
(12) STANDARD PATENT (11) Application No. AU 2011320899 B2
(19) AUSTRALIAN PATENT OFFICE

(54) Title
Stateful applications operating in a stateless cloud computing environment

(51) International Patent Classification(s)
G06F 9/44 (2006.01) G06F 15/16 (2006.01)
G06F 12/08 (2006.01)

(21) Application No: 2011320899 (22) Date of Filing: 2011.09.27

(87) WIPONo: WO12/057955

(30) Priority Data

(31) Number (32) Date (33) Country
12/912,798 2010.10.27 US

(43) Publication Date: 2012.05.03
(44) Accepted Journal Date: 2015.01.22

(71) Applicant(s)
Microsoft Corporation

(72) Inventor(s)
Jacobson, Neil A.;Reierson, Kristofer H.Montgomery, Andrew

(74) Agent / Attorney
Davies Collison Cave, Level 15 1 Nicholson Street, MELBOURNE, VIC, 3000

(56) Related Art
WO 2009/0043029 A2 
US 2009/0300149 A1



(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date 
3 May 2012 (03.05.2012)

(10) International Publication Number

PCT WO 2012/057955 A1

llll

(51) International Patent Classification:
GOOF 9/44 (2006.01) G06F12/08 (2006.01)
G06F15/16 (2006.01)

(21) International Application Number:
PCT/US2011/053531

(22) International Filing Date:
27 September 2011 (27.09.2011)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
12/912,798 27 October 2010 (27.10.2010) US

(71) Applicant (for all designated States except US): MI­
CROSOFT CORPORATION [US/US]; One Microsoft 
Way, Redmond, Washington 98052-6399 (US).

(72) Inventors: JACOBSON, Neil A .; c/o Microsoft Corpora­
tion, LCA - International Patents, One Microsoft Way, 
Redmond, Washington 98052-6399 (US). REIERSON, 
Kristofer H.; c/o Microsoft Corporation, LCA - Interna­
tional Patents, One Microsoft Way, Redmond, Washing­
ton 98052-6399 (US). MONTGOMERY, Andrew; c/o 
Microsoft Corporation, LCA - International Patents, One 
Microsoft Way, Redmond, Washington 98052-6399 (US).

(81) Designated States (unless otherwise indicated, for every 
kind of national protection available)'. AE, AG, AL, AM, 
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, 
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, 
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, 
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, 
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, 
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, 
NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, 
RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TII, TJ, 
TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, 
ZM, ZW.

(84) Designated States (unless otherwise indicated, for every 
kind of regional protection available)'. ARIPO (BW, GH, 
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, 
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, 
RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, 
DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, 
LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, 
SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, 
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:
— as to applicant's entitlement to apply for and be granted 

a patent (Rule 4.17(0))

[Continued on next page]

(54) Title: STATEFUL APPLICATIONS OPERATING IN A STATELESS CLOUD COMPUTING ENVIRONMENT

FIG. 1

OΓ4
o
£

(57) Abstract: A cloud computing environment may use a virtualization 
layer within a stateless cloud computing process to capture, store, and re­
trieve state information generated by a stateful application executing with­
in the process. The virtualization layer may monitor various state storage 
systems to identify changes to stateful items and store the stateful items in 
a state storage mechanism. The virtualization layer may intercept and redi­
rect calls to the stateful items stored in the state storage mechanism. A 
cloud computing manager may start and stop the stateless cloud comput­
ing process, and may recover the state and resume executing the applica­
tion.



WO 2012/057955 Al llllllllIhllllllllllllllNIHIIIIi
— as to the applicant's entitlement to claim the priority of — 

the earlier application (Rule 4.17(iii))

Published:

before the expiration of the time limit for amending the 
claims and to be republished in the event of receipt of 
amendments (Rule 48.2(h))

— with international search report (Art. 21(3))



20
11

32
08

99
 

14
 N

ov
 2

01
4 STATEFUL APPLICATIONS OPERATING IN A STATELESS CLOUD 

COMPUTING ENVIRONMENT 
Background

[0001] Cloud computing is a computing environment in which processes operate statelessly. 

In a typical cloud computing environment, a user’s process may operate on a fabric of 

hardware platforms within one or more datacenters, and the datacenter operator may be able 

to move the user’s process from one server or hardware platform to another. Since the 

datacenter operator may perform such moves at different times, the processes executing on 

the cloud computing environment may not store state within the processes.

[0002] In contrast to cloud computing processes, many conventional applications may store 

state in the form of operating system registry settings, configuration files, and other changes. 

In order for the application to perform as expected over time, the state for the application may 

persist and may be recalled from time to time or when the application is restarted.

