METHOD FOR THE PREPARATION OF A LIBRARY OF ANTIGENIC PEPTIDE DETERMINANTS, NEW PEPTIDES FORMED OF OR INCLUDING THE ANTIGENIC DETERMINANTS OBTAINED AND APPLICATION OF THE PEPTIDES PARTICULARLY TO DIAGNOSIS

PROCÈDE DE PREPARATION D'UNE LIBRAIRIE DE DETERMINANTS ANTIGÉNIQUES PEPTIDIQUES, NOUVEAUX PEPTIDES CONSTITUÉS PAR OU COMPORTANT LES DETERMINANTS ANTIGÉNIQUES OBTENUS ET APPLICATION DES PEPTIDES, NOTAMMENT AU DIAGNOSTIC

Method for preparing a library of antigenic peptide continuous determinants of a protein or a plurality of proteins expressed by an organism or a microorganism and corresponding to its genome or to a portion of its genome, method whereby said genome or part of the genome is fragmented randomly into a multitude of small fragments which are then expressed in an expression system, for example a yeast, having no homology with said genome by means an appropriate expression vector and the totality or major part of expression products is riddled with monoclonal or non-monoclonal antibodies. The method is applicable particularly to the forming of a library of peptides carrying the antigenic determinants of a virus such as HIV, and in particular HIV.

Procédé de préparation d'une librairie de déterminants antigéniques péptidiques continus d'une protéine ou d'une pluralité de protéines exprimées(s) par un organisme ou micro-organisme et correspondant à son génome ou à une partie de son génome, procédé dans lequel on fragmente ce génome ou cette partie de génome au hasard en une multitude de petits fragments que l'on exprime ensuite dans un système d'expression, par exemple une levure, ne présentant pas d'homologie avec ledit génome à l'aide d'un vecteur d'expression approprié et on crible la totalité ou la majeure partie des produits d'expression à l'aide d'anticorps, monoclonaux ou non. Le procédé est applicable notamment à la constitution d'une librairie de peptides portant les déterminants antigéniques d'un virus tel que HIV, et en particulier HIV.
<table>
<thead>
<tr>
<th>Code</th>
<th>Pays</th>
<th>Code</th>
<th>Pays</th>
<th>Code</th>
<th>Pays</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT</td>
<td>Autriche</td>
<td>FI</td>
<td>Finlande</td>
<td>MG</td>
<td>Madagascar</td>
</tr>
<tr>
<td>AU</td>
<td>Australie</td>
<td>FR</td>
<td>France</td>
<td>ML</td>
<td>Mali</td>
</tr>
<tr>
<td>BB</td>
<td>Barbade</td>
<td>GA</td>
<td>Gabon</td>
<td>MR</td>
<td>Mauritanie</td>
</tr>
<tr>
<td>BE</td>
<td>Belgique</td>
<td>GB</td>
<td>Royaume-Uni</td>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>HU</td>
<td>Hongrie</td>
<td>NL</td>
<td>Pays-Bas</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgarie</td>
<td>IT</td>
<td>Italie</td>
<td>NO</td>
<td>Norvège</td>
</tr>
<tr>
<td>BJ</td>
<td>Bénin</td>
<td>JP</td>
<td>Japon</td>
<td>RO</td>
<td>Roumanie</td>
</tr>
<tr>
<td>BR</td>
<td>Brésil</td>
<td>KP</td>
<td>République populaire</td>
<td>SD</td>
<td>Soudan</td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
<td>KR</td>
<td>République de Corée</td>
<td>SE</td>
<td>Suisse</td>
</tr>
<tr>
<td>CF</td>
<td>République Centrafricaine</td>
<td>LI</td>
<td>Liechtenstein</td>
<td>SN</td>
<td>Sénégal</td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>LK</td>
<td>Sri Lanka</td>
<td>SU</td>
<td>Union soviétique</td>
</tr>
<tr>
<td>CH</td>
<td>Suisse</td>
<td>LU</td>
<td>Luxembourg</td>
<td>TD</td>
<td>Tchad</td>
</tr>
<tr>
<td>CM</td>
<td>Cameroun</td>
<td>MC</td>
<td>Monaco</td>
<td>TG</td>
<td>Togo</td>
</tr>
<tr>
<td>DE</td>
<td>Allemagne, République</td>
<td></td>
<td></td>
<td>US</td>
<td>États-Unis d'Amérique</td>
</tr>
<tr>
<td>DK</td>
<td>fédérale d'Autriche</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Procédé de préparation d'une librairie de déterminants antigéniques peptidiques, nouveaux peptides constitués par ou comportant les déterminants antigéniques obtenus et application des peptides, notamment au diagnostic.

La présente invention a trait à un procédé de préparation d'une librairie de déterminants antigéniques peptidiques, librairie composée de peptides dont certains, au moins, présentent un déterminant antigénique similaire ou identique à un déterminant antigénique d'un produit exprimé par un microorganisme ou une cellule.

L'invention est applicable, notamment, à la constitution d'une librairie de peptides portant les déterminants antigéniques d'un virus tel que HIV et, en particulier, HIV1.

