(12) STANDARD PATENT (11) Application No. AU 2011320899 B2
(19) AUSTRALIAN PATENT OFFICE

(54) Title
Stateful applications operating in a stateless cloud computing environment

(51) International Patent Classification(s)

GOG6F 9/44 (2006.01) GOG6F 15/16 (2006.01)
GOG6F 12/08 (2006.01)
(21) Application No: 2011320899 (22) Date of Filing: 2011.09.27

(87) WIPONo: WO12/057955

(30) Priority Data

(31) Number (32) Date (33) Country
12/912,798 2010.10.27 us
(43) Publication Date: 2012.05.03

(44) Accepted Journal Date: 2015.01.22

(71) Applicant(s)
Microsoft Corporation

(72) Inventor(s)
Jacobson, Neil A_;Reierson, Kristofer H.;Montgomery, Andrew

(74) Agent/ Attorney
Davies Collison Cave, Level 15 1 Nicholson Street, MELBOURNE, VIC, 3000

(56) Related Art
WO 2009/0043029 A2
US 2009/0300149 A1

WO 2012/057955 A1 1IN AP0 T 0 OO0 O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization /2
International Burcau 5
e |

(43) International Publication Datc
3 May 2012 (03.05.2012)

(10) International Publication Number

WO 2012/057955 A1

International Patent Classification:
GOG6F 9/44 (2006.01) GO6F 12/08 (2006.01)
GO6F 15/16 (2006.01)

(51)

(21

International Application Number:
PCT/US2011/053531

(22) International Filing Date:
27 September 2011 (27.09.2011)
(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:
12/912,798 27 October 2010 (27.10.2010) us
(71) Applicant (for all designated States except US): MIl-

CROSOFT CORPORATION [US/US]; One Microsoft
Way, Redmond, Washington 98052-6399 (US).

Inventors: JACOBSON, Neil A.; c/o Microsott Corpora-
tion, LCA - International Patents, One Microsoft Way,
Redmond, Washington 98052-6399 (US). REIERSON,
Kristofer H.; c/o Microsoft Corporation, LCA - Interna-
tional Patents, One Microsoft Way, Redmond, Washing-
ton 98052-6399 (US). MONTGOMERY, Andrew; c/o
Microsoft Corporation, LCA - International Patents, One
Microsoft Way, Redmond, Washington 98052-6399 (US).

(72

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU,
RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ,
TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
M, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD,
RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ,
DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT,
LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS,
SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM,
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant’s entitlement to apply for and be granted
a patent (Rule 4.17(ii))

[Continued on next page]

(54) Title: STATEFUL APPLICATIONS OPERATING IN A STATELESS CLOUD COMPUTING ENVIRONMENT

(57) Abstract: A cloud computing environment may use a virtualization
layer within a stateless cloud computing process to capture, store, and re-
trieve state information generated by a stateful application executing with-
in the process. The virtualization layer may monitor various state storage
systems to identify changes to stateful items and store the stateful items in
a state storage mechanism. The virtualization layer may intercept and redi-
rect calls to the stateful items stored in the state storage mechanism. A
cloud computing manager may start and stop the stateless cloud comput-
ing process, and may recover the state and resume executing the applica-
tion.

CLOUD COMPJTING
PLATFORM FOR STATEFUL
APPLICATIONS
100

\y
APPLICATION
PACKAGE

158
APPLICATION
STATE

CPEPATING SYSTEM 149
HARDWARE PLATFORM v~ 146

142
VIRTUALIZATION
LAYER

138
PACKAGE
136
STATE

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 134
| cLout
! APPLICATION 130 cLOLD STORAGE
| [/IRTUALIZATION LAYER }~128 (SomnanGs
CLOUD PROCESS 126 18

144
PACKAGE
GEMERATOR
SYSTEM

102~ |

CLOUD | emooo o~
COMFUTING r

PLATFORM

SOF TWARE
COMPONENTS
104~~A
CLOUD
HARDWARE
FABRIC

FIG. 1

WO 2012/057955 A1 WS008 000 OO O

— as to the applicant's entitlement to claim the priority of — before the expiration of the time limit for amending the
the earlier application (Rule 4.17(iii)) claims and to be republished in the event of receipt of
Published: amendments (Rule 48.2(h))

— with international search report (Art. 21(3))

14 Nov 2014

2011320899

STATEFUL APPLICATIONS OPERATING IN A STATELESS CLOUD

COMPUTING ENVIRONMENT
Background

[0001] Cloud computing is a computing environment in which processes operate statelessly.
In a typical cloud computing environment, a user’s process may operate on a fabric of
hardware platforms within one or more datacenters, and the datacenter operator may be able
to move the user’s process from one server or hardware platform to another. Since the
datacenter operator may perform such moves at different times, the processes executing on
the cloud computing environment may not store state within the processes.
[0002] In contrast to cloud computing processes, many conventional applications may store
state in the form of operating system registry settings, configuration files, and other changes.
In order for the application to perform as expected over time, the state for the application may
persist and may be recalled from time to time or when the application is restarted.
Summary

