂. The combined organic layers were washed with water, dried over Na₂SO₄, and concentrated to provide 70 mg (43%) of N-(1(S)-benzyl-2-hydroxyethyl)-3(R)-(4-biphenyl-4-yl)pyrazol-1-yl)succinamic acid benzyl ester as colorless crystals, mp 116-7°C. ¹H NMR: δ 7.88 (s, 1H), 7.65 (d, 5H, J = 8.1 Hz), 7.53 (d, 2H, J = 8.1 Hz), 7.47 (t, 2H, J = 7.5 Hz), 7.37 (t, 1H, J = 7.5 Hz), 7.34-7.23 (m, 5H), 7.19-7.13 (m, 3H), 7.01 (d, 2H, J = 7.7 Hz), 6.54 (d, 1H, J = 6.6 Hz), 5.22 (t, 1H, J = 6.8 Hz), 5.11, 5.06 (AB quartet, 2H, J = 12.1 Hz), 4.20-4.10 (m, 1H), 3.72 (dd, 1H, J = 3.7, 11.0 Hz), 3.56
(dd, 1H, J = 5.2, 11.4 Hz), 3.34-3.31 (m, 2H), 2.82 (dd, 1H, J = 6.6, 13.6 Hz), 2.70 (dd, 1H, J = 8.3, 13.8 Hz). Anal. Calculated for C_{35}H_{33}N_{3}O_{4} • 0.3 H_{2}O: C, 74.39; H, 5.99; N, 7.44. Found: C, 74.49; H, 6.02; N, 7.44.

Example 17(a). 4-[2(S)-(2(R)-Carboxymethyl-2-(thien-2-yl)acetylamino]-4-methyl-valeroyl]-aminobenzoic Acid Methyl Ester

![Chemical Structure](image)

According to the procedure described in Example 15(a), 4-[2S-(2R)-t-butoxycarbonylmethyl-2-thien-2-ylacetylamino]-4-methyl-valeroyl]-aminobenzoic acid methyl ester was hydrolyzed with trifluoroacetic acid, except in CH_{2}Cl_{2}:anisole (1:1) as solvent, to give in 88% yield 4-[2S-(2R)-carboxymethyl-2-thien-2-ylacetylamino]-4-methyl-valeroyl]-aminobenzoic acid methyl ester as a white solid, mp 197-200°C. \(^1\)H NMR (DMSO-d$_6$): \(\delta\) 12.25 (s, 1H), 10.32 (s, 1H), 8.52 (d, 1H, J = 7.7 Hz), 7.88 (d, 2H, J = 8.7 Hz), 7.68 (d, 2H, J = 8.7 Hz), 7.33 (d, 1H, J = 5.0 Hz), 6.96-6.90 (m, 2H), 4.49-4.45 (m, 1H), 4.31 (dd, 1H, J = 5.4, 9.8 Hz), 3.80 (s, 3H), 2.92 (dd, 1H, J = 9.8, 16.5 Hz), 2.61 (dd, 1H, J = 5.4, 16.6 Hz), 1.74-1.46 (m 3H), 0.90 (d, 3H, J = 6.6 Hz), 0.86 (d, 3H, J = 6.5 Hz). Anal. Calculated for C_{22}H_{26}N_{2}O_{6}S: C, 59.18; H, 5.87; N, 6.27; S, 7.18. Found: C, 59.28; H, 5.92; N, 6.29; S, 7.27.

The starting materials were available as follows:
4(S)-Benzy1-3-(2-thien-2-yl-acetyl)-2-oxazolidinone

To a solution of (S)-(-)-4-benzy1-2-oxazolidinone (350 mg, 2.00 mmol) in dry THF (10 mL) at -30°C was added dropwise n-butyllithium (2.59 M in hexanes, 0.8 mL). The mixture was cooled to -78°C and treated with 2-thiopheneacetyl chloride (0.25 mL, 2 mmol). After stirring at -78°C for 45 minutes, the mixture was allowed to warm to ambient temperature and stir for 1 hour. The mixture was diluted with hexanes (10 mL), quenched with 1M pH7 phosphate buffer, and stirred for 45 minutes. The layers of the resultant biphasic mixture were separated and the aqueous phase extracted with EtOAc. The combined organic layers were washed with 0.5N aqueous HCl two times, saturated aqueous NaHCO$_3$ two times, and brine, dried over Na$_2$SO$_4$, and concentrated to provide a crude residue which was purified via flash column chromatography with 20% EtOAc/hex as eluant to yield 319 mg (53%) of 4(S)-benzy1-3-(2-thien-2-yl-acetyl)-2-oxazolidinone as a tan solid, mp 56-9°C. 1H NMR: δ 7.34-7.26 (m, 5H), 7.17-7.14 (m, 2H), 7.02-6.98 (m, 1H), 4.72-4.67 (m, 1H), 4.57, 4.48 (AB quartet, 2H, $J = 16.8$ Hz), 4.26-4.17 (m, 2H), 3.29 (dd, 1H, $J = 3.2, 13.4$ Hz), 2.78 (dd, 1H, $J = 9.5, 13.4$ Hz). Anal. Calculated for C$_{16}$H$_{15}$NO$_3$S: C, 63.77; H, 5.02; N, 4.65; S, 10.64. Found: C, 63.87; H, 5.04; N, 4.71; S, 10.74.
4-(4(S)-Benzyloxazolidin-2-on-3-yl)-3(R)-thien-2-yl-succinamic Acid t-Butyl Ester

According to the procedure described in Example 13 for the preparation of N-(4(S)-benzyl-2,2-dimethyl-oxazolidin-3-yl)-3(R)-(biphenyl-4-yl-1H-pyrrol-3-yl)succinamic acid t-butyl ester, the corresponding anion of 4(S)-benzyl-3-(2-thien-2-yl-acetyl)-2-oxazolidinone was alkylated with t-butyl 2-bromoacetate. Flash column chromatography with 10% EtOAc/hex as eluant provided in 65% yield 4-(4(S)-benzyloxazolidin-2-on-3-yl)-3(R)-thien-2-yl-succinamic acid t-butyl ester as a white solid, mp 109-11°C. 1H NMR: δ 7.36-7.26 (m, 5H), 7.22 (d, 1H, J = 5.0 Hz), 7.06 (d, 1H, J = 3.5 Hz), 6.93 (dd, 1H, J = 3.9, 5.2 Hz), 5.85 (dd, 1H, J = 4.2, 11.4 Hz), 4.62-4.57 (m, 1H), 4.14-4.09 (m, 2H), 3.42-3.33 (m, 2H), 2.82-2.70 (m, 2H), 1.43 (s, 9H). Anal. Calculated for C$_{22}$H$_{25}$NO$_5$S: C, 63.60; H, 6.06; N, 3.37; S, 7.72. Found: C, 63.37; H, 6.07; N, 3.31; S, 7.69.

2(R)-Thien-2-yl-succinamic Acid 4-t-Butyl Ester

To a solution of 4-(4(S)-benzyloxazolidin-2-on-3-yl)-3(R)-thien-2-yl-succinamic acid t-butyl ester (630 mg, 1.52 mmol) in THF (15 mL) at 0°C was added 2N aqueous LiOH (1.14 mL). H$_2$O was added periodically to maintain homogeneity. After 5.75 hours at 0°C, saturated aqueous NaHCO$_3$ (5 mL) was added. THF was removed under reduced pressure,
and the mixture extracted with CH₂Cl₂ (5 mL) three times. The combined organic layers were extracted with saturated aqueous NaHCO₃. The combined aqueous layers were acidified to pH 2 using 2N aqueous HCl and extracted with CH₂Cl₂ (5 mL) three times. These extracts were dried over Na₂SO₄ and concentrated to yield 350 mg (90%) of 2(R)-thien-2-ylsuccinic acid 4-t-butyl ester as an oil, which was pure and used without further purification.

¹H NMR: δ 7.22 (d, 1H, J = 5.1 Hz), 6.99 (m, 2H), 4.33 (dd, 1H, J = 5.4, 9.9 Hz), 3.11 (dd, 1H, J = 9.9, 16.7 Hz), 2.74 (dd, 1H, J = 5.4, 16.7 Hz), 1.41 (s, 9H). IR: 2980, 2934, 1732, 1715, 1370, 1285, 1256, 1152, 843, 702 cm⁻¹. Anal. Calculated for C₁₂H₁₆NO₄S: C, 56.23; H, 6.29; S, 12.51. Found: C, 56.24; H, 6.35; S, 12.45.

4-[2S-(2(R)-t-Butoxycarbonylmethyl-2-thien-2-ylacetylalino)-4-methyl[valeroyl]-aminobenzoic Acid Methyl Ester

![Chemical Structure](image)

According to the procedure described in Example 1(f) for the preparation of N-(1(S)-benzyl-2-methoxy-ethyl)-3(R)-t-butoxycarbonyl-amino-succinamic acid benzyl ester, 2(R)-thien-2-yl-succinamic acid 4-t-butyl ester and 4-(2S-amino-4-methylpentanoylamino)benzoic acid methyl ester (see Castelhano, A.L.; Yuan, Z.; Horne, S.; Liak, T.J. W095/12603-AI, May 11, 1995) were coupled with BOP to give a mixture of diastereomers which were separated via flash column chromatography with a 10-25% EtOAc/hex gradient eluant. Mixed fractions were purified via radial chromatography with
MTBE/CH₂Cl₂/hex (1:5:5) as eluant. In this manner a total yield of 51% of 4-[2S-(2R)-t-butoxycarbonylmethyl-2-thien-2-ylacetylamo]-4-methylvaleroyl]-aminobenzoic acid methyl ester as a white solid, mp 80-1°C was obtained. ¹H NMR: δ 8.72 (s, 1H), 7.95 (d, 2H, J = 8.6 Hz), 7.61 (d, 2H, J = 8.6 Hz), 6.99-6.96 (m, 2H), 6.02 (d, 1H, J = 8.0 Hz), 4.64-4.56 (m, 1H), 4.20 (t, 1H, J = 6.2 Hz), 3.89 (s, 3H), 3.04 (d, 2H, J = 6.2 Hz), 1.89-1.83 (m, 1H), 1.44 (s, 9H), 0.91 (t, 6H, J = 6.2 Hz). Anal. Calculated for C₂₆H₃₄N₂O₆S: C, 62.13; H, 6.82; N, 5.57; S, 6.38. Found: C, 62.13; H, 6.83; N, 5.54; S, 6.46.

