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DESCRIPTION

MULTI-CHANNEL ORTHOGONAL CONVOLUTIONAL NEURAL NETWORKS

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. Provisional Patent Application Serial Number
62/779,888 filed December 14, 2018, the entire contents of which are incorporated by reference

herein.
BACKGROUND INFORMATION

Atherosclerosis and plaque rupture leading to myocardial infarction remain the leading
cause of death worldwide [1]. Inflammation and underlying cellular and molecular
mechanisms [2-4] contribute to atherogenesis from initiation through progression, plaque
rupture and ultimately, thrombosis. The vulnerable plaque, recently defined by Virmani [5] as
“thin-cap fibroatheroma™, results from inflammation and is characterized as having a thin
fibrous cap typically less than 65 pum thick, increased infiltration of macrophages with
decreased smooth muscle cells, and an increased lipid core size compared to stable plaques [6-

8].

Several cellular and molecular events that lead to rupture of thin-cap fibroatheromas
are now understood and being utilized to develop novel imaging approaches. Accumulations
of macrophages in thin-cap fibroatheromas over-express matrix metalloproteinases (MMPs)
[9-12] which are believed to contribute to vulnerability of thin-cap fibroatheromas and
increased thrombogenicity [13-15]. Macrophages are an important early cellular marker that
indicates the risk of plaque rupture in the coronary, cerebral, and peripheral circulations. Since
plaque vulnerability is related to cellular composition as well as anatomical structure,
developing a diagnostic method that can simultaneously reveal both composition and structure
is desirable to identify vulnerable plaques and would allow in vivo monitoring of

cardiovascular disease in longitudinal studies in response to cardiovascular interventions.

Intravascular OCT (IVOCT) is a recently developed catheter-based method for high-
resolution intravascular imaging. Of the cardiovascular imaging modalities, [IVOCT is the only

approach that provides sufficient spatial resolution to image thin-cap fibroatheromas.

However, risk of plaque rupture cannot be easily assessed by only IVOCT images.

Two-photon luminescence (TPL) microscopy uses nonlinear optical properties of tissue and
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has been utilized to image plaque components such as endothelial cells, smooth muscle cells
[16], elastin fibers [17,18], oxidized LDL [19] and lipid droplets [20] based on their
endogenous autofluorescence. More recently, it has been reported that macrophages loaded
with nanoparticles can be detected by TPL microscopy [21,22]. Fiber-based OCT [23,24] and
TPL microscopy [25-28] has been reported respectively using photonic crystal fibers to
transmit broadband light for achieving higher spatial resolution or to transmit ultrashort pulses
for system size minimization. However, a combined fiber-based OCT-TPL system has not

been previously realized.

Determining arterial plaque composition however can significantly improve early
diagnosis of atherosclerosis. Early detection of vulnerable plaque can lead to earlier
management of risk factors, improving future clinical outcome, and can give rise to more
targeted treatments. Coronary atherosclerotic plaque is generally composed of lipid rich,
fibrous, or calcified tissues. Calcified plaques are linked to stable lesions, while lesions with
high amounts of fibrous and/or lipid tissue are linked to unstable thin-capped fibroatheroma
(TCFA) lesions. TCFAs are particularly risky, being responsible for the majority of acute
coronary events, such as plaque ruptures (Fujii et al, 2015). Plaque tissue characterization can
also help guide stent placement. Metallic stents placed adjacent to lipid plaques, for example,
have displayed non-optimal healing responses while those adjacent to calcified plaques have a
higher chance of stent thrombosis or in-stent restenosis (Ughi et al). Thus plaque composition
can be particularly predictive of disease and interventional outcome. Furthermore, quantitative
characterization of plaque morphologies can advance the understanding of atherosclerosis
mechanisms, uncover new diagnostic criteria, and hasten development and testing of new

therapies.

Current standards for clinical plaque classification rely on intravascular ultrasound (IVUS)
or computed tomography (CT) scans. The current industry standard for quantitative coronary
angiography in terms of plaque characterization, IVUS, has not been able to consistently
identify fibrous or lipid unstable plaques (Jang et al). This limitation is linked to IVUS’s axial
resolution of ~100 um, which makes detection of unstable plaque problematic as these lesions

are often under 100 pm in thickness, such as TCFAs measured at <65 pm.