L'une des principales difficultés rencontrées dans le domaine de l'immunologie consiste à identifier et à localiser, dans une protéine exprimée par un organisme vivant, notamment un microorganisme, ou à partir d'un virus, le ou les quelques déterminants antigéniques ou épitopes constitués d'une séquence continue d'acides aminés. Généralement, ces épitopes continus sont étudiés par synthèse peptidique chimique ainsi que par des analyses informatiques de séquences (1). Ces procédés ont permis de caractériser quelques épitopes continus pour le virus HIV1.
mais ils ne sont guère faciles à utiliser pour une recherche et une caractérisation systématique de tous les épitopes d'une, voire de la totalité des protéines exprimées par un génome, par exemple génome de HIV1.

La présente invention se propose de remédier aux inconvénients de l'art antérieur et de fournir un procédé permettant de produire et de détecter, sans biais, tout peptide antigénique de l'organisme étudié, notamment de virus, y compris HIV, sans devoir rechercher, pour chaque peptide, un vecteur particulier.

Un autre objectif de l'invention est de fournir un procédé permettant de produire, grâce à des systèmes d'expression efficaces et stables, des peptides utilisables, sans nécessiter de purification, pour des tests ou des diagnostics.

Un autre objectif de l'invention est de fournir des peptides antigéniques dont les constantes d'affinité correspondent à celles d'épitopes conformationnels et sont similaires à celles des épitopes naturels.

Un autre objectif de l'invention est de fournir un procédé de préparation d'une librairie de déterminants antigéniques peptidiques continus pour le virus HIV1.

Un autre objectif de l'invention est de fournir un tel procédé qui puisse également être utilisé pour la caractérisation de déterminants antigéniques peptidiques continus pour d'autres organismes ou microorganismes.

Un autre objectif de l'invention est encore de fournir une librairie constituée par ou contenant des épitopes continus de gènes, voire de génomes, de procaryotes, notamment HIV1, ou d'eucaryotes.

Les épitopes caractérisés par le procédé selon
l'invention peuvent être ensuite utilisés, notamment par voie de synthèse peptidique chimique ou biologique, pour préparer des substances de tests ou de diagnostic, destinées notamment à la recherche d'anticorps, pour faciliter la recherche d'anticorps monoclonaux spécifiques d'épitopes, ou pour préparer des vaccins.

L'invention a pour objet un procédé de préparation d'une librairie de déterminants antigéniques peptidiques continus d'une protéine ou d'une pluralité de protéines exprimée(s) par un organisme ou microorganisme et correspondant à son génome ou à une partie de son génome, par exemple un ou plusieurs gènes, caractérisé en ce que,

- on fragmente ce génome ou cette partie de génome au hasard en une multitude de petits fragments pour constituer une librairie de fragments d'acide nucléique,

- on exprime lesdits fragments dans un système d'expression ne présentant pas d'homologie avec ledit génome ou ladite partie de génome, à l'aide d'un vecteur d'expression approprié,

- on crible la totalité ou la majeure partie des produits d'expression à l'aide d'anticorps, monoclonaux ou non,

- et, éventuellement, on localise, dans une carte, les fragments reconnus lors du criblage et/ou on détermine leurs séquences.

La première étape de fragmentation peut porter soit sur un génome entier, par exemple le génome de HIV1, soit sur une partie de génome suffisamment grande pour comporter une grande partie ou la totalité du gène codant pour une protéine dont on cherche à caractériser les épitopes. Si le matériel génétique initial est sous forme d'ARN, on utilise
sa transcription ADN obtenue soit par voie naturelle, soit par un procédé usuel de transcription inverse.

Par petits fragments dans le sens de la présente invention, on entend des fragments d'ADN obtenus au hasard et ayant une taille de quelques dizaines à quelques centaines de paires de bases et qui, de préférence, pour la majorité d'entre eux, n'est pas supérieure à 50 ou 100 à 150 ou 200 pb (paires de bases) et, de préférence, de l'ordre de 50 pb.

La fragmentation du matériel génétique traité peut être effectuée, de préférence, par digestion partielle enzymatique, par exemple, par DNAseI. Elle peut également être effectuée par toute autre méthode de fragmentation permettant de réaliser au hasard une multitude de petits fragments, par exemple par sonication. Dans le cas de la fragmentation de l'ADN proviral de HIV1, on peut obtenir 4×10^4 clones environ.

Le système d'expression préféré, notamment pour la constitution de librairies virales, est une levure, de préférence Saccharomyces cerevisiae. Ce système est préféré à des systèmes bactériens, car il permet de nombreuses modifications post-traductionnelles des peptides exprimés et, en outre, il ne comporte pas d'éléments toxiques pour les mammifères.

Un procédé d'expression de protéines dans cette levure utilisant le gène du facteur alpha, a déjà été décrit (2-5). La biosynthèse (5) du facteur alpha, qui est l'une des deux hormones peptidiques impliquées dans la reconnaissance sexuelle de la levure, inclut la formation d'un grand précurseur dont la partie N-terminale est vraisemblablement impliquée dans la reconnaissance d'un
système de sécrétion alors que la moitié C-terminale contient quatre domaines hormonaux séparés par des sites de clivage spécifiques Lys-Arg. Lorsqu'un ADN étranger est inséré en aval du premier site de clivage, la protéine recombinante peut être sécrétée dans le milieu de culture, pratiquement vierge de résidus de levure, avec des glycosylations sur les sites N- et même O-.