Example 17(b). 4-[2(S)-2(R)-Carboxymethyl-2-(thien-3-yl)acetylamo]-4-methylvaleroyl]-aminobenzoic Acid Methyl Ester

According to the procedure described in Example 17(a), 4-[2S-(2R)-t-butoxycarbonylmethyl-2-thien-3-ylacetylamo]-4-methyl-valeroyl]-aminobenzoic acid methyl ester was hydrolyzed with trifluoroacetic acid in CH₂Cl₂/anisole (1:1) to give in 88% yield 4-[2S-(2R)-carboxymethyl-2-thien-2-ylacetylamo]-4-methyl-valeroyl]-aminobenzoic acid methyl ester as a white solid, mp 199-201°C. ¹H NMR (DMSO-d₆): δ 12.15 (s, 1H), 10.31 (s, 1H), 8.43 (d, 1H, J = 7.5 Hz), 7.89 (d, 2H, J = 8.6 Hz), 7.68 (d, 2H, J = 8.7 Hz), 7.44-7.41 (m, 1H), 7.25 (d, 1H, J = 2.5 Hz), 7.09 (d, 1H, J = 4.1 Hz), 4.48-4.45 (m, 1H), 4.08 (dd, 1H, J = 4.8, 10.2 Hz), 3.80 (s, 3H), 2.89 (dd, 1H, J = 10.3, 16.5 Hz), 2.61 (dd, 1H, J = 5.0, 16.6 Hz), 1.75-1.44 (m, 3H), 0.90 (d, 3H, J = 6.6 Hz), 0.86 (d, 3H, J = 6.5 Hz). Anal.
Calculated for C_{22}H_{26}N_{2}O_{6}S: C, 59.18; H, 5.87; N, 6.27; S, 7.18. Found: C, 59.21; H, 5.92; N, 6.21; S, 7.25.

The starting materials were available as follows:

4(S)-Benzyl-3-(2-thien-3-yl-acetyl)-2-oxazolidinone

![Chemical Structure Image]

According to the procedure described in Example 17(a) for the preparation of 4(S)-benzyl-3-(2-thien-2-yl-acetyl)-2-oxazolidinone, 3-thiopheneacetyl chloride and (S)-(−)-4-benzyl-2-oxazolidinone furnished in 68% yield 4(S)-benzyl-3-(2-thien-3-yl-acetyl)-2-oxazolidinone as a solid, mp 80-1°C. 1H NMR: δ 7.33- 7.24 (m, 5H), 7.15-7.09 (m, 3H), 4.72-4.65 (m, 1H), 4.39, 4.28 (AB quartet, 2H, J = 15.9 Hz), 4.22-4.15 (m, 2H), 3.26 (dd, 1H, J = 3.2, 13.4 Hz), 2.77 (dd, 1H, J = 9.4, 13.4 Hz). Anal. Calculated for C_{16}H_{15}NO_{3}S: C, 63.77; H, 5.02; N, 4.65; S, 10.64. Found: C, 63.80; H, 5.04; N, 4.69; S, 10.70.

4-(4(S)-Benzyl)oxazolidin-2-on-3-yl)-3(R)-thien-3-yl-succinamic Acid t-Butyl Ester

![Chemical Structure Image]
According to the procedure described in Example 13 for the preparation of N-(4(S)-benzyl-2,2-dimethyl-oxazolidin-3-yl)-3(R)-(biphenyl-4-yl-1H-pyrrolo-3-yl)succinic acid t-butyl ester, the corresponding anion of 4(S)-benzyl-3-(2-thien-3-yl-acetyl)-2-oxazolidinone was alkylated with t-butyl 2-bromoacetate. Flash column chromatography with 10% EtOAc/hex as eluant afforded in 77% yield 4-(4(S)-benzyl-oxazolidin-2-on-3-yl)-3(R)-thien-2-yl-succinic acid t-butyl ester as a white solid, mp 103-4°C. \(^1\)H NMR: \(\delta\) 7.36-7.25 (m, 7H), 7.10 (t, 1H, J = 3.2 Hz), 5.64 (dd, 1H, J = 4.4, 11.2 Hz), 4.62-4.57 (m, 1H), 4.14-4.04 (m, 2H), 3.39-3.27 (m, 2H), 2.78 (dd, 1H, J = 10.0, 13.4 Hz), 2.63 (dd, 1H, J = 4.4, 17.1 Hz), 1.43 (s, 9H). Anal. Calculated for C\(_{22}\)H\(_{24}\)NO\(_5\)S: C, 63.60; H, 6.06; N, 3.37; S, 7.72. Found: C, 63.44; H, 6.09; N, 3.33; S, 7.78.

\[\text{2(R)-Thien-3-yl-succinic Acid 4-t-Butyl Ester}\]

According to the procedure described in Example 17(a) for the preparation of 2(R)-thien-2-yl-succinic acid 4-t-butyl ester, 4-(4(S)-benzyl-oxazolidin-2-on-3-yl)-3(R)-thien-3-yl-succinic acid t-butyl ester was hydrolyzed in 70% yield to 2(R)-thien-3-yl-succinic acid 4-t-butyl ester as an oil, which was used without further purification. \(^1\)H NMR: \(\delta\) 7.29 (dd, 1H, J = 3.0, 4.9 Hz), 7.17 (d, 1H, J = 2.7 Hz), 7.05 (d, 1H, J = 5.0 Hz), 4.18 (dd, 1H, J = 5.5, 9.8 Hz), 3.06 (dd, 1H, J = 9.9, 16.7 Hz), 2.66 (dd, 1H, J = 5.6, 16.7 Hz), 1.40 (s, 9H). IR: 3104, 2978, 2934, 1728, 1715, 1370, 1258, 1154, 855, 774 cm\(^{-1}\). Anal. Calculated for C\(_{12}\)H\(_{16}\)NO\(_4\)S: C, 56.23; H, 6.29; S, 12.51. Found: C, 56.29; H, 6.35; S, 12.42.
4-[2S-(2(R)-t-Butoxycarbonylmethyl-2-thien-3-vlacetamino)-4-methylvaleroyl]-aminobenzoic Acid Methyl Ester

According to the procedure described in Example 1(f) for the preparation of N-(1(S)-benzyl-2-methoxy-ethyl)-3(R)-t-butoxycarbonyl-aminosuccinamic acid benzyl ester, 2(R)-thien-3-yl-succinamic acid 4-t-butyl ester and 4-(2S-amino-4-methylpentanoylamino)benzoic acid methyl ester (see Castellano, A.L.; Yuan, Z; Horne, S.; Liak, T.J. W095/12603-A1, May 11, 1995) were coupled with BOP. Precipitation with H2O and recrystallization from toluene gave in 55% yield 4-[2S-(2(R)-t-butoxycarbonylmethyl-2-thien-3-vlacetamino)-4-methylvaleroyl]-aminobenzoic acid methyl ester as a white solid, mp 168-70°C. ^1H NMR: δ 8.62 (s, 1H), 7.96 (d, 2H, J = 8.6 Hz), 7.56 (d, 2H, J = 8.8 Hz), 7.33 (dd, 1H, J = 3.0, 4.8 Hz), 7.19 (s, 1H), 7.02 (d, 1H, J = 5.1 Hz), 5.86 (bd, 1H, J = 6.7 Hz), 4.57-4.51 (m, 1H), 4.04 (t, 1H, J = 6.6 Hz), 3.89 (s, 3H), 3.04 (dd, 1H, J = 7.4, 16.9 Hz), 2.88 (dd, 1H, J = 5.6, 16.9 Hz), 1.88-1.81 (m, 1H), 1.42 (s, 9H), 0.92 (t, 6H, J = 6.5 Hz). Anal. Calculated for C_{28}H_{34}N_{2}O_{6}S: C, 62.13; H, 6.82; N, 5.57; S, 6.38. Found: C, 62.08; H, 6.79; N, 5.64; S, 6.46.
Example 17(c). N-[2,2-Dimethyl-1(S)-(pyridin-4-ylcarbamoyl)-propyl]-3(R)-thien-3-yl-succinamic Acid

According to the procedure described in Example 17(a), N-[2,2-dimethyl-1(S)-(pyridin-4-ylcarbamoyl)-propyl]-3(RS)-thien-3-yl-succinamic acid t-butyl ester was deprotected. Flash column chromatography with 1% HOAc/5% MeOH/CH₂Cl₂ as eluant led to isolation of the major isomer; 15 mg (21%) of N-[2,2-dimethyl-1(S)-(pyridin-4-ylcarbamoyl)-propyl]-3(R)-thien-3-yl-succinamic acid as a white solid, mp 205°C (d). ¹H NMR (DMSO-d₆): δ 8.30 (d, 2H, J = 6.0 Hz), 7.45 (dd, 2H, J = 1.5, 6.0 Hz), 7.26 (dd, 1H, J = 3.0, 5.0 Hz), 7.21-7.18 (m, 1H), 7.04 (dd, 1H, J = 1.0, 5.0 Hz), 4.38 (s, 1H), 4.26 (dd, 1H, J = 5.0, 10.0 Hz), 3.04 (dd, 1H, J = 10.0, 16.5 Hz), 2.65 (dd, 1H, J = 5.0, 16.5 Hz), 1.01 (s, 9H). Anal. Calculated for C₁₉H₂₃N₃O₄S • 0.6 HOAc: C, 57.02; H, 6.02; N, 9.88; S, 7.54. Found: C, 56.99; H, 6.06; N, 9.88; S, 7.55.

