

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(10) International Publication Number

WO 2013/063186 A2

(43) International Publication Date
2 May 2013 (02.05.2013)

(51) International Patent Classification:
G01N 33/574 (2006.01)

(21) International Application Number:
PCT/US2012/061782

(22) International Filing Date:
25 October 2012 (25.10.2012)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
61/551,918 26 October 2011 (26.10.2011) US
61/699,300 11 September 2012 (11.09.2012) US

(71) Applicant: NOVARTIS ANIMAL HEALTH US, INC.
[US/US]; 3200 Northline Avenue, Suite 300, Greensboro,
NC 27408 (US).

(72) Inventors: RUE, Sarah; Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, CA 92121 (US). ECKELMAN, Brendan; Genomics Institute of the Novartis Research

Foundation, 10675 John Jay Hopkins Drive, San Diego, CA 92121 (US). DEVERAUX, Quinn; Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, CA 92121 (US). NASOFF, Marc; Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, CA 92121 (US).

(74) Agent: SLADEK, Todd; Novartis Animal Health Inc., 3200 Northline Drive, Suite 300, Greensboro, NC 27408 (US).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ,

[Continued on next page]

(54) Title: MONOCLONAL ANTIBODIES AND METHODS OF USE

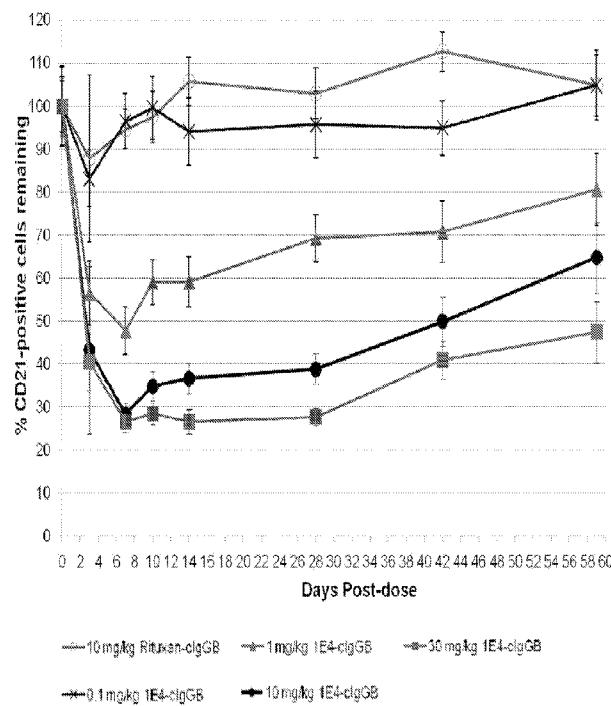


FIGURE 6

TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) **Designated States** (*unless otherwise indicated, for every kind of regional protection available*): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

- *as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii))*

Published:

- *without international search report and to be republished upon receipt of that report (Rule 48.2(g))*
- *with sequence listing part of description (Rule 5.2(a))*

1

2

3

4 ***MONOCLONAL ANTIBODIES AND METHODS OF USE***

5

6 **FIELD OF THE DISCLOSURE**

7 The technology relates to immunogens, and to binding agents that bind the
8 immunogens, like monoclonal antibodies, for identification or isolation of cancer cells
9 that contain the immunogens, or treatment or prevention of cancers containing the cancer
10 cells, especially in dogs.

11

12 **BACKGROUND INFORMATION**

13 Binding agents like monoclonal antibodies are useful in diagnosis and treatment
14 of diseases like cancer. In canines (dogs), for example, a type of cancer is B cell
15 lymphoma in which uncontrolled B cell proliferation can lead to illness and death.
16 Lymphoma also occurs in humans and may be treated with anti-human CD20 antibodies,
17 like Rituximab, for example. These antibodies, that react with or bind human CD20,
18 generally do not bind canine CD20 (Jubala *et al.*, *Vet Pathol.*, Jul;42(4):468-76, 2005;
19 Impellizeri *et al.*, *Vet J.*, May;171(3):556-8, 2006; Gravanis *et al.*, *The Oncologist*,
20 Dec;15:1335-1343, 2010). Accordingly, binding agents capable of interacting with
21 CD20 on the surface of canine B cells are desired. The technology described herein
22 provides these reagents and therapeutics, as shown below.

23

24 **SUMMARY OF THE DISCLOSURE**

25 In certain embodiments, this disclosure relates to reagents and methods for
26 preventing and / or treating canine disease conditions (e.g., lymphoma). For example,
27 epitopes of canine CD20 have been identified that may be targeted to deplete canine
28 blood and / or tissues of B cell lymphoma cells. Immunogens have been identified, as
29 described herein, that may be used to induce and / or enhance an immune response (e.g.,
30 the production of antibodies) suitable for use in preventing and / or treating these
31 diseases. Nucleic acids encoding the immunogens and the polypeptide / peptide
32 immunogens *per se*, and methods for making the same are also described. In certain

1 embodiments, the immunogens are or contain particular epitopes of interest such as
2 LIKAPMPYV (SEQ ID NO.: 1) and / or DIHNCD (SEQ ID NO.: 2). These immunogens
3 may be used alone and / or with other immunogens and / or “backbones” (e.g., a canine
4 Fc) to induce and / or enhance an immune response against canine CD20, for example.

5 In certain embodiments, this disclosure provides binding agents useful in the
6 isolation and / or identification of cells expressing canine CD20 or cells that contain a
7 cell surface protein that reacts with these binding agents (e.g., B cells, B lymphoma cells,
8 canine CD20), and / or treatment and prevention of cancer in a mammal (e.g., a canine).

9 In certain embodiments, the binding agent may be an antibody reactive against canine
10 CD20 expressed on a cell surface. In some embodiments, the one or more binding agents
11 (e.g., an antibody, like a monoclonal antibody) binds to or reacts with canine CD20 at a
12 region thereof which comprises the amino acid sequences, or epitope(s), LIKAPMPYV
13 (SEQ ID NO.: 1) and / or DIHNCD (SEQ ID NO.: 2).

14 In other embodiments, methods for detecting canine cells using these binding
15 agents are provided. In certain embodiments, cells expressing CD20 on their cell surface
16 (e.g., B cell lymphoma) in an animal (e.g., a canine) can be identified and/or isolated by
17 contacting a test biological sample containing the cells with the binding agent and
18 detecting the binding agent bound to the biological sample or components thereof (e.g.,
19 lymphoma cells). In certain embodiments, the method may include comparing the
20 amount of binding in the test biological sample to the amount of binding in a control
21 biological sample, wherein increased binding to the test biological sample relative to the
22 control biological sample may indicate the presence of one or more lymphoma cells in
23 the test biological sample. In some embodiments, the biological sample is canine blood
24 or a needle aspirate. These methods are also provided in an *in vivo* and / or *in vitro*
25 format.

26 In some embodiments, methods for eliminating cells expressing canine CD20
27 using such binding agents are also provided. Methods for treating one or more disease
28 conditions (e.g., lymphoma) in an animal (e.g., canine) by administering to the animal at
29 least one or more effective doses of binding agent or derivative thereof are also provided.
30 In some embodiments in which the binding agent is a monoclonal antibody, the
31 monoclonal antibody may be administered in a dosage amount of about 1 to about 50 mg

1 / kg of animal body weight, about 1 to about 30 mg / kg, or about 5 to about 30 mg / kg
2 (e.g., about 10 mg / kg). The binding agents may be administered more than once over a
3 period of time. In some embodiments, the binding agent may be administered in
4 conjunction with one or more other agents (e.g., chemotherapeutic agents).

5 Also provided are kits for using the binding agents to identify or detect
6 polypeptides and / or cells reactive therewith, and / or for using such binding agents to
7 prevent and / or treat disease (e.g., canine lymphoma). The kit may comprise, for
8 example, a binding agent or derivative thereof in any form (e.g., in solution, lyophilized)
9 along with, optionally, instructions for use. Other embodiments will be clear from the
10 descriptions provided herein.

11

12 BRIEF DESCRIPTION OF THE DRAWINGS

13 **Figure 1.** FACS affinity analysis of binding of monoclonal antibodies to canine B-cell
14 lymphoma cells.

15 **Figure 2. A.** Alignment of canine and human extracellular domains of CD20 and
16 human/canine hybrid variants V1-V4. **B.** ELISA binding analysis of hybridoma
17 antibodies 1E4, 1G1, and 1G10 to canine CD20 ECD2 and V1-V4.

18 **Figure 3.** FACS analysis of binding of hybridoma antibody 1E4 to canine peripheral
19 blood mononuclear cells (PBMC).

20 **Figure 4. A.** SDS-PAGE analysis of purified chimeric anti-canine CD20 antibody 1E4-
21 cIgGB expressed from CHO cells. **B.** Size exclusion chromatography analysis of purified
22 1E4-cIgGB.

23 **Figure 5.** ELISA analysis of binding to CD20 ECD2 peptide of increasing
24 concentrations of unmodified (WT) 1E4-cIgGB antibody and antibodies with the
25 indicated amino acid substitutions to the NG sequence within V_L of 1E4-cIgGB.

26 **Figure 6.** Dose-dependent *in vivo* depletion of canine B cells using exemplary antibody
27 1E4-cIgGB. Rituxan-cIgGB was included as a negative (isotype) control.

28

29

30

31

1
2

DETAILED DESCRIPTION

Binding Agents

This disclosure relates to binding agents that bind canine CD20 on the surface of cells *in vitro* and / or *in vivo*. The binding agents may also bind isolated canine CD20 polypeptide and / or fragments and / or derivatives thereof. Also provided are methods, for diagnosing, treating and / or preventing one or more diseases associated with the existence of cells expressing canine CD20. For instance, the binding agents may be antibodies (e.g., monoclonal antibodies) that may react with and / or bind to the epitopes SEQ ID NOS.: 1 and / or 2. These monoclonal antibodies may comprise any one or more of the amino acid sequences shown in **Tables 1 and 4-5**, for example, (and / or one or more fragments and / or derivatives thereof) and may be encoded by any one or more of the nucleotide sequences shown therein (and / or one or more fragments and / or derivatives thereof). This disclosure also provides for the use of these monoclonal antibodies to isolate, identify, and / or target cells expressing canine CD20 (e.g., canine B cell lymphoma cells) for inhibition (e.g., cytotoxicity) for the prevention and / or treatment of cancer in animals (e.g., canines). In certain embodiments, these monoclonal antibodies may be reactive against canine CD20 expressed on the surface of cells.

Binding agents generally interact with or bind specifically with a target. For example, the binding agents disclosed herein generally interact specifically with regions of canine CD20 as a target. Binding “specifically” to CD20 means that the amount of binding to CD20 is more than the amount of binding to non-CD20 targets (i.e., there may be background nonspecific binding). Generally, specific binding of binding agents to a protein, for example, may be achieved by binding to a specific sequence of amino acids within a protein target. These sequences may be referred to as epitopes. Molecules containing the epitopes may be used to stimulate binding agents like antibodies and may be referred to as immunogens. The binding agents may also recognize specific 2- and/or 3-dimensional structures as part of the epitope. In one example, monoclonal antibodies disclosed herein may bind to epitopes of canine CD20, like LIKAPMPYV (SEQ ID NO.: 1) and / or DIHNCD (SEQ ID NO.: 2).

1 The specific interaction or binding of a binding agent with its target is thought to
2 be a type of equilibrium reaction. In one example, the specific binding can be quantified.
3 The quantification may use a dissociation constant, or K_d . K_d is known in the art to be a
4 type of equilibrium constant that describes the propensity of, in this case, an antibody to
5 separate from the antigen or epitope to which it has bound. Thus, K_d describes the
6 affinity that an antibody has for an epitope. The lower the K_d , the higher is the affinity of
7 a binding agent for its target.

8 In certain embodiments, the binding agent is a monoclonal antibody selected from
9 the group consisting of 1E4, 1G10, and 1G1, as described herein. The monoclonal
10 antibody may comprise the amino acid sequence of any one or more of SEQ ID NOS.: 3,
11 6, 9, 11, 13, and / or 15 (e.g., as in **Table 1**), and / or any one or more fragments and / or
12 derivatives thereof. The antibodies may contain any of the CDR sequences set forth in
13 **Table 4**. The antibody (e.g., monoclonal antibody) may also be of any suitable isotype or
14 isotype subclass. In certain embodiments, the antibody has a canine IgG subclass of, for
15 example, IgGA, IgGB (e.g., SEQ ID NOS.: 55 or 57; **Table 5**), IgGC, and / or IgD as
16 described in Tang *et al.*, *Vet Immunol Immunopathol.*, Aug;80(3-4):259-70, 2001.

17 The binding agent may also be a derivative of an antibody (of, for example, the
18 monoclonal antibody 1E4, 1G10, and / or 1G1) such as, for example, a Fab, $F(ab')_2$, Fab'
19 single chain antibody, Fv, single chain, mono-specific antibody, bi-specific antibody, tri-
20 specific antibody, multi-valent antibody, chimeric antibody, canine-human chimeric
21 antibody, canine-mouse chimeric antibody, antibody comprising a canine F_c , humanized
22 antibody, human antibody, caninized, CDR-grafted antibody, shark antibody, nanobody
23 (e.g., antibody consisting of a single monomeric variable domain), camelid antibody
24 (e.g., from the *Camelidae* family) microbody, intrabody (e.g., intracellular antibody), and
25 / or de-fucosylated antibody and / or derivative thereof. Mimetics of binding agents and /
26 or antibodies are also provided. The binding agent may also comprise a detectable label
27 and / or effector moiety fixably attached thereto.

28 Isolated polynucleotides encoding suitable binding agents are also provided.
29 These polynucleotides may comprise, for example, any one or more of SEQ ID NOS.: 4,
30 5, 7, 8, 10, 12, 14, and / or 16 (e.g., **Table 1**), and / or any one or more fragments and / or
31 derivatives thereof. In certain embodiments, expression vectors and / or host cells

1 comprising these polynucleotides and / or encoding and / or expressing these
2 polypeptides are also provided.

3 Compositions comprising these binding agents, polypeptides, peptides,
4 polynucleotides, expression vectors, and / or host cells are also provided in some
5 embodiments. In certain embodiments, the compositions comprise a pharmaceutically
6 acceptable carrier.

7 The monoclonal antibodies disclosed here (designated as “A” antibodies for this
8 example), that bind to a specific epitope or epitopes, may compete for binding with other
9 antibodies (designated as “B” antibodies for this example) that recognize the same or
10 similar epitopes, or that recognize epitopes that are in proximity to the epitopes
11 recognized by the “A” antibodies (e.g., overlapping epitopes). Competition means that
12 one of the antibodies binds at the expense of the other antibody, or at least inhibits
13 binding of the other antibody to a degree. For example, an “A” antibody that decreases
14 or prevents binding of a “B” antibody is said to compete with “B” for binding. These
15 “B” antibodies are also examples of antibodies that are part of the invention disclosed
16 here. Competition between “A” and “B” antibodies for binding to their epitopes may be
17 measured using so-called competition experiments. Generally, in competition
18 experiments, the binding agents that are to be compared are added to / placed in
19 proximity with, the target to which the binding agents are capable of binding or suspected
20 of binding. The experiments are designed so it is possible to quantify binding of the
21 individual binding agents to the target. Competition is found, for example, when addition
22 of at least one “A” antibody results in binding of a “B” antibody to a lesser degree than if
23 the “A” antibody were not present. In one example, binding agent “A” competes with
24 binding agent “B” for binding to the target. “B” may also compete with “A.” The “A”
25 and “B” antibodies may or may not have substantially similar K_d ’s.

26 Where the binding agent is an antibody, it may be identified with reference to the
27 nucleotide and / or amino acid sequence corresponding to the variable and / or
28 complementarity determining regions (“CDRs”) thereof. For instance, an exemplary
29 binding agent that is, is derived from, or is related to the monoclonal antibody 1E4,
30 1G10, or 1G1 may comprise a heavy and / or a light chain that each comprise one or
31 more constant and / or variable regions. The variable regions typically comprise one or

1 more CDRs that in large part determine the binding specificity of the antibody. These
 2 monoclonal antibodies may be identified by analysis of the nucleotide sequences
 3 encoding the variable regions. The monoclonal antibodies may also be identified by
 4 analysis of the amino acid sequences of (e.g., which may be encoded by the nucleotide
 5 sequences) the variable regions. For instance, exemplary amino acid sequences of the
 6 light and heavy chain variable regions of 1E4, 1G10, and 1G1, and exemplary nucleotide
 7 sequences encoding the same, are shown below:

8 **Table 1**
 9

Description	Sequence
Light chain variable region (V _L) of 1E4	DVVMTQNPLSLPVSLGDQASISCRSSQSILYNNNGNTYLHWYRQKPGQSPKLLIYKVSNRFSGPDRFSGSGSGTDFTLKISRVEAEDLGVYFCSQSTHVVPFTFGSGTKLEIK (SEQ ID NO.: 3)
Nucleotide sequence encoding SEQ ID NO.: 3 (1E4, V _L)	GATGTTGTGATGACCCAAAACCCACTCTCCCTGCCTGTCAGTC TTGGAGATCAAGCCTCCATCTCTGCAGATCTAGTCAGAGCCT TATATACAATAATGGAAACACCTATTACATTGGTACCGGCAG AAGCCAGGCCAGTCTCCAAAGCTCCTGATCTACAAAGTTCCA ACCGATTCTGGGGTCCCAGACAGGTTCAGTGGCAGTGGATC AGGGACAGATTCACACTCAAGATCAGCAGAGTGGAGGCTGAG GATCTGGGAGTTATTCTGCTCTCAAAGTACACATGTTCCAT TCACGTTCGGCTCGGGACAAAGTTGAAATAAAA (SEQ ID NO.: 4)
Codon-optimized nucleotide sequence encoding SEQ ID NO.: 3 (1E4, V _L)	GATGTCGTGATGACTCAGAATCCACTGTCCCTGCCTGTCAGTC TGGGCGATCAGGCTTCCATTAGCTGTCGTTCTCTCAGTCCT GATCTACAACAATGGTAACACACTACCTGCAGTGGTATAGACAG AAGCCCAGGCCAGTCCCCTAACGCTGCTGATCTACAAAGTGAGTA ATAGGTTCTCAGGAGTCCCAGACCGGTTTCCGGCAGCGGATC TGGGACCGATTCACACTGAAAATCTCTAGGGTGGAGGCGAA GACCTGGCGTCTACTTTGTAGTCAGAGCACTCACGTCCCCT TCACCTTCGGCAGCGGAACAAACTGGAAATCAAG (SEQ ID NO.: 5)
Heavy chain variable region (V _H) of 1E4	EVQLVESGGGLVKPGGSLKLSCAASGFTSDYGMWLVRQAPEK GLEWIAYISSGSSTIYYADRVKGRTISRDNAKNTLFLQMTSL RSEDTAMYYCSTGTFAYWGQGTPVTVSS (SEQ ID NO.: 6)
Nucleotide sequence encoding SEQ ID NO.: 6 (1E4, V _H)	GAGGTGCAGCTGGTGGAGTCTGGGGAGGCTTAGTGAAGCCTG GAGGGTCCCTGAAACTCTCCTGTGCAGCCTCTGGATTCACTT CAGTGACTATGGAATGCTCTGGGTCGTGAGGCTCCAGAGAAG GGGCTGGAGTGGATTGCATACATTAGTAGTGGCAGTAGTACCA TCTACTATGCAGACAGAGTGAAGGGCCGATTCAACCCTCTCCAG AGATAATGCCAAGAACACCCTGTTCTGCAAATGACCAAGTCTG AGATCTGAGGACACGCCATGTATTACTGTCAACTGGGACGT TTGCTTACTGGGCCAAGGGACTCCGGTACTGTCAGCTCA

