A continuous winder for web materials includes a rotatable turret supporting a plurality of core shafts and being movable to shift each core shaft successively between web transfer and roll unloading positions. A cutoff knife and wiper mechanism associated with the turret and having a carriage mounted for movement in an arcuate path substantially centered on the axis of a core located in the web transfer position in order to cut the web and to direct the cut leading end of the web into the nip of the new core and a rider roll.

BACKGROUND OF THE INVENTION

In apparatus for winding a web of material onto a core and for cutting and transferring the leading end of the web from a fully wound roll to an empty core without stopping the web, it is common to employ an indexing reel or turret such as shown in Phelps Patent No. 2,943,806 issued to the assignee of the present invention. The turret supports a pair of diametrically spaced cores so that when a roll is almost fully wound on one core, the turret is indexed to transfer the roll to an unloading station and to move an empty rotating core to a web transfer station where the web is directed partially around the core through a nip formed with a rider roll. Commonly one or more enveloping rolls are brought into engagement with the web adjacent the empty core to produce substantial envelopment of the web around the empty core before transfer.

The web is severed and the leading end is wiped onto the outer surface of the empty core by a knife and wiper mechanism which is usually pivotally supported to move generally tangentially past the empty core in a path partially simulating the required path of the web around the core. Adhesive is commonly applied to the outer surface of the empty core, especially with light gage webs, so that the leading end of the web is attached to the core surface and is carried into the nip formed between the core and the rider roll. It is desirable to eliminate the operation of applying adhesive on each new empty core and to provide a winder having a highly dependable web transfer mechanism for eliminating the problems encountered and time delay when a web transfer is missed.

SUMMARY OF THE INVENTION

The present invention is directed to a winder incorporating an indexing reel or turret and having an improved web transfer mechanism which is highly dependable and is ideally suited for use with very thin webs such as light gage plastic film material. In general, the winder of the invention incorporates a knife cutoff and wiper carriage which is carried by a pair of arms pivotally supported between a retracted position to provide for build up of a roll and indexing the turret, and a position adjacent an empty core at the web transfer station where the knife and wiper carriage is rotatable on an axis substantially concentric with the axis of the empty core.

Preferably, the rotational axis of the knife and wiper carriage is slightly offset from the axis of the empty core in a direction towards the nip formed with the rider roll so that the wiper effectively releases the web immediately ahead of the nip. As a result of this substantially concentric relationship of the rotational axis of the knife and wiper carriage and the axis of the empty core, the leading end of the web is wiped or directed approximately 180° in a circular path around the rotating empty core to assure that the lead end of the web is directed into the nip formed between the empty core and a rider roll.

The effective wiping action produced by the wiper following the outer surface of the empty core also eliminates the need for pre-coating the outer surface of the empty core with adhesive. In addition, the cutoff knife and wiper mechanism of the invention provide the features of high dependability and compactness, and may be easily adapted for mounting on winders of various sizes.

DESCRIPTION OF THE DRAWINGS

FIG. 1 is a vertical section through a turret winder constructed in accordance with the invention, with the cutoff knife and wiper mechanism shown immediately prior to cutting and transferring the web;

FIG. 2 is a fragmentary view of the cutoff knife and wiper mechanism taken generally along the line 2--2 of FIG. 4;

FIG. 3 is a view of the cutoff knife and wiper mechanism generally along the line 3--3 of FIG. 4;

FIG. 4 is an end view taken generally on the line 4--4 of FIG. 3 showing the web being transferred; and

FIG. 5 is a fragmentary perspective view of the support for the knife and wiper carriage.

DESCRIPTION OF THE PREFERRED EMBODIMENT

The turret winder in FIG. 1 is shown as receiving a web W of material such as plastic film or paper. The winder includes a frame 12 which preferably is formed by a pair of vertical end stands, one supporting the necessary drive motors (not shown) for the winder and the other supporting the necessary control components. A turret 16 includes a center shaft 16 supported by suitable bearings (not shown) mounted on the frame 12. A pair of parallel spaced arms 18 are mounted on the shaft 16 and support a pair of diametrically spaced guide rolls 19 and a pair of diametrically spaced core spindles or shafts 20 on which cores 22 are mounted. In a manner well known in the art, the center shaft 16 of the turret 15 is rotatable by a suitable indexing drive (not shown) for moving each core 22 between a web transfer station A and a roll unloading station B, and the core shafts 20 are independently driven by separate drive motors (not shown).

A lay-on or rider roll 25 is provided for the turret 15 and has a resilient outer surface 26. The rider roll is supported by a pair of arms 27 which are pivotally supported by the frame 12 for rotation on an axis substantially aligned with the axis of a guide roll 28 so that the rider roll 25 is movable in an arcuate direction indicated by the arrow to provide for build-up of a rewinding roll R at the web transfer station A. Preferably the rider roll 25 is countercbalanced by a set of opposing air cylinders (not shown) connected to the supporting arms 27. A pair of guide rolls 30 are also supported by the arms 27 and direct the web W from the roll 28 to the rider roll 25.