The starting material was made as follows:
N-[2,2-Dimethyl-1(S)-(pyridin-4-ylcarbamoyl)-propyl]-3(RS)-thien-3-yl-succinamic Acid t-Butyl Ester

According to the procedure described in Example 1(f) for the preparation of N-(1(S)-benzyl-2-methoxy-ethyl)-3(R)-t-butoxycarbonylamino-succinamic acid benzyl ester, 2(R)-thien-3-yl-succinamic acid 4-t-butyl ester (prepared as described in Example 17(b)) and 2S-amino-3,3-dimethyl-N-4-pyridinyl-butanamide (prepared as described in Example 5(d)) were coupled with BOP in 48h at ambient temperature. Flash column chromatography with 10% MeOH in CH₂Cl₂ gave 718mg (39%) of N-[2,2-dimethyl-1(S)-(pyridin-4-ylcarbamoyl)-propyl]-3(RS)-thien-3-yl-succinamic acid t-butyl ester as a white solid, mp 205°C (d), which was an inseparable mixture of isomers by NMR (3(R):S; 87:13, respectively) and used without further purification. ¹H NMR (DMSO-d₆): δ 8.48 (d, 1.74H, J = 5.5 Hz, major isomer), 8.38 (d, 0.87H, J = 9.0 Hz, major isomer), 7.65 (d, 1.74H, J = 5.5 Hz, major isomer), 7.59 (d, 0.26H, J = 5.0 Hz, minor isomer), 7.49 (dd, 0.87H, J = 3.0, 4.0 Hz, major isomer), 7.43 (m, 0.87H, major isomer), 7.30 (m, 0.13H, minor isomer), 7.23 (d, 0.87H, J = 5.0 Hz, major isomer), 7.12 (d, 0.13H, J = 5.0 Hz, minor isomer), 4.52 (d, 0.87H, J = 9.0 Hz, major isomer), 4.37 (dd, 0.87H, J = 5.0, 10.0 Hz, major isomer), 4.08 (dd, 0.13H, J = 7.0, 15.5 Hz, minor isomer), 3.00 (dd, 0.87H, J = 10.0, 16.0 Hz, major isomer), 1.40 (s, 1.17H, minor isomer), 1.29 (s, 7.83H, major isomer), 1.03 (s, 0.13H, minor isomer), 0.84 (s, 7.83H, major isomer).
Example 18(a). 3(RS)-(3-Biphenyl-4-yl-1H-imidazol-1-yl)-N-(hexahydroazepin-2-on-3(S)-yl)succinamic Acid

According to the procedure described in Example 1(a), a suspension of 3(RS)-(3-biphenyl-4-yl-1H-imidazol-1-yl)-N-(hexahydroazepin-2-on-3(S)-yl)succinamic acid benzyl ester in EtOH was hydrogenolyzed after 90 minutes to provide 779 mg (94%) of 3(RS)-(3-biphenyl-4-yl-1H-imidazol-1-yl)-N-(hexahydroazepin-2-on-3(S)-yl)succinamic acid as a solid. FABMS: 447 (C_{25}H_{27}N_{4}O_{4}; M +H^+).

The starting materials were prepared as follows:

2(RS)-(3-Biphenyl-4-yl-1H-imidazol-1-yl)-succinic Acid Dibenzyl Ester

A mixture of dibenzyl fumarate (5.30 g, 18.0 mmol) and 4-biphenyl-4-yl-1H-imidazole (see Ellis, et al. J. Pharm. Pharmacol. 1964, 400-3; 3.94 g, 18.0 mmol) was heated at 110-5°C. After 4 hours, the mixture was allowed to cool, diluted with ether, washed with 0.05% aqueous HCl, 0.01N aqueous NaOH, and brine, dried over Na_{2}SO_{4}, and concentrated
under reduced pressure to give 5.75 g (62%) of 2(RS)-(3-biphenyl-4-yl-1H-imidazol-1-yl)-succinic acid dibenzyl ester. FABMS: 517.3 (C_{33}H_{29}N_{2}O_{4}; M + H^+).

2(RS)-(3-Biphenyl-4-yl-1H-imidazol-1-yl)-succinic Acid 4-Benzyl Ester

A suspension of 2(RS)-(3-biphenyl-4-yl-1H-imidazol-1-yl)-succinic acid dibenzyl ester (551 mg, 1.07 mmol) in H$_2$O (0.5 mL) was refluxed overnight. Once allowed to cool to ambient temperature, the resultant precipitate was collected and dried in vacuo to provide 436 mg (96%) of 2(RS)-(3-biphenyl-4-yl-1H-imidazol-1-yl)-succinic acid 4-benzyl ester. FABMS: 427 (C_{26}H_{23}N_{2}O_{4}; M + H^+).

3(RS)-(3-Biphenyl-4-yl-1H-imidazol-1-yl)-N-(hexahydroazepin-2-on-3(S)-yl)succinamic Acid Benzyl Ester

According to the procedure described in Example 8(a), 2(RS)-(3-biphenyl-4-yl-1H-imidazol-1-yl)-succinic acid 4-benzyl ester (1.20 g, 2.82 mmol) and L-\(\alpha\)-amino-\(\varepsilon\)-caprolactam (469 mg, 3.67 mmol) was coupled in DMF with pyBOP to furnish 1.02 g (67%)
of 3(RS)-(3-biphenyl-4-yl-1H-imidazol-1-yl)-N-(hexahydroazepin-2-on-3(S)-yl)succinic acid benzyl ester. FABMS: 537.5 (C_{32}H_{33}N_{4}O_{4}; M +H^{+}).

The following were made in a similar manner:

Example 18(b). 3(RS)-(3-Biphenyl-4-yl-1H-imidazol-1-yl)-N-(2,2-dimethyl-1(S)-hydroxymethylpropyl)succinic Acid

![Chemical Structure](image)

According to the procedure described in Example 1(a), a suspension of 3(RS)-(3-biphenyl-4-yl-1H-imidazol-1-yl)-N-(2,2-dimethyl-1(S)-hydroxymethylpropyl)succinic acid benzyl ester in EtOH was hydrogenated to provide 3(RS)-(3-biphenyl-4-yl-1H-imidazol-1-yl)-N-(2,2-dimethyl-1(S)-hydroxymethylpropyl)succinic acid as a solid, mp 145-50°C. FABMS: 436.1 (C_{25}H_{30}N_{3}O_{4}; M +H^{+}).

Example 18(c). 3(RS)-(3-Biphenyl-4-yl-1H-imidazol-1-yl)-N-(2,2-dimethyl-1(S)-methylcarbamoylpropyl)succinic Acid

![Chemical Structure](image)

According to the procedure described in in Example 1(a), a suspension of 3(RS)-(3-biphenyl-4-yl-1H-imidazol-1-yl)-N-(2,2-dimethyl-1(S)-methylcarbamoylpropyl)succinic acid
acid benzyl ester in EtOH was hydrogenated to provide 3(RS)-(3-biphenyl-4-yl-1H-imidazol-1-yl)-N-(2,2-dimethyl-1(S)-methylcarbamoylpropyl)succinamic acid as a solid, mp 187.0-8.2°C. FABMS: 463.2 (C_{25}H_{31}N_{4}O_{4}; M +H^+).

Example 19(a). 3(RS)-(3-Biphenyl-4-yl-1H-imidazol-1-yl)-N^4-(2,2-dimethyl-1(S)-hydroxymethylpropyl)-N^1-hydroxy-succindiamide

![Chemical Structure]

A suspension of crude N^1-benzyloxy-3(RS)-(3-biphenyl-4-yl-1H-imidazol-1-yl)-N^4-(hexahydropyrazin-2-on-3(S)-yl)-succindiamide (800 mg, 1.45 mmol) and 10% Pd/C (800 mg) in EtOH (100 mL) was stirred under H_2 atmosphere. After 6 hours, more catalyst (300 mg) was added. After 2 hours, the catalyst was filtered onto Celite and rinsed. The filtrate was concentrated to provide 301 mg (45%) of 3(RS)-(3-biphenyl-4-yl-1H-imidazol-1-yl)-N-(hexahydropyrazin-2-on-3(S)-yl)-N^1-hydroxy-succindiamide as a solid, which effervesced at 180.5°C. FABMS: 462.2 (C_{25}H_{28}N_{5}O_{4}; M +H^+).

The starting materials were furnished as follows:
\[\text{N}^{1}\text{-Benzylxoy-3(RS)-(3-biphenyl-4-yl-1H-imidazol-1-yl)-N}^{4}\text{-hexahydroazepin-2-on-3(S)-yl)-succindiamide} \]

According to the procedures described in Example 8(a), 3(RS)-(3-biphenyl-4-yl-1H-imidazol-1-yl)-N-(hexahydroazepin-2-on-3(S)-yl)succinamic acid (prepared as described in Example 18(a); 779 mg, 1.74 mmol) and benzylxoyamine hydrochloride (334 mg, 2.09 mmol) were coupled with pyBOP to afford 800 mg (83%) of \(\text{N}^{1}\text{-benzylxoy-3(RS)-(3-biphenyl-4-yl-1H-imidazol-1-yl)-N}^{4}\text{-hexahydroazepin-2-on-3(S)-yl)-succindiamide} \).