Description	Sequence
	(SEQ ID NO.: 7)
Codon-optimized nucleotide sequence encoding SEQ ID NO.: 6 (1E4, V _H)	GAGGTGCAGCTGGTGGAGTCTGGTGGTCTGGTCAAGCCTG GAGGTTCCCTGAAACTGAGTTGTGCCGCATCTGGGTTACATT CTCTGACTACGGAATGCTGTGGGTGAGGCAGGCACCAGAGAAG GCCCTGGAATGGATCGCTATATTCCAGCGGATCTAGTACTA TCTACTATGCAGACAGGGTCAAGGGCCGGTCAACCATTAGCAG AGATAACGCCAAAATACCCCTGTTCTGCAGATGACATCACTG AGGTCCGAGGATACCGCTATGTATTATTGCTCCACAGGGACTT TTGCTTACTGGGGACAGGGACACCCGTGACCGTCAGCTCA (SEQ ID NO.: 8)
Light chain variable region (V _L) of 1G10	DIVMTQAAPSVPVTPGESVISCRSNKSLHRNGNTYLYWFHQ RPGQSPQLLIYRMSNLASGPVDRFSGSGSGTAFTRLRISRVEAE DVGVYYCMQHLEFPFTFGGGTKLEIK (SEQ ID NO.: 9)
Nucleotide sequence encoding SEQ ID NO.: 9 (1G10, V _L)	GATATTGTGATGACTCAGGCTGCACCCCTCTGTACCTGTCACTC CTGGAGAGTCAGTATCCATCTCCTGCAGGTCTAATAAGAGTCT CCTGCATCGTAATGGCAACACTTACTTGTATTGGTTCTGCAG AGGCCAGGCCAGTCTCCTCAGCTCCTGATATATCGGATGTCCA ATCTTGCTCTCAGGAGTCCCAGACAGACATTGAGTGGCAGTGGGTC AGGAACGTCTTCACACTGAGAATCAGTAGAGTGGAGGGCTGAG GATGTGGGTGTTATTACTGTATGCAACATCTGGAATTTCCTT TCACGTTCGGCGGGGGGACCAAGCTGGAATAAAA (SEQ ID NO.: 10)
Heavy chain variable region (V _H) of 1G10	EVQLQQSGPELVKPGASVKISCKASGYFTDYYMNWKQSHGK SLEWIGDINPNNGDTSYNQFKKGKAPLTVDKSSSTAYMEVRSL TSEDSAVYFCARGGVLRYPYYVMDYWGQGTSVTVSS (SEQ ID NO.: 11)
Nucleotide sequence encoding SEQ ID NO.: 11 (1G10, V _H)	GAGGTCCAGCTGCAACAATCTGGACCTGAGCTGGTGAAGCCTG GGGCTTCAGTGAAGATATCCTGTAAGGCTCTGGATACACGTT CACTGACTACTACATGAACCTGGGTGAAGCAGAGCCATGGAAAG AGCCTTGAGTGGATTGGAGACATTAATCCTAACAAATGGTATA CTAGCTACAACCAGAAATTCAAGGGCAAGGCCCTTGACTGT AGACAAGTCCTCCAGCACAGCCTACATGGAGGTCCGCAGCCTG ACATCTGAGGACTCTGCAGTCTATTCTGTGCAAGAGGGAGGAG TACTACGGTACCCGTATTACTATGTTATGGACTACTGGGTCA AGGAACCTCAGTCACTGTCAGCTCA (SEQ ID NO.: 12)
Light chain variable region (V _L) of 1G1	DIVMTQSQKFMSRSVGDRVSUTCKASQNVGPNAWYQQRPGQS PKPLIYSASYRYSGVPDRFTGSGSGTDFTLTISNVQSEDLAEY FCQQYNNYPYTFGGGTKEIK (SEQ ID NO.: 13)
Nucleotide sequence encoding SEQ ID NO.: 13 (1G1, V _L)	GACATTGTGATGACCCAGTCTAAAAATTCTGTCCAGATCAG TAGGAGACAGGGTCAGCGTCACCTGCAAGGCCAGTCAGAATGT GGGTCCTAATGTAGCCTGGTATCAACAGAGACCAGGGCAATCT CCTAAACCACTGATTACTCGGCATCCTACCGGTACAGTGGAG TCCCTGATCGCTTCACAGGCAGTGGATCTGGGACAGATTTCAC TCTCACCACAGCAATGTGCAGTCTGAAGACTTGGCAGAGTAT TTCTGTCAAGCAATATAACAACATCCGTACACGTTGGAGGGGG GGACCAAGCTGGAATAAAA (SEQ ID NO.: 14)

Description	Sequence
Heavy chain variable region (V _H) of 1G1	EVQLQQSGAELVRPGASVQLSCTASGFNIKDDYMHVKQRPEQ GLEWIGWIDPENGHTKYASKFQGKATITADTSSNTAYLQLSSL TSEDTAVYYCTSLRHYYGSSYVSPHYWGQGTTLVSS (SEQ ID NO.: 15)
Nucleotide sequence encoding SEQ ID NO.: 15 (1G1, V _H)	GAGGTTCAGCTGCAGCAGTCTGGGCTGAGCTTGTGAGGCCAG GGGCCTCAGTCAGTTGCACAGCTCTGGCTTAATAT TAAAGACGACTATATGCACTGGTGAAGCAGAGGCCCTGAACAG GCCCTGGAGTGGATTGGATGGATTGATCCTGAGAATGGTCATA CTAATATGCCTCGAACAGTCCAGGGCAAGGCCACTATAACAGC AGACACATCCTCCAACACAGCCTACCTGCAGCTCAGCAGCCTG ACATCTGAGGACACTGCCGTCTATTACTGTACTTCCCTCCGGC ATTACTACGGTAGTAGCTACGTATGCCCTACTACTACTGGGG CCAAGGCACCACTCTCACTGTAGCTCA (SEQ ID NO.: 16)

1

2 Any of the amino acids shown in **Table 1** (and / or any one or more fragments
 3 and / or derivatives thereof) may also be substituted by any other amino acid as desired
 4 by one of ordinary skill in the art. For example, one of skill in the art may make
 5 conservative substitutions by replacing particular amino acids with others as shown in
 6 **Table 7** below. Exemplary amino acids that may be substituted may include, for
 7 example, residues 26, 28, 33, and / or 34 of SEQ ID NO.: 9 (1G10 light chain variable
 8 region); residues 55 and / or 56 of SEQ ID NO.: 11 (1G10 heavy chain variable region);
 9 and / or residues 52, 53, 55 and / or 56 of SEQ ID NO.: 15 (1G1 heavy chain variable
 10 region), which may be substituted with any other amino acid including but not limited to
 11 the conservative substitutions shown in **Table 7** below. Nucleotide sequences encoding
 12 the conservative amino acid substitutions may be designed using the genetic code as set
 13 forth in **Table 6**. Examples of such substituted amino acid sequences include, for
 14 instance:

15

16 DIVMTQAAPSVPVTPGESVSISCRSXKLLHRXXNTYLYWFLQRPGQSPQLLIYR
 17 MSNLASGVVPDRFSGSGSGTAFTLRISRVEADVGVYYCMQHLEFPFTFGGGTKLE
 18 IK (SEQ ID NO.: 17) where X is any amino acid (modification of 1G10 light chain
 19 variable region indicated by SEQ ID NO.: 9);

20

1 EVQLQQSGPELVKPGASVKISCKASGYTFTDYYMNWVKQSHGKSLEWIGDINPN
 2 XXDTSYNQKFKGKAPLTVDKSSSTAYMEVRSLTSEDSAVYFCARGGVLRYPYY
 3 YVMDYWGQGTSVTVSS (SEQ ID NO.: 18) where X is any amino acid (modification
 4 of 1G10 heavy chain variable region indicated by SEQ ID NO.: 11; and,
 5
 6 EVQLQQSGAELVRPGASVKLSCTASGFNIKDDYMHWVKQRPEQGLEWIGWIXX
 7 EXXHTKYASKFQGKATITADTSSNTAYLQLSSLTSEDTAVYYCTSLRHYYGSSY
 8 VSPHYYWGQGTTLVSS (SEQ ID NO.: 19) where X is any amino acid (modification
 9 of 1G1 heavy chain variable region indicated by SEQ ID NO.: 15.

10
 11 Any of the amino acid sequences shown in **Table 1**, and / or any fragments and /
 12 or derivatives thereof may also be combined with any other variable region and / or CDR
 13 in any order and / or combination to form hybrid and / or fusion binding agents and / or
 14 inserted into other heavy and / or light chain variable regions using standard techniques.
 15 These may be used in conjunction with any constant regions (e.g., as in **Table 5**).

16 CDRs (complementarity-determining regions) are amino acid sequences from
 17 antibodies that are, at least in part, responsible for binding of an antibody to a specific
 18 target. It is understood by those of skill in the art that CDRs may be identified using any
 19 of several techniques and / or schemes. CDRs of the binding agents shown herein may
 20 be identified using any of these techniques. For instance, one of ordinary skill in the art
 21 may identify CDRs using the Kabat Numbering Scheme, the Chothia Numbering
 22 Scheme, the Enhanced Chothia Numbering Scheme, and / or any of the available CDR
 23 Definition Schemes (e.g., AbM, contact definition, and / or as described by MacCullum,
 24 *et al.*, *J. Mol. Biol.*, 262(5):732-745, 1996. A summary of various schemes, in part based
 25 on, for example, Kabat *et al.*, "Sequences of Proteins of Immunological Interest," 5th Ed.,
 26 Public Health Service, National Institutes of Health, Bethesda, MD, NIH publication No.
 27 91-3242 (1991), and Al-Lazikani *et al.*, "Standard conformations for the canonical
 28 structures of immunoglobulins," *J. Mol. Biol.* 273:927-948, 1997, is provided in **Table 2**
 29 below:

30 **Table 2**

CDR	Kabat	AbM	Chothia	Contact
-----	-------	-----	---------	---------

Loop*				
L1	L24--L34	L24--L34	L24--L34	L30--L36
L2	L50--L56	L50--L56	L50--L56	L46--L55
L3	L89--L97	L89--L97	L89--L97	L89--L96
H1	H31--H35B (Kabat Numbering)	H26--H35B	H26--H32..34	H30--H35B
H1	H31--H35 (Chothia Numbering)	H26--H35	H26--H32	H30--H35
H2	H50--H65	H50--H58	H52--H56	H47--H58
H3	H95--H102	H95--H102	H95--H102	H93--H101

1 *L = light chain; H = heavy chain

2

3 CDRs may also be identified by following a set of rules such as those set forth in **Table 3**
4 below (as described at <http://www.bioinf.org.uk/abs/#cdrid>):

5

6

Table 3

7

CDR* / Feature	Typical Characteristic of Feature**
CDR-L1	
Start	approximately residue 24
Residues before	typically Cys
Residues after	typically Trp (e.g., Trp-Tyr-Gln, Trp-Leu-Gln, Trp-Phe-Gln, Trp-Tyr-Leu)
Length	10 to 17 residues
CDR-L2	
Start	typically 16 residues after the end of L1
Residues before	typically Ile-Tyr, Val-Tyr, Ile-Lys, or Ile-Phe
Length	typically seven (7) residues
CDR-L3	
Start	typically 33 residues after end of L2
Residues before	typically Cys
Length	typically Phe-Gly-X-Gly
Residues after	7 to 11 residues
CDR-H1	
Start	Approximately residue 26 (typically four (4) residues after a Cys) (Chothia / AbM definition); Kabat definition starts 5 residues later
Residues before	typically Cys-X-X-X
Residues after	typically Trp (e.g., Trp-Val, Trp-Ile, Trp-Ala)
Length	10 to 12 residues (AbM definition); Chothia definition excludes the last four (4) residues

CDR-H2	
Start	typically 15 residues after the end of Kabat / AbM definition of CDR-H1
Residues before	typically Leu-Glu-Trp-Ile-Gly
Residues after	typically Lys/Arg-Leu/Ile/Val/Phe/Thr/Ala-Thr/Ser/Ile/Ala
Length	Kabat definition 16 to 19 residues; AbM (and recent Chothia) definition 9 to 12 residues
CDR-H3	
Start	typically 33 residues after end of CDR-H2 (typically two (2) residues following a Cys)
Residues before	typically Cys-X-X (typically Cys-Ala-Arg)
Residues after	typically Trp-Gly-X-Gly
Length	typically 3 to 25 residues

1 *L = light chain; H = heavy chain; **X=any amino acid

2
3 These systems for identifying CDRs are merely exemplary and others may be
4 suitable, as would be understood by one of ordinary skill in the art. CDRs thus identified
5 may be used to identify suitable binding agents. For instance, equivalents of one or more
6 of the monoclonal antibodies 1E4, 1G10, and / or 1G1 may be binding agents comprising
7 the amino acid sequences. Such CDRs may also be combined with one another in any
8 order and / or combination to form hybrid and / or fusion binding agents and / or inserted
9 into the other heavy and / or light chain variable regions using standard techniques.

10 The amino acid sequences shown in **Table 1**, and / or any one or more fragments and / or
11 derivatives thereof, may be encoded by any of several nucleic acid sequences. These
12 nucleic acid sequences may also be used to identify and / or prepare (e.g., as nucleic acid
13 molecules) suitable binding agents. For example, one of ordinary skill in the art may
14 devise nucleotide sequences encoding any such amino acid sequences with reference to
15 any one or more of **Tables 1-7** herein. Exemplary nucleotide sequences encoding the
16 light chain variable regions of 1E4, 1G10, and 1G1 may be those shown in **Table 1**. Any
17 of the nucleotide sequences shown in **Table 1**, and / or fragments and / or derivatives
18 thereof, may be combined with one another in any order and / or combination to encode
19 hybrid and / or fusion binding agents and / or inserted into the other nucleic acid
20 sequences encoding light and / or heavy chain variable regions (and / or fragments and /
21 or derivatives thereof). Exemplary fragments may be, for example, any nucleic acid
22 sequence encoding any of the amino acid sequences shown in **Table 1**, and / or any

1 fragment and / or derivative thereof (e.g., one or more CDRs thereof). Putative CDRs of
 2 the monoclonal antibodies 1E4, 1G10 and 1G1 are listed in **Table 4**. These CDRs were
 3 identified using the schemes set forth in , Kabat *et al.*, “Sequences of Proteins of
 4 Immunological Interest,” 5th Ed., Public Health Service, National Institutes of Health,
 5 Bethesda, MD, NIH publication No. 91-3242 (1991), and Al-Lazikani *et al.*, “Standard
 6 conformations for the canonical structures of immunoglobulins,” J.Mol.Biol. 273:927-
 7 948, 1997.

8
 9

Table 4

CDR	Kabat CDRs (Kabat <i>et al.</i> 1991)	Chothia CDRs (Al-Lazikani <i>et al.</i> 1997)
1E4 CDRH1	DYGML (SEQ ID NO.: 20)	GFTFSDY (SEQ ID NO.: 21)
1E4 CDRH2	YISSGSSTIYYADRVKG (SEQ ID NO.: 22)	SSGSST (SEQ ID NO.: 23)
1E4 CDRH3	GTFAY (SEQ ID NO.: 24)	GTFAY (SEQ ID NO.: 24)
1E4 CDRL1	RSSQSLIYNNNGNTYLNH (SEQ ID NO.: 25)	SQSLIYNNNGNTY (SEQ ID NO.: 26)
1E4 CDRL1 N33 to K	RSSQSLIYNKGNTYLNH (SEQ ID NO.: 70)	SQSLIYNKGNTY (SEQ ID NO.: 71)
1E4 CDRL1 G34 to K	RSSQSLIYNNNKNTYLNH (SEQ ID NO.: 72)	SQSLIYNNNKNTY (SEQ ID NO.: 73)
1E4 CDRL1 G34 to Q	RSSQSLIYNNQNTYLNH (SEQ ID NO.: 74)	SQSLIYNNQNTY (SEQ ID NO.: 75)
1E4 CDRL1 G34 to A	RSSQSLIYNNNANTYLNH (SEQ ID NO.: 76)	SQSLIYNNNANTY (SEQ ID NO.: 77)
1E4 CDRL2	KVSNRFS (SEQ ID NO.: 27)	KVS (SEQ ID NO.: 28)
1E4 CDRL3	SQSTHVPFT (SEQ ID NO.: 29)	STHVPF (SEQ ID NO.: 30)
1G1 CDRH1	DDYMH (SEQ ID NO.: 31)	GFNIKDD (SEQ ID NO.: 32)
1G1 CDRH2	WIDPENGHTKYASKFQG (SEQ ID NO.: 33)	DPENGH (SEQ ID NO.: 34)
1G1 CDRH3	LRHYYGSSYVSPHYY (SEQ ID NO.: 35)	LRHYYGSSYVSPHYY (SEQ ID NO.: 36)
1G1 CDRL1	KASQNVGPNA (SEQ ID NO.: 37)	SQNVGPNA (SEQ ID NO.: 38)
1G1 CDRL2	SASYRYS (SEQ ID NO.: 39)	SAS (SEQ ID NO.: 40)
1G1 CDRL3	QQYNNYPYT (SEQ ID NO.: 41)	YNNYPY (SEQ ID NO.: 42)
1G10 CDRH1	DYYMN	GYTFTDY

	(SEQ ID NO.: 43)	(SEQ ID NO.: 44)
1G10 CDRH2	DINPNNGDTSYNQKFKG (SEQ ID NO.: 45)	NPNNGD (SEQ ID NO.: 46)
1G10 CDRH3	GGVLRYPYYYYVMDY (SEQ ID NO.: 47)	GGVLRYPYYYYVMDY (SEQ ID NO.: 48)
1G10 CDRL1	RSNKSSLHRNGNTLY (SEQ ID NO.: 49)	NKSLLHRNGNTY (SEQ ID NO.: 50)
1G10 CDRL2	RMSNLAS (SEQ ID NO.: 51)	RMS (SEQ ID NO.: 52)
1G10 CDRL3	MQHLEFPFT (SEQ ID NO.: 53)	HLEFPF (SEQ ID NO.: 54)

1

2 In some embodiments, the binding agent may comprise the amino acid sequences
 3 set forth in **Table 4** above. Subgroups of these combinations and / or other combinations
 4 of the CDRs shown in **Table 4** may also be suitable, as would be understood by those of
 5 skill in the art. In one example, various combinations of the above CDRs may be used to
 6 provide caninized antibodies.