Summary
[0003] A cloud computing environment may use a virtualization layer within a stateless cloud 

computing process to capture, store, and retrieve state information generated by a stateful 

application executing within the process. The virtualization layer may monitor various state 

storage systems to identify changes to stateful items and store the stateful items in a state 

storage mechanism. The virtualization layer may intercept and redirect calls to the stateful 

items stored in the state storage mechanism. A cloud computing manager may start and stop 

the stateless cloud computing process, and may recover the state and resume executing the 

application.

[0003A] In one aspect there is provided a method comprising:

starting a first cloud process, said first cloud process being stateless and having a first

cloud storage;

loading and executing a virtualization layer on said first cloud process, said 

virtualization layer being configured to capture state changes and redirect said state changes 

to said cloud storage;

executing a stateful application on said first cloud process such that said virtualization 

layer identifies a state change and stores said state changes on said cloud storage;

starting a second cloud process;

loading said virtualizing layer on the second cloud process; 

loading said stateful application on the second cloud process;

1



20
11

32
08

99
 

14
 N

ov
 2

01
4

loading said state changes from the cloud storage; and

executing said stateful application with said state changes on said second cloud 

process.

[0003B] In another aspect there is provided a system comprising:

a cloud computing environment having cloud processes, each of said cloud processes

being stateless processes executing on a cloud computing hardware fabric;

a virtualization layer operable within a cloud process, said virtualization layer being

configured to capture state changes to said cloud process and stores said state changes to a 

cloud storage;

a cloud process management system configured to: 

start a first cloud process;

load said virtualization layer within said first cloud process so that state 

changes made to said first cloud process are captured and stored in said cloud storage; 

and

execute a stateful application within said virtualization layer, such that said 

virtualization layer identifies a state change and stores said state changes in said cloud 

storage; and

start a second cloud process;

load said virtualizing layer on the second cloud process; 

load said stateful application on the second cloud process; 

load said state changes from the cloud storage; and

execute said stateful application with said state changes on said second cloud. 

[0003C] In a further aspect there is provided a computer readable storage media having 

computer readable instructions that when executed cause at least one computing device to:

start a cloud process, said cloud process being stateless and having a cloud storage

system;

load and execute a virtualization layer on said cloud process, said virtualization layer 

that captures state changes and redirects said state changes to said cloud storage system;

execute a stateful application on said cloud process such that said virtualization layer 

identifies a state change in said stateful application and stores said state change on said cloud 

storage system;

start a second cloud process;

1A



20
11

32
08

99
 

14
 N

ov
 2

01
4

load said virtualizing layer; 

load said stateful application; 

load said state changes; and

execute said stateful application with said state changes; and

select said state changes from a plurality of said state changes, each of said plurality 

of state changes comprising state changes for a plurality of instances of said first and second 

cloud processes and created by a different cloud process.

[0004] This Summary is provided to introduce a selection of concepts in a simplified form 

that are further described below in the Detailed Description. This Summary is not intended to 

identify key features or essential features of the claimed subject matter, nor is it intended to 

be used to limit the scope of the claimed subject matter.

Brief Description of the Drawings
[0005] In the drawings,

[0006] FIGURE 1 is a diagram illustration of an embodiment showing a cloud computing 

environment for stateful applications.

[0007] FIGURE 2 is a flowchart illustration of an embodiment showing a method for 
creating an application package

IB



WO 2012/057955 PCT/US2011/053531

5

10

15

20

25

30

[0008] FIGURE 3 is a flowchart illustration of an embodiment showing a method for 

starting or resuming a stateful application in a stateless process.

Detailed Description

[0009] A cloud computing environment may use a virtualization layer to capture state 

changes to an application and persist the state changes when stopping and restarting the 

application. The virtualization layer may monitor various storage mechanisms used by 

applications to store state, and may create and manage a separate storage mechanism for 

the state. The virtualization layer may recognize calls to the storage mechanisms and 

redirect such calls to the separate storage mechanism.

[0010] The state of the application may be stored into a cloud storage system, which may 

persist the state while stopping and restarting the application. In many embodiments, a 

virtual hard disk may be used to store the state, and such a virtual hard disk may be stored 

directly on a cloud storage system.

[0011] In some embodiments, multiple copies of the application may be executing, each 

having a separate state. When the process executing the application is stopped, the state 

may be stored, and when the process is resumed, the state may be selected from a group of 

stored states, the process resumed from the previous state.

[0012] Throughout this specification, like reference numbers signify the same elements 

throughout the description of the figures.

[0013] When elements are referred to as being “connected” or “coupled,” the elements can 

be directly connected or coupled together or one or more intervening elements may also be 

present. In contrast, when elements are referred to as being “directly connected” or 

“directly coupled,” there are no intervening elements present.