[0003] A cloud computing environment may use a virtualization layer within a stateless cloud
computing process to capture, store, and retrieve state information generated by a stateful
application executing within the process. The virtualization layer may monitor various state
storage systems to identify changes to stateful items and store the stateful items in a state
storage mechanism. The virtualization layer may intercept and redirect calls to the stateful
items stored in the state storage mechanism. A cloud computing manager may start and stop
the stateless cloud computing process, and may recover the state and resume executing the
application.
[0003A] In one aspect there is provided a method comprising:

starting a first cloud process, said first cloud process being stateless and having a first
cloud storage;

loading and executing a virtualization layer on said first cloud process, said
virtualization layer being configured to capture state changes and redirect said state changes
to said cloud storage;

executing a stateful application on said first cloud process such that said virtualization
layer identifies a state change and stores said state changes on said cloud storage;

starting a second cloud process;

loading said virtualizing layer on the second cloud process;

loading said stateful application on the second cloud process;

14 Nov 2014

2011320899

loading said state changes from the cloud storage; and

executing said stateful application with said state changes on said second cloud
process.

[0003B] In another aspect there is provided a system comprising:

a cloud computing environment having cloud processes, each of said cloud processes
being stateless processes executing on a cloud computing hardware fabric;

a virtualization layer operable within a cloud process, said virtualization layer being
configured to capture state changes to said cloud process and stores said state changes to a
cloud storage;

a cloud process management system configured to:

start a first cloud process;
load said virtualization layer within said first cloud process so that state
changes made to said first cloud process are captured and stored in said cloud storage;
and
execute a stateful application within said virtualization layer, such that said
virtualization layer identifies a state change and stores said state changes in said cloud
storage; and
start a second cloud process;
load said virtualizing layer on the second cloud process;
load said stateful application on the second cloud process;
load said state changes from the cloud storage; and
execute said stateful application with said state changes on said second cloud.
[0003C] In a further aspect there is provided a computer readable storage media having
computer readable instructions that when executed cause at least one computing device to:
start a cloud process, said cloud process being stateless and having a cloud storage
system,;

load and execute a virtualization layer on said cloud process, said virtualization layer
that captures state changes and redirects said state changes to said cloud storage system;

execute a stateful application on said cloud process such that said virtualization layer
identifies a state change in said stateful application and stores said state change on said cloud
storage system;

start a second cloud process;

1A

14 Nov 2014

2011320899

load said virtualizing layer;

load said stateful application;

load said state changes; and

execute said stateful application with said state changes; and

select said state changes from a plurality of said state changes, each of said plurality
of state changes comprising state changes for a plurality of instances of said first and second
cloud processes and created by a different cloud process.
[0004] This Summary is provided to introduce a selection of concepts in a simplified form
that are further described below in the Detailed Description. This Summary is not intended to
identify key features or essential features of the claimed subject matter, nor is it intended to
be used to limit the scope of the claimed subject matter.

Brief Description of the Drawings

[0005] In the drawings,
[0006] FIGURE 1 is a diagram illustration of an embodiment showing a cloud computing
environment for stateful applications.

[0007] FIGURE 2 is a flowchart illustration of an embodiment showing a method for
creating an application package

1B

10

15

20

25

30

WO 2012/057955 PCT/US2011/053531

[0008] FIGURE 3 is a {lowchart illustration of an embodiment showing a method for
starting or resuming a stateful application in a stateless process.

Detailed Description
[0009] A cloud computing environment may use a virtualization layer to capture state
changes to an application and persist the state changes when stopping and restarting the
application. The virtualization layer may monitor various storage mechanisms used by
applications to store state, and may create and manage a separate storage mechanism for
the state. The virtualization layer may recognize calls to the storage mechanisms and
redirect such calls to the separate storage mechanism.
[0010] The state of the application may be stored into a cloud storage system, which may
persist the state while stopping and restarting the application. In many embodiments, a
virtual hard disk may be used to store the state, and such a virtual hard disk may be stored
directly on a cloud storage system.
[0011] In somc cmbodiments, multiplc copics of the application may be exccuting, each
having a scparatc statc. When the process cxccuting the application is stopped, the state
may be storcd, and when the process is resumed, the state may be selected from a group of
stored states, the process resumed from the previous state.
[0012] Throughout this specification, like reference numbers signify the same elements
throughout the description of the figures.
[0013] When elements are referred to as being “connected” or “coupled,” the elements can
be directly connected or coupled together or one or more intervening elements may also be
present. In contrast, when elements are referred to as being “directly connected” or
“directly coupled,” there are no intervening elements present.
[0014] The subject matter may be embodied as devices, systems, methods, and/or
computer program products. Accordingly, some or all of the subject matter may be
embodied in hardware and/or in software (including firmware, resident software, micro-
code, state machines, gate arrays, etc.) Furthermore, the subject matter may take the form
of a computer program product on a computer-usable or computer-readable storage
medium having computer-usable or computer-readable program code embodied in the
medium for use by or in connection with an instruction execution system. In the context
of this document, a computer-usable or computer-readable medium may be any medium
that can contain, store, communicate, propagate, or transport the program for use by or in

connection with the instruction execution system, apparatus, or device.