FABMS: 552.2 \((\text{C}_{32}\text{H}_{34}\text{N}_{5}\text{O}_{4} ; \text{M} + \text{H}^{+}) \).

The following were made in a similar manner:

Example 19(b). 3(RS)-(3-Biphenyl-4-yl-1H-imidazol-1-yl)-N\(^4\)-(2,2-dimethyl-1(S)-hydroxymethylpropyl)-N\(^1\)-hydroxy-succindiamide

According to the procedure described in Example 19(a), \(\text{N}^{1}\text{-benzylxoy-3(RS)-(3-biphenyl-4-yl-1H-imidazol-1-yl)-N}^{4}\text{(2,2-dimethyl-1(S)-hydroxymethylpropyl)-succindiamide} \) was selectively hydrogenated to provide 3(RS)-(3-biphenyl-4-yl-1H-imidazol-1-yl)-N\(^4\)(2,2-dimethyl-1(S)-hydroxymethylpropyl)-succindiamide.
1-yl)-N⁴-(2,2-dimethyl-1(S)-hydroxymethylpropyl)-N¹-hydroxy-succindiamide. FABMS: 451.3 (C25H31N4O4; M +H⁺).

Example 19(c). 3(R)-(3-Biphenyl-4-yl-1H-imidazol-1-yl)-N⁴-(2,2-dimethyl-1(S)-hydroxymethylpropyl)-N¹-hydroxy-succindiamide

The diastereomeric mixture N¹-benzyloxy-3(RS)-(3-biphenyl-4-yl-1H-imidazol-1-yl)-N⁴-(2,2-dimethyl-1(S)-hydroxymethylpropyl)-succindiamide (Example 19(b)) was purified via preparative RPHPLC (C18) to provide 3(R)-(3-biphenyl-4-yl-1H-imidazol-1-yl)-N-(2,2-dimethyl-1(S)-hydroxymethylpropyl)-N¹-hydroxy-succindiamide as a solid, mp 157.5-60°C. FABMS: 451.2 (C25H31N4O4; M +H⁺).

Example 19(d). 3(S)-(3-Biphenyl-4-yl-1H-imidazol-1-yl)-N⁴-(2,2-dimethyl-1(S)-hydroxymethylpropyl)-N¹-hydroxy-succindiamide

The separation of Example 19(b) described in Example 19(c) also furnished 3(S)-(3-biphenyl-4-yl-1H-imidazol-1-yl)-N-(2,2-dimethyl-1(S)-hydroxymethylpropyl)-N¹-hydroxy-succindiamide as a solid, mp 134.5-6.5°C. FABMS: 451.1 (C25H31N4O4; M +H⁺).
Example 19(e). 3(RS)-(3-Biphenyl-4-yl-1H-imidazol-1-yl)-N^4-(2,2-dimethyl-1(S)-methylcarbamoylpropyl)-N^4-hydroxy succindiamide

According to the procedure described in Example 19(a), N^1-benzylxoy-3(RS)-(3-biphenyl-4-yl-1H-imidazol-1-yl)-N^4-(2,2-dimethyl-1(S)-methylcarbamoylpropyl)-succindiamide was selectively hydrogenated to provide 3(RS)-(3-biphenyl-4-yl-1H-imidazol-1-yl)-N^4-(2,2-dimethyl-1(S)-methylcarbamoylpropyl)-N^4-hydroxy-succindiamide as a solid, which effervesced at 169°C. FABMS: 478.2 (C_{26}H_{32}N_{5}O_{4}; M +H^+).

The results obtained during biological testing of some preferred embodiments of the inventive compounds are described below.

BIOLOGICAL DATA

Isolation of MMP's for Assays

The catalytic domain of human collagenase-1 was expressed as a fusion protein with ubiquitin in *E. coli* (see Gehring, E.R., *J Biol. Chem.*, 1995, 270, 22507). After purification of the fusion protein, the fibroblast collagenase-1 catalytic domain (HFC) was released either by treatment with purified, active stromelysin-1 (1:50 w/w ratio), which generated nearly
100% N-terminal Phel, or by autoprocessing the concentrated collagenase-1 fusion and then incubating at 37 °C for 1 hour. Final purification was completed using zinc chelate chromatography.

The propeptide and catalytic domain of human collagenase-3 (Coll3) was expressed in *E. coli* as an N-terminal fusion protein with ubiquitin. After purification of the fusion from inclusion bodies, the catalytic domain was liberated by treatment with 2mM APMA at room temperature overnight. Final purification was completed using copper chelate chromatography.

The catalytic domain of human stromelysin (Hsln) was obtained by expression and purification of a C-terminally truncated prostromelysin-1 from *E. coli* host BL21 (see Marcy et al. *Biochem.*, 1991, 30, 6476). The subsequent activation of the mature form (Hsln) was completed with 2mM APMA for 1 hour at 37 °C, followed by separation using a sizing column.

Human matrilysin (Matr) was expressed in *E. coli* as a fusion protein with ubiquitin. After purification of the matrilysin/ubiquitin fusion from inclusion bodies, the catalytic domain was liberated by treatment with 2mM APMA at 37 °C for 2 hours. Final purification was complete using copper chelate chromatography.

The catalytic and fibronectin-like portion of human progelatinase A (GelA) was expressed as a fusion protein with ubiquitin in *E. Coli*. Assays were carried out on autocatalytically activated material.
Compounds of Formula I exhibited the ability to inhibit MMPs when tested in the following assay.

In Vitro Assay Procedure

Assays were performed in assay buffer (50 mM Tricine pH 7.5, 200 mM sodium chloride, 10 mM calcium chloride, 0.5 mM zinc acetate containing 2% dimethyl sulfoxide (DMSO)) once the substrate and inhibitor were diluted into it. Stock solutions of inhibitors were prepared in 100% DMSO. Stock solutions of the substrate were prepared in 100% DMSO at a concentration of 6 mM.

The assay method was based on the hydrolysis of MCA-Pro-Leu-Gly-Leu-DPA-Ala-Arg-NH$_2$ (American Peptide Co.) at 37 °C (see Knight, C.G. *et al.*, *FEBS*, 1992, 296, 263-266). The fluorescence changes were monitored with a Perkin-Elmer LS-50B fluorimeter using an excitation wavelength of 328 nm and an emission wavelength of 393 nm. The substrate concentration used in the assays was 10 μM. The inhibitor was diluted into the assays from a solution in 100% DMSO, and controls substituted an equal volume of DMSO so that the final DMSO concentration from inhibitor and substrate dilution in all assays was 2%. The concentration of enzyme in the assay ranged from 60 pM for gelatinase A to 1.5 nM for stromelysin and is a function of the enzymes respective k_{cat}/K_m for the MCA peptide substrate. Proper determination of steady-state rates of substrate cleavage required assay lengths of 60 minutes to allow for complete equilibration of the enzyme-inhibitor complex.
The K_m for the MCA peptide substrate with the matrix metalloproteinases is quite high and exceeds its solubility under assay conditions. Consequently, the apparent K_i ($K_{i,app}$) was determined to describe the strength of inhibition. However, in this case, $K_{i,app}$ would be essentially equal to K_i since $[S] \ll K_m$. For the determination of $K_{i,app}$, the concentration of the inhibitor was varied at a constant and low concentration of substrate and the steady-state rates of fluorescence change determined. In most cases absorptive quench due to the presence of ligand was not observed. For slow-binding inhibitors, onset of inhibition curves were collected for at least 45 minutes so that equilibrium was established. Steady-state rates of fluorescence change were obtained by fitting a curve to an equation for a single exponential decay containing a linear phase. The fitted value of the linear phase was taken as the steady-state rate. The steady-state rates were fitted to the Michaelis equation describing competitive inhibition by non-linear methods. Data resulting from tight-binding inhibition was analyzed, and $K_{i,app}$ determined by fitting the data to the tight-binding equation of Morrison (*Biochem. Biophys. Acta*, vol. 185, pp. 269-286 (1969)) by non-linear methods.

The results of the above-described tests are presented below in Table 1.