7 The variable region sequences described herein (which may comprise fragments
 8 and / or derivatives thereof), including but not limited to the amino acid sequences shown
 9 in **Table 1** (and / or fragments and / or derivatives thereof) and / or the nucleotide
 10 sequences shown in **Table 1** (and / or fragments and / or derivatives thereof) may be used
 11 in combination with one or more amino acid sequences and / or nucleotide sequences
 12 encoding one or more constant chains (and / or a fragment and / or derivatives thereof) of
 13 an antibody molecule. For instance, the variable region amino acid sequences shown in
 14 **Table 1** may be joined to the constant regions of any antibody molecule of the same or a
 15 different species (e.g., human, goat, rat, sheep, chicken) of that from which the variable
 16 region amino acid sequence was derived.

17 Deamidation of asparagine residues to aspartic acid or isoaspartic acid is a
 18 common post-translational modification to proteins. Deamidation may occur with higher
 19 frequency when the asparagine is part of an asparagine-glycine dipeptide (Asp-Gly or N-
 20 G; the “NG” sequence). Deamidation may have detrimental effects on proteins. In one
 21 example, deamidation may potentially cause a change in the three-dimensional structure
 22 of a protein. In another example, for an antibody, deamidation in a region that affects
 23 binding to an antigen (e.g., variable regions and / or CDRs) may potentially cause lower
 24 or loss of antibody binding to the antigen.

1 Accordingly, it may be beneficial to substitute amino acid residues potentially
2 susceptible to post-translational deamidation with those less or not susceptible. In one
3 example, asparagine 33 (N33) and / or glycine 34 (G34) of SEQ ID NO.: 3 (light chain
4 variable region (V_L) of 1E4) may be substituted to modify the NG sequence (see, e.g.,
5 SEQ ID NOS. 71, 73, 75 and 77). SEQ ID NO.: 3 is shown below, with N33 and G34
6 (an NG sequence) underlined:

7 DVVMTQNPLSLPVSLGDQASISCRSSQSLIYNNNGNTYLHWYRQKPGQSP
8 KLLIYKVSNRFSGVPDRFSGSGSGTDFTLKISRVEAEDLGVYFCSQSTH
9 VPFTFGSGTKLEIK (SEQ ID NO.: 3)

10 N33 and / or G34 may be substituted by, for example, any amino acid such as alanine
11 (A), glutamic acid (E), phenylalanine (F), histidine (H), isoleucine (I), lysine (K), leucine
12 (L), methionine (M), proline (P), glutamine (Q), arginine (R), threonine (T), valine (V),
13 and / or tyrosine (Y), in any combination. In some embodiments, N33 may be substituted
14 by, for example, alanine (A), glutamic acid (E), phenylalanine (F), histidine (H),
15 isoleucine (I), lysine (K), leucine (L), proline (P), glutamine (Q), arginine (R), threonine
16 (T), valine (V) or tyrosine (Y). In some embodiments, G34 may be substituted by, for
17 example, alanine (A), glutamic acid (E), phenylalanine (F), histidine (H), isoleucine (I),
18 lysine (K), leucine (L), proline (P), glutamine (Q), arginine (R), valine (V), tryptophan
19 (W) or tyrosine (Y) in any combination.

20 In one embodiment, N33 (of, e.g., SEQ ID NO.: 9) may be substituted by lysine
21 (K) (N33K substitution). In particular embodiments, G34 (of, e.g., SEQ ID NO.: 9), may
22 be substituted by lysine (K) (G34K), glutamine (Q) (G34Q), or alanine (A) (G34A). In
23 some embodiments, the substitutions may include N33K and any of G34K, G34Q, or
24 G34A. Other substitutions may also be suitable as would be understood by one of
25 ordinary skill in the art.

26 In other embodiments, asparagine 33 (N33) and / or glycine 34 (G34) of SEQ ID
27 NO.: 9 (light chain variable region (V_L) of 1G10), asparagine 55 (N55) and / or glycine
28 56 (G56) of SEQ ID NO.: 11 (heavy chain variable region (V_H) of 1G10), or asparagine
29 55 (N55) and / or glycine 56 (G56) of SEQ ID NO.: 15 (heavy chain variable region (V_H)
30 of 1G1) may be substituted by any suitable amino acid. In another example, one or more
31 of asparagines 103 (N103), 183 (N183) and / or 270 (N270), and / or glycines 104

1 (G104), 184 (G184) and / or 271 (G271) of SEQ ID NO.: 57 (canine IgGB heavy chain
 2 constant region) may be substituted by any suitable amino acid. Additional information
 3 regarding certain substitutions is described and tested in the Examples. And other
 4 substitutions may also be suitable, as may be determined by one of ordinary skill in the
 5 art.

6 The constant regions may be derived from any of, for example, human (e.g., IgG
 7 (IgG1, IgG2, IgG3, IgG4), IgM, IgA (IgA1 and IgA2), IgD, and IgE), canine (e.g., IgG
 8 (IgGA, IgGB, IgGC, IgGD) IgA, IgD, IgE, and IgM), chicken (e.g., IgA, IgD, IgE, IgG,
 9 IgM, IgY), goat (e.g., IgG), mouse (e.g., IgA, IgG, IgD, IgE, IgM), pig (e.g., IgA, IgG,
 10 IgD, IgE, IgM), rat (e.g., IgA, IgG, IgD, IgE, IgM), feline (e.g., IgA, IgD, IgE, IgG, IgM)
 11 and / or a fragment and / or derivative thereof (e.g., as chimeric antibodies). For
 12 example, one or more of the amino acid sequences of **Table 1** and / or **Table 4** may be
 13 adjoined or associated with a non-canine variable and / or constant region (e.g., human)
 14 to produce a chimeric antibody. A binding agent may, for example, comprise an amino
 15 acid sequence of any of those shown in **Table 1** (and / or fragments and / or derivatives
 16 thereof) and, for example, a canine antibody constant region. Exemplary amino acid and
 17 nucleotide sequences of canine IgGB light and heavy chain constant regions that may be
 18 utilized as described herein are shown below in **Table 5**:

19 **Table 5**
 20

Description	Sequence
Amino acid sequence of canine light chain constant region	RNDAQPAVYLFQPSPDQLHTGSASVVCLLNSFYPKDINVWKV DGVIQDTGIQESVTEQDKDSTYSLSTLMSSTEYLSHELYSC EITHKSLPSTLIKSFQRSECQRVD (SEQ ID NO.: 55)
Codon-optimized nucleotide sequence encoding SEQ ID NO.: 55	CGTAACGACGCCAGCCTGCCGTGTATCTGTTCCAGCCCTCCC CCGATCAGCTGCATACCGGGTCCGCTCAGTGGTGTGCCTGCT GAACAGTTCTACCCCAAGGACATCAATGTGAAGTGGAAAGTG GACGGCGTCATCCAGGATACTGGCATCCAGGAGAGCGTCACCG AACAGGACAAAGATTCAACATATTCCCTGTCCAGCACCCCTGAC AATGTCTAGTACTGAGTACCTGAGCCACGAACGTGTATTCTTGC GAGATTACCCATAAGAGCCTGCCATCCACCCCTGATTAAGAGTT TCCAGCGTTCCGAATGCCAGAGAGTCGAT (SEQ ID NO.: 56)
Amino acid sequence of canine light chain constant region N2 to T	RTDAQPAVYLFQPSPDQLHTGSASVVCLLNSFYPKDINVWKV DGVIQDTGIQESVTEQDKDSTYSLSTLMSSTEYLSHELYSC EITHKSLPSTLIKSFQRSECQRVD (SEQ ID NO.: 78)
Amino acid sequence	RNDAQPAVYLFQPSPDQLHTGSASVVCLLSSFYPKDINVWKV

Description	Sequence
of canine light chain constant region N30 to S	DGVIQDTGIQESVTEQDKDSTYLSSTLTMSSTEYLSHELYSC EITHKSLPSTLIKSFQRSECQRVD (SEQ ID NO.: 79)
Amino acid sequence of canine light chain constant region N2 to T, N30 to S	RTDAQPAVYLQFQPSPDQLHTGSASVVCLLSSFYPKDINVWKV DGVIQDTGIQESVTEQDKDSTYLSSTLTMSSTEYLSHELYSC EITHKSLPSTLIKSFQRSECQRVD (SEQ ID NO.: 80)
Amino acid sequence of canine IgGB heavy chain constant region	ASTTAPSVFPLAPSCGSTSGSTVALACLVSGYFPEPVTWSWNS GSLTSGVHTFPSVLQSSGLYSLSSMVTVPSSRWPSETFTCNVA HPASKTKVDKPKVPRKRENGRVRPPDCPKCPAPEMLGGPSVIF PPKPKDTLLIARTPEVTCVVVDLDPEDPEVQISWFVDGKQMOT AKTQPREEQFNGTYRVVSVLPIGHQDWLKGKQFTCKVNNKALP SPIERTISKARGQAHQPSVYVLPPSREELSKNTVSLTCLIKDF FPPDIDVEWQSNGQQEPESKYRTTPQLDEDGSYFLYSKLSVD KSRWQRGDTFICAVMHEALHNHYTQKSLSHSPGK (SEQ ID NO.: 57)
Codon-optimized nucleotide sequence encoding SEQ ID NO.: 57	GCGTCAACTACCGCTCCCTCCGTCTTCCCTCTGGCTCCTTCAT GTGGTTCAACAAGTGGCAGTACCGTCGCCCTGGCTTGCCTGGT GTCAGGGTACTTCCCTGAGCCAGTCACCGTGTCTGGAACAGC GGGTCTCTGACAAGTGGTGTCCACACTTTCTTCAGTGCTGC AGTCCAGCGGTCTGTATTCCCTGTCTAGTATGGTCACTGTGCC ATCATCCAGATGGCCCAGCGAAACTTCACCTGTAACGTGGCA CATCCAGCCTCTAAGACCAAAGTGGACAAGGCCGTGCCTAAC GAGAGAATGGAAGGGTGCCTCGACCACCTGATTGCCAAAGTG TCCAGCACCAGAAATGCTGGGAGGACATCCGTGTTCATCTT CCACCCAAGCCTAAAGACACACTGCTGATTGCTAGGACCCAG AGGTGACATGCGTGGTCGTGGACCTGGATCCCGAGGACCCCTGA AGTCCAGATCAGCTGGTCGTGGATGGGAAGCAGATGCAGACA GCAAAAACACTAGCCAAGGGAGGAACAGTTAATGGTACTTACC GGGTCGTGTCTGTGCTGCCATTGCCACCCAGGACTGGCTGAA GGGAAAACAGTTACCTGCAAGGTGAACAACAAGGCTCTGCCT TCCCCAATCGAGCGAACAAATTAGCAAGGCTCGTGGCCAGGCAC ATCAGCCCAGCGTCTACGTGCTGCCTCCATCCGAGAGGAAC GAGCAAGAACACTGTGTCTGACCTGTCTGATCAAAGATTTC TTTCCCCCTGACATTGATGTGGAGTGGCAGTCTAATGGACAGC AGGAGCCTGAGAGTAAGTATCGGACCACACCACCCAGCTGGA CGAAGATGGCAGTTACTCCTGTATAGTAAGCTGTCAGTGGAC AAATCCAGATGGCAGCGCGGAGATACCTTCATCTGTGCCGTGA TGCACGAAGCACTGCACAATCACTACACACAGAAGTCACTGAG CCACTCTCCAGGGAAA (SEQ ID NO.: 58)

1

2 One of ordinary skill in the art would understand that the constant regions of
 3 binding agents that are antibodies may be encoded by SEQ ID NO.: 56 and / or 58 and /
 4 or derivative nucleotide sequences thereof. The constant regions of the binding agents

1 may comprise the amino acid sequence of SEQ ID NO.: 55, 78, 79, 80 and / or 57, and /
2 or derivative amino acid sequences thereof. In one example, nucleotide sequences
3 encoding the antibodies are constructed into a vector system, and then expressed in host
4 cells. In one example, the host cells are cultured cells. In one example, the vector system
5 is used in mammalian cultured cells under conditions where the antibodies are expressed.
6 **Example 2** describes an example of this.

7 In some applications, the binding agents may bind canine CD20 but have altered
8 ability to bind Fc receptors (e.g., CD16) as compared to standard binding agents. In one
9 example, the binding agents are antibodies that have modified glycosylation patterns.
10 IgG molecules, for example, typically contain N-linked oligosaccharides. Some IgG
11 molecules contain a biantennary complex-type oligosaccharide linked to the antibody
12 heavy chain. In human IgG, the oligosaccharide is generally linked to an asparagine
13 residue at position 297 (N297) of the heavy chain (in the constant / Fc region of the
14 antibody heavy chain). Generally, a fucose is attached to the GLcNAC residue in the
15 oligosaccharide that is nearest to N297. Absence of the fucose may enhance the ability of
16 the antibodies to mediate antibody-dependent cellular cytotoxicity (ADCC). Presumably,
17 absence / removal of the fucose enhances the ability of the antibody to interact with Fc
18 receptors. Antibodies of this type may be referred to as “defucosylated”. Defucosylated
19 antibodies may be produced using techniques described herein and / or that may be
20 known in the art. In some embodiments, a nucleic acid sequence encoding an antibody
21 may be expressed in a cell line that has modified glycosylation abilities (e.g., deleted,
22 modified or lesser amount of fucosyl transferase) and fail to add the typical fucose
23 moieties . A variety of these cell lines are known. In some embodiments, the antibodies
24 disclosed herein bind to canine CD20 but contain defucosylated oligosaccharides. In one
25 embodiment, the anti-canine CD20 antibody may contain a canine IgGB heavy chain
26 constant region. In some embodiments, the fucose moiety typically attached to the
27 GLcNAC nearest N183 in canine IgGB heavy chain constant region (SEQ ID NO.:
28 57) is absent. Other techniques may also be used to alter the typical fucosylation of
29 antibodies and may be suitable, as would be understood by one of ordinary skill in the art.

30 The binding agents (e.g., antibodies) may include other modifications that may
31 result in decreased interaction with Fc receptors (e.g., CD16). For instance, alternative or

1 additional amino acid substitutions may be made to the antibody molecules described
2 herein. In one embodiment, canine IgGB heavy chain constant region (e.g., of SEQ ID
3 NO.: 57) may be substituted at one or both of amino acid residues M120 and L121. In
4 certain embodiments, either or both of these residues may be substituted by alanine (A)
5 or proline (P). In one embodiment, M (methionine) at position 120 was substituted by P
6 (proline) and L (leucine) at position 121 was substituted by A (alanine), as shown below:

7
8 ASTTAPSVFPLAPSCGSTSGSTVALACLVSGYFPEPVTWSWNSGSLTSGVHTFPSVLQS
9 SGLYSLSSMVTVPSSRWPSETFTCNVAHPASKTKVDKPVPKRENGRVRPPDCPKCPAP
10 EPAGGPSVFIFPPKPKDTLLIARTPEVTCVVVDLDPEDPEVQISWFVDGKQMQTAKTQP
11 REEQFNGTYRVVSVLPIGHQDWLKGKQFTCKVNNKALPSPIERTISKARGQAHQPSVYV
12 LPPSREELSKNTVSLTCLIKDFFPPDIDVEWQSNGQQEPESKYRTTPQLEDGSYFLY
13 SKLSVDKSRWQRGDTFICAVMHEALHNHYTQKSLSHSPGK (SEQ ID NO.: 81).

14

15 In studies to characterize canine IgGB containing M120P and L121A, binding to
16 CD16a was reduced as compared to canine IgGB that did not contain the substitutions
17 (i.e., the sequence as shown in SEQ ID NO.: 57). Canine IgGA heavy chain was used as
18 negative control, as it minimally or does not bind CD16a in our hands. We have also
19 found that canine IgGD heavy chain also minimally or does not bind CD16a, while
20 canine IgGB and IgGC heavy chains do bind CD16a (also, in B cell depletion
21 experiments, as described in **Example 3** and **Figure 6**, 1E4-cIgGB and 1E4-cIgGC
22 molecules did deplete B cells, while a 1E4-cIgGA molecule did not). Measured binding
23 of the molecule containing M120P and L121A was similar to the background level of
24 binding measured for the IgGA molecule.

25 In one embodiment, the canine IgGB heavy chain constant region (e.g., of SEQ
26 ID NO.: 57) N (asparagine) at position 183 was substituted by A, as shown below:

27

28 ASTTAPSVFPLAPSCGSTSGSTVALACLVSGYFPEPVTWSWNSGSLTSGVHTFPSVLQS
29 SGLYSLSSMVTVPSSRWPSETFTCNVAHPASKTKVDKPVPKRENGRVRPPDCPKCPAP
30 EMLGGPSVFIFPPKPKDTLLIARTPEVTCVVVDLDPEDPEVQISWFVDGKQMQTAKTQP
31 REEQFAGTYRVVSVLPIGHQDWLKGKQFTCKVNNKALPSPIERTISKARGQAHQPSVYV

1 LPPSREELSKNTVSLTCLIKDFFPPDIDVEWQSNGQQEPESKYRTTPQLDEDGSYFLY
2 SKLSVDKSRWQRGDTFICAVMHEALHNHYTQKSLSHSPGK (SEQ ID NO.: 82);

3

4 In studies to characterize canine IgGB containing the N183A substitution, binding
5 to CD16a was reduced as compared to canine IgGB that did not contain the substitutions
6 (i.e., the sequence as shown in SEQ ID NO.: 57). Canine IgGA heavy chain was used as
7 negative control. Measured binding to CD16a of the molecule containing the N183A
8 substitution was similar to the background level of binding measured for the IgGA
9 molecule.