10

15

20

25

30

WO 2012/057955 PCT/US2011/053531

[0015] The computer-usable or computer-readable medium may be for example, but not
limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, device, or propagation medium. By way of example, and not
limitation, computer-readable media may comprise computer storage media and
communication media.

[0016] Computer storage media includes volatile and nonvolatile, removable and non-
removable media implemented in any method or technology for storage of information
such as computer-readable instructions, data structures, program modules, or other data.
Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash
memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other
optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic
storage devices, or any other medium which can be used to store the desired information
and may be accessed by an instruction execution system. Note that the computer-usable or
computer-rcadable medium can be paper or other suitable medium upon which the
program is printed, as the program can be electronically capturcd via, for instancc, optical
scanning of the paper or other suitable medium, then compiled, interpreted, of otherwise
processed in a suitable manner, if necessary, and then stored in a computer memory.
[0017] Communication media typically embodies computer-readable instructions, data
structures, program modules or other data in a modulated data signal such as a carrier
wave or other transport mechanism and includes any information delivery media. The
term “modulated data signal” can be defined as a signal that has one or more of its
characteristics set or changed in such a manner as to encode information in the signal. By
way of example, and not limitation, communication media includes wired media such as a
wired network or direct-wired connection, and wireless media such as acoustic, RF,
infrared and other wireless media. Combinations of any of the above-mentioned should
also be included within the scope of computer-readable media.

[0018] When the subject matter is embodied in the general context of computer-executable
instructions, the embodiment may comprise program modules, executed by one or more
systems, computers, or other devices. Generally, program modules include routines,
programs, objects, components, data structures, and the like, that perform particular tasks
or implement particular abstract data types. Typically, the functionality of the program
modules may be combined or distributed as desired in various embodiments.

[0019] Figure 1 is a diagram of an embodiment 100, showing a cloud computing

environment in which stateful applications may be executed using stateless cloud

10

15

20

25

30

WO 2012/057955 PCT/US2011/053531

compuling processes. Embodiment 100 is a simplified example of a cloud computing
environment and the various components that may allow execution of the stateful
application.

[0020] The diagram of Figure 1 illustrates functional components of a system. In some
cases, the component may be a hardware component, a software component, or a
combination of hardware and software. Some of the components may be application level
software, while other components may be operating system level components. In some
cases, the connection of one component to another may be a close connection where two
or more components are operating on a single hardware platform. In other cases, the
connections may be made over network connections spanning long distances. Each
embodiment may use different hardware, software, and interconnection architectures to
achieve the described functions.

[0021] Many applications, especially conventional desktop or server applications, may be
statcful. The term stateful is used to indicate that the application may operate with and
change thc statc of the application during installation and usc. In many cascs, a stateful
application may store configuration information in a systcm registry, configuration file,
configuration database, or other storage mechanism.

[0022] In an example of a stateful application, an application may allow a user to
customize certain properties or arrange a user interface in a particular manner. Those
customizations may constitute the state of the application. In another embodiment, an
application may be frequently updated, with each update constituting a state of the
application.

[0023] In some cloud computing environments, the processes executing in the
environment are inherently stateless. In many such embodiments, the processes may
execute within a datacenter may be moved from one virtual machine on one hardware
platform to another virtual machine on another hardware platform. During such
transitions, the datacenter may move the process around, but may not move any state
associated with various backend components, such as the hardware platform, a virtual
machine, an operating system operating within the virtual machine, or any other
component.

[0024] Such an architecture may allow the cloud computing environment to manage the
underlying hardware and operating systems in a very efficient manner. During periods of
low usage, processes may be consolidated onto a small subset of the hardware platforms

while other hardware platforms are turned off. When new versions of an operating system

4

10

15

20

25

30

WO 2012/057955 PCT/US2011/053531

are available, or when upgrades or patches are made to an existing operating system, the
processes may be temporarily suspended or moved to another hardware platform with an
updated operating system, then returned to the original platform an operated with the
updated operating system.

[0025] Many cloud computing services may host many different computing processes and
may provide services for many different customers. Each customer may be responsible
for their own processes, but the cloud computing service may provide hardware and
software support services. The cloud computing service may manage the processes in
large datacenters, which may provide physical security, professional management of the
hardware and software infrastructure, high network bandwidth, redundant hardware
platforms, and guaranteed uptime, among other benefits.

[0026] Some cloud computing environments may operate multiple datacenters which may
be located around the world. Such environments may allow users to have their processes
and applications exccuting in diffcrent time zoncs to allow faster conncctions and lower
nctwork costs when providing access to employccs or customers around the globe.

[0027] Many cloud computing environments may also offer cloud storage. Cloud storagc,
sometimes also known as blob storage, may be a data storage system that may operate in a
datacenter. In many embodiments, cloud storage may provide storage for data and
executable code as a service. Such services may manage the hardware and software
infrastructure separate from the data storage service, and the user may not be exposed to
the hardware and infrastructure. From a user’s perspective, the cloud storage system may
appear as an infinite sized storage system with high uptime and high reliability.