[0014] The subject matter may be embodied as devices, systems, methods, and/or 

computer program products. Accordingly, some or all of the subject matter may be 

embodied in hardware and/or in software (including firmware, resident software, micro­

code, state machines, gate arrays, etc.) Furthermore, the subject matter may take the form 

of a computer program product on a computer-usable or computer-readable storage 

medium having computer-usable or computer-readable program code embodied in the 

medium for use by or in connection with an instruction execution system. In the context 

of this document, a computer-usable or computer-readable medium may be any medium 

that can contain, store, communicate, propagate, or transport the program for use by or in 

connection with the instruction execution system, apparatus, or device.

2



WO 2012/057955 PCT/US2011/053531

5

10

15

20

25

30

[0015] The computer-usable or computer-readable medium may be for example, but not 

limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor 

system, apparatus, device, or propagation medium. By way of example, and not 

limitation, computer-readable media may comprise computer storage media and 

communication media.

[0016] Computer storage media includes volatile and nonvolatile, removable and non­

removable media implemented in any method or technology for storage of information 

such as computer-readable instructions, data structures, program modules, or other data. 

Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash 

memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other 

optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic 

storage devices, or any other medium which can be used to store the desired information 

and may be accessed by an instruction execution system. Note that the computer-usable or 

computer-readable medium can be paper or other suitable medium upon which the 

program is printed, as the program can be electronically captured via, for instance, optical 

scanning of the paper or other suitable medium, then compiled, interpreted, of otherwise 

processed in a suitable manner, if necessary, and then stored in a computer memory.

[0017] Communication media typically embodies computer-readable instructions, data 

structures, program modules or other data in a modulated data signal such as a carrier 

wave or other transport mechanism and includes any information delivery media. The 

term “modulated data signal” can be defined as a signal that has one or more of its 

characteristics set or changed in such a manner as to encode information in the signal. By 

way of example, and not limitation, communication media includes wired media such as a 

wired network or direct-wired connection, and wireless media such as acoustic, RF, 

infrared and other wireless media. Combinations of any of the above-mentioned should 

also be included within the scope of computer-readable media.

[0018] When the subject matter is embodied in the general context of computer-executable 

instructions, the embodiment may comprise program modules, executed by one or more 

systems, computers, or other devices. Generally, program modules include routines, 

programs, objects, components, data structures, and the like, that perform particular tasks 

or implement particular abstract data types. Typically, the functionality of the program 

modules may be combined or distributed as desired in various embodiments.

[0019] Figure 1 is a diagram of an embodiment 100, showing a cloud computing 

environment in which stateful applications may be executed using stateless cloud

3



WO 2012/057955 PCT/US2011/053531

5

10

15

20

25

30

computing processes. Embodiment 100 is a simplified example of a cloud computing 

environment and the various components that may allow execution of the stateful 

application.

[0020] The diagram of Figure 1 illustrates functional components of a system. In some 

cases, the component may be a hardware component, a software component, or a 

combination of hardware and software. Some of the components may be application level 

software, while other components may be operating system level components. In some 

cases, the connection of one component to another may be a close connection where two 

or more components are operating on a single hardware platform. In other cases, the 

connections may be made over network connections spanning long distances. Each 

embodiment may use different hardware, software, and interconnection architectures to 

achieve the described functions.

[0021] Many applications, especially conventional desktop or server applications, may be 

stateful. The term stateful is used to indicate that the application may operate with and 

change the state of the application during installation and use. In many cases, a stateful 

application may store configuration information in a system registry, configuration file, 

configuration database, or other storage mechanism.

[0022] In an example of a stateful application, an application may allow a user to 

customize certain properties or arrange a user interface in a particular manner. Those 

customizations may constitute the state of the application. In another embodiment, an 

application may be frequently updated, with each update constituting a state of the 

application.

[0023] In some cloud computing environments, the processes executing in the 

environment are inherently stateless. In many such embodiments, the processes may 

execute within a datacenter may be moved from one virtual machine on one hardware 

platform to another virtual machine on another hardware platform. During such 

transitions, the datacenter may move the process around, but may not move any state 

associated with various backend components, such as the hardware platform, a virtual 

machine, an operating system operating within the virtual machine, or any other 

component.

[0024] Such an architecture may allow the cloud computing environment to manage the 

underlying hardware and operating systems in a very efficient manner. During periods of 

low usage, processes may be consolidated onto a small subset of the hardware platforms 

while other hardware platforms are turned off. When new versions of an operating system

4



WO 2012/057955 PCT/US2011/053531

5

10

15

20

25

30

are available, or when upgrades or patches are made to an existing operating system, the 

processes may be temporarily suspended or moved to another hardware platform with an 

updated operating system, then returned to the original platform an operated with the 

updated operating system.

[0025] Many cloud computing services may host many different computing processes and 

may provide services for many different customers. Each customer may be responsible 

for their own processes, but the cloud computing service may provide hardware and 

software support services. The cloud computing service may manage the processes in 

large datacenters, which may provide physical security, professional management of the 

hardware and software infrastructure, high network bandwidth, redundant hardware 

platforms, and guaranteed uptime, among other benefits.