L'étape d'insertion des fragments dans la levure peut être effectuée de toute façon en soi connue, en utilisant, par exemple, un vecteur plasmidique.

Une fois la librairie plasmidique constituée, la culture cellulaire, telle que Saccharomyces cerevisiae, est transfecée, puis clonée. On peut alors procéder au criblage des clones à l'aide d'un lot de sérums et/ou d'anticorps selon des procédés usuels, par exemple selon Lyons et Nelson (13).

Pour caractériser les séquences des inserts reconnus lors du criblage, on peut reprendre les vecteurs de la colonie du clone d'expression, par exemple levure, et récupérer les inserts qui peuvent être sous-clonés et séquencés par l'un quelconque des procédés usuels de séquençage. La reconnaissance de fragments ayant réagi et se chevauchant partiellement simplifie cette étape.

L'application du procédé selon l'invention au génome de HIV1 a permis de caractériser six épitopes continus dont deux n'avaient jamais été décrits. La présente invention a également pour objet les nouveaux peptides contenant ces épitopes ou constitués par eux, et notamment un épitope dans l'endonucléase (pol), deux épitopes de gp 25 et un épitope de gp41.

D'autres avantages et caractéristiques de
l'invention apparaitront à la lecteur de la description suivante, faite à titre d'exemple non limitatif et se référant au dessin annexé dans lequel :

- la figure 1 représente la structure générale du précurseur du facteur alpha de Saccharomyces cerevisiae,
- la figure 2 représente une carte du plasmide d'insertion et de transfection pSE-X,
- la figure 3 représente le cadre de lecture au site de clonage de ce plasmide,
- la figure 4 représente les chevauchements de séquence de plusieurs inserts définissant des épitopes,
- la figure 5 représente les réactions comparées de différents sérum et anticorps détectant les épitopes exprimés dans la levure,
- la figure 6 représente des courbes de sécrétion de peptides recombinants de plusieurs clones reconnus par l'un des sérum par test ELISA,
- la figure 7 représente des courbes de sécrétion et de durée de croissance par mesure de la turbidité d'un clone reconnu par l'un des sérum.

1. CONSTITUTION D'UNE LIBRAIRIE DE PETITS FRAGMENTS DE HIV1.

On a utilisé comme matériau de départ le plasmide pBT-1 qui est un plasmide pUC-18 (pUC18 est disponible chez International Biotechnologies, Inc., P.O. BOX 9558, 275 Winchester Avenue, New Haven, CT 06535 USA), intégrant un provirus complet de HIV1, isolant BRU (10). Ce plasmide pBT-1 est accessible dans la collection du Professeur Luc Montagnier ou Pierre Sonigo, Institut Pasteur, 25 rue du Dr Roux 75015 PARIS (France).

Une quantité de 20 µg de pBT-1 a été digérée
partiellement par la DNase I selon le procédé décrit par Anderson (11), les conditions de lyse enzymatique et de purification des fragments par électrophorèse en gel d'agarose ayant été adaptées pour obtenir des fragments de l'ordre de 50-150 pb. Les extrémités des fragments obtenus ont été réparées par l'ADN polymérase du phage T4, mais n'ont pas été modifiées par l'adjonction d'ADN synthétique du type linker.

2. CONSTRUCTION DU VECTEUR pSE-X.

Ce plasmide, obtenu à partir de pUC18, comporte cinq parties d'ADN étranger, à savoir : un fragment de 600 pb du gène du facteur alpha (MF α 1) contenant le promoteur et le début de la séquence codant pour le gène du facteur alpha jusqu'au premier site de clivage Lys-Arg ; puis un fragment de 35 pb d'un plasmide pEX-2 fournissant un codon stop pour chaque cadre de lecture de (MF α1) (9); puis un fragment de 400 pb de TRP5 portant des signaux terminateurs de gène (3) ; ensuite le gène URA3 utilisé comme marqueur détectable dans la levure ; enfin, un fragment de l'ADN 2 micron de levure portant un site d'origine de réplication. La région du plasmide pUC18, qui permet le polyclonage au voisinage du site de clivage Hind III, a été éliminée.

Cette construction plasmidique comporte un site de restriction Hind III à la fin du fragment du gène MF α 1.

La construction peut être effectuée de la façon suivante : partant du plasmide pUC18, on insère entre les sites Hind III - BamHI, un fragment Hind III - BmHI de 600 pb du gène du facteur qui porte le promoteur suivi de la séquence codante jusqu'au premier site de clivage Lys-Arg. Ensuite, on insère dans le site NdeI du plasmide, l'origine de réplication 2 microns de la levure puis le
gène URA3. Le fragment pvuII - BamHI de 185 pb a été éliminé par restriction. Ce plasmide, mis au point par Allan Myers, Department of Biochemistry and Biophysics, Iowa State University, Ames, IA 50011, USA, et dénommé pSE3 (construction non publiée) a alors été modifié par échange du fragment de 90 pb Hind III - PvuII par un fragment de 35 pb Hind III - XbaI du vecteur pEX2 (9), ce qui insère un codon stop pour chaque cadre de lecture du gène du facteur α. Dans le plasmide ainsi modifié, on insère dans le site PvuI de LacZ, le fragment EcoRI-Hind III de 400 pb du vecteur pTRP54 (3) qui contient tous les signaux terminateurs de ce gène dans la levure (3), ce qui donne le vecteur pSE-X. Toutes les liaisons mettant en œuvre des extrémités d'ADN non compatibles ont été effectuées après traitement préalable à l'enzyme de Klenow ou à la T4 ADN polymérase.