[0028] In order to operate a conventional, stateful application in a stateless process, a
virtualization layer may be used to capture all read and write calls to areas where state
may be stored, and redirect the calls 1o a separate state which may be stored in a cloud
storage system.

[0029] The virtualization layer may operate within a stateful process and may monitor the
read and write operations of executable code within an application. In some embodiments,
the virtualization layer may be configured to identify certain subsets of the read and write
operations as being state-related operations and other operations as not being state-related.
For each of the state-related read and write operations, the virtualization layer may redirect
the operations to an application state storage object.

[0030] For example, a typical stateful application may write changes to an operating

system registry or a configuration file. Those write operations may be captured by the

10

15

20

25

30

WO 2012/057955 PCT/US2011/053531

virtualization layer and redirected Lo an application state storage object that may be stored
in a cloud storage object.

[0031] In some embodiments, the virtualization layer may store the application state
storage object on a local storage object accessible by the stateless cloud process. In such
embodiments, a cloud process management system may send a command to the
virtualization layer when the cloud process may be stopped. The cloud process
management system may issue such commands when the process may be moved to
another virtual machine or otherwise paused for maintenance or other reasons.

[0032] In such an embodiment, the virtualization layer may write any changes from the
locally stored application state to an object in cloud storage. Such embodiments may also
periodically update the cloud storage object with any changes during normal operations.
In other embodiments, the virtualization layer may redirect read and write operations
directly to the cloud storage object.

[0033] Embodiments wherc the read and write operations arc stored locally and then arc
copicd to the cloud storage objcct may be uscful for statcful applications that perform a
large number of frequent accesses to the application state. Such applications may opcrate
slower when the application state may be stored over a network connection to a cloud
storage object. Other embodiments where the application may access the application state
infrequently may be more suitable for reading and writing directly to the cloud storage
object.

[0034] In some embodiments, the applications may be loaded and stored in the form of
packages. A package may contain all of the various components of an application,
including all executable code, executable libraries, and application state. The package
may be created by a packaging system that may use the virtualization layer along with a
sequencer. The sequencer may identify all of the executable code consumed by the
application, including libraries, assemblies, and other components that may or may not be
distributed with the application itself. A package may be created that contains the
application executables, along with any data files consumed by the application. In some
embodiments, the package may include the application state, while in other embodiments,
the application state may be stored in a separate storage object.

[0035] Embodiment 100 illustrates a cloud computing platform 102 that may have provide
stateless cloud processes that may be managed by a user, and various hardware and

software infrastructure that may be managed by a cloud computing provider.

10

15

20

25

30

WO 2012/057955 PCT/US2011/053531

[0036] The cloud computing platform 102 may have a cloud computing fabric 104 made
up of many hardware computing platforms, along with various software components 106.
[0037] The cloud computing fabric 104 may consist of many server computers. In some
embodiments, a single datacenter may have many hundreds or thousands, or even
hundreds of thousands of hardware platforms. The hardware platforms may each have a
processor 108, local memory 110, and local storage 112. In some cases, the hardware
platforms may have a user interface 114 and network interface 116.

[0038] As part of the software components 106, the cloud computing environment 102
may have a set of cloud software components 118. The cloud software components 118
may be managed by the cloud service provider and may not be exposed to a user.

[0039] The cloud software components 118 may include a cloud operating system 120 as
well as a cloud management system 121. The cloud operating system 120 may operate as
a hypervisor to host one or more virtual machines 122 on each hardware platform. Each
virtual machine 122 may have an operating system 124 on which stateless cloud processes
126 may exccute.

[0040] Thc cloud management system 121 may manage the various components of the
cloud computing services. The cloud management system 121 may be capable of
performing functions such as moving virtual machines from one hardware platform to
another, starting, stopping, and pausing virtual machines, allocating resources to different
processes, and performing other management services. The cloud management system
121 may be a system used by a cloud services supplier to update operating systems,
upgrade or repair hardware, and otherwise manage the hardware and software within a
datacenter.

[0041] A cloud process 126 may be exposed to a user so that the user may execute an
application within the cloud computing environment 102. The cloud process 126 may be a
stateless process and may not be capable of saving and restoring any state information
over the lifetime of the process.

[0042] A virtualization layer 128 and stateful application 130 may be executed by the
stateless cloud process 126. The application 130 may be registered with the virtualization
layer 128 so that the virtualization layer 128 may monitor executable code associated with
the application 130 to detect and state changes.

[0043] In some embodiments, the application 130 may be provided to the cloud computing
platform 102 in the form of a package. The package may include the executable code as

well as an initial state of the application. The initial state may be the state of the

7

10

15

20

25

30

WO 2012/057955 PCT/US2011/053531

application 130 as initially installed and configured. After the application 130 begins
operation, the virtualization layer 128 may create and maintain a second set of state
information that may be differences between the initial state and the current state.

[0044] In such embodiments, the virtualization layer 128 may include various differencing
mechanisms that may identify changes made to the initial state and may store those
changes in a separate change database. The differencing mechanism may be able to return
the application 130 to a stored state by loading the initial state, then applying the separate
change database to re-create the current state.