[0026] Some cloud computing environments may operate multiple datacenters which may 

be located around the world. Such environments may allow users to have their processes 

and applications executing in different time zones to allow faster connections and lower 

network costs when providing access to employees or customers around the globe.

[0027] Many cloud computing environments may also offer cloud storage. Cloud storage, 

sometimes also known as blob storage, may be a data storage system that may operate in a 

datacenter. Tn many embodiments, cloud storage may provide storage for data and 

executable code as a service. Such services may manage the hardware and software 

infrastructure separate from the data storage service, and the user may not be exposed to 

the hardware and in has true lure. From a user’s perspective, the cloud storage system may 

appear as an infinite sized storage system with high uptime and high reliability.

[0028] In order to operate a conventional, stateful application in a stateless process, a 

virtualization layer may be used to capture all read and write calls to areas where state 

may be stored, and redirect the calls to a separate state which may be stored in a cloud 

storage system.

[0029] The virtualization layer may operate within a stateful process and may monitor the 

read and write operations of executable code within an application. In some embodiments, 

the virtualization layer may be configured to identify certain subsets of the read and write 

operations as being state-related operations and other operations as not being state-related. 

For each of the state-related read and write operations, the virtualization layer may redirect 

the operations to an application state storage object.

[0030] For example, a typical stateful application may write changes to an operating 

system registry or a configuration file. Those write operations may be captured by the

5



WO 2012/057955 PCT/US2011/053531

5

10

15

20

25

30

virtualization layer and redirected to an application state storage object that may be stored 

in a cloud storage object.

[0031] In some embodiments, the virtualization layer may store the application state 

storage object on a local storage object accessible by the stateless cloud process. In such 

embodiments, a cloud process management system may send a command to the 

virtualization layer when the cloud process may be stopped. The cloud process 

management system may issue such commands when the process may be moved to 

another virtual machine or otherwise paused for maintenance or other reasons.

[0032] In such an embodiment, the virtualization layer may write any changes from the 

locally stored application state to an object in cloud storage. Such embodiments may also 

periodically update the cloud storage object with any changes during normal operations.

In other embodiments, the virtualization layer may redirect read and write operations 

directly to the cloud storage object.

[0033] Embodiments where the read and write operations are stored locally and then are 

copied to the cloud storage object may be useful for stateful applications that perform a 

large number of frequent accesses to the application state. Such applications may operate 

slower when the application state may be stored over a network connection to a cloud 

storage object. Other embodiments where the application may access the application state 

infrequently may be more suitable for reading and writing directly to the cloud storage 

object.

[0034] In some embodiments, the applications may be loaded and stored in the form of 

packages. A package may contain all of the various components of an application, 

including all executable code, executable libraries, and application state. The package 

may be created by a packaging system that may use the virtualization layer along with a 

sequencer. The sequencer may identify all of the executable code consumed by the 

application, including libraries, assemblies, and other components that may or may not be 

distributed with the application itself. A package may be created that contains the 

application executables, along with any data files consumed by the application. In some 

embodiments, the package may include the application state, while in other embodiments, 

the application state may be stored in a separate storage object.

[0035] Embodiment 100 illustrates a cloud computing platform 102 that may have provide 

stateless cloud processes that may be managed by a user, and various hardware and 

software infrastructure that may be managed by a cloud computing provider.

6



WO 2012/057955 PCT/US2011/053531

5

10

15

20

25

30

[0036] The cloud computing platform 102 may have a cloud computing fabric 104 made 

up of many hardware computing platforms, along with various software components 106. 

[0037] The cloud computing fabric 104 may consist of many server computers. In some 

embodiments, a single datacenter may have many hundreds or thousands, or even 

hundreds of thousands of hardware platforms. The hardware platforms may each have a 

processor 108, local memory 110, and local storage 112. In some cases, the hardware 

platforms may have a user interface 114 and network interface 116.

[0038] As part of the software components 106, the cloud computing environment 102 

may have a set of cloud software components 118. The cloud software components 118 

may be managed by the cloud service provider and may not be exposed to a user.

[0039] The cloud software components 118 may include a cloud operating system 120 as 

well as a cloud management system 121. The cloud operating system 120 may operate as 

a hypervisor to host one or more virtual machines 122 on each hardware platform. Each 

virtual machine 122 may have an operating system 124 on which stateless cloud processes 

126 may execute.

[0040] The cloud management system 121 may manage the various components of the 

cloud computing services. The cloud management system 121 may be capable of 

performing functions such as moving virtual machines from one hardware platform to 

another, starting, stopping, and pausing virtual machines, allocating resources to different 

processes, and performing other management services. The cloud management system 

121 may be a system used by a cloud services supplier to update operating systems, 

upgrade or repair hardware, and otherwise manage the hardware and software within a 

datacenter.