A roll change mechanism 35 includes a pair of angularly shaped arms 36 which are positioned adjacent the end stands of the frame 12 and are rigidly secured to a connecting torque shaft 38 (FIG. 3) by corresponding pins 39. The shaft 38 is rotatably supported by bearings 41 mounted on the frame 12. Each arm 36 has a hook-shaped upper end portion 42 (FIG. 5) defined by a gap 43 and has formed therein a semi-circular or C-shaped cam track or slot 44. A web cutoff and wiper carriage 45 (FIG. 5) extends between each pair of arms 36 and in-
cludes a pair of C-shaped end plates 46 rigidly connected by a tubular cross member 48 having a rectangular cross-sectional configuration. A series of stub shafts 49 (FIG. 5) are mounted to each plate 46 and provide rollers 58 which project into the corresponding cam track 44 formed within the adjacent arm 36. Spur gear teeth 52 are formed on the outer periphery of each plate 46.

An elongated knife 55 (FIG. 5) is adjustably mounted on one side of the cross member 48 of the carriage 45 by screws and includes a C-shaped cutting edge 57. An elongated wiping brush 58 is also mounted on the cross member 48 of the carriage by adjustable angle brackets 59 (FIG. 2) and incorporates flexible bristles 60 which project radially inwardly towards the axis 62 (FIG. 1) of curvature of the track for the web cutoff and wiper carriage 45 defined by the cam slots 44. It is to be understood that other forms of flexible wipers may be employed in place of the brush 58, as for example, a thin strip of rubber.

Referring to FIG. 2, a shaft 65 extends between the arms 36 and has end portions rotatably supported by bearings 66 mounted within aligned holes formed in the arms. A large diameter spur gear 68 and adjacent smaller diameter sprocket 69 are keyed to the shaft 65 adjacent each of the arms 36 so that each gear 68 engages the gear teeth 52 formed on the corresponding C-shaped end plate 46 of the carriage 45.

Referring to FIG. 3, a sleeve 71 is mounted on each end portion of the shaft 38 and is supported by a pair of anti-friction bearings 72. A sprocket 74 is mounted on each sleeve 71 and is connected to the corresponding aligned sprocket 69 by an endless chain 75 having a turnbuckle 76 (FIG. 4) for selecting the desired tension on the chain. The chain 75 extends from each arm 36 and supports an air cylinder 80 having a piston rod 81 pivotally connected to an ear 82 projecting from the corresponding sleeve 71. When the piston rods 81 are extended (FIG. 4), the ears 82 for each mechanism 35 engage corresponding limit switches 84 which actuate valves (not shown) causing the rods 81 to be retracted.

An air cylinder 90 (FIG. 4) is mounted on the frame 12 by a bracket 91 and includes a piston rod 92 pivotally connected to the corresponding arm 36 by a stub shaft 94. The cylinders 90 are supplied with air through lines having solenoid-actuated reversing valves (not shown) controlled by a pair of limit switches 95 (FIG. 4) adjustably mounted on the frame 12 and actuated by a stud 96 projecting from the adjacent arm 36.

In operation, when a winding roll R of web material is approaching its desired diameter on a core 22 positioned at the transfer station A, the corresponding rider roller 25 is raised by air cylinders (not shown), and the turret is slowly rotated to index an empty rotating core 22 to the transfer station A. The roll change mechanism 35 is moved by the air cylinders 90 from its retracted position to a position where the C-shaped cam tracks 44 and correspondingly shaped plates 46 of the carriage 45 partially encompass the rotating shaft 20 of the empty core as illustrated in FIG. 1. As mentioned above, the axis 62 of curvature of the tracks for the carriage 45 is slightly offset in relation to the axis of the rotating empty core 22 towards the nip formed with the rider roller 25.

When it is desired to send and transfer the web W from the full roll R to a rotating empty core 22, the pair of cylinders 80 are actuated to rotate the corresponding pair of gears 68 and thereby to rotate the carriage 45 quickly on its axis 62. The quick rotation of the carriage causes the serrated edge 57 of the knife 55 to sever the web and the wiper actively to wipe the leading end of the web in a circular path around the outer surface of the core 22 and into the nip formed with the rider roller 25. The slightly offset relation of the rotational axis of the carriage 45 assures that the bristles 60 of the brush 58 or any other flexible wiper will release the end of the web immediately before the carriage stops and the web enters the nip as illustrated in FIG. 4. A number of rollers 50 are mounted on each plate 46 to assure that at least two or three rollers contact in each track 44 after the carriage 45 is rotated approximately 180° and thereby maintain the alignment of the carriage.

When the knife and brush reach the positions shown in FIG. 4, the limit switches 85 are actuated, causing the cylinders 80 to reverse and thereby to rotate the knife and wiper carriage 45 in a corresponding direction so that the knife 55 and brush 58 return to their normal or home position as shown in FIG. 1. The cylinders 90 are then actuated to move the arms 36 and thereby to retract the carriage 45 away from the newly formed roll and to enable the roll to build up against the force exerted by the rider roll 25.