[0045] In some embodiments, the application 130 may be installed and executed without
using a package. In such embodiments, a script or other mechanism may first install and
execute the virtualization layer 128 on the cloud process 126, then the application 130 may
be installed and executed. During the installation process of the application 130, the
virtualization layer 128 may redirect read and write operations that may affect the
application state into a database or other storage mcchanism.

[0046] The virtualization layer 128 may storc the application statc 136 in cloud storagc
134, which may be accesscd over a network 132.

[0047] In some embodiments, the virtualization layer 128 may read and write directly to
the cloud storage 134 for each read and write operation to the application state 136. In
some such embodiments, the application state 136 may be stored in a virtual hard disk. A
virtual hard disk containing the application state 136 may be mounted to the cloud process
126 when the cloud process 126 is started and may provide a simple mechanism by which
a virtualization layer 128 may perform read and write operations to the application state
136.

[0048] In other embodiments, the virtualization layer 128 may maintain a local application
state within the cloud process 126. In such embodiments, the cloud management system
121 may issue a stop command for the cloud process 126, upon receiving such a
command, the virtualization layer 128 may write the locally stored application state to the
application state 136 stored in the cloud storage 134.

[0049] The cloud storage 134 may include an application package 138 as well as an
executable virtualization layer 140. In some embodiments, an installer package may
contain the virtualization layer’s executable components along with an application
package. The executable virtualization layer 140 and application package 138 may be
loaded into a cloud process 126 when the application 130 is being started. In many

embodiments, the loading and execution of the virtualization layer 128 and application

8

10

15

20

25

30

WO 2012/057955 PCT/US2011/053531

130 may be defined in a script or other executable. In some cases, a user may manually
cause the virtualization layer 128 to be loaded and configured, and then may manually
load and start the application 130.

[0050] The application 130 may be a server application, where various client devices 142
may access the application 130 over a network 132. The network 132 may be a local area
network, wide area network, the Internet, or other network configuration.

[0051] As a server application, the application 130 may respond to communication
initiated by the client devices 142. An example of such an application may be an email or
messaging system that may store email messages in a database. Client devices 142 may
access the email messages in the database by using a web browser, email client, or other
client-based software. In another example, the application 130 may be a website that
allows clients to access the website using a web browser.

[0052] When the application packages are used, a package generation system 144 may
create an initial version of an application package. The package gencration system 144
may have a hardware platform 146, which may include a processor, random access
memory, local storage, and user and network interfaces, along with an opcrating systcm
148 on which various applications may operate.

[0053] A virtualization layer 150 may be used with a sequencer 152 to install and execute
the application 154 to create an application package 156. In many embodiments, the
application package 156 may include an application state 158, which may be an initial
application state 158.

[0054] Figure 2 is a flowchart illustration of an embodiment 200 showing a method for
creating an application package. The process of embodiment 200 is a simplified example
of how an application package may be created using a virtualization layer and prepared for
execution.

[0055] Other embodiments may use different sequencing, additional or fewer steps, and
different nomenclature or terminology to accomplish similar functions. In some
embodiments, various operations or set of operations may be performed in parallel with
other operations, either in a synchronous or asynchronous manner. The steps selected here
were chosen to illustrate some principles of operations in a simplified form.

[0056] Embodiment 200 is an example of a method for creating an application package.
The application package may define an initial or baseline state for an application. In some

embodiments, the application package may be installed and executed in a cloud process.

10

15

20

25

30

WO 2012/057955 PCT/US2011/053531

Such embodiments may include a management application or script that may install a
virtualization layer and load the application package for execution.

[0057] The application package may contain all of the executables called by an
application, including libraries, assemblies, or various additional components, along with
any application state stored by the application during installation or normal operation. The
process of embodiment 200 may be performed to identify the various executables and to
capture the state of the application during installation or normal operation. All of the
components that are identified may be added to the package, and the package may be used
to re-create the application at the state at which the process of embodiment 200 ends.
[0058] The operations of embodiment 200 may be those operations performed by the
package generator system 114 and specifically by the sequencer 152 and virtualization
layer 150.

[0059] The system may start up in block 202. A virtualization layer may be loaded in
block 204.

[0060] Storage objccts to monitor may be definced in block 206. The storage objccts may
be configuration files, configuration databascs, registrics, or other objects. The objects
may be registered with the virtualization layer so that the virtualization layer may monitor
those objects for changes and may save those changes in an application state storage
system, which may be created in block 208. In some embodiments, the virtualization layer
may monitor all objects in the system for changes. Other embodiments may monitor
changes for specific processes.

[0061] Different embodiments may use different storage systems in which to store
application state information. In one embodiment, an application or service may maintain
a separate registry, database, configuration file, or other storage object and may respond to
read and write requests for application state information. In some embodiments, such
functions may be performed by a virtualization layer.

[0062] The virtualization layer may create redirection paths for the monitored storage
objects in block 210. The redirection paths may redirect read and write calls that may be
directed to the monitored storage objects to redirect to the application state storage objects.
[0063] Within the application, the services or executables that may create and consume the
application state may be identified in block 212. In some embodiments, the services or
executables may be individually identified before executing the application. In other

embodiments, the services or executables may be identified after executing the

10

14 Nov 2014

2011320899

application, and may be identified by those services or executables that are associated with
the application and that read or write to the monitored objects.