<table>
<thead>
<tr>
<th>Example</th>
<th>HSln (Kl,app)</th>
<th>Matr (Kl,app)</th>
<th>HFC (Kl,app)</th>
<th>GelA (Kl,app)</th>
<th>Coll3 (Kl,app)</th>
<th>LogP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1(a)</td>
<td>65.0</td>
<td>1000</td>
<td>5.40</td>
<td>30.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1(b)</td>
<td>2000</td>
<td>5.91</td>
<td>18.3</td>
<td>-0.83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1(c)</td>
<td>486</td>
<td>16900</td>
<td>2.00</td>
<td>0.868</td>
<td>-0.97</td>
<td></td>
</tr>
</tbody>
</table>

253
<table>
<thead>
<tr>
<th>Example</th>
<th>Hsln (Ki,app)</th>
<th>Matr (Ki,app)</th>
<th>HFC (Ki,app)</th>
<th>GelA (Ki,app)</th>
<th>Coll3 (Ki,app)</th>
<th>LogP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1(d)</td>
<td>1220</td>
<td></td>
<td>4500</td>
<td>3.90</td>
<td>24.0</td>
<td></td>
</tr>
<tr>
<td>1(e)</td>
<td>3.10</td>
<td>500</td>
<td></td>
<td>0.108</td>
<td>0.900</td>
<td>1.19</td>
</tr>
<tr>
<td>1(f)</td>
<td>331</td>
<td>1000</td>
<td></td>
<td>93.0</td>
<td>542</td>
<td></td>
</tr>
<tr>
<td>1(g)</td>
<td>58.0</td>
<td></td>
<td></td>
<td>8.50</td>
<td>58.5</td>
<td></td>
</tr>
<tr>
<td>1(h)</td>
<td>822</td>
<td></td>
<td></td>
<td>58.0</td>
<td>3000</td>
<td></td>
</tr>
<tr>
<td>1(i)</td>
<td>113</td>
<td></td>
<td></td>
<td>8.00</td>
<td>89.6</td>
<td></td>
</tr>
<tr>
<td>1(j)</td>
<td>133</td>
<td></td>
<td></td>
<td>1.43</td>
<td>9.43</td>
<td></td>
</tr>
<tr>
<td>1(k)</td>
<td>0.150</td>
<td>11.0</td>
<td></td>
<td>1.90</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>1(l)</td>
<td>317</td>
<td></td>
<td></td>
<td>54</td>
<td>227</td>
<td></td>
</tr>
<tr>
<td>1(m)</td>
<td>50</td>
<td></td>
<td>997</td>
<td>0.410</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>1(n)</td>
<td>2000</td>
<td>>10000</td>
<td>1900</td>
<td>8500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1(o)</td>
<td>>10000</td>
<td>15000</td>
<td>51500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1(p)</td>
<td>55000</td>
<td></td>
<td>1230</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>89</td>
<td>400</td>
<td></td>
<td>6.20</td>
<td>123</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>150</td>
<td>1250</td>
<td></td>
<td>58</td>
<td>180</td>
<td></td>
</tr>
<tr>
<td>4(a)</td>
<td>30</td>
<td>5200</td>
<td></td>
<td>1.30</td>
<td>2.70</td>
<td></td>
</tr>
<tr>
<td>4(b)</td>
<td>23</td>
<td>1520</td>
<td></td>
<td>1.11</td>
<td>2.13</td>
<td></td>
</tr>
<tr>
<td>4(c)</td>
<td>64</td>
<td>2530</td>
<td></td>
<td>7.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5(a)</td>
<td>84</td>
<td></td>
<td></td>
<td>1.60</td>
<td>1.80</td>
<td>0.11</td>
</tr>
<tr>
<td>5(b)</td>
<td>30</td>
<td>5200</td>
<td>>12000</td>
<td>1.04</td>
<td>9.10</td>
<td></td>
</tr>
<tr>
<td>5(c)</td>
<td>1.50</td>
<td>305</td>
<td>1500</td>
<td>0.041</td>
<td>0.049</td>
<td>3.41</td>
</tr>
<tr>
<td>5(d)</td>
<td>1.60</td>
<td>4.50</td>
<td>>2000</td>
<td>0.028</td>
<td>0.23</td>
<td></td>
</tr>
<tr>
<td>5(e)</td>
<td>1.70</td>
<td>182</td>
<td>530</td>
<td>0.109</td>
<td>0.076</td>
<td>1.71</td>
</tr>
<tr>
<td>5(f)</td>
<td>0.460</td>
<td>2.10</td>
<td>818</td>
<td>0.023</td>
<td>0.012</td>
<td>2.56</td>
</tr>
<tr>
<td>5(g)</td>
<td>57</td>
<td></td>
<td></td>
<td>2.20</td>
<td>14.5</td>
<td></td>
</tr>
<tr>
<td>5(h)</td>
<td>650</td>
<td></td>
<td></td>
<td>17.4</td>
<td>43.0</td>
<td></td>
</tr>
<tr>
<td>6(a)</td>
<td>15.0</td>
<td>1500</td>
<td>8860</td>
<td>6.62</td>
<td>15.6</td>
<td></td>
</tr>
<tr>
<td>6(b)</td>
<td>3.60</td>
<td></td>
<td>2900</td>
<td>0.066</td>
<td>0.210</td>
<td></td>
</tr>
<tr>
<td>Example</td>
<td>Hsln (Ki,app)</td>
<td>Matr (Ki,app)</td>
<td>HFC (Ki,app)</td>
<td>GelA (Ki,app)</td>
<td>Coll3 (Ki,app)</td>
<td>LogP</td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>---------------</td>
<td>-------------</td>
<td>---------------</td>
<td>---------------</td>
<td>------</td>
</tr>
<tr>
<td>6(c)</td>
<td>54</td>
<td>5000</td>
<td></td>
<td>0.806</td>
<td>7.60</td>
<td></td>
</tr>
<tr>
<td>7(a)</td>
<td>2.00</td>
<td>640</td>
<td>333</td>
<td>0.015</td>
<td>0.013</td>
<td></td>
</tr>
<tr>
<td>7(b)</td>
<td>0.290</td>
<td>5.00</td>
<td>453</td>
<td>0.0070</td>
<td>0.010</td>
<td></td>
</tr>
<tr>
<td>7(c)</td>
<td>26</td>
<td>5326</td>
<td></td>
<td>0.055</td>
<td>1.30</td>
<td></td>
</tr>
<tr>
<td>7(d)</td>
<td>1580</td>
<td></td>
<td>121</td>
<td>284</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8(a)</td>
<td>0.690</td>
<td>36</td>
<td></td>
<td>0.027</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8(b)</td>
<td>0.390</td>
<td>71</td>
<td></td>
<td>0.330</td>
<td>0.450</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0.200</td>
<td></td>
<td></td>
<td>0.011</td>
<td>0.018</td>
<td></td>
</tr>
<tr>
<td>10(a)</td>
<td>1.50</td>
<td>617</td>
<td></td>
<td>3.30</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>10(b)</td>
<td>16</td>
<td>510</td>
<td></td>
<td>9.60</td>
<td>23.5</td>
<td></td>
</tr>
<tr>
<td>10(c)</td>
<td>40</td>
<td>2185</td>
<td></td>
<td>22</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>62</td>
<td></td>
<td>60</td>
<td>>750</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>>500</td>
<td></td>
<td>>500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>35</td>
<td>16900</td>
<td>72000</td>
<td>1.70</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>14(a)</td>
<td>558</td>
<td></td>
<td></td>
<td>4.30</td>
<td>7.20</td>
<td></td>
</tr>
<tr>
<td>14(b)</td>
<td>1.30</td>
<td></td>
<td></td>
<td>0.012</td>
<td>0.028</td>
<td></td>
</tr>
<tr>
<td>14(c)</td>
<td>17.7</td>
<td></td>
<td></td>
<td>0.044</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14(d)</td>
<td>19</td>
<td></td>
<td></td>
<td>0.900</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15(a)</td>
<td>92</td>
<td></td>
<td></td>
<td>72</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>15(b)</td>
<td>122</td>
<td></td>
<td></td>
<td>91</td>
<td>1025</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1500</td>
<td>63000</td>
<td></td>
<td>81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17(a)</td>
<td>965</td>
<td>454</td>
<td>32000</td>
<td></td>
<td></td>
<td>490</td>
</tr>
<tr>
<td>17(b)</td>
<td>720</td>
<td>309</td>
<td>20000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17(c)</td>
<td>935</td>
<td>156</td>
<td>157</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18(b)</td>
<td>3000</td>
<td>>100000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18(c)</td>
<td>180</td>
<td>24000</td>
<td></td>
<td></td>
<td></td>
<td>31</td>
</tr>
<tr>
<td>19(a)</td>
<td>31</td>
<td>57000</td>
<td></td>
<td></td>
<td></td>
<td>43</td>
</tr>
<tr>
<td>19(b)</td>
<td>17</td>
<td>66000</td>
<td></td>
<td></td>
<td></td>
<td>9.7</td>
</tr>
<tr>
<td>Example</td>
<td>Hsin (Ki,app)</td>
<td>Matr (Ki,app)</td>
<td>HFC (Ki,app)</td>
<td>GelA (Ki,app)</td>
<td>Coll3 (Ki,app)</td>
<td>LogP</td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>--------------</td>
<td>--------------</td>
<td>--------------</td>
<td>--------------</td>
<td>------</td>
</tr>
<tr>
<td>19(c)</td>
<td>17</td>
<td></td>
<td>45000</td>
<td></td>
<td></td>
<td>6.5</td>
</tr>
<tr>
<td>19(d)</td>
<td>120</td>
<td></td>
<td>>100000</td>
<td></td>
<td></td>
<td>43</td>
</tr>
<tr>
<td>19(e)</td>
<td>2.3</td>
<td></td>
<td>310</td>
<td></td>
<td></td>
<td>0.13</td>
</tr>
</tbody>
</table>

Determination of Inhibitor Concentration in Plasma after Oral Dosing

The dosing solution consisted of the inhibitor dissolved in either a molar equivalent of HCl in water (vehicle A), in 60% aq. propylene glycol (vehicle B), or in 2.8 mg/mL sodium bicarbonate in 60% aqueous propylene glycol (vehicle C), yielding a final concentration that ranged from 10-15 mg/ml. Sprague Dawley rats (Hilltop Lab Animals, Scottsdale, PA) were dosed as a function of drug weight per body weight, usually 50 mg per kg. Blood was taken from the rats and centrifuged, and the plasma was stored in the freezer. Drug was extracted from a 50 µl plasma aliquot by adding 1 ml of acetonitrile, shaking for 2 minutes, centrifuging for 15 minutes at 4000 rpm, collecting the supernatant, and then evaporating it to dryness under a stream of nitrogen. The samples were reconstituted with 130 µl of mobile phase, shook for 2 minutes, and centrifuged for 15 minutes at 4000 rpm. The supernatant was collected and the samples were analyzed by injecting 100 µl of supernatant onto HPLC.