From the drawings and the above description, it can be seen that a winder having a mechanism 35 constructed in accordance with the present invention provides several desirable features and advantages. For example, the C-shaped end portion 42 on each of the arms 36 and the C-shaped gear segments 44 on each carriage 45 traveling in the cam tracks 44 make it possible for the knife 55 and wiper brush 58 to move about an axis substantially concentric with the axis of an empty rotating core 22 positioned at the web transfer station A. Thus after the web is cut by the serrated edge 57 of the knife 55, the leading end of the web is held in contact with the outer surface of the rotating core by the brush 58 to assure that the leading end of the web envelopes the core and enters the nip formed with the rider roller 25.

The substantially concentric movement of the knife and brush relative to an empty core 22 is especially suitable for light gage plastic film and eliminates the need for precoating adhesive on the outer surface of the empty core. The arrangement of the gears 68 connected by the shaft 65 and the chains 75 connecting the sprockets 69 and 74 for rotating each carriage 45 also provides the advantages of a positive acting mechanism which assures that the knife 55 and brush 58 will remain precisely parallel with the empty core as the carriage is rotated.

The simplified construction of each mechanism 35 also provides the important feature of high dependability and thereby assures that a web transfer from a fully wound roll R to an empty core 22 will not be missed. Furthermore, each mechanism 35 requires very low maintenance and is compact in construction so that it is particularly suited for use on various winders. It is also to be understood that the winder apparatus of the invention may be employed for winding a plurality of webs on a common core or on corresponding cores mounted on a common core shaft.

While the form of apparatus herein described constitutes a preferred embodiment of the invention, it is to be understood that the invention is not limited to this precise form of apparatus, and that changes may be made therein without departing from the scope of the invention.

What is claimed is:

1. Apparatus for providing a smooth and dependable transfer of a web from a winding roll to a rotating empty core without stopping the web and especially adapted to eliminate the need for adhesive on the core, comprising means for supporting the core and the roll in parallel spaced relation, a carriage including cutoff knife and wiper means, means supporting said carriage for rotary movement on an axis substantially concentric with the axis of the core to move said knife and wiper means in an arcuate path extending around the core to cut the web and to direct the leading end of the web around the core, and means for producing relative movement between said carriage supporting means and the core to provide for buildup of a roll of web material on the core.

2. Apparatus as defined in claim 1 wherein said carriage supporting means includes a pair of parallel spaced
arms, a rotatable torque shaft rigidly connecting said arms, C-shaped guide means on each said arm, said carriage including a C-shaped follower member supported for travel in each said guide means, an elongated cross member rigidly connecting said follower means and supporting said knife and wiper means, and means for effecting simultaneous rotation of said follower members to provide for uniform movement of said knife and wiper means in said path around the empty core.

3. Apparatus as defined in claim 2 wherein said C-shaped guide means on each said arm include means defining a C-shaped slot, and a plurality of rollers mounted on each said follower member and extending within the corresponding said slot.

4. Apparatus as defined in claim 2 wherein said means for effecting rotation of each said follower member include gear teeth on the outer periphery of each said follower member, a gear supported by each said arm and engaging said teeth, means connecting said gears for simultaneous rotation, and fluid cylinder means for rotating said gears.

5. Apparatus as defined in claim 4 wherein said means for effecting rotation of each said follower member include a first sprocket mounted on each said arm and connected to the corresponding said gear, a substantially larger second sprocket rotatably mounted on said torque shaft in alignment with the corresponding said first sprocket, chain means connecting each set of said corresponding first and second sprockets, and said fluid cylinder means including an air cylinder mounted on each said arm and connected to rotate the corresponding said second sprocket.

6. Apparatus for winding a roll of web material on a core and for transferring the web from a fully wound roll to a rotating empty core without stopping the web, comprising a turret having means supporting at least two cores in parallel spaced relation, means rotatably supporting said turret for indexing each said core between a roll unloading station and a web transfer station, a rider roll positioned to form a nip with a core positioned at said transfer station, a carriage including a cutoff knife and wiper member, means supporting said carriage for rotary movement on an axis substantially concentric with the axis of an empty core positioned at said transfer station to move said knife and wiper member in an arcuate path extending around said core to sever the web and direct the leading end of the web into said nip, and means for moving said carriage supporting means relative to said turret to retract said carriage from said transfer station to provide for build-up of a roll of web material and for indexing said turret.

7. Apparatus for providing a smooth and dependable transfer of a web from a winding roll to a rotating empty core without stopping the web, comprising means for supporting the core and the roll in parallel spaced relation, a carriage including cutoff knife and wiper means, means supporting said carriage for rotary movement on an axis substantially concentric with the axis of the core, and means for rotating said carriage to move said knife and wiper means in an arcuate path extending around the core to sever the web and direct the leading end of the web around the core.

References Cited

UNITED STATES PATENTS

2,586,832 2/1952 Kohler 242—56
2,943,806 7/1960 Phelps 242—56
3,345,009 10/1967 Rockstrom 242—56

GEORGE F. MAUTZ, Primary Examiner