[0041] A cloud process 126 may be exposed to a user so that the user may execute an 

application within the cloud computing environment 102. The cloud process 126 may be a 

stateless process and may not be capable of saving and restoring any state information 

over the lifetime of the process.

[0042] A virtualization layer 128 and statefid application 130 may be executed by the 

stateless cloud process 126. The application 130 may be registered with the virtualization 

layer 128 so that the virtualization layer 128 may monitor executable code associated with 

the application 130 to detect and state changes.

[0043] In some embodiments, the application 130 may be provided to the cloud computing 

platform 102 in the form of a package. The package may include the executable code as 

well as an initial state of the application. The initial state may be the state of the

7



WO 2012/057955 PCT/US2011/053531

5

10

15

20

25

30

application 130 as initially installed and configured. After the application 130 begins 

operation, the virtualization layer 128 may create and maintain a second set of state 

information that may be differences between the initial state and the current state.

[0044] In such embodiments, the virtualization layer 128 may include various differencing 

mechanisms that may identify changes made to the initial state and may store those 

changes in a separate change database. The differencing mechanism may be able to return 

the application 130 to a stored state by loading the initial state, then applying the separate 

change database to re-create the current state.

[0045] In some embodiments, the application 130 may be installed and executed without 

using a package. In such embodiments, a script or other mechanism may first install and 

execute the virtualization layer 128 on the cloud process 126, then the application 130 may 

be installed and executed. During the installation process of the application 130, the 

virtualization layer 128 may redirect read and write operations that may affect the 

application state into a database or other storage mechanism.

[0046] The virtualization layer 128 may store the application state 136 in cloud storage 

134, which may be accessed over a network 132.

[0047] In some embodiments, the virtualization layer 128 may read and write directly to 

the cloud storage 134 for each read and write operation to the application state 136. In 

some such embodiments, the application state 136 may be stored in a virtual hard disk. A 

virtual hard disk containing the application state 136 may be mounted to the cloud process 

126 when the cloud process 126 is started and may provide a simple mechanism by which 

a virtualization layer 128 may perform read and write operations to the application state 

136.

[0048] In other embodiments, the virtualization layer 128 may maintain a local application 

state within the cloud process 126. In such embodiments, the cloud management system 

121 may issue a stop command for the cloud process 126, upon receiving such a 

command, the virtualization layer 128 may write the locally stored application state to the 

application state 136 stored in the cloud storage 134.

[0049] The cloud storage 134 may include an application package 138 as well as an 

executable virtualization layer 140. In some embodiments, an installer package may 

contain the virtualization layer’s executable components along with an application 

package. The executable virtualization layer 140 and application package 138 may be 

loaded into a cloud process 126 when the application 130 is being started. In many 

embodiments, the loading and execution of the virtualization layer 128 and application

8



WO 2012/057955 PCT/US2011/053531

5

10

15

20

25

30

130 may be defined in a script or other executable. In some cases, a user may manually 

cause the virtualization layer 128 to be loaded and configured, and then may manually 

load and start the application 130.

[0050] The application 130 may be a server application, where various client devices 142 

may access the application 130 over a network 132. The network 132 may be a local area 

network, wide area network, the Internet, or other network configuration.

[0051] As a server application, the application 130 may respond to communication 

initiated by the client devices 142. An example of such an application may be an email or 

messaging system that may store email messages in a database. Client devices 142 may 

access the email messages in the database by using a web browser, email client, or other 

client-based software. In another example, the application 130 may be a website that 

allows clients to access the website using a web browser.

[0052] When the application packages are used, a package generation system 144 may 

create an initial version of an application package. The package generation system 144 

may have a hardware platform 146, which may include a processor, random access 

memory, local storage, and user and network interfaces, along with an operating system 

148 on which various applications may operate.

[0053] A virtualization layer 150 may be used with a sequencer 152 to install and execute 

the application 154 to create an application package 156. In many embodiments, the 

application package 156 may include an application state 158, which may be an initial 

application state 158.

[0054] Figure 2 is a flowchart illustration of an embodiment 200 showing a method for 

creating an application package. The process of embodiment 200 is a simplified example 

of how an application package may be created using a virtualization layer and prepared for 

execution.

[0055] Other embodiments may use different sequencing, additional or fewer steps, and 

different nomenclature or terminology to accomplish similar functions. In some 

embodiments, various operations or set of operations may be performed in parallel with 

other operations, either in a synchronous or asynchronous manner. The steps selected here 

were chosen to illustrate some principles of operations in a simplified form.

[0056] Embodiment 200 is an example of a method for creating an application package. 

The application package may define an initial or baseline state for an application. In some 

embodiments, the application package may be installed and executed in a cloud process.