10 In one embodiment, the canine IgGB heavy chain constant region (e.g., of SEQ
11 ID NO.: 57) M at position 120 was substituted by A and L at position 121 was substituted
12 by A, as shown below:

13

14 ASTTAPSVFPLAPSCGSTSGSTVALACLVSGYFPEPVTVSWNSGSLTSGVHTFPSVLQS
15 SGLYSLSSMVTVPSSRWPSETFTCNVAHPASKTKVDKPVPKRENGRVRPPDCPKCPAP
16 EAAGGPSVFIFPPPKPKDTLLIARTPEVTCVVVDLDPEDPEVQISWFVDGKQMQTAKTQP
17 REEQFNGTYRVVSVLPIGHQDWLKGKQFTCKVNNKALPSPIERTISKARGQAHQPSVYV
18 LPPSREELSKNTVSLTCLIKDFFPPDIDVEWQSNGQQEPESKYRTTPQLDEDGSYFLY
19 SKLSVDKSRWQRGDTFICAVMHEALHNHYTQKSLSHSPGK (SEQ ID NO.: 83);

20

21 In studies to characterize canine IgGB containing M120A and L121A, binding to
22 CD16a was reduced as compared to canine IgGB that did not contain the substitutions
23 (i.e., the sequence as shown in SEQ ID NO.: 57). Canine IgGA heavy chain was used as
24 negative control. Measured binding to CD16a of the molecule containing M120A and
25 L121A was decreased compared to binding of IgGB that does not contain the
26 substitutions. However, binding to CD16A of the M120A- and L121A-containing
27 molecule was not reduced as much as for binding of the M120P and L121A molecule, or
28 as much as for binding of the N183A molecule.

29 In addition to the above molecules, the canine IgGB heavy chain constant region
30 (SEQ ID NO.: 57) may have other amino acid substitutions, for example, at one or both
31 of M120 and L121. In one embodiment, the molecule may have a M120A substitution.

1 In one embodiment, the molecule may have a L121A substitution. Other substitutions of
2 M120 and / or L121, by A and / or P may be possible. In addition, any of these
3 substitutions may be combined with the N183A substitution. Other modifications may
4 also be suitable, as would be understood by one of ordinary skill in the art. Mixtures of
5 antibodies having one or more of such modifications may also be suitable for various
6 applications.

7 As described above, in some embodiments, binding agents may be antibodies.
8 The term "antibody" or "antibodies" may refer to whole or fragmented antibodies in
9 unpurified or partially purified form (e.g., hybridoma supernatant, ascites, polyclonal
10 antisera) or in purified form. A "purified" antibody may be one that is separated from at
11 least about 50% of the proteins with which it is initially found (e.g., as part of a
12 hybridoma supernatant or ascites preparation). A purified antibody may be one that is
13 separated from at least about 60%, 75%, 90%, or 95% of the proteins with which it is
14 initially found. Suitable derivatives may also be fragments (e.g., Fab, F(ab')₂ or single
15 chain antibodies, like Fv, for example). The antibodies may be of any suitable origin or
16 form including, for example, murine (e.g., produced by murine hybridoma cells), or
17 expressed as caninized antibodies, chimeric antibodies, canine antibodies, and the like.

18 Methods of preparing and utilizing various types of antibodies are well-known to
19 those of skill in the art and would be suitable in practicing the present invention (see, for
20 example, Harlow, et al. *Antibodies: A Laboratory Manual*, Cold Spring Harbor
21 Laboratory, 1988; Harlow, et al., *Using Antibodies: A Laboratory Manual, Portable*
22 *Protocol No. 1*, 1998; Kohler and Milstein, *Nature*, 256:495, 1975; Jones et al., *Nature*,
23 321:522-525, 1986; Riechmann et al., *Nature*, 332:323-329, 1988; Presta, *Curr. Op.*
24 *Struct. Biol.*, 2:593-596, 1992; Verhoeven et al., *Science*, 239:1534-1536, 1988;
25 Hoogenboom et al., *J. Mol. Biol.*, 227:381, 1991; Marks et al., *J. Mol. Biol.*, 222:581,
26 1991; Cole et al., *Monoclonal Antibodies and Cancer Therapy*, Alan R. Liss, p. 77, 1985;
27 Boerner et al., *J. Immunol.*, 147(1):86-95, 1991; Marks et al., *Bio/Technology* 10, 779-
28 783, 1992; Lonberg et al., *Nature* 368:856-859, 1994; Morrison, *Nature* 368:812-13,
29 1994; Fishwild et al., *Nature Biotechnology* 14, 845-51, 1996; Neuberger, *Nature*
30 *Biotechnology* 14, 826, 1996; Lonberg and Huszar, *Intern. Rev. Immunol.* 13:65-93,
31 1995; as well as U.S. Pat. Nos. 4,816,567, 5,545,807, 5,545,806, 5,569,825, 5,625,126,

1 5,633,425, and 5,661,016). In certain applications, the antibodies may be contained
2 within hybridoma supernatant or ascites and utilized either directly as such or following
3 concentration using standard techniques. In other applications, the antibodies may be
4 further purified using, for example, salt fractionation and ion exchange chromatography,
5 or affinity chromatography using Protein A, Protein G, Protein A/G, and / or Protein L
6 ligands covalently coupled to a solid support such as agarose beads, or combinations of
7 these techniques. The antibodies may be stored in any suitable format, including as a
8 frozen preparation (e.g., -20°C or -70°C), in lyophilized form, or under normal
9 refrigeration conditions (e.g., 4°C). When stored in liquid form, a suitable buffer such as
10 Tris-buffered saline (TBS) or phosphate buffered saline (PBS) may be utilized.

11 The binding agents described herein are not in any way limited to antibodies. The
12 binding agents may be any compound exhibiting similar binding properties as antibodies
13 (e.g., a mimetic). For example, an exemplary binding agent may be one that binds SEQ
14 ID NO.: 1 and / or SEQ ID NO.: 2 (or a polypeptide comprising SEQ ID NO.: 1 and / or
15 2) and / or can compete with a monoclonal antibody binding thereto (e.g., monoclonal
16 antibodies 1E4, 1G10, and / or 1G1). In some embodiments, the binding agent may
17 exhibit substantially the same K_d in binding assays as the binding agent (e.g., monoclonal
18 antibody) to which it is being compared. For instance, the K_d of a particular binding
19 agent may be measured by any suitable assay including but not limited to the FACS assay
20 described in the Examples (e.g., **Fig. 1**). One binding agent may be said to have
21 “substantially the same K_d ” as another where the measurements are within about any of
22 1-20, 1-5, 5-10, 10-15, or 15-20 percent of one another.

23 Exemplary mimetics may include, for example, organic compounds that
24 specifically bind canine CD20 (e.g., SEQ ID NO.: 1, 2, and / or 59, and / or polypeptides
25 comprising any such sequences) (see, e.g., Gebauer *et al.*, *Curr. Opin. Chem. Biol.* 13
26 (3):245–255, 2009). Such mimetics may be, for example, an affibody (Nygren, *et al.*,
27 *FEBS J.* 275(11):2668–76, 2008), affilin (Ebersbach, *et al.*, *J. Mol. Biol.* 372 (1):172–85,
28 2007), affitin (Krehenbrink *et al.*, *J. Mol. Biol.* 383(5):1058–68, 2008), anticalin (Skerra,
29 A., *FEBS J.* 275(11):2677–83, 2008), avimer (Silverman *et al.*, *Nat. Biotechnol.* 23(12):
30 1556–61, 2005), DARPin (Stumpp *et al.*, *Drug Discov. Today* 13(15–16):695–701,
31 2008), Fynomeric (Grabulovski *et al.*, *J. Biol. Chem.* 282(5):3196–3204, 2007), Kunitz

1 domain peptide (Nixon *et al.*, *Curr. Opin. Drug Discov. Devel.* 9(2):261–8, 2006), and /
2 or a monobody (Koide *et al.*, *Methods Mol. Biol.* 352:95–109, 2007). Other mimetics
3 may also include, for example, derivative of an antibody (of, for example, the
4 monoclonal antibody 1E4, 1G10, and / or 1G1) such as, for example, an Fab, F(ab')₂,
5 Fab' single chain antibody, Fv, single domain antibody, mono-specific antibody, bi-
6 specific antibody, tri-specific antibody, multi-valent antibody, chimeric antibody, canine-
7 human chimeric antibody, canine-mouse chimeric antibody, antibody comprising a
8 canine Fc, humanized antibody, human antibody, caninized, CDR-grafted antibody, shark
9 antibody, nanobody (e.g., antibody consisting of a single monomeric variable domain),
10 camelid antibody (e.g., antibodies of members of the *Camelidae* family), microbody,
11 intrabody (e.g., intracellular antibody), and / or de-fucosylated antibody and / or
12 derivative thereof. Other binding agents are also provided herein as would be understood
13 by one of ordinary skill in the art.

14 In certain embodiments, preparations of binding agents are provided. Such
15 preparations may comprise, for example, unpurified antibody as found in hybridoma
16 supernatants or ascites preparation, partially purified preparations, or purified
17 preparations. Thus, provided herein are antibody preparations containing one or more
18 binding agents purified to about 50%, 60%, 75%, 90%, or 95% purity. Typically, such
19 preparations include a buffer such as phosphate- or tris-buffered saline (PBS or TBS,
20 respectively). The preparations may also be formulated to contain excipients, like
21 stabilizers, for example. The preparations may also, or alternatively, comprise
22 derivatives of such binding agents such as, for example, Fab, F(ab')₂ or single chain
23 antibodies (Fv for example), caninized antibodies, chimeric antibodies, canine antibodies,
24 and the like. Where the binding agents are antibodies, nucleotide sequences encoding the same
25 variable regions thereof may also be isolated from the hybridomas expressing the same
26 cloned into expression vectors to produce certain antibody preparations (e.g., caninized
27 antibodies). Methods for producing such preparations are well-known in the art.

28 The skilled artisan has many suitable techniques for using the binding agents
29 (e.g., antibodies) described herein to identify biological samples containing proteins that
30 bind thereto. For instance, antibodies may be utilized to isolate canine CD20 protein
31 using, for example, immunoprecipitation or other capture-type assay. This well-known

1 technique is performed by attaching the antibody to a solid support or chromatographic
2 material (e.g., a bead coated with Protein A, Protein G and / or Protein L). The bound
3 antibody is then introduced into a solution either containing or believed to contain the
4 CD20 protein (e.g., a canine B cell lysate). Canine CD20 protein may then bind to the
5 antibody and non-binding materials are washed away under conditions in which the
6 CD20 protein remains bound to the antibody. The bound protein may then be separated
7 from the antibody and analyzed as desired. Similar methods for isolating a protein using
8 an antibody are well-known in the art. The binding agents (e.g., antibodies) may also be
9 utilized to detect CD20 protein within a biological sample. For instance, the antibodies
10 may be used in assays such as, for example, flow cytometric analysis, ELISA,
11 immunoblotting (e.g., western blot), *in situ* detection, immunocytochemistry, and / or
12 immunohistochemistry. Methods of carrying out such assays are well-known in the art.

13 To assist the skilled artisan in using the antibodies described herein, the same may
14 be provided in kit format. A kit including such antibodies and optionally other
15 components necessary for using the antibodies to detect cells expressing canine CD20 is
16 provided. The antibodies of the kit may be provided in any suitable form, including
17 frozen, lyophilized, or in a pharmaceutically acceptable buffer such as TBS or PBS. The
18 kit may also include other reagents required for utilization of the antibodies *in vitro* or *in*
19 *vivo* such as buffers (e.g., TBS, PBS), blocking agents (solutions including nonfat dry
20 milk, normal sera, Tween-20 Detergent, BSA, or casein), and / or detection reagents (e.g.,
21 goat anti-mouse IgG biotin, streptavidin-HRP conjugates, allophycocyanin, B-
22 phycoerythrin, R-phycoerythrin, peroxidase, detectable labels (e.g., fluorosceins, like
23 DyLight, Cy3, Cy5, FITC, HiLyte Fluor 555, HiLyte Fluor 647; 5-carboxy-2,7-
24 dichlorofluorescein, 5-Carboxyfluorescein (5-FAM), 5-HAT (Hydroxy Tryptamine), 5-
25 Hydroxy Tryptamine (HAT), 6-JOE; 6-carboxyfluorescein (6-FAM), FITC, 6-carboxy-
26 1,4-dichloro-2',7'-dichlorofluorescein (TET), 6-carboxy-1,4-dichloro-2',4',5',7'-tetra-
27 chlorofluorescein (HEX), 6-carboxy-4',5'-dichloro-2',7'-dimethoxyfluorescein (JOE);
28 Alexa fluors, like 350, 405, 430, 488, 500, 514, 532, 546, 555, 568, 594, 610, 633, 635,
29 647, 660, 680, 700, 750; BODIPY fluorophores, like 492/515, 493/503, 500/510,
30 505/515, 530/550, 542/563, 558/568, 564/570, 576/589, 581/591, 630/650-X, 650/665-
31 X, 665/676, FL, FL ATP, FI-Ceramide, R6G SE, TMR, TMR-X conjugate, TMR-X, SE,

1 TR, TR ATP, TR-X SE; Rhodamines, like 110, 123, B, B 200, BB, BG, B extra, 5-
2 carboxytetramethylrhodamine (5-TAMRA), 5 GLD, 6-Carboxyrhodamine 6G,
3 Lissamine, Lissamine Rhodamine B, Phalloidin, Phalloidin, Red, Rhod-2, ROX (6-
4 carboxy-X-rhodamine), 5-ROX (carboxy-X-rhodamine), Sulphorhodamine B can C,
5 Sulphorhodamine G Extra, TAMRA (6-carboxytetramethylrhodamine),
6 Tetramethylrhodamine (TRITC), WT, Texas Red, Texas Red-X) and other labels and / or
7 staining kits (e.g., ABC Staining Kit, Pierce). The kits may also include other reagents
8 and / or instructions for using the antibodies in commonly utilized assays described above
9 such as, for example, flow cytometric analysis, ELISA, immunoblotting (e.g., western
10 blot), *in situ* detection, immunocytochemistry, immunohistochemistry. In one
11 embodiment, the detectable labels may be fixably attached to the binding agents. In one
12 example, the detectable labels are fixably attached to the binding agents by chemical
13 bonds. In one example, the chemical bonds are covalent chemical bonds. In one
14 example, the detectable labels are conjugated to the binding agents.

15 In one embodiment, the kit provides a monoclonal antibody in purified form. In
16 another embodiment, the monoclonal antibody may be provided in biotinylated form
17 either alone or along with an avidin-conjugated detection reagent (e.g., antibody). In
18 another embodiment, the kit includes fluorescently-labelled antibodies that may be used
19 to directly detect canine CD20. Buffers and the like required for using any of these
20 systems are well-known in the art and may be prepared by the end-user or provided as a
21 component of the kit. The kit may also include a solid support containing positive- and
22 negative-control protein and / or tissue samples. For example, kits for performing
23 spotting or western blot-type assays may include control cell or tissue lysates for use in
24 SDS-PAGE or nylon or other membranes containing pre-fixed control samples with
25 additional space for experimental samples. Kits for visualization of canine CD20 in cells
26 on slides may include pre-formatted slides containing control cell or tissue samples with
27 additional space for experimental samples.

28 The binding agents described herein and/ or derivatives thereof may also be
29 incorporated into compositions for use *in vitro* or *in vivo*. The antibodies or derivatives
30 thereof may also be fixably attached to functional / effector moieties such as cytotoxic
31 drugs or toxins, or active fragments thereof such as diphtheria A chain, exotoxin A chain,

1 ricin A chain, abrin A chain, curcin, crotin, phenomycin, enomycin, among others.
2 Functional moieties may also include radiochemicals. In one embodiment, the effector
3 moieties may be fixably attached to the binding agents. In one example, the detectable
4 labels are fixably attached to the binding agents by chemical bonds. In one example, the
5 chemical bonds are covalent chemical bonds. In one example, the effector moieties are
6 conjugated to the binding agents.

7 The binding agents may be used alone or in combination with another agent for
8 preventing and / or treating disease. One such disease is B cell lymphoma (e.g., diffuse
9 large cell B cell lymphoma, follicular lymphoma, mucosa-associated lymphatic tissue
10 lymphoma (MALT), small cell lymphocytic lymphoma, chronic lymphocytic leukemia,
11 mantel cell lymphoma, Burkitt's lymphoma, mediastinal large B cell lymphoma,
12 Waldenstrom macroglobulinemia, nodal marginal zone B cell lymphoma (NMZL),
13 splenic marginal zone lymphoma (SMZL), intravascular large B-cell lymphoma, primary
14 effusion lymphoma, lymphomatoid granulomatosis, and the like), particularly in canine
15 animals. The binding agents may also be combined with or used in conjunction with
16 (e.g., as part of a treatment regimen) other anti-cancer agents such as, for example,
17 cyclophosphamide (e.g., Cytoxin, Neosar), Adriamycin (e.g., doxorubicin /
18 hydroxydoxorubicin), vincristine (e.g., Oncovin), prednisone (e.g., Deltasone, Orasone),
19 L-asparaginase, chlorambucil, lomustine (CCNU), cytosine arabinoside, mitoxantrone,
20 and / or combinations thereof. A combination of such anti-cancer agents may refer to
21 simultaneous and / or sequential administration.

22 The binding agents may also be used to treat various autoimmune diseases.
23 Example diseases may include, but are not limited to, autoimmune hemolytic anemia,
24 immune-mediated thrombocytopenia, lupus, autoimmune blistering diseases, immune-
25 mediated arthritis and atopic dermatitis.