Le plasmide pSE-X a été déposé, dans E. coli, le 1er décembre 1988 sous le numéro I-822 auprès de la CNCM (Collection Nationale de Cultures de Microorganismes, France).

3. INSERTION DES FRAGMENTS DANS LE VECTEUR pSE-X.

Les fragments obtenus selon 1. ci-dessus ont été insérés dans les constructions pSE-X à l'emplacement du site de restriction Hind III.

Les différents vecteurs ainsi obtenus ont été utilisés pour transformer une souche de E. Coli (souche SCS1 de la Société Stratagene), ce qui a permis d'obtenir environ 40.000 clones indépendants qui ont été amplifiés. Une analyse au hasard de 12 clones montre que 91 % possédaient un fragment inséré.

4. TRANSFECTION DE LA LEVURE.
La souche de Saccharomyces cerevisiae W303-1B (MAT α, leu2, his3, ura3, trp1, ade2) a été utilisée (Sionimsky, CNRS, CGM, avenue de la Terrasse, 91190 Gif sur Yvette, France). Les différentes colonies bactériennes selon 3. ont été réunies et ont permis la préparation de 5 mg d'ADN plasmidique. 10 microgrammes de cet ADN ont été introduits dans la souche de levure précitée en utilisant la procédure au lithium (12).

A titre de contrôle positif, on a également cloné dans le site Hind III de pSE-X un fragment d'ADN pstI-ApaI de 587 pb de pBT-1 codant pour les 167 résidus C-terminaux de la protéine p25 et les 28 résidus N-terminaux de la protéine p13 de HIV1. Cette construction a été appelée pgAG.

5. CRIBLAGE DE CLONES.

Environ 10.000 clones de levure ont été dispersés sur boîte de Pétri contenant un milieu sélectif (3) pour la persistance de plasmides contenant URA3. Après 30 heures de culture à 30°C, les levures ont été transférées sur filtre nitrocellulose et lysées in situ (13). La feuille de filtre a été analysée à la manière d'un western blot (procédure au lait écrémé). Toutefois, la plupart des sérum humains ont dû être immunoadsorbés de la façon suivante : de la levure de boulanger (Fould-Springer) a été dispersée dans de l'eau (1 ml d'eau par gramme de levure) et maintenue à 100°C pendant 20 mn. Le pH a été ajusté à 7,3 et 0,05 volume de tampon 10X PBS a été ajouté. Les sérum ont été dilués dans le lysat de levure au 1/300 et incubés à 4°C pendant une nuit. Après centrifugation, le surnageant a été utilisé directement pour l'incubation avec les filtres de nitrocellulose. On a utilisé des seconds anticorps couplés
à la peroxydase. La diaminobenzidine en présence de nickel (14) a été utilisée pour la coloration jusqu'à ce que le clone de contrôle négatif portant le plasmide pSE-X sans insert devienne légèrement visible.

5 Le criblage a été effectué à l'aide de : trois sérums, 3, 5 et 6, fournis par l'Institut Pasteur (Paris, France) et provenant de patients qui se sont avérés positifs pour toutes les protéines structurales du virus HIV1 dans une analyse western blot ; un anticorps monoclonal humain, référencé m, provenant d'un volontaire pour un essai de vaccination (12) ; et trois anticorps monoclonaux de souris référencés a à c et dirigés contre la glycoprotéine gp110 de HIV1.

Les résultats apparaissent sur la figure 5, qui a été obtenue comme pour une expérience de criblage, sauf qu'ont été étalés des clones préalablement caractérisés (en ce sens qu'il ont été détectés par des anticorps lors des expériences de criblage, et que les épitopes produits ont été identifiés), chaque clone étant étalé sous forme d'une longue traînée.

La feuille de nitrocellulose, après transfert des protéines, a été découpée perpendiculairement aux traînées, de sorte que chaque bandelette de filtre contenait en zones successives, les protéines (donc les épitopes) des clones de levures étudiées. Ainsi, l'activité de différents anticorps (sérum ou monoclonaux) a pu être aisément comparée.

On a utilisé onze sérums humains, numérotés de 1 à 11, provenant de patients qui se sont avérés positifs pour toutes les protéines structurales du virus HIV1 dans une analyse western blot, l'anticorps monoclonal humain,
référencé m, et cinq anticorps monoclonaux de souris référencés de a à e (trois dirigés contre la gp 110 : a, b et c ; un dirigé contre la p25 : d et un contre la gp41: e).

5 Comme on pouvait s'y attendre, la colonie relative au plasmide de contrôle dépourvu de fragment, pSE-X, n'a été révélée par aucun des anticorps ou sérum. La colonie relative au plasmide pGAG, construite à titre de contrôle positif, a révélé les sérum 5, 7, 10 et 11 ainsi que l'anticorps de souris d. En particulier, le sérum 5 a révélé, de façon très intense, la colonie de contrôle et avait donc été utilisé pour un premier criblage de la librairie. Ce criblage avait révélé sept colonies référencées 1 à 7 et qui ont été analysées.