Quantitation of drug levels was accomplished by generating a standard curve of known drug amounts that were extracted from added plasma. Drug levels were plotted as a function of time and analyzed to provide area under the curve (AUC) and maximum concentration (Cmax) values. The results are shown in Table 2.
<table>
<thead>
<tr>
<th>Example</th>
<th>dose (mg/kg)</th>
<th>Vehicle</th>
<th>AUC (µg/min*µL)</th>
<th>Cmax (µg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7(b)</td>
<td>50</td>
<td>B</td>
<td>24</td>
<td>0.21</td>
</tr>
<tr>
<td>5(c)</td>
<td>50</td>
<td>B</td>
<td>73</td>
<td>0.41</td>
</tr>
<tr>
<td>6(b)*</td>
<td>50</td>
<td>B</td>
<td>37</td>
<td>0.30</td>
</tr>
<tr>
<td>1(m)</td>
<td>50</td>
<td>B</td>
<td>58</td>
<td>0.59</td>
</tr>
<tr>
<td>6(c)</td>
<td>25</td>
<td>A</td>
<td>56</td>
<td>0.45</td>
</tr>
<tr>
<td>6(c)*</td>
<td>50</td>
<td>A</td>
<td>265</td>
<td>1.14</td>
</tr>
<tr>
<td>5(a)</td>
<td>50</td>
<td>A</td>
<td>211</td>
<td>1.6</td>
</tr>
<tr>
<td>14(a)</td>
<td>50</td>
<td>B</td>
<td>94</td>
<td>0.82</td>
</tr>
<tr>
<td>14(d)</td>
<td>25</td>
<td>C</td>
<td>349</td>
<td>1.37</td>
</tr>
</tbody>
</table>

dosed as the benzyl ester prodrug
We claim:

1. A compound of the formula I:

\[
\text{Chart Image}
\]

wherein

- \(X\) is a single bond or a straight or branched, saturated or unsaturated chain containing 1 to 6 carbon atoms, wherein one or more of the carbon atoms are optionally independently replaced with \(O\) or \(S\), and wherein one or more of the hydrogen atoms are optionally replaced with \(F\).

- \(Y\) is a single bond, \(-\text{CH(OH)}-\), or \(-\text{C(O)}-\);

- \(R_1\) is \(H\), an alkyl group, an aryl group, a heteroaryl group, a cycloalkyl group, or a heterocycloalkyl group;

- \(R_2\) is \(H\), an alkyl group, an aryl group, a heteroaryl group, a cycloalkyl group, a heterocycloalkyl group, or \(\text{C(O)R}_{10}\),

 wherein \(R_{10}\) is \(H\), an alkyl group, an aryl group, a heteroaryl group, a cycloalkyl group, a heterocycloalkyl group, an \(O\)-aryl group, an \(O\)-alkyl group, or \(\text{NR}_{11}\text{R}_{12}\);

 wherein \(R_{11}\) is \(H\), an alkyl group, an \(O\)-alkyl group, an aryl group, a heteroaryl group, a cycloalkyl group, or a heterocycloalkyl group, and

258
wherein R_{12} is H, an alkyl group, an aryl group, a heteroaryl group, a cycloalkyl
group, or a heterocycloalkyl group,

or wherein R_{11} and R_{12} form, together with the nitrogen to which they are
attached, a heteroaryl group or a heterocycloalkyl group, and

R_3 is H, an alkyl group, an aryl group, a heteroaryl group, a cycloalkyl group, a heterocycloalkyl
group, NR_{11}R_{12}, or OR_{11}, wherein R_{11} and R_{12} are as defined above,

or R_2 and R_3, together with the atom(s) to which they are attached, form a cycloalkyl group or a
heterocycloalkyl group;

R_4 is H or any suitable organic moiety;

R_5 is C(O)NHOH, C(O)OR_{13}, SH, N(OH)CHO, SC(O)R_{14}, P(O)(OH)R_{13}, or P(O)(OH)OR_{13},

\[
\begin{align*}
R_{13} & \text{ is } H, \text{ an alkyl group, or an aryl group,} \\
R_{14} & \text{ is an alkyl group or an aryl group, and} \\
R_{15} & \text{ is an alkyl group; and}
\end{align*}
\]

\[
\text{is a heteroaryl group having five ring atoms, including 1, 2 or 3 heteroatoms}
\]

selected from O, S, and N;

or a pharmaceutically acceptable salt or solvate thereof, or a pharmaceutically acceptable prodrug
thereof, said prodrug being different from a compound of the formula (I);
with the proviso that if the compound of formula (I) is:

wherein \(R_1, R_4, \) and \(R_5 \) are as defined above, \(W \) is \(H, OH, \) a halo group, an alkyl group, or an \(O- \)alkyl group, and further wherein

when \(m \) is 2, 3, or 4, \(n \) is 1, 2, 3, or 4, and \(A \) is \(CH_2, O, NH, \) or \(N- \)alkyl; or

when \(m \) is 4, 5, or 6, \(n \) is 0, and \(A \) is \(-CHJ-, \) wherein \(J \) is carboxy, alkoxy carbonyl, or carbamoyl;

or a pharmaceutically acceptable salt or solvate thereof, or a pharmaceutically acceptable prodrug thereof, said prodrug being different from a compound of the formula (I); then

\[
\text{is pyrrolyl.}
\]

2. A compound of claim 1, wherein \(X \) is a single bond; or a pharmaceutically acceptable salt or solvate thereof, or a pharmaceutically acceptable prodrug thereof, said prodrug being different from a compound of the formula (I).
3. A compound of claim 1, wherein Y is -CH(OH)- or -C(O)-; or a pharmaceutically acceptable salt or solvate thereof, or a pharmaceutically acceptable prodrug thereof, said prodrug being different from a compound of the formula (I).

4. A compound of claim 3, wherein Y is -CH(OH)- and R₂ is H or an alkyl group or together with R₂ and the atom(s) to which R₂ and R₃ are attached forms a cycloalkyl group or heterocycloalkyl group; or a pharmaceutically acceptable salt or solvate thereof, or a pharmaceutically acceptable prodrug thereof, said prodrug being different from a compound of the formula (I).

5. A compound of claim 4, wherein Y is -CH(OH)- and R₂ is H; or a pharmaceutically acceptable salt or solvate thereof, or a pharmaceutically acceptable prodrug thereof, said prodrug being different from a compound of the formula (I).

6. A compound of claim 3, wherein Y is -C(O)- and R₂ is an alkyl group, NR₁₁R₁₂, OR₁₁, wherein R₁₁ is H, an alkyl group, an O-alkyl group, an aryl group, a heteroaryl group, a cycloalkyl group, or a heterocycloalkyl group, and wherein R₁₂ is H, an alkyl group, an aryl group, a heteroaryl group, a cycloalkyl group, or a heterocycloalkyl group, or wherein R₁₁ and R₁₂ form, together with the nitrogen to which they are attached, a heteroaryl group or a heterocycloalkyl group; or wherein Y is -C(O)- and R₂ and R₃, together with the atoms to which they are attached, form a cycloalkyl group or a heterocycloalkyl group; or a pharmaceutically acceptable salt or solvate thereof, or a pharmaceutically acceptable prodrug thereof, said prodrug being different from a compound of the formula (I).
7. A compound of claim 1, wherein \(R_1 \) is an aryl group or a heteroaryl group; or a pharmaceutically acceptable salt or solvate thereof, or a pharmaceutically acceptable prodrug thereof, said prodrug being different from a compound of the formula (I).

8. A compound of claim 7, wherein \(R_1 \) is an aryl group of the formula:

![Chemical Structure Diagram]

wherein \(Z \) is H, halogen, an alkyl group, an O-alkyl group, a cyano group, a hydroxy group, an aryl group, a heteroaryl group, or a heterocycloalkyl group; or a pharmaceutically acceptable salt or solvate thereof, or a pharmaceutically acceptable prodrug thereof, said prodrug being different from a compound of the formula (I).

9. A compound of claim 1, wherein \(R_2 \) is an aryl group or an alkyl group; or a pharmaceutically acceptable salt or solvate thereof, or a pharmaceutically acceptable prodrug thereof, said prodrug being different from a compound of the formula (I).

10. A compound of claim 1, wherein \(R_4 \) is H, an alkyl group, OH, O-alkyl, NH₂, NH-alkyl, or a cycloalkyl group; or a pharmaceutically acceptable salt or solvate thereof, or a pharmaceutically acceptable prodrug thereof, said prodrug being different from a compound of the formula (I).

11. A compound of claim 10, wherein \(R_4 \) is an alkyl group selected from CH₅OH and CH(NHR₁₇)R₁₆, wherein \(R₁₆ \) is H, an alkyl group, an aryl group, a heteroaryl group, a cycloalkyl group, or a heterocycloalkyl group, and \(R₁₇ \) is C(O)R₁₈, SO₂R₁₈, H, an alkyl group, an aryl group, a heteroaryl group, a cycloalkyl group, or a heterocycloalkyl group, or \(R₁₆ \) and \(R₁₇ \).
together with the atoms to which they are attached, form a heterocycloalkyl group; wherein R₁₈ is H, an alkyl group, an aryl group, a heteroaryl group, a cycloalkyl group, a heterocycloalkyl group, an O-aryl group, an O-alkyl group, or NR₁₉R₂₀; wherein R₁₉ and R₂₀ independently are H, an alkyl group, an aryl group, a heteroaryl group, a cycloalkyl group, or a heterocycloalkyl group, or R₁₉ and R₂₀, together with the nitrogen atom to which they are attached, form a heterocycloalkyl group; or a pharmaceutically acceptable salt or solvate thereof, or a pharmaceutically acceptable prodrug thereof, said prodrug being different from a compound of the formula (I).