26 The antibodies described herein and / or derivatives thereof may be used in assays
27 to determine the presence of a disease state in a patient, to predict prognosis, or to
28 determine the effectiveness of a chemotherapeutic or other treatment regimen.
29 Expression profile assays, performed as described herein or as is otherwise known in the
30 art, may be used to determine the relative level of expression of CD20. The level of
31 expression may then be correlated with base (e.g., control) levels to determine whether a

1 particular disease is present within the patient, the patient's prognosis, or whether a
2 particular treatment regimen is effective. For example, if the patient is being treated with
3 a particular chemotherapeutic regimen, a decreased level of expression of an
4 immunogenic target in the patient's tissues (e.g., in peripheral blood, breast tissue biopsy)
5 may indicate the regimen is decreasing the cancer load in that host. Similarly, if the level
6 of expression is increasing, this may indicate the regimen is not having the desired effect
7 and another therapeutic modality may be selected.

8 It is also possible to use the antibodies described herein as reagents in drug
9 screening assays. The reagents may be used to ascertain the effect of a drug candidate on
10 the expression of the immunogenic target in a cell line, or a cell or tissue of a patient.
11 The expression profiling technique may be combined with high throughput screening
12 techniques to allow rapid identification of useful compounds and monitor the
13 effectiveness of treatment with a drug candidate (see, for example, Zlokarnik *et al.*,
14 *Science* 279:84-8, 1998). Drug candidates may be chemical compounds, nucleic acids,
15 proteins, antibodies, or derivatives therefrom, whether naturally occurring or
16 synthetically derived. Drug candidates thus identified may be utilized, among other uses,
17 as pharmaceutical compositions for administration to patients or for use in further
18 screening assays.

19 The antibodies described herein may be prepared as an injectable preparation,
20 such as in suspension in a non-toxic parenterally acceptable diluent or solvent. Suitable
21 vehicles and solvents that may be utilized include water, Ringer's solution, and isotonic
22 sodium chloride solution, TBS and PBS, among others. The formulations may contain
23 excipients, like stabilizers, for example. In certain applications, the antibodies are suitable
24 for use *in vitro*. In other applications, the antibodies are suitable for use *in vivo*. The
25 preparations suitable for use in either case are well-known in the art and will vary
26 depending on the particular application.

27

28 **Preparation of Binding Agents and Immunization**

29 Also provided herein are canine CD20 polypeptides and / or fragments and / or
30 derivatives thereof (collectively referred to herein as "canine CD20"), as well as methods

1 of preparing and using the same. An exemplary canine CD20 may comprise the amino
2 acid sequence shown below:

3

4 NITISHFFKMENLNLIKAPMPYVDIHNCDPANPSEKNSLSIQYCGSI
5 (SEQ ID NO.: 59).

6

7 Exemplary fragments of SEQ ID NO.: 59 may be SEQ ID NOS. 1 and / or 2. Thus, an
8 exemplary canine CD20 may comprise SEQ ID NO. 59, SEQ ID NO.: 1, and / or SEQ ID
9 NO.: 2.

10 Canine CD20 typically exhibits the ability to induce anti-CD20 antibodies in a
11 host. Host animals generally are mammals, including but not limited to a mouse, dog,
12 cat, goat, sheep, human being, and the like. In one example, the host may be a mouse.
13 Administration of the canine CD20 (for example, SEQ ID NOS. 1, 2 and / or 59) results
14 in production of anti-canine CD20 antibodies in the mouse. In one example, the host
15 may be a dog and administration of the canine CD20 may result in production of an
16 immune response in the dog that may be specific for cells expressing CD20. The
17 antibodies may be non-protective and / or non-neutralizing, and / or may be protective
18 and / or neutralizing antibodies, following administration to the host animal.

19 In certain embodiments, the antibodies may be used to detect and / or isolate
20 canine CD20 and / or to detect, isolate, and / or destroy cells expressing canine CD20. In
21 certain embodiments, the canine CD20 may share amino acid sequence identity (e.g., any
22 of about 90%, 95%, 98%, 99%, or 99.9%) with other CD20 polypeptides (e.g., canine or
23 otherwise). Any differences in the amino acid sequence between CD20 polypeptides are
24 typically but not necessarily phenotypically silent, but should be useful for generating
25 anti-CD20 immunity (e.g., inducing the production of anti-CD20 antibodies in a host).

26 Nucleic acids encoding CD20 are also provided, along with variants of such
27 sequences (e.g., degenerate variants thereof). In certain embodiments, a nucleic acid
28 molecule encoding canine CD20 may be inserted into one or more expression vectors, as
29 discussed below in greater detail. In such embodiments, canine CD20 may be encoded
30 by nucleotides corresponding to the amino acid sequence. The particular combinations
31 of nucleotides that encode the various amino acids are well known in the art, as described

1 in various references used by those skilled in the art (e.g., Lewin, B., *Genes V*, Oxford
 2 University Press, 1994). The nucleotide sequences encoding canine CD20 may be
 3 ascertained with reference to **Table 6**, for example. Nucleic acid variants may use any
 4 combination of nucleotides that encode the polypeptide of interest.

5 **Table 6**

Phe (F)	TTT	Ser (S)	TCT	Tyr (Y)	TAT	Cys (C)	TGT
	TTC		TCC		TAC		TGC
Leu (L)	TTA	Pro (P)	TCA	TERM	TAA	TERM	TGA
	TTG		TCG		TAG	Trp (W)	TGG
	CTT		CCT	His (H)	CAT	Arg (R)	CGT
	CTC		CCC		CAC		CGC
	CTA		CCA	Gln (Q)	CAA		CGA
	CTG		CCG		CAG		CGG
Ile (I)	ATT	Thr (T)	ACT	Asn (N)	AAT	Ser (S)	AGT
	ATC		ACC		AAC		AGC
	ATA		ACA	Lys (K)	AAA	Arg (R)	AGA
	ATG		ACG		AAG		AGG
Val (V)	GTT	Ala (A)	GCT	Asp (D)	GAT	Gly (G)	GGT
	GTC		GCC		GAC		GGC
	GTA		GCA	Glu (E)	GAA		GGA
	GTG		GCG		GAG		GGG

6 Modified CD20 may comprise at least one amino acid substitution, insertion, and
 7 / or deletion. Modified CD20 will typically remain substantially non-toxic and / or elicit
 8 neutralizing antibodies upon administration to a host. Such antibodies may bind to the
 9 same epitope as antibodies elicited following administration of another CD20 to a host.
 10 As described herein, canine CD20 may be useful in immunogenic compositions or
 11 vaccines for prevention and / or treatment of conditions for which targeting cells
 12 expressing CD20 would be beneficial (e.g., cancer such as B cell lymphoma). Suitable
 13 modifications may introduce conservative changes in the amino acid sequence of canine
 14 CD20. Conservative amino acid substitutions may involve a substitution of a native
 15 amino acid residue with a non-native residue such that there is little or no effect on the
 16 size, polarity, charge, hydrophobicity, or hydrophilicity of the amino acid residue at that
 17 position and, in particular, does not result in decreased immunogenicity. Suitable
 18 conservative amino acid substitutions are shown in **Table 7**.

20 **Table 7**

Original Residues	Exemplary Conservative Substitutions	Preferred Conservative Substitution

Ala	Val, Leu, Ile	Val
Arg	Lys, Gln, Asn	Lys
Asn	Gln	Gln
Asp	Glu	Glu
Cys	Ser, Ala	Ser
Gln	Asn	Asn
Glu	Asp	Asp
Gly	Pro, Ala	Ala
His	Asn, Gln, Lys, Arg	Arg
Ile	Leu, Val, Met, Ala, Phe, Norleucine	Leu
Leu	Norleucine, Ile, Val, Met, Ala, Phe	Ile
Lys	Arg, 1,4 Diamino-butyric Acid, Gln, Asn	Arg
Met	Leu, Phe, Ile	Leu
Phe	Leu, Val, Ile, Ala, Tyr	Leu
Pro	Ala	Gly
Ser	Thr, Ala, Cys	Thr
Thr	Ser	Ser
Trp	Tyr, Phe	Tyr
Tyr	Trp, Phe, Thr, Ser	Phe
Val	Ile, Met, Leu, Phe, Ala, Norleucine	Leu

1

2 The specific amino acid substitution selected may depend on the location of the site
 3 selected.

4 The anti-CD20 antibodies, may be combined with one or more pharmaceutically
 5 acceptable carriers prior to administration to a host. A pharmaceutically acceptable
 6 carrier is a material that is not biologically or otherwise undesirable, e.g., the material
 7 may be administered to a subject, without causing any undesirable biological effects or
 8 interacting in a deleterious manner with any of the other components of the
 9 pharmaceutical composition in which it is contained. The carrier would naturally be
 10 selected to minimize any degradation of the active ingredient and to minimize any
 11 adverse side effects in the subject, as would be well known to one of skill in the art.

12 Suitable pharmaceutical carriers and their formulations are described in, for
 13 example, *Remington's: The Science and Practice of Pharmacy*, 21st Edition, David B.
 14 Troy, ed., Lippincott Williams & Wilkins (2005). Typically, an appropriate amount of a
 15 pharmaceutically-acceptable salt is used in the formulation to render the formulation
 16 isotonic. Examples of the pharmaceutically-acceptable carriers include, but are not
 17 limited to, sterile water, saline, buffered solutions like Ringer's solution, and dextrose

1 solution. The pH of the solution is generally from about 5 to about 8 or from about 7 to
2 about 7.5. Other carriers include sustained-release preparations such as semipermeable
3 matrices of solid hydrophobic polymers containing polypeptides or fragments thereof.
4 Matrices may be in the form of shaped articles, e.g., films, liposomes or microparticles.
5 It will be apparent to those persons skilled in the art that certain carriers may be more
6 preferable depending upon, for instance, the route of administration and concentration of
7 composition being administered. Carriers are those suitable for administration of
8 polypeptides and / or fragments thereof to humans or other subjects.

9 Pharmaceutical compositions may also include carriers, thickeners, diluents,
10 buffers, preservatives, surface active agents, adjuvants, immunostimulants, in addition to
11 the immunogenic polypeptide, or the anti-CD20 antibodies. Pharmaceutical
12 compositions may also include one or more active ingredients such as antimicrobial
13 agents, antiinflammatory agents and anesthetics

14 The compositions described herein may be administered to animals in vivo to
15 generate an immune response against an immunogen (e.g., SEQ ID NOS. 1, 2 and / or
16 59), to detect cells expressing canine CD20, and / or treat a disease condition in which
17 cells expressing CD20 may need to be eliminated (e.g., B cell lymphoma). In certain
18 embodiments, this disclosure also provides binding agents such as antibodies (e.g.,
19 including monoclonal antibodies) useful in the isolation and / or identification of cells
20 expressing canine CD20 or a cell surface protein that reacts with such binding agents
21 (e.g., B cells, B lymphoma cells, canine CD20) and / or treatment and prevention of
22 cancer in a mammal (e.g., a canine). Thus, in certain embodiments, the binding agent
23 may be an antibody reactive against canine CD20 expressed on the cell surface. In some
24 embodiments, the one or more binding agents (e.g., an antibody such as a monoclonal
25 antibody) that binds to or reacts with canine CD20 at a region thereof which comprises
26 SEQ ID NO.: 1, SEQ ID NO.: 2, and / or SEQ ID NO.: 59 (and / or fragments and / or
27 derivatives thereof).

28

29 **Uses of Binding Agents**

30 In some embodiments, methods for detecting canine cells using binding agents are
31 provided. In certain embodiments, cells expressing CD20 on their cell surface (e.g., B

1 cell lymphoma) in an animal (e.g., a canine), can be detected by contacting a test
2 biological sample with a binding agent or derivative thereof and detecting the binding
3 agent bound to the biological sample or components thereof. In certain embodiments, the
4 method may comprise comparing the amount of binding to the test biological sample or
5 components thereof to the amount of binding to a control biological sample or
6 components thereof, wherein increased binding to the test biological sample or
7 components thereof relative to the control biological sample or components thereof
8 indicates the presence of a lymphoma cell in the test biological sample. In some
9 embodiments, the biological sample may be canine blood or needle aspirates. Such
10 methods are also provided in an *in vivo* and / or *in vitro* format.

11 In some embodiments, methods for decreasing the viability and / or number of
12 cells expressing canine CD20 in a host using such binding agents are also provided.
13 Methods for treating one or more disease conditions (e.g., lymphoma) in a mammalian
14 host comprising administering to the mammal at least one or more effective doses of one
15 or more binding agents (and / or derivative(s) thereof) described herein are also provided.
16 In some embodiments, the binding agent is a monoclonal antibody or fragment or
17 derivative thereof comprising one or more of the amino acid sequences shown in **Tables**
18 **1, 4, and / or 5**. The binding agent may be administered in a dosage amount of about 1 to
19 about 50 mg / kg of body weight of the mammal, about 1 to about 30 mg / kg, or about 1
20 to about 15 mg / kg (e.g., about any of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
21 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, or 40 mg / kg). In certain
22 embodiments, the binding agent may be administered to the mammal (e.g., intradermally,
23 intravenously, orally, rectally) at about 1, 5 or 10 mg / kg one or more times. When
24 multiple doses are administered, the doses may comprise about the same or different
25 amounts of binding agent in each dose. The doses may also be separated in time from
26 one another by the same or different intervals. For instance, the doses may be separated
27 by about any of 6, 12, 24, 36, 48, 60, 72, 84, or 96 hours, one week, two weeks, three
28 weeks, one month, two months, three months, four months, five months, six months,
29 seven months, eight months, nine months, 10 months, 11 months, 12 months, 1.5 years, 2
30 years, 3 years, 4 years, 5 years, or any time period before, after, and / or between any of
31 these time periods. In some embodiments, the binding agents may be administered in

1 conjunction with other agents (e.g., chemotherapeutic agents), as described above. Such
2 other agents may be administered about simultaneously with the binding agents, or at a
3 different time and / or frequency. Other embodiments of such methods may also be
4 appropriate as could be readily determined by one of ordinary skill in the art.

5 Generally, a dose of the monoclonal antibody that has the effect of decreasing the
6 number, proliferation, detrimental effects, and so on, of the cancer cells in a dog, is called
7 an effective dose.

8 Kits comprising any of the immunogens and / or binding agents described herein,
9 optionally also including instructions for using such immunogens and / or binding agents,
10 are also provided, and may facilitate the methods. For example, a kit may contain a
11 composition comprising a binding agent (e.g., mouse monoclonal antibody or chimeric
12 antibody preparation). The composition may further comprise a pharmaceutically
13 acceptable carrier (e.g., phosphate-buffered saline) and may be in solution, frozen,
14 lyophilized, or other suitable form. The kit may also include one or more control binding
15 agents (e.g., a negative control that does not bind the target of the assay for which the kit
16 is designed, or a positive control which may be supplied along with a sample to which the
17 positive control is known to bind) and / or instructions for use. As the kits could be used
18 for *in vitro* or *in vivo* assays and / or treatments (e.g., a kit for administration to a
19 mammal), the instructions may vary depending on the particular use for which the kit is
20 designed. Other embodiments of such kits that could be provided would be readily
21 apparent to one of ordinary skill in the art.

22

23 It must be noted that, as used in the specification and the appended claims, the
24 singular forms “a”, “an”, and “the” include plural referents unless the context clearly
25 dictates otherwise. Thus, for example, reference to a fragment may include mixtures of
26 fragments and reference to a pharmaceutical carrier or adjuvant may include mixtures of
27 two or more such carriers or adjuvants.

28 The terms “about”, “approximately”, and the like, when preceding a list of
29 numerical values or range, refer to each individual value in the list or range
30 independently as if each individual value in the list or range was immediately preceded

1 by that term. The terms mean that the values to which the same refer are exactly, close
2 to, or similar thereto.

3 As used herein, a subject or a host is meant to be an individual. The subject or
4 host may include domesticated animals, such as cats and dogs, livestock (e.g., cattle,
5 horses, pigs, sheep, and goats), laboratory animals (e.g., mice, rabbits, rats, guinea pigs)
6 birds, and / or human beings, for example. In some embodiments, the subject or host
7 may be a mammal such as a canine animal.

8 Optional or optionally means that the subsequently described event or
9 circumstance can or cannot occur, and that the description includes instances where the
10 event or circumstance occurs and instances where it does not. For example, the phrase
11 optionally the composition can comprise a combination means that the composition may
12 comprise a combination of different molecules or may not include a combination such
13 that the description includes both the combination and the absence of the combination
14 (e.g., individual members of the combination).

15 Ranges may be expressed herein as from about one particular value, and/or to
16 about another particular value. When such a range is expressed, another aspect includes
17 from the one particular value and/or to the other particular value. Similarly, when values
18 are expressed as approximations, by use of the antecedent about or approximately, it will
19 be understood that the particular value forms another aspect. It will be further understood
20 that the endpoints of each of the ranges are significant both in relation to the other
21 endpoint, and independently of the other endpoint. Ranges (e.g., 90-100%) are meant to
22 include the range *per se* as well as each independent value within the range as if each
23 value was individually listed.

24 When the terms prevent, preventing, and prevention are used herein in connection
25 with a given treatment for a given condition (e.g., preventing infection by *Streptococcus*
26 sp.), it is meant to convey that the treated patient either does not develop a clinically
27 observable level of the condition at all, or develops it more slowly and/or to a lesser
28 degree than he/she would have absent the treatment. These terms are not limited solely to
29 a situation in which the patient experiences no aspect of the condition whatsoever. For
30 example, a treatment will be said to have prevented the condition if it is given during
31 exposure of a patient to a stimulus that would have been expected to produce a given

1 manifestation of the condition, and results in the patient's experiencing fewer and/or
2 milder symptoms of the condition than otherwise expected.

3 All references cited within this disclosure are hereby incorporated by reference in
4 their entirety. Certain embodiments are further described in the following examples.
5 These embodiments are provided as examples only and are not intended to limit the
6 scope of the claims in any way. All references cited herein are hereby incorporated by
7 reference. A better understanding of the present invention and of its many advantages
8 will be had from the following examples, given by way of illustration.