10 Dans ce but, les plasmides présents dans chaque colonie positive ont été repris dans E. Coli (12). Des fragments PstI portant les inserts ont été sous-clonés dans M13 mp19 et séquencés en utilisant soit une amorce classique M13, soit l'oligonucléotide TGCCAGCATGTGCTGCT. Les différentes séquences chevauchantes que l'on obtient ont été représentées sur la figure 4 sur laquelle la numérotation des nucléotides est celle de GENEBANK référence HIVBRUCG. Les clones 1 à 4 ont révélé un premier épitope dans gp41 avec la structure suivante : YLKQGLIGWGCSKLICTTTAVPW. Les clones 5 à 7 ont défini un deuxième épitope dans p25, ayant la structure TETLVQANPDKTILKALGPAATLEEM.

20 L'épitope de gp41 est vraisemblablement le principal épitope viral actuellement localisé (6) et déjà utilisé sous forme de peptide synthétique dans des tests sanguins de seconde génération.
Les deux anticorps monoclonaux de souris d et e (25.7 et 41.1), tous deux induits contre le virus entier, avaient été cartographiés dans ces positions. Ces anticorps monoclonaux ont réagi fortement avec quatre des sept clones et faiblement avec les trois autres. Si cependant on analyse le surnageant de ces trois derniers clones dans un test ELISA, la réaction de ces anticorps monoclonaux s'avère également forte.

Un examen attentif suggère la présence d'un second épitope dans les clones 5, 6 et 7 ayant révélé un épitope dans la région p25. L'anticorps monoclinal 25.7 (d) a révélé, de façon pratiquement identique, les clones 5 et 6. Cependant, le sérum humain 10 a fortement détecté le clone 5 sans détecter le clone 6. En fait, le clone 5, lorsqu'on le compare au clone 6, a inséré un fragment plus long, codant pour dix-sept acides supplémentaires du côté N-terminal et on peut supposer qu'un autre épitope se trouve dans cette région.

Du fait que les sérum 3 et 6 se sont avérés négatifs pour les clones 1 à 7, ils ont été utilisés pour un nouveau criblage de la librairie à la recherche d'autres épitopes. Le sérum 6 a alors détecté deux colonies, référencées 8 et 9, qui, après analyse et séquençage, se sont avérées produire un épitope continu dans l'endonucléase (pol). La structure de cet épitope est : ASDFNLPPVVAKEIVASDCDKQLK. D'autres sérum (9, 10 et 11) ont également détecté cet épitope qui représente donc un épitope majeur de HIV1.

Le criblage à l'aide de l'anticorps monoclonal humain m a révélé un clone, 10. A l'analyse, ce clone produit les trente-huit derniers résidus de gp41 (ce clone
utilise effectivement le codon stop du gène env de HIV1 au lieu d’un signal stop provenant du vecteur. Du fait que le peptide synthétique composé des quinze derniers résidus de gp41 ne réagit pas avec l’anticorps monoclonal m, l’épitope en question n’est probablement pas disposé complètement à l’extrémité C mais un peu en amont. Un épitope majeur dans les cent vingt-neuf derniers résidus de gp41 a déjà été décrit mais non encore cartographié exactement (8).

Aucun épitope n’ayant été localisé dans gp110 par les criblages précités, il a été effectué un nouveau criblage à l’aide des anticorps monoclonaux de souris a (110.1), cartographié en 494-517, b (110.4) cartographié en 308-325 et c (110.5) non cartographié. Le monoclonal a a détecté deux clones 11 et 13 alors que b et c ont détecté le même clone 12, ce qui suggère que ces anticorps sont similaires.

6. ETUDE DES CARACTERISTIQUES DES SECRETIONS DES CLONES.

Des plaques ELISA ont été recouvertes de différentes quantités de surnageants de culture des colonies et on a procédé à l’immunodétectio entre des épitopes. Les clones 3, 4 et 7 (voir figure 7), de même que les clones 11, 12 et 13 se sont avérés sécréter de grandes quantités de peptides du fait que quelques microlitres de milieu de culture contiennent suffisamment d’antigène pour entraîner des densités optiques proches de 1 lors de la réaction avec les anticorps. La courbe de sécrétion en fonction du temps a été estimée de façon similaire (figure 7). Ces clones ont donné un pic d’antigène après 30 heures de culture, après quoi on assiste à une lente diminution. Les cinétiques de croissance de ces clones sont pratiquement identiques à
celles de la levure de contrôle logeant le plasmide pSE-X
dépourvu d'insert, soulignant la très faible toxicité des
produits recombinants exprimés.

Tous les clones se sont avérés non maladifs, viables
et permanents et expriment bien leurs peptides avec
l'épitope bien présent.

7. PRODUCTION DES SUBSTANCES DE TEST OU DE
DIAGNOSTIC.

Les clones intéressants décrits ci-dessus, peuvent
être cultivés selon les procédés classiques de culture des
levures. Le peptide exprimé se retrouve dans le surnageant
de culture que l'on débarrasse des cellules et fragments
cellulaires, par simple filtration ou centrifugation. Le
surnageant constitue la substance de test.

On prépare ainsi des substances comprenant
respectivement l'épitope de p41 précité, les épitopes de
p25 précités et l'épitope pol précité.