9



WO 2012/057955 PCT/US2011/053531

5

10

15

20

25

30

Such embodiments may include a management application or script that may install a 

virtualization layer and load the application package for execution.

[0057] The application package may contain all of the executables called by an 

application, including libraries, assemblies, or various additional components, along with 

any application state stored by the application during installation or normal operation. The 

process of embodiment 200 may be performed to identify the various executables and to 

capture the state of the application during installation or normal operation. All of the 

components that are identified may be added to the package, and the package may be used 

to re-create the application at the state at which the process of embodiment 200 ends.

[0058] The operations of embodiment 200 may be those operations performed by the 

package generator system 114 and specifically by the sequencer 152 and virtualization 

layer 150.

[0059] The system may start up in block 202. A virtualization layer may be loaded in 

block 204.

[0060] Storage objects to monitor may be defined in block 206. The storage objects may 

be configuration files, configuration databases, registries, or other objects. The objects 

may be registered with the virtualization layer so that the virtualization layer may monitor 

those objects for changes and may save those changes in an application state storage 

system, which may be created in block 208. In some embodiments, the virtualization layer 

may monitor all objects in the system for changes. Other embodiments may monitor 

changes for specific processes.

[0061] Different embodiments may use different storage systems in which to store 

application state information. In one embodiment, an application or service may maintain 

a separate registry, database, configuration file, or other storage object and may respond to 

read and write requests for application state information. In some embodiments, such 

functions may be performed by a virtualization layer.

[0062] The virtualization layer may create redirection paths for the monitored storage 

objects in block 210. The redirection paths may redirect read and write calls that may be 

directed to the monitored storage objects to redirect to the application state storage objects. 

[0063] Within the application, the services or executables that may create and consume the 

application state may be identified in block 212. In some embodiments, the services or 

executables may be individually identified before executing the application. In other 

embodiments, the services or executables may be identified after executing the

10



20
11

32
08

99
 

14
 N

ov
 2

01
4 application, and may be identified by those services or executables that are associated with 

the application and that read or write to the monitored objects.

[0064] The application may begin execution in block 214. In some embodiments, the 

application may begin an installation process. In other embodiments, the application may 

merely begin execution.

[0065] During execution or installation, a change to one of the monitored storage objects 

may be detected in block 216. When the change is detected in block 216, the change may be 

stored in block 218. In some embodiments, the operations of blocks 216 and 218 may be 

performed during an installation of the application and may generate an initial or golden state 

of the application.

[0066] At some point during execution, an end command may be received in block 220, 

after which the application and the state storage objects may be saved into an application 

package. In many embodiments, the executables and data files associated with the 

application may also be identified and stored in the application package.

[0067] Figure 3 is a flowchart illustration of an embodiment 300 showing a method for 

starting and resuming a stateful application within a stateless platform such as a stateless 

cloud platform The process of embodiment 300 is a simplified example of how an 

application may be started or resumed in a cloud computing environment. Within a cloud 

computing environment, an application executing on a stateless cloud computing platform 

may be paused and resumed as the cloud computing service provider may move the process 

to different hardware or software platforms in order to perform hardware or software 

maintenance, upgrade the hardware or software, or for managing the processes within a data 

center.

[0068] Other embodiments may use different sequencing, additional or fewer steps, and 

different nomenclature or terminology to accomplish similar functions. In some 

embodiments, various operations or set of operations may be performed in parallel with other 

operations, either in a synchronous or asynchronous manner. The steps selected here were 

chosen to illustrate some principles of operations in a simplified form.

[0069] Embodiment 300 represents a method that may be performed to load and execute a 

stateful application within a stateless process. A virtualization layer may be used to redirect 

read and write calls that may be associated with the application state.

[0070] The process of embodiment 300 may use a virtual hard disk that contains the 

application state. A virtual hard disk may be a software representation of a hard disk storage 

device. Virtual hard disks may be mounted and manipulated in similar manners as

11



WO 2012/057955 PCT/US2011/053531

5

10

15

20

25

30

physical hard disk storage devices, but may be moved, replicated, backed up, and have 

other operations performed as if the virtual hard disk were a simple computer file.

[0071] In many embodiments, a virtual hard disk may be mounted and accessed over a 

network connection. In some such embodiments where the virtual hard disk may be 

accessed very frequently, the network connection may consume a large amount of 

bandwidth. Depending on the performance considerations of the network, including 

overall bandwidth and latency, some embodiments may move a virtual hard disk to a local 

storage device or to another storage device that may be nearby the local processor to 

maximize performance.