[0064] The application may begin execution in block 214. In some embodiments, the
application may begin an installation process. In other embodiments, the application may
merely begin execution.

[0065] During execution or installation, a change to one of the monitored storage objects
may be detected in block 216. When the change is detected in block 216, the change may be
stored in block 218. In some embodiments, the operations of blocks 216 and 218 may be
performed during an installation of the application and may generate an initial or golden state
of the application.

[0066] At some point during execution, an end command may be received in block 220,
after which the application and the state storage objects may be saved into an application
package. In many embodiments, the executables and data files associated with the
application may also be identified and stored in the application package.

[0067] Figure 3 is a flowchart illustration of an embodiment 300 showing a method for
starting and resuming a stateful application within a stateless platform such as a stateless
cloud platform The process of embodiment 300 is a simplified example of how an
application may be started or resumed in a cloud computing environment. Within a cloud
computing environment, an application executing on a stateless cloud computing platform
may be paused and resumed as the cloud computing service provider may move the process
to different hardware or software platforms in order to perform hardware or software
maintenance, upgrade the hardware or software, or for managing the processes within a data
center.

[0068] Other embodiments may use different sequencing, additional or fewer steps, and
different nomenclature or terminology to accomplish similar functions. In some
embodiments, various operations or set of operations may be performed in parallel with other
operations, either in a synchronous or asynchronous manner. The steps selected here were
chosen to illustrate some principles of operations in a simplified form.

[0069] Embodiment 300 represents a method that may be performed to load and execute a
stateful application within a stateless process. A virtualization layer may be used to redirect
read and write calls that may be associated with the application state.

[0070] The process of embodiment 300 may use a virtual hard disk that contains the
application state. A virtual hard disk may be a software representation of a hard disk storage

device. Virtual hard disks may be mounted and manipulated in similar manners as

11

10

15

20

25

30

WO 2012/057955 PCT/US2011/053531

physical hard disk storage devices, but may be moved, replicated, backed up, and have
other operations performed as if the virtual hard disk were a simple computer file.

[0071] In many embodiments, a virtual hard disk may be mounted and accessed over a
network connection. In some such embodiments where the virtual hard disk may be
accessed very frequently, the network connection may consume a large amount of
bandwidth. Depending on the performance considerations of the network, including
overall bandwidth and latency, some embodiments may move a virtual hard disk to a local
storage device or to another storage device that may be nearby the local processor to
maximize performance.

[0072] A cloud storage system, sometimes known as blob storage, may be used to store
virtual hard disks that contain application state. In such embodiments, the virtual hard
disk may be accessed through a network connection to the cloud storage system. In
embodiments where the application state may be accessed frequently or where the latency
or bandwidth of the nctwork conncction to the cloud storage system adverscly affccts
performance, a copy of the application statc may be placed on a local storage device for
the cloud process cxccuting the application. In such cmbodiments, the application statc
may be periodically synchronized with a virtual hard disk on a cloud storage system.
[0073] Embodiment 300 illustrates a method for starting or resuming a stateful application
within a stateless platform such as a stateless cloud computing platform The process of
embodiment 300 may be performed by a user when initially starting the application. In
some cases, embodiment 300 may be performed by a cloud service provider when the
cloud service provider halts and resumes the process to perform maintenance, adjust
capacity, or for other reasons.

[0074] The cloud process may be started in block 302. The cloud process may be a
stateless process where no system or application state may be stored or maintained.

[0075] A virtualization layer may be loaded in block 304. The virtualization layer may
monitor calls to read and write to specific storage objects, such as configuration files,
directories that include configuration information, configuration databases, registries, or
other storage objects. The virtualization layer may redirect those calls into an application
state storage object or set of storage objects that may be stored on a virtual hard disk.
[0076] After loading the virtualization layer in block 304, the application to be executed
may be associated with the virtualization layer monitoring in block 306. The association
mechanism may be different for various embodiments. In some embodiments, the

virtualization layer may be associated with specific executables within the application for

12

10

15

20

25

30

WO 2012/057955 PCT/US2011/053531

monitoring. In some embodiments, the virtualization layer may be associated with
specific storage objects for monitoring.

[0077] In block 310, the cloud storage may be searched for virtual hard disks that may
contain a previous state for the application. After selecting the appropriate virtual hard
disk in block 312, the virtual hard disk may be mounted in block 314. In some
embodiments, multiple virtual hard disks may be created for different versions of the
application. For example, a nightly or weekly backup operation may create different
versions of the application state.

[0078] In some embodiments, multiple instances of an application may be executing, each
on a separate stateless thread. An example may be for an application that may be
organized with a load balancing system where two, three, or even hundreds of instances of
the application may be managed by a load balancing system to respond to large loads. In
such an embodiment, each instance of the application may have an individual virtual hard
disk that may contain the application state for the particular instance of the application.
[0079] In such an instance, the virtual hard disks that may contain application statec may bc
placed in a pool of virtual hard disks. As the application load incrcascs, a new statcless
process may be created and one of the virtual hard disks from the pool may be selected
and used to provide application state for the application instance. When the virtual hard
disk is mounted in block 314, that virtual hard disk may be unavailable for other processes
to mount.