9
10

EXAMPLES**Example 1*****mAbs reactive against canine CD20*****4 A. *Generation and Selection of Hybridomas***

5 To generate mouse monoclonal antibodies against canine CD20, the 2nd
6 extracellular domain (ECD) of canine CD20 was cloned from canine PBMC cDNA,
7 expressed as a mouse F_c fusion protein (“ECD2-mFc”), and used as the immunogen.
8 Canine ECD2-mFc has the amino acid sequences of SEQ ID NOS. 59 and 60, as shown
9 below:

11 NITISHFFKMENLNLIKAPMPYVDIHNCDPANPSEKNSLSIQYCGSI (SEQ ID

12 NO.: 59); and,

14 RSLEVLFQGPGSPPLKECPPCAAPDLLGGPSVIFPPKIKDVLMISSPMVTCVVVDVS
15 EDDPDVQISWFVNNVEVHTAQTHREDYNSTLRVVSALPIQHQDWMSGKEFKCKVNNR
16 ALPSPIEKTISKPRGPVRAPQVYVLPPPAEEMTKKEFSLTCMITGFLPAEIAVDWTSNG
17 RTEQNYKNTATVLDSDGSYFMYSKLRVQKSTWERGSLFACSVVHEGLHNHLTTKTISRS
18 LGK (SEQ ID NO.: 60).

20 The immunogen contained a linear arrangement of SEQ ID NO.: 59 and SEQ ID NO. 60
21 and is set forth as SEQ ID NO.: 61:

23 NITISHFFKMENLNLIKAPMPYVDIHNCDPANPSEKNSLSIQYCGSI
24 RSLEVLFQGPGSPPLKECPPCAAPDLLGGPSVIFPPKIKDVLMISSPMVTCVVVDVS
25 EDDPDVQISWFVNNVEVHTAQTHREDYNSTLRVVSALPIQHQDWMSGKEFKCKVNNR
26 ALPSPIEKTISKPRGPVRAPQVYVLPPPAEEMTKKEFSLTCMITGFLPAEIAVDWTSNG
27 RTEQNYKNTATVLDSDGSYFMYSKLRVQKSTWERGSLFACSVVHEGLHNHLTTKTISRS
28 LGK (SEQ ID NO.: 61).

30 Hybridomas were generated following immunization of mice with the SEQ ID

31 NO.: 59 / SEQ ID NO.: 60 fusion protein (SEQ ID NO.: 61). A primary ELISA

1 screen was carried out using ECD2-hFc fusion protein as the antigen. Positive
 2 hybridomas were then subjected to a secondary screen using a mixture of fresh (CD20⁺)
 3 and cultured (CD20⁻) canine B-cell lymphoma cells. Clones that displayed bifurcated
 4 FACS profiles were selected for further screening. Three mAbs expressed from
 5 hybridomas generated in this approach (1E4, 1G1, and 1G10) were selected for further
 6 characterization.

7 The relative affinities of the mouse monoclonal antibodies 1E4, 1G1, and 1G10
 8 for binding to canine CD20 was determined by fluorescent activated cell sorting (FACS)
 9 using canine B cell lymphoma cells, which express canine CD20. The mAbs 1E4 and
 10 1G10 were found to exhibit the highest relative affinity to CD20: 1G10 ($K_d=0.29$ nm)
 11 >1E4 ($K_d=0.97$ nm) >>1G1 ($K_d=19.78$ nm)) (**Fig. 1**).

12 In order to identify the epitope on canine CD20 that was bound by the mouse
 13 monoclonal antibodies 1E4, 1G1, and 1G10 (none of which bind human CD20), several
 14 expression constructs encoding hybrid versions of the original immunogen (cCD20
 15 ECD2-mFc) were generated (**Fig. 2A**). The amino acid sequences of the hybrid CD20
 16 polypeptides are also shown below:

17 **Table 7**
 18

Hybrid	Amino Acid Sequence
Canine CD20 ECD2	NITISHFFKMENLNLIKAPMPYVDIHNCDPANPSEKNSL SIQYCGSI (SEQ ID NO.: 62)
Hum-Can CD20 ECD2 V1	NITISHFFKMENLNFIARAHTPYINIYNCEPANPSEKNSP STQYCYSI (SEQ ID NO.: 63)
Hum-Can CD20 ECD2 V2	NITISHFFKMENLNLIKAPMPYVNIIYNCEPANPSEKNSP STQYCYSI (SEQ ID NO.: 64)
Hum-Can CD20 ECD2 V3	NITISHFFKMENLNLIKAPMPYVDIHNCDPANPSEKNSP STQYCYSI (SEQ ID NO.: 65)
Hum-Can CD20 ECD2 V4	NITISHFFKMENLNLIKAPMPYVNIIYNCEPANPSEKNSL SIQYCGSI (SEQ ID NO.: 66)
Human CD20 ECD2	NIKISHFLKMESLNFIARAHTPYINIYNCEPANPSEKNSP STQYCYSI (SEQ ID NO.: 67)

19
 20
 21 As illustrated in **Fig. 2A**, the hybrid proteins expressed from these vectors
 22 contained human CD20 sequences interspersed into canine CD20 in different portions of
 23 extracellular domain 2. This strategy enabled identification of the specific sequences in

1 canine CD20 that each mAb binds. Binding was tested using a standard ELISA protocol.
2 Briefly, recombinant canine CD20 ECD2-mFc fusion protein and human/canine hybrid
3 variants thereof were diluted in PBS and bound to a 96-well microtiter plate at 200
4 ng/well by overnight incubation at 4°C. The plate was rinsed three times with PBST
5 buffer, blocked with a solution of 3% BSA in PBS for one hour at 37°C, then rinsed once
6 with PBST. Mouse monoclonal antibodies 1E4, 1G1, and 1G10 were diluted to a
7 concentration of 5 µg/ml in PBS and 50 µl of this dilution was applied to the plate for 1
8 hour at room temperature. The plate was then rinsed three times with PBST, and Jackson
9 Immunoresearch goat anti-mouse-IgG light chain-specific HRP conjugate (#115-035-
10 174) diluted to 1:5000 in PBS (50 µL) was added to each well, and the plate was
11 incubated for 45 min at room temperature. The plate was washed three times with PBST,
12 then 100 µL of SureBlueTMB substrate (KPL #52-00-03) was added to each well and the
13 plate was incubated for about 10 min at room temperature. The plate was read at 650 nm
14 in a spectrophotometer.

15 The data presented in **Fig. 2B** demonstrate that mAbs 1E4 and 1G10 bind better
16 to hybrid versions of cCD20 ECD2-mFc that contained the canine CD20 epitope
17 DIHNCD (SEQ ID NO.: 2) in the ELISA assay, indicating that these mAbs bind a region
18 of canine CD20 that contains the amino acid sequence DIHNCD (SEQ ID NO.: 2). The
19 mAb 1G1 bound better to CD20 proteins that contained the canine CD20 epitope
20 LIKAPMPYV (SEQ ID NO.: 1) in the ELISA assay, indicating that 1G1 binds to a
21 region of canine CD20 that contains the amino acid sequence LIKAPMPYV (SEQ ID
22 NO.: 1).

23 Next, FACS was performed on canine PBMCs using purified 1E4-mAb (**Fig. 3**).
24 Canine PBMC were isolated by red blood cell lysis, labeled with propidium iodide, and
25 stained with 1E4 antibody (1 µg antibody/ml) and anti-mouse Fab-APC (1/200) from
26 Jackson Immunoresearch # 115-136-146 as the secondary antibody (secondary antibody
27 alone was used as a negative control). The primary FACS gate was on lymphocytes (left
28 panels). Only live lymphocytes (those that did not stain with propidium iodide) were
29 included in the analysis (middle panels). Cells positive for antibody binding were
30 determined by setting a gate that included fewer than 1% positives in the negative control
31 sample (upper right panel). Approximately 10 percent of lymphocytes were stained with

1 1E4 in this experiment, which is consistent with 1E4 specifically binding to CD20 on the
2 surface of canine B cells.

3 **B. Sequencing of variable regions of 1E4, 1G1, and 1G10**

4 The variable region DNAs from the murine monoclonal antibodies were amplified
5 by RT-PCR from RNA obtained from the hybridoma cell lines using standard methods.
6 Forward primers used to amplify heavy and light chain variable region sequences were
7 those reported in Chardès T. *et al.*, *FEBS Letters*. Jun 11;452(3):386-94, 1999. Reverse
8 primers used to amplify heavy and light chain variable region sequences are shown
9 below:

10 5'-GCGTCTAGAACCTCCACACACAGGRRCCAGTGGATAGAC- 3' (heavy
11 chain constant region primer (SEQ ID NO.: 68)); and,

12

13 5'-GCGTCTAGAACTGGATGGTGGAAAGATGG-3' (light chain constant
14 region primer (SEQ ID NO.: 69)).

15

16 The heavy and light chain variable region amplification products were then cloned into a
17 pcDNA3.1 vector and sequenced. The amino acid and nucleotide sequences of the 1E4,
18 1G1, and 1G10 variable regions are shown in **Table 1**.

19

20 **Example 2**

21 **A. Expression of canine chimeric antibodies 1E4-cIgGB and Rituxan-cIgGB in
22 CHO cells**

23 Genes encoding chimeric light and heavy antibody chains were constructed. A
24 codon-optimized murine nucleotide sequence encoding the light chain variable region of
25 the 1E4 antibody (SEQ ID NO.: 5) (**Table 1**) was fused to a codon-optimized nucleotide
26 sequence encoding the light chain constant region from canine (SEQ ID NO.: 56) (**Table**
27 **5**), to produce a fusion gene encoding the chimeric antibody light chain.

28 In addition, a codon-optimized murine nucleotide sequence encoding the heavy
29 chain variable region of the 1E4 antibody (SEQ ID NO.: 8) (**Table 1**) was fused to a
30 codon-optimized nucleotide sequence encoding the heavy chain constant region of canine
31 IgGB (SEQ ID NO.: 58) (**Table 5**), to produce a fusion gene encoding the canine
32 chimeric antibody heavy chain.

1 The chimeric light and heavy chains sequences were constructed into a single
2 plasmid expression vector. The vector was designed to contain separate mammalian
3 transcription units (enhancer/promoter at 5' end, poly A sequence at 3' end) to express
4 the chimeric light and heavy chains. The 5' coding region of each transcription unit also
5 encoded a leader/signal sequence to provide for processing and assembly of the encoded
6 proteins, and secretion of the anti-canine CD20 antibody, called 1E4-cIgGB. The
7 plasmid expression vector contained a separate transcription unit encoding a protein that
8 is selectable in mammalian cells. The plasmid expression vectors are described in WO
9 2009/080720 (US 2011/0045536A1) and WO 2010/022961. A separate, similar vector
10 encoding a canine chimeric version of an anti-human CD20 antibody, called Rituxan-
11 cIgGB, was used as a control.

12 Both the plasmids encoding 1E4-cIgGB and control Rituxan-cIgGB were
13 transfected into CHO cells and stable pooled transfectants were selected for each as
14 described in WO 2010/022961. Antibodies were produced from these stable antibody-
15 expressing cell pools using standard fed-batch protocols. Antibodies secreted from these
16 cells were purified over Protein G Sepharose columns using a GE Healthcare AKTA-
17 FPLC liquid chromatography system. The isolated antibody preparations were analyzed
18 by SDS-PAGE and size-exclusion chromatography (see **Fig. 4** for analysis of CHO-
19 produced 1E4-cIgGB).

20

21 **B. *Modification of 1E4 light chain***

22 Modifications of the antibodies described were also made using the above
23 procedures. Asparagine 33 (N33) or glycine 34 (G34) in the asparagine-glycine
24 dipeptide sequence (Asp-Gly or N-G) of the light chain variable region (V_L) of 1E4 (SEQ
25 ID NO.: 3) were modified to remove a potential deamidation site. In various
26 embodiments, N33 was substituted by alanine (A), glutamic acid (E), phenylalanine (F),
27 histidine (H), isoleucine (I), lysine (K), leucine (L), proline (P), glutamine (Q), arginine
28 (R), threonine (T), valine (V), or tyrosine (Y). In some embodiments, G34 was
29 substituted by alanine (A), glutamic acid (E), phenylalanine (F), histidine (H), isoleucine
30 (I), lysine (K), leucine (L), proline (P), glutamine (Q), arginine (R), valine (V), or
31 tyrosine (Y). Whole antibodies (heavy plus light chains) containing one of the above

1 substitutions were tested by ELISA assay for their ability to bind canine CD20 ECD2
2 peptide (SEQ ID NO.: 62).

3 None of the above substitutions eliminated antibody binding to ECD2 peptide
4 and, in many cases, the effect of the substitution on antigen binding was minor. **Fig. 5**
5 illustrates the results for some of these antibodies: antibodies that contained one of
6 substitution of N33 to K (lysine), G34 to K (lysine), G34 to Q (glutamine) or G34 to A
7 (alanine). As shown in **Fig. 5**, none of these substitutions significantly affected binding
8 to canine CD20.

9

10

11 **Example 3**

12 ***In vivo activity of the chimeric anti-canine CD20 antibody 1E4-cIgGB***

13 The efficacy of the chimeric antibody 1E4-cIgGB in depleting B cells was tested *in*
14 *vivo* in a dose-response study. It has been shown that the anti-human CD20 antibody
15 Rituximab (Rituxan®) does not cross-react with/bind to canine CD20 (Jubala *et al.*, *Vet*
16 *Pathol.*, Jul;42(4):468-76, 2005; Impellizeri *et al.*, *Vet J.*, May;171(3):556-8, 2006). As
17 such, a chimeric form of Rituxan containing a canine IgGB Fc (Rituxan-cIgGB) was
18 cloned and expressed as described above in **Example 2** and used as a negative isotype
19 control in this study. Pharmacodynamic effects were measured over 59 days of treatment
20 with 1E4-cIgGB at multiple dose levels when administered by a single intravenous (IV)
21 injection to naïve healthy male Beagle dogs. Pre-study body weights and pre-study
22 clinical pathology data (clinical chemistry and hematology) were utilized to randomize
23 dogs into their respective treatment groups. The experimental design is shown below:

24

25

Table 6

Group (n=5)	Antibody	Dose (mg/kg of animal body weight)
1	Rituxan-cIgGB	10
2	1E4-cIgGB	0.1
3	1E4-cIgGB	1
4	1E4-cIgGB	10
5	1E4-cIgGB	30

26

1 On Day 1 of the study, a single dose (0.1 1, 10, or 30 mg/kg) of 1E4-cIgGB or the
2 isotype control antibody Rituxan-cIgGB (10 mg/kg) was administered to the animals via
3 intravenous bolus injection. Blood was collected from animals at Day 0 (pre-dose), Day
4 3, Day 7, Day 10, Day 14, Day 28, Day 42, and Day 59. From these blood samples,
5 clinical pathology parameters were monitored and the percent of CD21-positive
6 lymphocytes (B cells) in each dog were analyzed in triplicate by FACS on PBMC
7 isolated from whole blood using a R-phycoerythrin (RPE)-conjugated mouse anti-canine
8 CD21 antibody (AbDserotec, cat # MCA1781PE). The percentage of B-cells remaining
9 at each time-point was calculated for each dog by dividing the percentage of lymphocytes
10 that were CD21 positive at that time-point by the percentage that were CD21-positive at
11 Day 0 (pre-dose). The averages of the percentages of B-cells remaining for each
12 treatment group were then calculated and graphed (**Fig. 6**).

13 All antibody doses were well-tolerated in the dogs. Marked, dose-dependent
14 decreases in the percentages of CD21-positive cells (B cells) were observed and sustained
15 to Day 59 in beagles treated with 1, 10, or 30 mg/kg of 1E4-cIgGB. Greater than 70%
16 depletion of B-cells was observed at Day 7 in dogs treated with either 10 or 30 mg/kg
17 1E4-cIgGB. CD21-positive cells remained depleted out to Day 59, with 35% and >50%
18 suppression in animals treated with 10 or 30 mg/kg 1E4-cIgGB, respectively. Dogs that
19 were given a single dose of either the isotype control antibody Rituxan-cIgGB (10
20 mg/kg) or of the lowest dose of 1E4-cIgGB (0.1 mg/kg) did not show significant changes
21 in percentages of CD21-positive cells (B cells) during the study.

22

Example 4

Treatment of dogs having B cell lymphoma with the chimeric anti-canine CD20 antibody 1E4-cIgGB

26 The 1E4 chimeric canine IgGB antibody described above is administered to
27 Beagle male dogs having B cell lymphoma at an appropriate dose (e.g., 10 mg / kg) via
28 intravenous bolus injection. Blood is collected from animals at various days including
29 Day 0 (pre-dose) and, for example, Day 1, Day 2, Day 3, Day 4, Day 7, Day 10, Day 14,
30 Day 28, Day 42, and Day 59. From these blood samples, clinical pathology parameters
31 are monitored and the percent of CD21-positive lymphocytes (B cells) in each dog are

1 analyzed in triplicate by FACS on PBMC isolated from whole blood using a R-
2 phycoerythrin (RPE)-conjugated mouse anti- canine CD21 antibody (AbDserotec, cat #
3 MCA1781PE). The percentage of B-cells remaining at each time-point is calculated for
4 each dog by dividing the percentage of CD21 positive lymphocytes at that time-point by
5 the percentage that were CD21-positive at Day 0 (pre-dose). The averages of the
6 percentages of B-cells remaining for each treatment group may then be calculated and
7 graphed to confirm that the treatment is effective.

8

9 While this disclosure may have been described in terms of the preferred
10 embodiments, it is understood that variations and modifications will occur to those
11 skilled in the art. Therefore, it is intended that the appended claims cover all such
12 equivalent variations that come within the scope of the invention as claimed.

1 **CLAIMS**

2 What is claimed is:

3 1. A binding agent that binds canine CD20, the CD20 comprising at least one amino
4 acid sequence LIKAPMPYV (SEQ ID NO.: 1) or DIHNCD (SEQ ID NO.: 2), or
5 NITISHFFKMENLNLIKAPMPYVDIHNCNPSEKNSLSIQYCGSI (SEQ
6 ID NO.: 59).

7

8 2. The binding agent of claim 1 that is an isolated monoclonal antibody.

9

10 3. A binding agent that competes with the monoclonal antibody of claim 2 for
11 binding to a target, the target selected from the group consisting of:

12 a) an epitope comprising the amino acid sequence LIKAPMPYV (SEQ ID NO.:
13 1);

14 b) an epitope comprising the amino acid sequence DIHNCD (SEQ ID NO.: 2);

15 c) a polypeptide comprising the amino acid sequence

16 NITISHFFKMENLNLIKAPMPYVDIHNCNPSEKNSLSIQYCGSI
17 (SEQ ID NO.: 59); and

18 d) canine CD20 comprising at least one amino acid sequence selected from the
19 group consisting of LIKAPMPYV (SEQ ID NO.: 1), DIHNCD (SEQ ID NO.:
20 2), and

21 NITISHFFKMENLNLIKAPMPYVDIHNCNPSEKNSLSIQYCGSI
22 (SEQ ID NO.: 59).

23

24 4. A binding agent that binds to an epitope comprising the amino acid sequence
25 LIKAPMPYV (SEQ ID NO.: 1), DIHNCD (SEQ ID NO.: 2), or
26 NITISHFFKMENLNLIKAPMPYVDIHNCNPSEKNSLSIQYCGSI (SEQ
27 ID NO.: 59) with substantially the same K_d as the monoclonal antibody of claim
28 2.