12. A compound of claim 1, wherein

\[
\text{HET}
\]

is pyrrolyl, imidazolyl, pyrazolyl, furyl, thietyl, thiazolyl, oxazolyl, isoxazolyl, isothiazolyl, oxadiazolyl, or triazolyl; or a pharmaceutically acceptable salt or solvate thereof, or a pharmaceutically acceptable prodrug thereof, said prodrug being different from a compound of the formula (I).

13. A compound of claim 12, wherein

\[
\text{HET}
\]

is pyrrolyl; or a pharmaceutically acceptable salt or solvate thereof, or a pharmaceutically acceptable prodrug thereof, said prodrug being different from a compound of the formula (I).

14. A compound of claim 1 where R₁₅ is C(O)NH₂ or C(O)OR₁₃, wherein R₁₃ is hydrogen; or a pharmaceutically acceptable salt or solvate thereof, or a pharmaceutically acceptable prodrug thereof, said prodrug being different from a compound of the formula (I).
15. A compound of claim 1, wherein Y is a single bond and R₃ is a heteroaryl group.

16. A compound of claim 15, wherein R₃ is the heteroaryl group:

wherein R₂₁ and R₂₂ are independently any suitable organic moiety or together with the carbon atoms to which they are attached form an aryl group, a heteroaryl group, a cycloalkyl group, or a heterocycloalkyl group; or a pharmaceutically acceptable prodrug thereof, said prodrug being different from a compound of the formula (I).

17. A compound according to claim 16, wherein R₂₁ and R₂₂ are independently selected from hydrogen, an alkyl group, an aryl group, a heteroaryl group, a halo group, a C(O)O-alkyl group, a carbamoyl group, a cycloalkyl group, or a heterocycloalkyl group; or a pharmaceutically acceptable salt or solvate thereof, or a pharmaceutically acceptable prodrug thereof, said prodrug being different from a compound of the formula (I).
18. A compound of the formula I:

![Chemical Structure](image)

wherein

X is a single bond;

Y is a single bond, -CH(OH)- or -C(O)-;

R₁ is an aryl group or a heteroaryl group;

R₂ is H, an alkyl group, an aryl group, a heteroaryl group, a cycloalkyl group, a heterocycloalkyl group, or C(O)R₁₀,

wherein R₁₀ is H, an alkyl group, an aryl group, a heteroaryl group, a cycloalkyl group, a heterocycloalkyl group, an O-aryl group, an O-alkyl group, or NR₁₁R₁₂;

wherein R₁₁ is H, an alkyl group, an O-alkyl group, an aryl group, a heteroaryl group, a cycloalkyl group, or a heterocycloalkyl group, and

wherein R₁₂ is H, an alkyl group, an aryl group, a heteroaryl group, a cycloalkyl group, or a heterocycloalkyl group,

or wherein R₁₁ and R₁₂ form, together with the nitrogen to which they are attached, a heteroaryl group or a heterocycloalkyl group, and

R₃ is H, an alkyl group, a heteroaryl group, NR₁₁R₁₂, or OR₁₁

265
wherein R_{11} and R_{12} are as defined above,

or R_{2} and R_{3}, together with the atoms to which they are attached, form a cycloalkyl group or heterocycloalkyl group;

R_{4} is H, an alkyl group, or OH;

R_{5} is C(O)NH_{2}, C(O)OR_{13}, SH, or SC(O)R_{14},

wherein R_{13} is H, an alkyl group, or an aryl group, and R_{14} is an alkyl group or an aryl group; and

[HET] is pyrrolyl, imidazolyl, pyrazolyl, furyl, thi enyl, thiazolyl, oxazolyl, isoxazolyl, isothiazolyl, oxadiazolyl, or triazolyl;

or a pharmaceutically acceptable salt or solvate thereof, or a pharmaceutically acceptable prodrug thereof, said prodrug being different from a compound of the formula (III);

with the proviso that if the compound of formula (I) is:

\[
\begin{align*}
\text{Het} & \quad \\
 R_{5} & \quad R_{4} \quad \text{\text{N}} \quad \text{\text{H}} \quad \text{\text{C}} \quad \text{\text{H}} \\
 & \quad \text{\text{X}} \quad \text{\text{R}_{1}} \\
 & \quad \text{\text{W}} \quad \text{\text{N}} \quad \text{\text{--}(CH_{2})_{m}} \\
 & \quad \text{\text{A}} \quad \text{\text{C}} \quad \text{\text{N}} \quad \text{\text{--}(CH_{2})_{n}}
\end{align*}
\]

wherein R_{1}, R_{4}, and R_{5} are as defined above, W is H, OH, a halogen atom, an alkyl group, or an O-alkyl group, and further wherein
when \(m \) is 2, 3, or 4, \(n \) is 1, 2, 3, or 4, \(A \) is \(\text{CH}_2, \text{O}, \text{NH}, \) or \(\text{N}-\text{alkyl} \); or

when \(m \) is 4, 5, or 6, \(n \) is 0, and \(A \) is \(-\text{CHJ-} \), wherein \(J \) is carboxy, alkoxycarbonyl, or carbamoyl;

or a pharmaceutically acceptable salt or solvate thereof, or a pharmaceutically acceptable prodrug thereof, said prodrug being different from a compound of the formula (I); then

is pyrrolyl.
19. A compound selected from the group:

N-[2,2-Dimethyl-1(S)-(methylcarbamoyl)propyl]-3(R)-(3-phenyl-1H-pyrrol-1-yl)succinic Acid;

N-(8-Oxo-4-oxa-1,7-diazatricyclo[9.6.1.0^{12,17}]octadeca-11(18),12,14,16-tetraen-9(S)-yl)-3(R)-(3-phenyl-1H-pyrrol-1-yl)succinic Acid;

N-[2,2-Dimethyl-1(S)-(methylcarbamoyl)propyl]-3(R)-(3-(pyridin-4-yl)-1H-pyrrol-1-yl)succinic Acid;

3(R)-[3-(Biphenyl-4-yl)-1H-pyrrol-1-yl]-N-[2,2-dimethyl-1(S)-(methylcarbamoyl)propyl]succinic Acid;

3(R)-[3-(Biphenyl-4-yl)-1H-pyrrol-1-yl]-N-[2-hydroxy-1(S)-(1H-imidazol-4-yl)methyl]ethyl]succinic Acid;

N-[2,2-Dimethyl-1(S)-(methylcarbamoyl)propyl]-3(R)-[3-(4-propylphenyl)-1H-pyrrol-1-yl] succinic Acid;

3(R)-[3-(4-Cyanophenyl)-1H-pyrrol-1-yl]-N-[2,2-dimethyl-1(S)-(methylcarbamoyl)propyl] succinic Acid;

N-[2,2-Dimethyl-1(S)-(hydroxymethyl)propyl]-3(R)-[3-[4-(pyridin-4-yl)phenyl]-1H-pyrrol-1-yl] succinic Acid;

N-(2-Hydroxy-1(S)-phenylethyl)-3(R)-[3-[4-(pyridin-4-yl)phenyl]-1H-pyrrol-1-yl] succinic Acid;

3(R)-[3-(4'-Cyanobiphenyl-4-yl)-1H-pyrrol-1-yl]-N-[2,2-dimethyl-1(S)-(methylcarbamoyl)propyl]succinic Acid;
3(R)-[3-(4'-Cyanobiphenyl-4-yl)-1H-pyrrol-1-yl]-N-[2,2-dimethyl-1(S)-(pyridin-4-ylcarbamoyl)propyl]succinamic Acid;

3(R)-[3-(4'-Carbamoylbiphenyl-4-yl)-1H-pyrrol-1-yl]-N-[2,2-dimethyl-1(S)-(methylcarbamoyl)propyl]succinamic Acid;

3(R)-[3-(4'-Carbamoylbiphenyl-4-yl)-1H-pyrrol-1-yl]-N-[2,2-dimethyl-1(S)-(pyridin-4-ylcarbamoyl)propyl]succinamic Acid;

3(R)-[3-(4'-Cyanobiphenyl-4-yl)-1H-pyrrol-1-yl]-N-[2,2-dimethyl-1(S)-(hydroxymethyl)propyl] succinamic Acid;

N-(2(R)-Hydroxyindan-1(R)-yl)-3(R)-[3-[4-(pyridin-4-yl)phenyl]-1H-pyrrol-1-yl] succinamic Acid;

N-(2,2-Dimethyl-1(S)-(methylcarbamoyl)propyl)-3(R)-[3-[4-(pyridin-4-yl)phenyl]-1H-pyrrol-1-yl] succinamic Acid;

N-(4,4-Dimethyl-2-oxo-tetrahydrofuran-3(S)-yl)-3(R)-[3-[4-(pyridin-4-yl)phenyl]-1H-pyrrol-1-yl] succinamic Acid;

N-(8-Oxo-4-oxa-1,7-diazatricyclo[9.6.1.0^12,17]octadeca-11(18),12,14,16-tetraen-9(S)-yl)-3(R)-[3-[4-(pyridin-4-yl)phenyl]-1H-pyrrol-1-yl] succinamic Acid;