[0080] Once the virtual hard disk is mounted in block 314, the virtual hard disk may be
associated with the virtualization layer in block 316. The association of block 316 may
involve identifying the application state storage objects on the virtual hard disk and
registering those storage objects with the virtualization layer.

[0081] In some embodiments, the virtual hard disk may contain the application executable
code, which may or may not be in the form of an application package. In some
embodiments, the application executable or application package may be separately loaded.
[0082] When an application package is used, the application package may include an
initial or ‘golden’ copy of the application state. As the application is used, the changes to
the application state may be created and stored in a separate application state storage
object. In such embodiments, a differencing mechanism may be used to keep the initial
application state unchanged, but may apply the changes to the initial application state and
store those changes in a second set of storage objects in the virtual hard disk.

[0083] The application may begin or resume operation in block 318.

13

14 Nov 2014

2011320899

[0084] During operation of the application, calls to the monitored state locations may be
monitored in block 320. When a read operation may be encountered in block 322, the read
operation may be redirected to the appropriate storage object within the virtual hard disk in
block 324. In embodiments where a differencing mechanism may be employed and an initial
version and a current version of the application state are separately stored, the differencing
mechanism may determine which storage object to access to retrieve the requested state
information.

[0085] When a write operation may be encountered in block 322, the write operation may be
redirected to the appropriate storage object on the virtual hard disk in block 326. In
embodiments where the application state has a copy stored locally, the stored copy of the
application state on the virtual hard disk may be updated in block 328.

[0086] The foregoing description of the subject matter has been presented for purposes of
illustration and description. It is not intended to be exhaustive or to limit the subject matter to
the precise form disclosed, and other modifications and variations may be possible in light of
the above teachings. The embodiment was chosen and described in order to best explain the
principles of the invention and its practical application to thereby enable others skilled in the
art to best utilize the invention in various embodiments and various modifications as are
suited to the particular use contemplated. It is intended that the appended claims be
construed to include other alternative embodiments except insofar as limited by the prior art.
[0087] Throughout this specification and the claims which follow, unless the context requires
otherwise, the word "comprise", and variations such as "comprises" or "comprising", will be
understood to imply the inclusion of a stated integer or step or group of integers or steps but
not the exclusion of any other integer or step or group of integers or steps.

[0088] The reference in this specification to any prior publication (or information derived
from it), or to any matter which is known, is not, and should not be taken as, an
acknowledgement or admission or any form of suggestion that that prior publication (or
information derived from it) or known matter forms part of the common general knowledge

in the field of endeavour to which this specification relates.

14

14 Nov 2014

2011320899

The claims defining the present inventions are as follows:

l. A method comprising:

starting a first cloud process, said first cloud process being stateless and having a first
cloud storage;

loading and executing a virtualization layer on said first cloud process, said
virtualization layer being configured to capture state changes and redirect said state changes
to said cloud storage;

executing a stateful application on said first cloud process such that said virtualization
layer identifies a state change and stores said state changes on said cloud storage;

starting a second cloud process;

loading said virtualizing layer on the second cloud process;

loading said stateful application on the second cloud process;

loading said state changes from the cloud storage; and

executing said stateful application with said state changes on said second cloud

process.

2. The method of claim 1, at least one of the first and second cloud processes operating

on a virtual machine.

3. The method of claim 2, at least one of the first and second cloud processes operating

in a datacenter.

4. The method of claim 1, at least one of the first and second cloud processes
comprising a virtual hard disk, said virtualization layer being configured to store said state

changes in said virtual hard disk.

S. The method of any one of claims 1 to 4, said stateful application being stored in a
package.

6. The method of claim 5, said package comprising said state changes.

7. The method of claim 5, said state changes being separate from said package.

15

14 Nov 2014

2011320899

8. The method of any one of claims 1 to 7 further comprising:
selecting said state changes from a plurality of said state changes, each of said
plurality of state changes comprising state changes for a plurality of instances of said first

cloud process.

9. The method of claim 8, each of said plurality of state changes being created by a

different instance of the first cloud process.

10. The method of claim 8, each of plurality of instances being stored in a virtual hard
disk.
11. The method of claim 10, each of said plurality of instances being a different version

of said state changes for a single of said first cloud processes.

12. A system comprising:

a cloud computing environment having cloud processes, each of said cloud processes
being stateless processes executing on a cloud computing hardware fabric;

a virtualization layer operable within a cloud process, said virtualization layer being
configured to capture state changes to said cloud process and stores said state changes to a
cloud storage;

a cloud process management system configured to:

start a first cloud process;
load said virtualization layer within said first cloud process so that state
changes made to said first cloud process are captured and stored in said cloud storage;

and

16

14 Nov 2014

2011320899

execute a stateful application within said virtualization layer, such that said
virtualization layer identifies a state change and stores said state changes in said cloud
storage; and

start a second cloud process;

load said virtualizing layer on the second cloud process;

load said stateful application on the second cloud process;

load said state changes from the cloud storage; and

execute said stateful application with said state changes on said second cloud.