29

30 5. The binding agent of claim 2 wherein the monoclonal antibody comprises at least
31 one of the amino acid sequence selected from the group consisting of:

1 DVVMTQNPLSLPVSLGDQASISCRSSQSLIYNNGNTYLHWYRQKPGQSPK
2 LLIYKVSNRSGVPDRFSGSGSGTDFTLKISRVEAEDLGVYFCSQSTHVPFT
3 FGSGTKLEIK (SEQ ID NO.: 3);
4 DIVMTQAAPSVPVTPGESVSICRSNKSLLHRNGNTLYWFLQRPGQSPQ
5 LLIYRMSNLASGVPDRFSGSGSGTAFTLRISRVEAEDVGVYYCMQHLEFP
6 FTFGGGTKLEIK (SEQ ID NO.: 9);
7 DIVMTQAAPSVPVTPGESVSICRSXKLLHRXXNTLYWFLQRPGQSPQ
8 LLIYRMSNLASGVPDRFSGSGSGTAFTLRISRVEAEDVGVYYCMQHLEFP
9 FTFGGGTKLEIK where X is any amino acid (SEQ ID NO.:17);
10 DIVMTQSQKFMRSVGDRVSVTCKASQNVGPNAWYQQRPGQSPKPLIY
11 SASYRYSGVPDRFTGSGSGTDFLTISNVQSEDLAEYFCQQYNNYPYTFG
12 GGTKEIK (SEQ ID NO.: 13);
13 EVQLVESGGGLVKPGGSLKLSCAASGFTFSDYGMLWVRQAPEKGLEWIA
14 YISSGSSTIYYADRVKGRFTISRDNAKNTLFLQMTSLRSEDTAMYYCSTGT
15 FAYWGQQGTPVTVSS (SEQ ID NO.: 6);
16 EVQLQQSGPELVKPGASVKISCKASGYTFTDYYMNWVKQSHGKSLEWIG
17 DINPNNGDTSYNQFKKGKAPLTVDKSSSTAYMEVRSLTSEDSAVIDFCAR
18 GGVLRYPYYYVMDYWGQQGTSVTVSS (SEQ ID NO.: 11);
19 EVQLQQSGPELVKPGASVKISCKASGYTFTDYYMNWVKQSHGKSLEWIG
20 DINPNXXDTSYNQFKKGKAPLTVDKSSSTAYMEVRSLTSEDSAVIDFCAR
21 GGVLRYPYYYVMDYWGQQGTSVTVSS where X is any amino acid (SEQ ID
22 NO.: 18);
23 EVQLQQSGAELVRPGASVKLSCTASGFNIKDDYMHVKQRPEQGLEWIG
24 WIDPENGHTKYASKFQGKATITADTSSNTAYLQLSSLTSEDTAVYYCTSL
25 RHYYGSSYVSPHYYWGQQGTTLVSS (SEQ ID NO.: 15); and,
26 EVQLQQSGAELVRPGASVKLSCTASGFNIKDDYMHVKQRPEQGLEWIG
27 WIXXEXXHTKYASKFQGKATITADTSSNTAYLQLSSLTSEDTAVYYCTSL
28 RHYYGSSYVSPHYYWGQQGTTLVSS where X is any amino acid (SEQ ID
29 NO.: 19).
30

1 6. The binding agent of claim 1 comprising at least one amino acid sequence
2 selected from the group consisting of DYGML (SEQ ID NO.: 20), GFTFSDY
3 (SEQ ID NO.: 21), YISSGSSTIYYADRVKG (SEQ ID NO.: 22), SSGSST (SEQ
4 ID NO.: 23), GTFAY (SEQ ID NO.: 24), RSSQSLIYNNNGNTYLN (SEQ ID
5 NO.: 25), SQSLIYNNNGNTY (SEQ ID NO.: 26), RSSQSLIYNGNTYLN (SEQ
6 ID NO.: 70), SQSLIYNGNTY (SEQ ID NO.: 71), RSSQSLIYNNKNTYLN
7 (SEQ ID NO.: 72), SQSLIYNNKNTY (SEQ ID NO.: 73),
8 RSSQSLIYNNQNTYLN (SEQ ID NO.: 74), SQSLIYNNQNTY (SEQ ID NO.:
9 75), RSSQSLIYNNANTYLN (SEQ ID NO.: 76), SQSLIYNNANTY (SEQ ID
10 NO.: 77), KVSNRFS (SEQ ID NO.: 27), KVS (SEQ ID NO.: 28), SQSTHVPFT
11 (SEQ ID NO.: 29), STHVPF (SEQ ID NO.: 30), DDYMH (SEQ ID NO.: 31),
12 GFNIKDD (SEQ ID NO.: 32), WIDPENGHTKYASKFQG (SEQ ID NO.: 33),
13 DPENGH (SEQ ID NO.: 34), LRHYYGSSYVSPHYY (SEQ ID NO.: 35),
14 LRHYYGSSYVSPHYY (SEQ ID NO.: 36), KASQNVGPNA (SEQ ID NO.:
15 37), SQNVGPNA (SEQ ID NO.: 38), SASYRYS (SEQ ID NO.: 39), SAS (SEQ ID
16 NO.: 40), QQYNNYPYT (SEQ ID NO.: 41), YNNYPY (SEQ ID NO.: 42),
17 DYYMN (SEQ ID NO.: 43), GYTFTDY (SEQ ID NO.: 44),
18 DINPNNGDTSYNQKFKG (SEQ ID NO.: 45), NPNNGD (SEQ ID NO.: 46),
19 GGVLRYPYYYVMDY (SEQ ID NO.: 47), GGVLRYPYYYVMDY (SEQ ID
20 NO.: 48) RSNKSLHRNGNTYLY (SEQ ID NO.: 49), NKSLLHRNGNTY
21 (SEQ ID NO.: 50), RMSNLAS (SEQ ID NO.: 51), RMS (SEQ ID NO.: 52),
22 MQHLEFPFT (SEQ ID NO.: 53), and HLEFPF (SEQ ID NO.: 54).
23
24 7. The binding agent of any one of claims 1-6 that is an antibody derived from any
25 human IgG, human IgG1, human IgG2, human IgG3, human IgG4, human IgM,
26 human IgA, human IgA1, human IgA2, human IgD, human IgE, canine antibody,
27 canine IgGA, canine IgGB, canine IgGC, canine IgGD, canine IgA, canine IgD,
28 canine IgE, canine IgM, chicken antibody, chicken IgA, chicken IgD, chicken
29 IgE, chicken IgG, chicken IgM, chicken IgY, goat antibody, goat IgG, mouse
30 antibody, mouse IgG, mouse IgA, mouse IgD, mouse IgE, mouse IgM, pig
31 antibody, pig IgG, rat antibody, rat IgG and feline antibody, feline IgG.

1

2 8. The binding agent of claim 7 that is a canine antibody.

3

4 9. The binding agent of claim 8 wherein the canine antibody has an isotype selected
5 from the group consisting of IgGA, IgGB, IgGC, and IgD.

6

7 10. The binding agent of claim 9 wherein the canine antibody has an IgGB isotype.

8

9 11. The binding agent of claim 10 comprising at least one of the amino acid
10 sequences:

11 RNDAQPAVYLFQPSPDQLHTGSASVVCLNSFYPK DINVKWKVDGVIQD
12 TGIQESVTEQDKDSTYLSSTLTMSSTEYLSHELYSCEITHKSLPSTLIKSFQ
13 RSECQRVD (SEQ ID NO.: 55),

14

15 RTDAQPAVYLFQPSPDQLHTGSASVVCLNSFYPK DINVKWKVDGVIQD
16 TGIQESVTEQDKDSTYLSSTLTMSSTEYLSHELYSCEITHKSLPSTLIKSFQ
17 RSECQRVD (SEQ ID NO.: 78),

18

19 RNDAQPAVYLFQPSPDQLHTGSASVVCLSSFYPK DINVKWKVDGVIQDT
20 GIQESVTEQDKDSTYLSSTLTMSSTEYLSHELYSCEITHKSLPSTLIKSFQR
21 SECQRVD (SEQ ID NO.: 79),

22

23 RTDAQPAVYLFQPSPDQLHTGSASVVCLSSFYPK DINVKWKVDGVIQDT
24 GIQESVTEQDKDSTYLSSTLTMSSTEYLSHELYSCEITHKSLPSTLIKSFQR
25 SECQRVD (SEQ ID NO.: 80),

26

27 ASTTAPSVFPLAPSCGSTSGSTVALACLVSGYFPEPVTVSWNSGSLTSGVH
28 TFPsvLQSSGLYSLSSMVTVPSSRWPSETFTCNVAHPASKTKVDKPVPKRE
29 NGRVPRPPDCPKCPAPEMLGGPSVFIFPPKPKDTLLIARTPEVTCVVVDLD
30 PEDPEVQISWFVDGKQMQTAKTQPREEQFNGTYRVVSVLPIGHQDWLKG
31 KQFTCKVNNKALPSPIERTISKARGQAHQPSVYVLPPSREELSKNTVSLTC

1 LIKDFFPIDVEWQSNGQQEPESKYRTTPQLDEDGSYFLYSKLSVDKSR
2 WQRGDTFICAVMHEALHNHYTQKSLSHSPGK (SEQ ID NO.: 57),
3

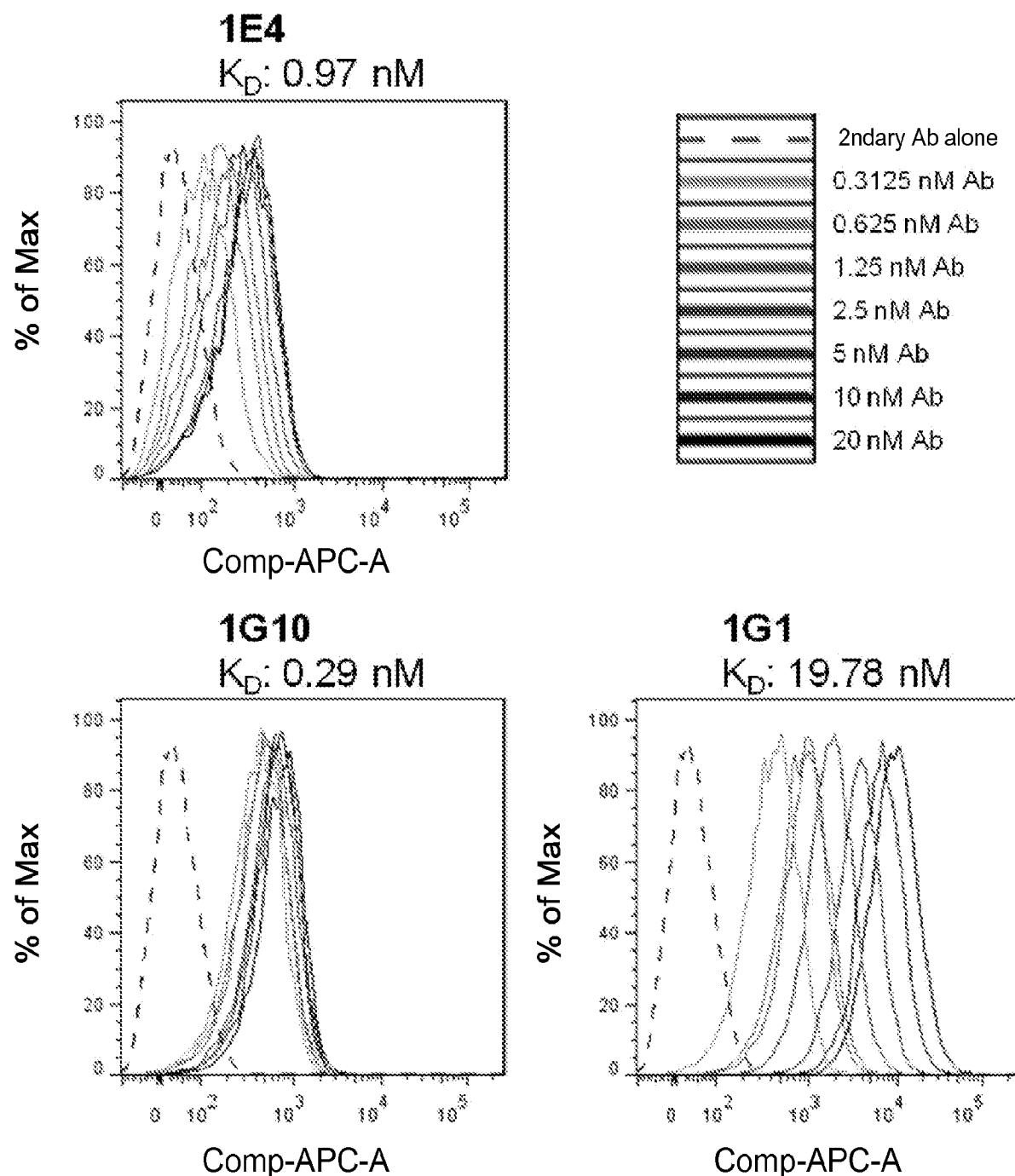
4 ASTTAPSVFPLAPSCGSTSGSTVALACLVSGYFPEPVTVSWNSGSLTSGVH
5 TFPSVLQSSGLYSLSSMVTVPSSRWPSETFTCNVAHPASKTKVDPVPKRE
6 NGRVPRPPDCPKCPAPEPAGGPSVFIFPPPKDTLLIARTPEVTCVVVDLP
7 EDPEVQISWFVDGKQMKTAKTQPREEQFNGTYRVSVLPIGHQDWLKGK
8 QFTCKVNNKALPSPIERTISKARGQAHQPSVYVLPPSREELSKNTVSLTCLI
9 KDFFPIDVEWQSNGQQEPESKYRTTPQLDEDGSYFLYSKLSVDKSRW
10 QRGDTFICAVMHEALHNHYTQKSLSHSPGK (SEQ ID NO.: 81),
11

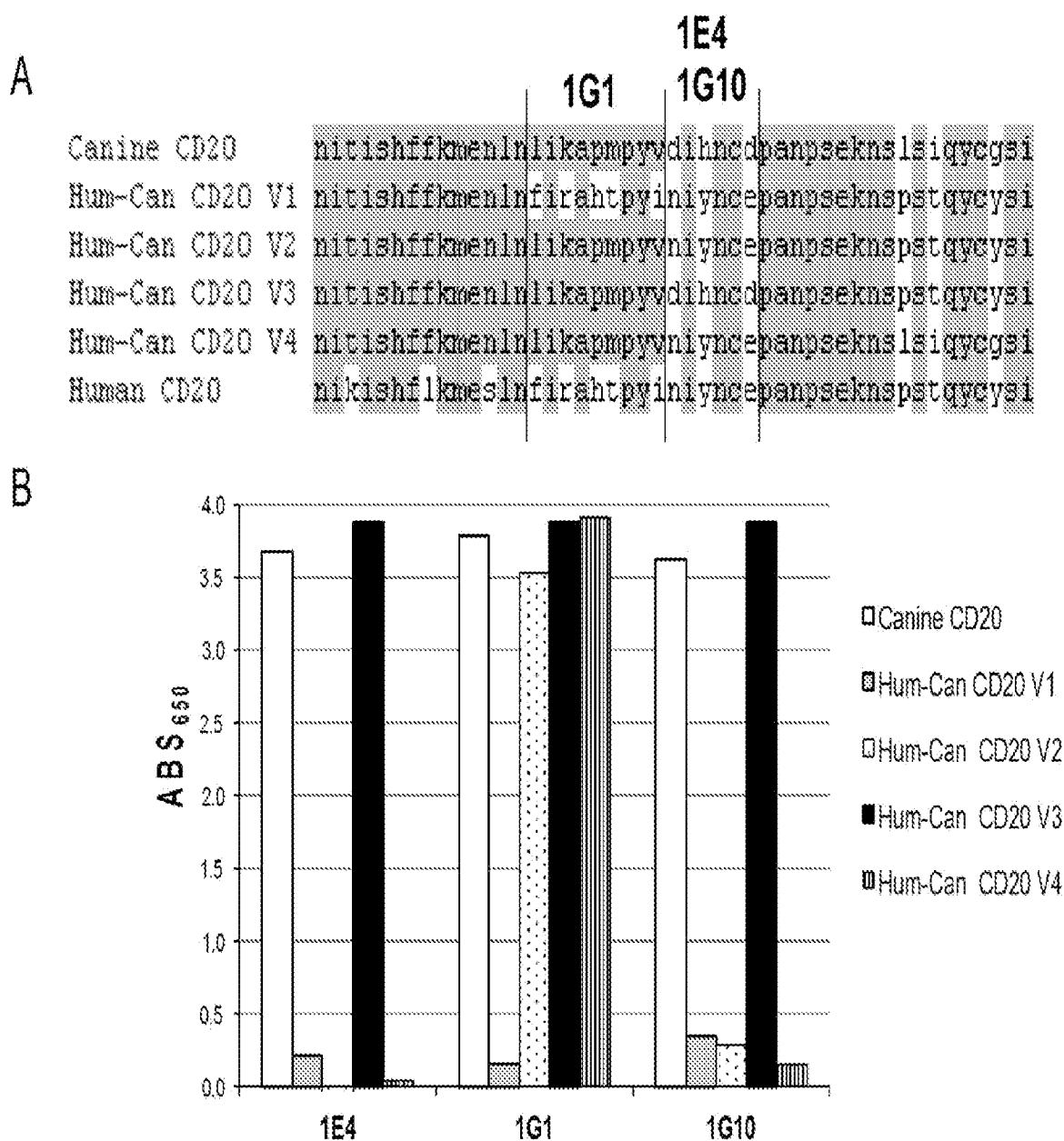
12 ASTTAPSVFPLAPSCGSTSGSTVALACLVSGYFPEPVTVSWNSGSLTSGVH
13 TFPSVLQSSGLYSLSSMVTVPSSRWPSETFTCNVAHPASKTKVDPVPKRE
14 NGRVPRPPDCPKCPAPEMLGGPSVFIFPPPKDTLLIARTPEVTCVVVDLD
15 PEDPEVQISWFVDGKQMKTAKTQPREEQFAGTYRVSVLPIGHQDWLKG
16 KQFTCKVNNKALPSPIERTISKARGQAHQPSVYVLPPSREELSKNTVSLTC
17 LIKDFFPIDVEWQSNGQQEPESKYRTTPQLDEDGSYFLYSKLSVDKSR
18 WQRGDTFICAVMHEALHNHYTQKSLSHSPGK (SEQ ID NO.: 82), or
19