8. IMMUNOADSORPTIONS DES SERUMS

Pour débarrasser les sérum des anticorps
antilevure, on peut procéder comme pour le criblage des
clones. Cependant, on préfère diluer le sérum au moins au
1/50, de préférence au 1/100 ou 1/300 dans une suspension
formée à partir de 50 g de levure de boulanger
(Fould-Springer) et 50 ml de surnageant de culture produit
par la levure contenant le même vecteur d'expression que
les levures productrices des peptides mais dépourvu
d'insert. La suspension est amenée à 100°C pendant 30 mn.
Le pH est ajusté à 7,3 ou 7,4 avec NaOH. Cette suspension
se conserve au moins pendant 6 mois à -20°C.

Le sérum dilué dans la suspension est agité
doucement une nuit à environ + 4°C, puis les levures sont
éliminées par centrifugation brève. Ces sérums dilués se conservent quelques jours à +4°C.

Les sérums dilués peuvent bien entendu être utilisés pour screening une librairie d'expression dans la levure.

9. DIAGNOSTICS.

Le sérum du patient est dilué dans la suspension et traité selon 8. ci-dessus.

On enduit des cupules de plaques de test ELISA avec les surnageants respectifs préparés selon 7. Une ou plusieurs autres cupules sont enduites, pour le contrôle, avec un surnageant de culture de levure non productrice de peptides, et, de préférence, transfecée par le vecteur dépourvu d'insert. Les réactions immunologiques, de type ELISA, sont ensuite effectuées de façon usuelle. La différence entre l'intensité de la réaction dans la cupule de test et celle de la cupule de contrôle (souvent très faible) traduit la positivité de la réaction.

Les affinités relevées sont bien plus importantes que celles relevées pour des tests connus basés sur des peptides synthétiques et sont comparables à celles des épitopes naturels, prouvant la similitude conformationnelle des épitopes exprimés conformément à l'invention.
REFERENCES
REVENDICATIONS

1. Procédé de préparation d'une librairie de déterminants antigéniques peptidiques continus d'une protéine ou d'une pluralité de protéines exprimée(s) par un organisme ou microorganisme et correspondant à son génome ou à une partie de son génome, caractérisé en ce que,
 - on fragmente ce génome ou cette partie de génome au hasard en une multitude de petits fragments pour constituer une librairie de fragments d'acide nucléique,
 - on exprime lesdits fragments dans un système d'expression ne présentant pas d'homologie avec ledit génome ou ladite partie de génome, à l'aide d'un vecteur d'expression approprié,
 - et on crible la totalité ou la majeure partie des produits d'expression à l'aide d'anticorps, monoclonaux ou non.

2. Procédé selon la revendication 1, caractérisé en ce que l'on exprime lesdits fragments dans un système de levure.

3. Procédé selon la revendication 2, caractérisé en ce que l'on utilise Saccharomyces cerevisiae, notamment dans le gène du facteur α.

4. Procédé selon la revendication 3, caractérisé en ce que l'on insère les fragments dans le vecteur plasmidique ayant la construction décrite sous pSE-X, à l'emplacement du site de restriction Hind III.

5. Procédé selon l'une des revendications 1 à 4, caractérisé en ce que l'on séquence les fragments reconnus lors du criblage.

6. Procédé selon l'une des revendications 1 à 5, caractérisé en ce qu'on l'applique au génome entier d'un
virus.

7. Procédé selon la revendication 6, caractérisé en ce que le virus est HIV1.

8. Procédé selon l'une des revendications 1 à 7, caractérisé en ce que l'on effectue la fragmentation dans des conditions conduisant à des fragments ayant en majorité une taille qui n'est pas supérieure à 50 pb.

9. Procédé selon l'une des revendications 1 à 7, caractérisé en ce que l'on effectue la fragmentation dans des conditions conduisant à des fragments ayant en majorité une taille qui n'est supérieure à 200 pb.

10. Procédé selon la revendication 9, caractérisé en ce que la fragmentation est faite dans des conditions conduisant à des fragments ayant en majorité une taille qui n'est pas supérieure à 150 pb.

11. Procédé selon l'une des revendications 9 et 10, caractérisé en ce que l'on produit des fragments ayant en majorité une taille de 100 à 150 ou 200 pb.

12. Procédé selon l'une des revendications 8 à 11, caractérisé en ce que l'on utilise la DNase I pour effectuer la fragmentation.

13. Vecteur plasmidique pSE-X.

14. Nouveaux peptides incluant ou contenant un épitope détecté par le procédé selon l'une quelconque des revendications 1 à 12.

15. Nouveaux peptides selon la revendication 14, contenant ou composés par au moins un épitope continu de HIV1.

17. Nouveaux peptides selon la revendication 15, contenant ou composés par un épitope de gp41.

19. Nouveaux peptides selon l'une des revendications 17 et 18, caractérisés en ce qu'ils sont exprimés par le procédé selon l'une des revendications 8 à 12.

20. Procédé de production des peptides selon l'une des revendications 14 à 19, caractérisé en ce que l'on cultive le système de levure, notamment S. cerevisiae, notamment dans le gène du facteur α et en ce que l'on recueille les peptides dans le surnageant de culture.