13. The system of claim 12, said cloud process management system that further:

creates a virtual hard disk within said cloud storage .

14. The system of claim 13, said cloud process management system that further:
stores said virtual hard disk at a predefined interval to create a plurality of versions of

said virtual hard disk.

15. A computer readable storage media having computer readable instructions that when

executed cause at least one computing device to:

start a cloud process, said cloud process being stateless and having a cloud storage
system,;

load and execute a virtualization layer on said cloud process, said virtualization layer
that captures state changes and redirects said state changes to said cloud storage system;

execute a stateful application on said cloud process such that said virtualization layer
identifies a state change in said stateful application and stores said state change on said cloud
storage system;

start a second cloud process;

load said virtualizing layer;

load said stateful application;

load said state changes; and

execute said stateful application with said state changes; and

select said state changes from a plurality of said state changes, each of said plurality
of state changes comprising state changes for a plurality of instances of said first and second

cloud processes and created by a different cloud process.

17

14 Nov 2014

2011320899

16. A method substantially as hereinbefore described with reference to the accompanying

drawings.

17. A system substantially as hereinbefore described with reference to the accompanying

drawings.

18. A computer- readable medium substantially as hereinbefore described with reference

to the accompanying drawings.

18

WO 2012/057955 PCT/US2011/053531
1/3
CLOUD COMPUTING
PLATFORM FOR STATEFUL
APPLICATIONS
100
154 i APPLICATION <
| APPLICATION | PACKAGE 142 ~
152~ | 158 140
| SEQUENCER | CLIENT VIRTUALIZATION
150~ | DEVICE LAYER
APPLICATION _—~138
VIRTUALIZATION| _|
LAYER STATE APPLICATION
PACKAGE
[OPERATING SYSTEM k148 NETWORK 136
132 APPLICATION
[HARDWARE PLATFORM|~146 d;/
144 | mmm 134
PACKAGE | | | cLoup
GENERATOR | | | APPLICATION 130 CLOUD | | STORAGE
SYSTEM | SOFTWARE |
i | VIRTUALIZATION LAYER 128 ~QMPONENTS |
. [CLOUD PROCESS 126 118 !
| |
1 I
: : | OPERATING SYSTEM 124 121 : :
I'I' [VIRTUAL MACHINE L
L I}~r22 CLOUD |
I 1 [CLOUD OPERATING | _~ MANAGEMENT | | |
I SYSTEM 120 SYSTEM I
102~ | Lo ________ il
CLOUD b -
COMPUTING ~
PLATFORM 106 112
SOFTWARE -
COMPONENTS TSEAL 14
STORAGE USER
104~ 108 INTERFACE
CLOUD 116
HARDWARE -
FABRIC 110 NETWORK
MEMORY INTERFACE

FIG. 1

WO 2012/057955 PCT/US2011/053531

2/3

| START UP SYSTEM ~""202

v

[LOAD VIRTUALIZATION LAYER _ —""204

v

IDENTIFY STORAGE OBJECTS TO
MONITOR — 206

v

CREATE APPLICATION STATE
STORAGE — 208

v

CREATE REDIRECTION PATHS FOR
MONITORED STORAGE OBJECTS [~ 210

v

IDENTIFY MONITORED SERVICES/
EXECUTABLES IN APPLICATION [—~ 212

[BEGIN EXECUTION OF APPLICATION }—""214

y 216

DETECT
CHANGE?

I
|
|
|
|
|
|
|
|
|
|

218_/STORE CHANGE]
| 220
200 STORE APPLICATION
METHOD FOR CREATING AND STATE STORAGE IN fer"222
APPLICATION PACKAGE APPLICATION PACKAGE

FIG. 2

WO 2012/057955

PCT/US2011/053531

3/3
METHOD FOR STARTING/
RESUMING STATEFUL
APPLICATION
| START CLOUD PROCESS f—"302 300
[LOAD VIRTUALIZATION LAYER ~""304
[LOAD APPLICATION f—""306
ASSOCIATE APPLICATION WITH
VIRTUALIZATION LAYER 308
MONITORING
SEARCH CLOUD STORAGE FOR
VIRTUAL HARD DISKS WITH 310
PREVIOUS STATE FOR APPLICATION
SELECT APPROPRIATE VIRTUAL
HARD DISK 312
| MOUNT VIRTUAL HARD DISK ""314
ASSOCIATE VIRTUAL HARD DISK
WITH VIRTUALIZATION LAYER [~ 316
[RESUME OPERATING APPLICATION f—"318
y
MONITOR CALLS INTO MONITORED
STATE LOCATIONS ~" 320
324

READ/
WRITE?

REDIRECT READS TO AREA
WITHIN VIRTUAL HARD DISK A

REDIRECT WRITES TO VIRTUAL
HARD DISK 326
UPDATE STORED COPY OF VIRTUAL
HARD DISK 328

FIG. 3