N-[2,2-Dimethyl-1(S)-(pyridin-4-ylcarbamoyl)propyl]-3(R)-[3-[4-(pyridin-4-yl)phenyl]-1H-pyrrol-1-yl] succinamic Acid;

N-[1(S)-(1H-Imidazol-2-yl)-3-methylbutyl]-3(R)-[3-[4-(pyridin-4-yl)phenyl]-1H-pyrrol-1-yl] succinamic Acid;

N\(^1\)-[2,2-Dimethyl-1(S)-(hydroxymethyl)propyl]-N\(^2\)-hydroxy-2(R)-[3-[4-(pyridin-4-yl)phenyl]-1H-pyrrol-1-yl] succinamide;
N-[2,2-Dimethyl-1(S)-(methylcarbamoyl)propyl]-3(S)-[1-(4-fluorophenyl)-1H-pyrrol-3-yl]succinamic Acid;
3(S)-[1-(4'-Cyanobiphenyl-4-yl)-1H-pyrrol-3-yl]-N-[2,2-dimethyl-1(S)-(methylcarbamoyl)propyl]succinamic Acid;
3(S)-[1-(4'-Cyanobiphenyl-4-yl)-1H-pyrrol-3-yl]-N-[1(S)-(1H-imidazol-2-yl)-3-methylbutyl]succinamic Acid;
3(S)-[1-(4'-Cyanobiphenyl-4-yl)-1H-pyrrol-3-yl]-N-(4,4-dimethyl-2-oxo-tetrahydrofuranyl)-
3(S)-yl)succinamic Acid;
3(R)-[3-(4'-Cyanobiphenyl-4-yl)-1H-pyrrol-1-yl]-N-[1(S)-(1H-imidazol-2-yl)-3-methylbutyl]succinamic Acid;
3(R)-[3-(4-Cyanophenyl)-1H-pyrrol-1-yl]-N-[1(S)-(1H-imidazol-2-yl)-3-methylbutyl]succinamic Acid;
N-[2,2-Dimethyl-1(S)-(hydroxymethyl)propyl]-3(S)-[1-(4-(pyridin-4-yl)phenyl)-1H-pyrrol-3-yl] succinamic Acid;
3(R)-{3-[2-(4-Cyanophenyl)ethynyl]-1H-pyrrol-1-yl}-N-[2,2-dimethyl-1(S)methylcarbamoyl)-propyl] succinamic Acid;
3(R)-{3-[2-(4-Cyanophenyl)ethyl]-1H-pyrrol-1-yl}-N-[2,2-dimethyl-1(S)methylcarbamoyl)-propyl] succinamic Acid;
N'-Hydroxy-N'-methyl-3(R)-[3-(4-(pyridin-4-yl)phenyl)-1H-pyrrol-1-yl)succinamide;
3(R)-[3-(4'-Cyanobiphenyl-4-yl)-1H-pyrrol-1-yl]-2(S)-cyclopropyl-N-(2,2-dimethyl-1(S)methylcarbamoyl)propyl)succinamic Acid;
3(S)-[2-(4'-Cyanobiphenyl-4-yl)furan-4-yl]-N-[2,2-dimethyl-1(S)-(methylcarbamoyl)
propyl]succinic Acid;

3(S)-[1-(4'-Cyanobiphenyl-4-yl)-1H-pyrrol-3-yl]-N-(2,2-dimethyl-1(S)-(methylcarbamoyl)propyl)-2(R)-(hydroxymethyl)succinic Acid;

3(S)-[1-(4'-Cyanobiphenyl-4-yl)-1H-pyrrol-3-yl]-N-(2,2-dimethyl-1(S)-(methylcarbamoyl)propyl)-2(S)-(hydroxy)succinic Acid;

3(R)-[3-(4'-Cyanobiphenyl-4-yl)-1H-pyrrol-1-yl]-N-(2,2-dimethyl-1(S)-(methylcarbamoyl)propyl)-2(S)-(hydroxy)succinic Acid;

and the pharmaceutically acceptable salts and solvates thereof, and the pharmaceutically acceptable prodrugs thereof.

20. A pharmaceutical composition comprising:

(a) a therapeutically effective amount of a compound as defined in claim 1 or a pharmaceutically acceptable salt or solvate thereof, or a pharmaceutically acceptable prodrug thereof, said prodrug being different from a compound of the formula (I); and

(b) a pharmaceutically acceptable carrier, diluent, vehicle, or excipient.

21. A method of treating a mammalian disease condition mediated by metalloproteinase activity that comprises administering to a mammal in need thereof a therapeutically effective amount of a compound as defined in claim 1 or a pharmaceutically acceptable salt or solvate thereof, or a pharmaceutically acceptable prodrug thereof, said prodrug being different from a compound of the formula (I).

22. A method according to claim 21 wherein the mammalian disease condition is tumor growth, invasion or metastasis.
23. A method according to claim 21 wherein the mammalian disease condition is osteoarthritis, rheumatoid arthritis, osteoporosis, periodontitis, or gingivitis.

24. A method according to claim 21 wherein the mammalian disease condition is chronic dermal wounds, corneal ulceration, or degenerative skin disorders.

25. A method according to claim 21 wherein the mammalian disease condition is multiple sclerosis or stroke.

26. A method according to claim 21 wherein the mammalian disease condition is atherosclerosis, glomerular disease, or Alzheimer's disease.

27. A method according to claim 21 wherein the mammalian disease condition is characterized by unwanted angiogenesis.

28. A method according to claim 27, wherein the mammalian disease condition is diabetic retinopathy, macular degeneration, angiofibromas, or hemangiomas.

29. A method of inhibiting the activity of a metalloproteinase that comprises contacting the metalloproteinase with an effective amount of a compound as defined in claim 1 or a pharmaceutically acceptable salt or solvate thereof, or a pharmaceutically acceptable prodrug thereof, said prodrug being different from a compound of the formula (I).
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

IPC 6 C07D207/327 C07K5/078 C07D307/54 C07D207/337 C07D231/12
C07D333/24 C07D233/56 A61K31/34 A61K31/38 A61K31/40
A61K38/05 C07D401/00 C07D403/00 C07D405/00 C07D409/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 6 C07D C07K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X Y</td>
<td>WO 93 24449 A (CELLTECH LIMITED) 9 December 1993 cited in the application see the whole document</td>
<td>1-29</td>
</tr>
<tr>
<td>X Y</td>
<td>WO 96 16027 A (SYNTEX (U.S.A.) INC.) 30 May 1996 cited in the application see the whole document</td>
<td>1-29</td>
</tr>
<tr>
<td>X Y</td>
<td>WO 96 23791 A (SYNTEX (U.S.A.) INC.) 8 August 1996 see the whole document, for instance example 7</td>
<td>1-29</td>
</tr>
</tbody>
</table>

X Further documents are listed in the continuation of box C.

X Patent family members are listed in annex.

"A" special categories of cited documents:
"A" document defining the general state of the art which is not considered to be of particular relevance
"E" earlier document but published on or after the international filing date
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reasons as specified
"O" document referring to an oral disclosure, use, exhibition or other means
"P" document published prior to the international filing date but later than the priority date claimed

Date of the actual completion of the international search
23 January 1998

Date of mailing of the international search report
06.02.98

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel: (+31-70) 340-2040, Tx: 31 651 apm nl
Fax: (+31-70) 340-5018

Authorized officer
Allard, M

Form PCT/ISA/210 (second sheet) (July 1992)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>R.P. ROBINSON ET AL.: "Inhibitors of MMP-1: an examination of PI' C(alpha) gem-disubstitution in the succinamide hydroxamate series" BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, vol. 6, no. 14, 1996, OXFORD, GB, pages 1719-24, XP002053052 see the whole document, particularly compound 3</td>
<td>1-29</td>
</tr>
</tbody>
</table>
INTERNATIONAL SEARCH REPORT

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. X Claims Nos.: 21-29
 because they relate to subject matter not required to be searched by this Authority, namely:
 Although claims 21-29 are directed to a method of treatment of the animal/human body, the search has been carried out and based on the alleged effects of the compound/composition.

2. X Claims Nos.: 1-18, 20-29
 because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
 The above mentioned claims are so broad that for determining the scope of a meaningful international search due account has been taken of Rule 33.3 PCT; a special emphasis was put on the subject-matter of the examples during the search.

3.☐ Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1.☐ As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.

2.☐ As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.

3.☐ As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:

4.☐ No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest
☐ The additional search fees were accompanied by the applicant's protest.
☐ No protest accompanied the payment of additional search fees.
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>WO 9324449 A</td>
<td>09-12-93</td>
<td>AU 4341493 A</td>
<td>30-12-93</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2114622 A</td>
<td>09-12-93</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0605682 A</td>
<td>13-07-94</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 6509814 T</td>
<td>02-11-94</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5569665 A</td>
<td>29-10-96</td>
</tr>
<tr>
<td>WO 9616027 A</td>
<td>30-05-96</td>
<td>AU 4289796 A</td>
<td>17-06-96</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0793643 A</td>
<td>10-09-97</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FI 972160 A</td>
<td>22-05-97</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 972307 A</td>
<td>22-07-97</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PL 321024 A</td>
<td>24-11-97</td>
</tr>
<tr>
<td>WO 9623791 A</td>
<td>08-08-96</td>
<td>AU 4863696 A</td>
<td>21-08-96</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2212236 A</td>
<td>08-08-96</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0807114 A</td>
<td>19-11-97</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FI 973198 A</td>
<td>01-08-97</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 973551 A</td>
<td>03-10-97</td>
</tr>
</tbody>
</table>