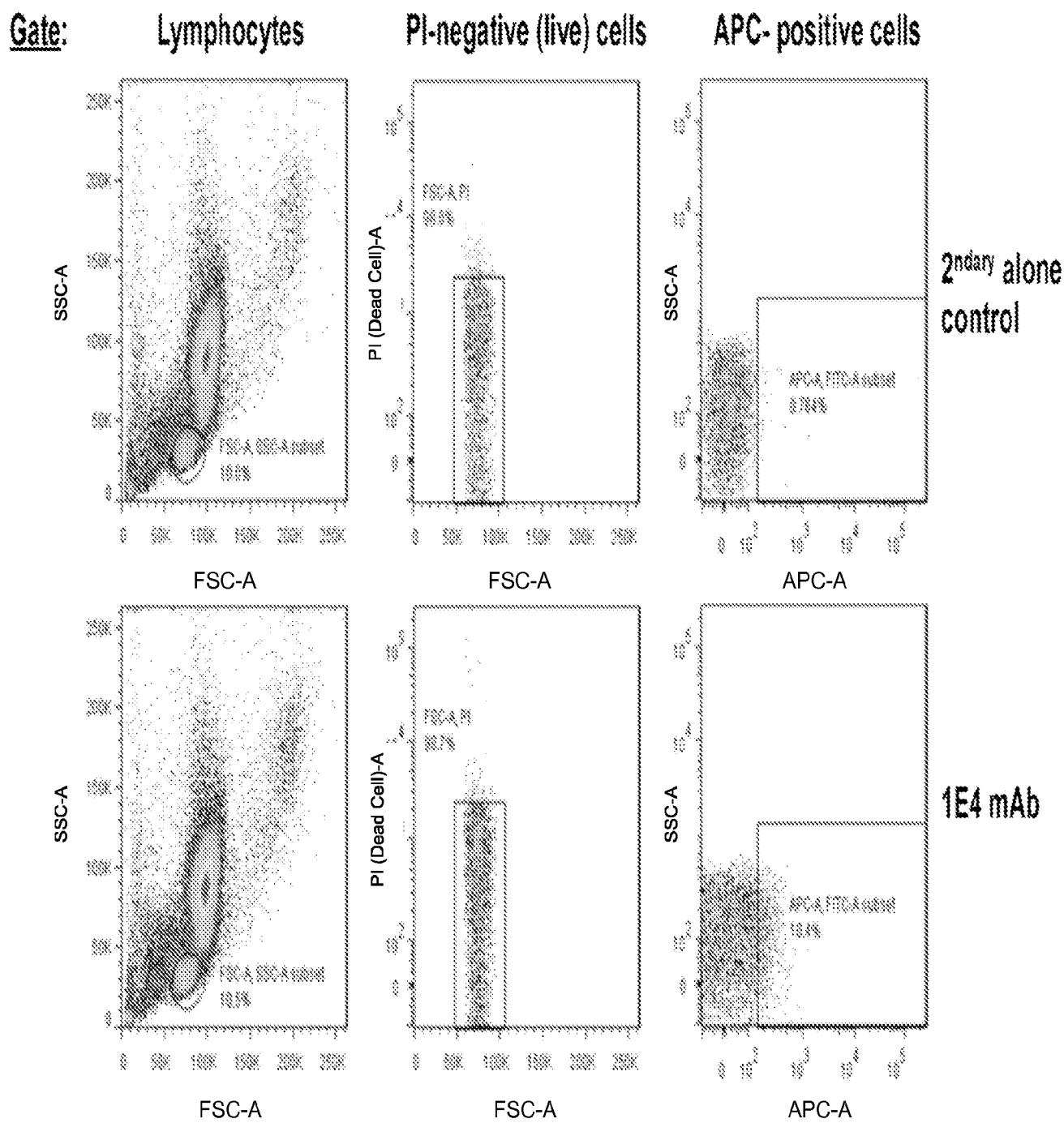
20 ASTTAPSVFPLAPSCGSTSGSTVALACLVSGYFPEPVTVSWNSGSLTSGVH
21 TFPSVLQSSGLYSLSSMVTVPSSRWPSETFTCNVAHPASKTKVDPVPKRE
22 NGRVPRPPDCPKCPAPEAAGGPSVFIFPPPKDTLLIARTPEVTCVVVDLD
23 PEDPEVQISWFVDGKQMKTAKTQPREEQFNGTYRVSVLPIGHQDWLKG
24 KQFTCKVNNKALPSPIERTISKARGQAHQPSVYVLPPSREELSKNTVSLTC
25 LIKDFFPIDVEWQSNGQQEPESKYRTTPQLDEDGSYFLYSKLSVDKSR
26 WQRGDTFICAVMHEALHNHYTQKSLSHSPGK (SEQ ID NO.: 83).
27

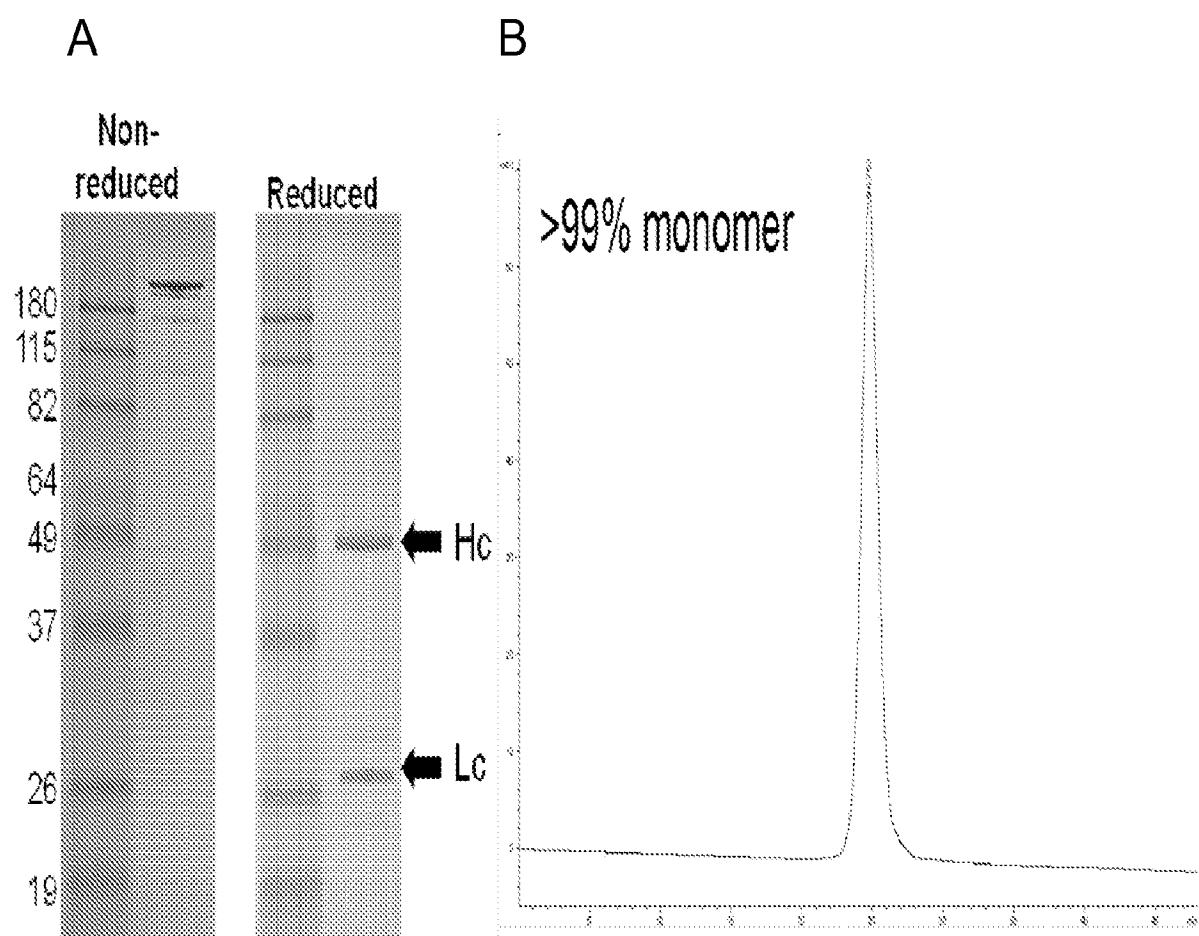
28 12. A binding agent comprising one of:
29 i) SEQ ID NO.: 3 that includes an amino acid substitution at one or both of
30 N33 and G34;

1 ii) SEQ ID NO.: 9 that includes an amino acid substitution at one or both of N33
2 and G34;
3 iii) SEQ ID NO.: 11 that includes an amino acid substitution at one or both of
4 N55 and G56;
5 iv) SEQ ID NO.: 15 that includes an amino acid substitution at one or both of N55
6 and G56; and
7 v) SEQ ID NO.: 57 that includes an amino acid substitution at one or more of
8 N103, N183, N270, G104, G184 and G271;
9 where the amino acid used to substitute is alanine, glutamic acid, phenylalanine,
10 histidine, isoleucine, lysine, leucine, methionine, proline, glutamine, arginine,
11 threonine, valine, tryptophan or tyrosine.


12
13 13. A derivative of a binding agent of any one of claims 1-12.


14
15 14. The derivative of claim 13 selected from the group consisting of F_{ab} , F_{ab2} , Fab'
16 single chain antibody, F_v , single chain, mono-specific antibody, bispecific
17 antibody, trimeric antibody, multi-specific antibody, multivalent antibody,
18 chimeric antibody, canine-human chimeric antibody, canine-mouse chimeric
19 antibody, antibody comprising a canine Fc, humanized antibody, human antibody,
20 caninized antibody, CDR-grafted antibody, shark antibody, nanobody, camelid
21 antibody, and a de-fucosylated antibody.


22
23 15. The derivative of claim 14 that is a caninized antibody.


24
25 16. A method for detecting lymphoma cells in a canine animal, the method
26 comprising contacting a test biological sample with a binding agent or derivative
27 of any one of claims 1-15 and detecting the binding agent bound to the biological
28 sample or components thereof.

- 1 17. A method for treating lymphoma in a canine animal comprising administering to
- 2 the animal at least one effective dose of the binding agent or derivative of any one
- 3 of claims 1-15.
- 4
- 5 18. The method of claim 17 wherein multiple doses are administered to the animal.
- 6
- 7 19. The method of claim 17 or 18 wherein the monoclonal antibody is administered in
- 8 a dosage amount of about 1 to 50 mg / kg.
- 9
- 10 20. The method of claim 17 wherein the binding agent or derivative is administered in
- 11 conjunction with one or more chemotherapeutic agents.
- 12

FIGURE 1

FIGURE 2

FIGURE 3

FIGURE 4

Binding to cCD20 ECD2-hFc

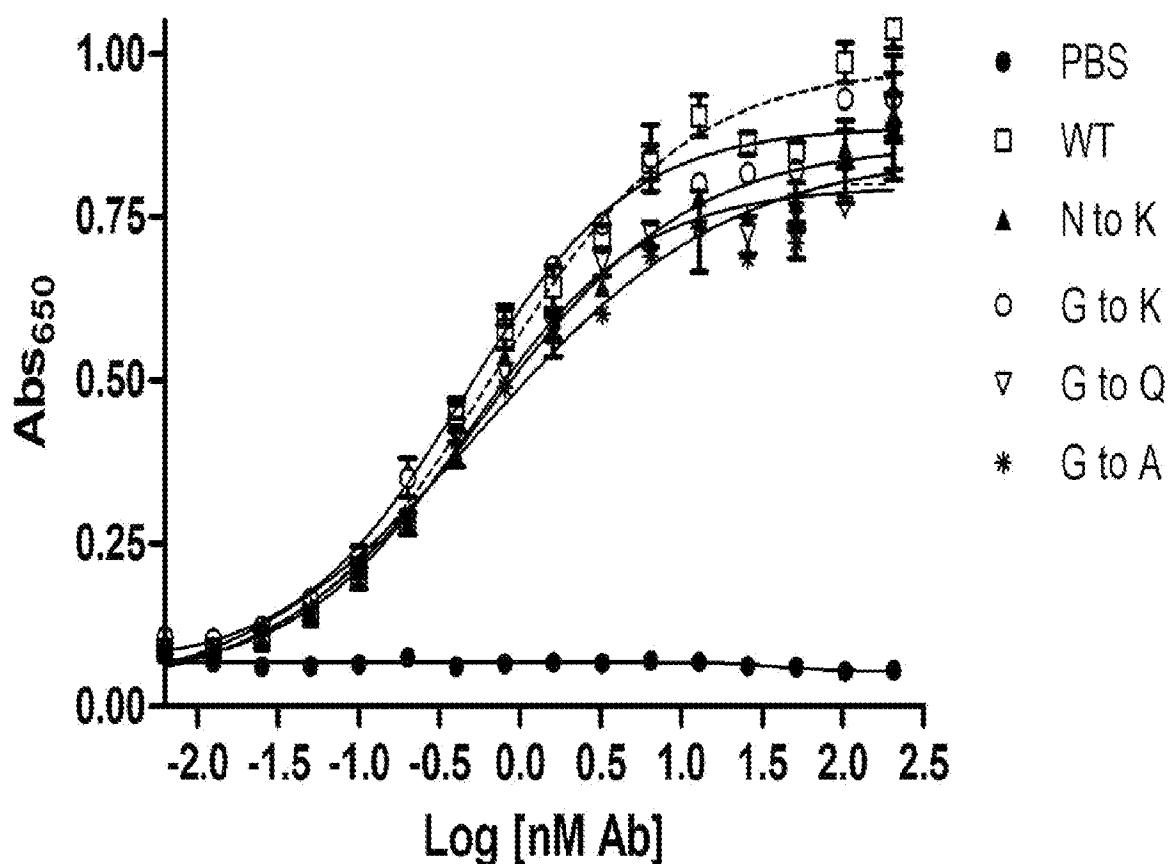


FIGURE 5

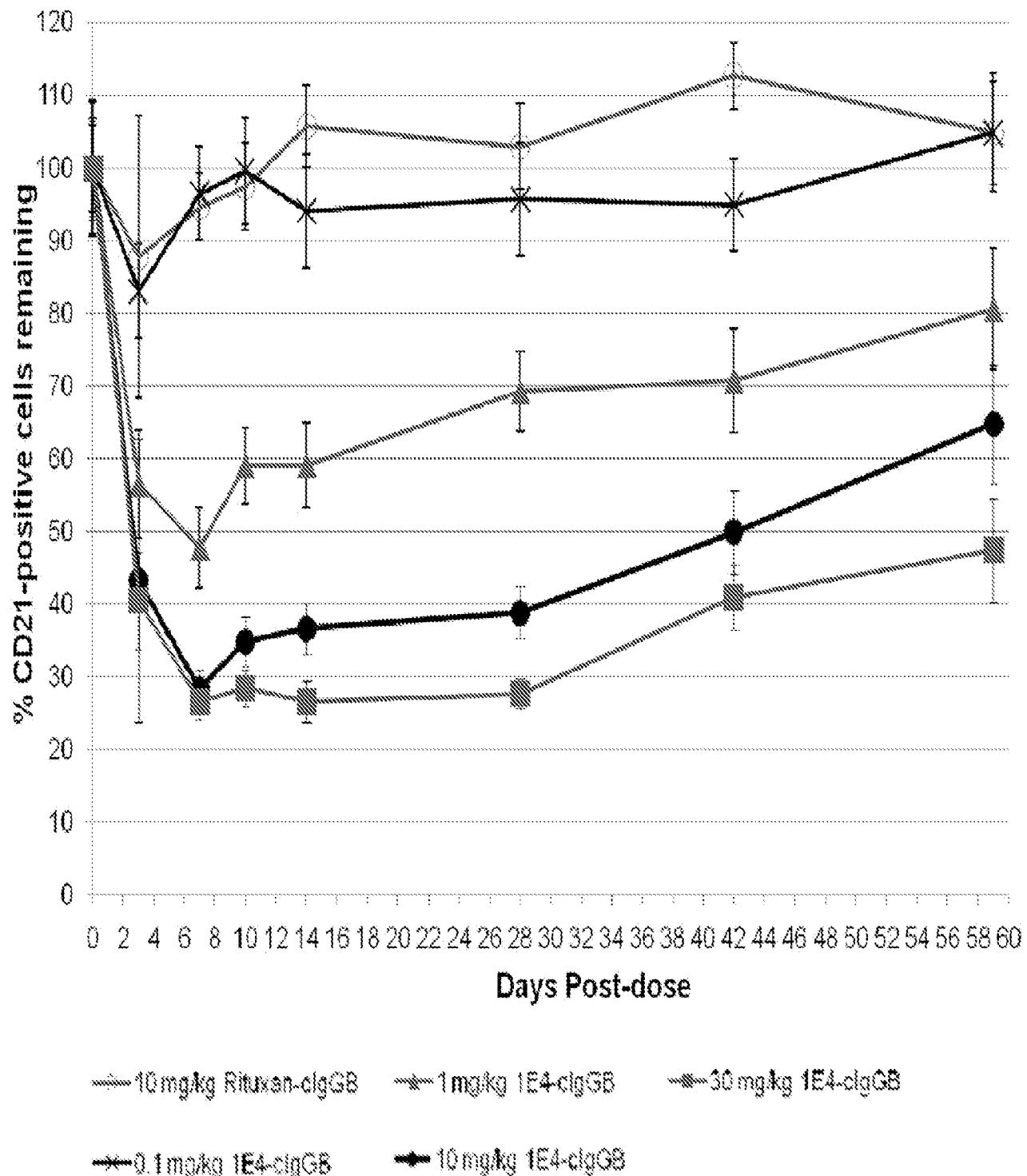


FIGURE 6