21. Procédé selon la revendication 20, caractérisé en ce que le système de levure possède un insert sous pSE-X.

22. Procédé de production de substances de test ou de diagnostic, notamment dans les infections à HIV, caractérisé en ce que l'on utilise un ou des peptides obtenus par le procédé selon la revendication 20 ou 21.

23. Substances de test ou de diagnostic, caractérisées en ce qu'elles comportent un ou des peptides selon l'une quelconque des revendications 14 à 19.

24. Procédé de test ou de diagnostic mettant en oeuvre un sérum et un ou plusieurs peptides ou substances selon l'une des revendications 14 à 19, obtenus par le procédé selon l'une des revendications 20 à 22, caractérisé en ce que, pour débarrasser le sérum des anticorps anti-levure, le sérum est dilué dans une suspension contenant de la levure et un surnageant de culture delevure contenant le même vecteur d'expression que les levures productrices de peptides mais dépourvu d'inserts.

25. Procédé de test ou de diagnostic, caractérisé en
ce que l'on effectue des réactions immunologiques comparatives, de préférence du type ELISA, d'une part, avec une substance de test exprimée dans la levure selon la revendication 23, d'autre part, avec un surnageant de contrôle provenant d'une culture de levure sans vecteur d'expression et/ou avec le même vecteur d'expression que les levures productrices de peptides mais dépourvu d'inserts.

26. Application des peptides selon l'une quelconque des revendications 14 à 19, à la préparation d'un vaccin.
Fig 5

<table>
<thead>
<tr>
<th>souris</th>
<th>humain</th>
</tr>
</thead>
<tbody>
<tr>
<td>a b c d e</td>
<td>1 2 3 4 5 6 7 8 9 10 11</td>
</tr>
</tbody>
</table>

pSE-X

1
2
3
4
5
6
7
8
9
10

pSE-X

pGAG

11
12
13

FEUILLE DE REMPLACEMENT
Fig 6

- clone 3
- clone 4
- clone 7
- pSE-X

ELISA O.D. 492 nm

- Turbidité de culture du clone 3 à 600 nm
- Turbidité de culture du contrôle hébergeant pSE-X
- D.O. 492 nm d'un puits ELISA avec 50 µl de surnageant clone 3
- D.O. 492 nm d'un puits ELISA avec 50 µl de surnageant contrôle pSE-X

Fig 7

FEUILLE DE REMPLACEMENT
INTERNATIONAL SEARCH REPORT

International Application No PCT/FR 89/00631

I. CLASSIFICATION OF SUBJECT MATTER (if several classification symbols apply, indicate all) *
According to International Patent Classification (IPC) or to both National Classification and IPC
Int. Cl. 5 A 61 K 39/21; C 12 N 15/48

II. FIELDS SEARCHED

<table>
<thead>
<tr>
<th>Classification System</th>
<th>Classification Symbols</th>
</tr>
</thead>
<tbody>
<tr>
<td>Int. Cl. 5</td>
<td>A 61 K; C 12 N; C 12 P</td>
</tr>
</tbody>
</table>

Minimum Documentation Searched *

Documentation Searched other than Minimum Documentation to the Extent that such Documents are Included in the Fields Searched *

III. DOCUMENTS CONSIDERED TO BE RELEVANT *

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of Document, 11 with indication, where appropriate, of the relevant passages 12</th>
<th>Relevant to Claim No. 13</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US, A, 4753873 (GERALD A.B.) 28 June 1988 see column 4</td>
<td>1-26</td>
</tr>
<tr>
<td>X</td>
<td>EP, A, 253701 (INSTITUT PASTEUR) 20 January 1988 see column 17 see columns 22 - 27</td>
<td>1-26</td>
</tr>
<tr>
<td>X</td>
<td>EP, A, 273716 (THE UNITED STATES OF AMERICA) 6 July 1988 see claims 1-13</td>
<td>1-26</td>
</tr>
<tr>
<td>A</td>
<td>EP, A, 185444 (CENTOCOR) 25 June 1986 see pages 17 - 18 see pages 23 - 24</td>
<td>1-26</td>
</tr>
<tr>
<td>A</td>
<td>EP, A, 193901 (HOFFMANN LA ROCHE) 29 October 1986 see columns 11 - 17</td>
<td>1-26</td>
</tr>
<tr>
<td>A</td>
<td>EP, A, 276591 (TRANSGENE ET AL.) 3 August 1988 see the whole document</td>
<td>1-26</td>
</tr>
<tr>
<td>A</td>
<td>Vaccine vol. 5, No. 2, June 1987, GB pages 90 - 101; P.J. Barr: "Antigenicity and immunogenicity of domains of the human immunodeficiency virus....." see the whole document</td>
<td>1-26</td>
</tr>
</tbody>
</table>

* Special categories of cited documents: 10
"A" document defining the general state of the art which is not considered to be of particular relevance
"E" earlier document but published on or after the international filing date
"I" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
"O" document referring to an oral disclosure, use, exhibition or other means
"P" document published prior to the international filing date but later than the priority date claimed
"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step
"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"Z" document member of the same patent family

IV. CERTIFICATION

Date of the Actual Completion of the International Search
13 February 1990 (13.02.90)

Date of Mailing of this International Search Report
13 March 1990 (13.03.90)