[0072] A cloud storage system, sometimes known as blob storage, may be used to store 

virtual hard disks that contain application state. In such embodiments, the virtual hard 

disk may be accessed through a network connection to the cloud storage system. In 

embodiments where the application state may be accessed frequently or where the latency 

or bandwidth of the network connection to the cloud storage system adversely affects 

performance, a copy of the application state may be placed on a local storage device for 

the cloud process executing the application. In such embodiments, the application state 

may be periodically synchronized with a virtual hard disk on a cloud storage system.

[0073] Embodiment 300 illustrates a method for starting or resuming a stateful application 

within a stateless platform such as a stateless cloud computing platform The process of 

embodiment 300 may be performed by a user when initially starting the application. In 

some cases, embodiment 300 may be performed by a cloud service provider when the 

cloud service provider halts and resumes the process to perform maintenance, adjust 

capacity, or for other reasons.

[0074] The cloud process may be started in block 302. The cloud process may be a 

stateless process where no system or application state may be stored or maintained.

[0075] A virtualization layer may be loaded in block 304. The virtualization layer may 

monitor calls to read and write to specific storage objects, such as configuration files, 

directories that include configuration information, configuration databases, registries, or 

other storage objects. The virtualization layer may redirect those calls into an application 

state storage object or set of storage objects that may be stored on a virtual hard disk. 

[0076] After loading the virtualization layer in block 304, the application to be executed 

may be associated with the virtualization layer monitoring in block 306. The association 

mechanism may be different for various embodiments. In some embodiments, the 

virtualization layer may be associated with specific executables within the application for

12



WO 2012/057955 PCT/US2011/053531

5

10

15

20

25

30

monitoring. In some embodiments, the virtualization layer may be associated with 

specific storage objects for monitoring.

[0077] In block 310, the cloud storage may be searched for virtual hard disks that may 

contain a previous state for the application. After selecting the appropriate virtual hard 

disk in block 312, the virtual hard disk may be mounted in block 314. In some 

embodiments, multiple virtual hard disks may be created for different versions of the 

application. For example, a nightly or weekly backup operation may create different 

versions of the application state.

10078] In some embodiments, multiple instances of an application may be executing, each 

on a separate stateless thread. An example may be for an application that may be 

organized with a load balancing system where two, three, or even hundreds of instances of 

the application may be managed by a load balancing system to respond to large loads. In 

such an embodiment, each instance of the application may have an individual virtual hard 

disk that may contain the application state for the particular instance of the application. 

[0079] In such an instance, the virtual hard disks that may contain application state may be 

placed in a pool of virtual hard disks. As the application load increases, a new stateless 

process may be created and one of the virtual hard disks from the pool may be selected 

and used to provide application state for the application instance. When the virtual hard 

disk is mounted in block 314, that virtual hard disk may be unavailable for other processes 

to mount.

[0080] Once the virtual hard disk is mounted in block 314, the virtual hard disk may be 

associated with the virtualization layer in block 316. The association of block 316 may 

involve identifying the application state storage objects on the virtual hard disk and 

registering those storage objects with the virtualization layer.

[0081] In some embodiments, the virtual hard disk may contain the application executable 

code, which may or may not be in the form of an application package. In some 

embodiments, the application executable or application package may be separately loaded. 

[0082] When an application package is used, the application package may include an 

initial or ‘golden’ copy of the application state. As the application is used, the changes to 

the application state may be created and stored in a separate application state storage 

object. In such embodiments, a differencing mechanism may be used to keep the initial 

application state unchanged, but may apply the changes to the initial application state and 

store those changes in a second set of storage objects in the virtual hard disk.

[0083] The application may begin or resume operation in block 318.

13



20
11

32
08

99
 

14
 N

ov
 2

01
4 [0084] During operation of the application, calls to the monitored state locations may be 

monitored in block 320. When a read operation may be encountered in block 322, the read 

operation may be redirected to the appropriate storage object within the virtual hard disk in 

block 324. In embodiments where a differencing mechanism may be employed and an initial 

version and a current version of the application state are separately stored, the differencing 

mechanism may determine which storage object to access to retrieve the requested state 

information.

[0085] When a write operation may be encountered in block 322, the write operation may be 

redirected to the appropriate storage object on the virtual hard disk in block 326. In 

embodiments where the application state has a copy stored locally, the stored copy of the 

application state on the virtual hard disk may be updated in block 328.

[0086] The foregoing description of the subject matter has been presented for purposes of 

illustration and description. It is not intended to be exhaustive or to limit the subject matter to 

the precise form disclosed, and other modifications and variations may be possible in light of 

the above teachings. The embodiment was chosen and described in order to best explain the 

principles of the invention and its practical application to thereby enable others skilled in the 

art to best utilize the invention in various embodiments and various modifications as are 

suited to the particular use contemplated. It is intended that the appended claims be 

construed to include other alternative embodiments except insofar as limited by the prior art. 