International Searching Authority
EUROPEAN PATENT OFFICE

Signature of Authorized Officer
This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office EDF file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

For more details about this annex: see Official Journal of the European Patent Office, No. 12/82

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>AU-A- 7081987</td>
<td>25-08-87</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP-A- 0233044</td>
<td>19-08-87</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-T- 63502957</td>
<td>02-11-88</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-T- 63502958</td>
<td>02-11-88</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OA-A- 8687</td>
<td>31-03-89</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO-A- 8704726</td>
<td>13-08-87</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO-A- 8704728</td>
<td>13-08-87</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US-A- 4734362</td>
<td>29-03-88</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO-A- 8707906</td>
<td>30-12-87</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-T- 63503513</td>
<td>22-12-88</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-T- 63503227</td>
<td>24-11-88</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO-A- 8805051</td>
<td>14-07-88</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-A- 62012799</td>
<td>21-01-87</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU-A- 8188187</td>
<td>02-06-88</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-A- 63254983</td>
<td>21-10-88</td>
</tr>
</tbody>
</table>
I. CLASSEMENT DE L'INVENTION (si plusieurs symboles de classification sont applicables, les indiquer tous)

Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB

<table>
<thead>
<tr>
<th>Système de classification</th>
<th>Symboles de classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIB 5</td>
<td>A61K ; C12N ; C12P</td>
</tr>
</tbody>
</table>

H. DOMAINE SUR LESQUELS LA RECHERCHE A PORTE

Documentation minimale consultée

<table>
<thead>
<tr>
<th>Système de classification</th>
<th>Symboles de classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIB 5</td>
<td>A61K ; C12N ; C12P</td>
</tr>
</tbody>
</table>

Documentation consultée autre que la documentation minimale dans la mesure où de tels documents font partie des domaines sur lesquels la recherche a porté

III. DOCUMENTS CONSIDÉRÉS COMME PERTINENTS

<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Identification des documents cités, avec indication, si nécessaire, des passages pertinents</th>
<th>No. des revendications visées</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US, A, 4753873 (GERALD A.B.) 28 juin 1988 voir colonne 4</td>
<td>1-26</td>
</tr>
<tr>
<td>X</td>
<td>EP, A, 253701 (INSTITUT PASTEUR) 20 janvier 1988 voir colonne 17</td>
<td>1-26</td>
</tr>
<tr>
<td></td>
<td>EP, A, 273716 (THE UNITED STATES OF AMERICA) 06 juillet 1988 voir revendications 1-13</td>
<td>1-26</td>
</tr>
<tr>
<td>A</td>
<td>EP, A, 199301 (HOFFMANN LA ROCHE) 29 octobre 1986 voir colonnes 11 - 17</td>
<td>1-26</td>
</tr>
</tbody>
</table>

* Catégories spéciales de documents cités:
 * "X" document ultérieur publié postérieurement à la date de dépôt international ou à la date de priorité et n'appartenant pas à l'état de la technique pertinent, mais cité pour comprendre le principe ou la théorie constituant la base de l'invention
 * "A" document qui fait partie de la même famille de brevets

IV. CERTIFICATION

Date à laquelle la recherche internationale a été effectivement achevée: 13 FÉVRIER 1990

Date d'expédition du présent rapport de recherche internationale: 13. 03. 90

Signature du fondateur autorisé: T.K. WILLIS
<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Identification des documents cités, avec indication, si nécessaire des passages pertinents</th>
<th>No. des revendications visées</th>
</tr>
</thead>
</table>
ANNEXE AU RAPPORT DE RECHERCHE INTERNATIONALE
RELATIF À LA DEMANDE INTERNATIONALE NO. PCT/FR 89/00631
SA 32855

La présente annexe indique les membres de la famille de brevets relatifs aux documents brevets cités dans le rapport de recherche international ci-dessus.
Lesdits membres sont contenus au fichier informatique de l'Office européen des brevets à la date du
Les renseignements fournis sont donnés à titre indicatif et n'engagent pas la responsabilité de l'Office européen des brevets.

<table>
<thead>
<tr>
<th>Document brevet cité au rapport de recherche</th>
<th>Date de publication</th>
<th>Membre(s) de la famille de brevet(s)</th>
<th>Date de publication</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>AU-A-7081987</td>
<td>25-08-87</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP-A-0233044</td>
<td>19-08-87</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-T-63502957</td>
<td>02-11-88</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-T-63502958</td>
<td>02-11-88</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QA-A-8687</td>
<td>31-03-89</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO-A-8704726</td>
<td>13-08-87</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO-A-8704728</td>
<td>13-08-87</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US-A-4734362</td>
<td>29-03-88</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO-A-8707906</td>
<td>30-12-87</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-T-63503513</td>
<td>22-12-88</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-T-63503227</td>
<td>24-11-88</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO-A-8805051</td>
<td>14-07-88</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-A-62012799</td>
<td>21-01-87</td>
</tr>
<tr>
<td>EP-A-276591</td>
<td>03-08-88</td>
<td>FR-A, B-2607518</td>
<td>03-06-88</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU-A-8188187</td>
<td>02-06-88</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-A-63254983</td>
<td>21-10-88</td>
</tr>
</tbody>
</table>

Pour tout renseignement concernant cette annexe : voir Journal Officiel de l'Office européen des brevets, No.12/82