[0087] Throughout this specification and the claims which follow, unless the context requires 

otherwise, the word "comprise", and variations such as "comprises" or "comprising", will be 

understood to imply the inclusion of a stated integer or step or group of integers or steps but 

not the exclusion of any other integer or step or group of integers or steps.

[0088] The reference in this specification to any prior publication (or information derived 

from it), or to any matter which is known, is not, and should not be taken as, an 

acknowledgement or admission or any form of suggestion that that prior publication (or 

information derived from it) or known matter forms part of the common general knowledge 

in the field of endeavour to which this specification relates.

14



20
11

32
08

99
 

14
 N

ov
 2

01
4

The claims defining the present inventions are as follows:

1. A method comprising:

starting a first cloud process, said first cloud process being stateless and having a first 

cloud storage;

loading and executing a virtualization layer on said first cloud process, said 

virtualization layer being configured to capture state changes and redirect said state changes 

to said cloud storage;

executing a stateful application on said first cloud process such that said virtualization 

layer identifies a state change and stores said state changes on said cloud storage;

starting a second cloud process;

loading said virtualizing layer on the second cloud process; 

loading said stateful application on the second cloud process; 

loading said state changes from the cloud storage; and

executing said stateful application with said state changes on said second cloud 

process.

2. The method of claim 1, at least one of the first and second cloud processes operating 

on a virtual machine.

3. The method of claim 2, at least one of the first and second cloud processes operating 

in a datacenter.

4. The method of claim 1, at least one of the first and second cloud processes 

comprising a virtual hard disk, said virtualization layer being configured to store said state 

changes in said virtual hard disk.

5. The method of any one of claims 1 to 4, said stateful application being stored in a 

package.

6. The method of claim 5, said package comprising said state changes.

7. The method of claim 5, said state changes being separate from said package.

15



20
11

32
08

99
 

14
 N

ov
 2

01
4

8. The method of any one of claims 1 to 7 further comprising:

selecting said state changes from a plurality of said state changes, each of said 

plurality of state changes comprising state changes for a plurality of instances of said first 

cloud process.

9. The method of claim 8, each of said plurality of state changes being created by a 

different instance of the first cloud process.

10. The method of claim 8, each of plurality of instances being stored in a virtual hard 

disk.

11. The method of claim 10, each of said plurality of instances being a different version 

of said state changes for a single of said first cloud processes.

12. A system comprising:

a cloud computing environment having cloud processes, each of said cloud processes 

being stateless processes executing on a cloud computing hardware fabric;

a virtualization layer operable within a cloud process, said virtualization layer being 

configured to capture state changes to said cloud process and stores said state changes to a 

cloud storage;

a cloud process management system configured to: 

start a first cloud process;

load said virtualization layer within said first cloud process so that state 

changes made to said first cloud process are captured and stored in said cloud storage; 

and

16



20
11

32
08

99
 

14
 N

ov
 2

01
4

execute a stateful application within said virtualization layer, such that said 

virtualization layer identifies a state change and stores said state changes in said cloud 

storage; and

start a second cloud process;

load said virtualizing layer on the second cloud process; 

load said stateful application on the second cloud process; 

load said state changes from the cloud storage; and

execute said stateful application with said state changes on said second cloud.

13. The system of claim 12, said cloud process management system that further: 

creates a virtual hard disk within said cloud storage .

14. The system of claim 13, said cloud process management system that further:

stores said virtual hard disk at a predefined interval to create a plurality of versions of 

said virtual hard disk.

15. A computer readable storage media having computer readable instructions that when 

executed cause at least one computing device to:

start a cloud process, said cloud process being stateless and having a cloud storage

system;

load and execute a virtualization layer on said cloud process, said virtualization layer 

that captures state changes and redirects said state changes to said cloud storage system;

execute a stateful application on said cloud process such that said virtualization layer 

identifies a state change in said stateful application and stores said state change on said cloud 

storage system;

start a second cloud process; 

load said virtualizing layer; 

load said stateful application; 

load said state changes; and

execute said stateful application with said state changes; and

select said state changes from a plurality of said state changes, each of said plurality 

of state changes comprising state changes for a plurality of instances of said first and second 

cloud processes and created by a different cloud process.

17



20
11

32
08

99
 

14
 N

ov
 2

01
4

16. A method substantially as hereinbefore described with reference to the accompanying 

drawings.

17. A system substantially as hereinbefore described with reference to the accompanying 

drawings.

18. A computer- readable medium substantially as hereinbefore described with reference 

to the accompanying drawings.

18



WO 2012/057955 PCT/US2011/053531

1/3

CLOUD COMPUTING 
PLATFORM FOR STATEFUL 

APPLICATIONS

FIG. 1



WO 2012/057955 PCT/US2011/053531

2/3

FIG. 2



WO 2012/057955 PCT/US2011/053531

3/3

METHOD FOR STARTING/ 
RESUMING STATEFUL

FIG. 3