Intravascular optical coherence tomography (IVOCT) however, typically has a 10 um axial
resolution, allowing for the detection of a larger range of plaque sizes. IVOCT uses broadband

interferometry from a catheter-mounted light source to generate images based on the refractive

-2
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indices and reflectivity of sample material. In the case of the coronary artery, backscattered
light from the arterial wall is interfered with light at a controlled path length to generate images
at various tissue depths of up to 2 mm, making it ideally suited to radially imaging arteries.
Additionally, IVOCT can deliver this micron-level resolution in real-time, making it a great

tool for noninvasive catheter-based intravascular imaging, in vivo.

Currently, the majority of IVOCT plaque classification is formed on a ground truth that is
built visually, with regions of pixels being classified into fibrous, lipid, and calcified tissue one
at a time by human experts trained to read OCT images. However, expert analysis of OCT
images is prone to mischaracterization. Experiments conducted by Manfrini et al have shown
that “misinterpretation [by experts] occurred in 28 OCT images [overall] (41%); 21 fibrous-
cap atheromas (31%), 6 fibrocalcific plaques (9%), and 1 fibrous plaque (1%)” (Manfrini et
al). Such misinterpretations and dependence on human experts represent one of the most
significant barriers to the medical community when making recommendations for IVOCT over

IVUS or CT scans for diagnosis and represents a lack of fidelity in the IVOCT field.

Accordingly, the existing plaque classification techniques include many shortcomings, and

improved systems and methods are desired.

SUMMARY

Although convolutional neural networks (CNN) have been applied to IVOCT for
automatic classification of tissue [124-126], many issues have been identified which are
addressed as described herein. CNN that have been developed are traditionally applied to
images captured using planar RGB arrays with either a charged coupled device (CCD) or
CMOS imaging sensor. These sensors exhibit excellent spatial and temporal correlation with

very high signal to noise ratios and no speckle noise.

Medical images are usually not captured using one of these imaging sensors and are
constructed using point or linear array transducers. After signal acquisition, the transduced
signal has mathematical operations applied and displayed to the user, in the form of grayscale
or false color imaging. Optical coherence tomography (OCT), ultrasound, MRI, x-ray, and CT
systems, among others, create images in this manner. Furthermore, OCT and ultrasound are
coherent imaging methods and thus suffer from speckle, a type of noise that is dependent on

the numerical aperture of the sensing device.
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Exemplary embodiments of the present disclosure include an apparatus and methods
that apply an orthogonal CNN by considering how the images are transduced and constructed,
and design neural networks to best consider this information. Whereas square kernels are ideal
for square sensors that are temporally and spatially correlated, they may not be ideal for medical

images.

In OCT, an A-Scan (also referred to as a reflectivity profile) is the smallest unit of data
and is formed either from a point sensor or one-dimensional (1D) array of sensors. These data
can be considered temporally and spatially correlated and should be treated as such by the
neural networks. In the case of a CNN, this can be expressed as kernels that exist only in the
direction of the a-scan with a width of 1 A-Scan. Data across A-Scans should be treated as
separate, as A-Scan spacing is not necessarily uniform, and in the case of a CNN, should be

treated with an orthogonal 1D kemel.

Considering medical images as a single grayscale image is naive. Medical imaging
modalities contain a rich set of derived data that should be considered by a neural network as
well. As used herein, the term derived data is data that is mathematically extracted from the
original imaging sensor. For example, OCT data is formed from light that is back-scattered
from the sample. Certain techniques (e.g. including those by Vermeer and de Boer) have been
demonstrated to view the attenuation of an OCT A-Scan and may provide a neural network
with valuable information when used in conjunction with traditional backscatter OCT data.
Other examples of derived data are two-dimensional (2D) standard deviation and other
statistical rank metrics. Non-derived data may also be added, depending on the medical
imaging system design. Polarization, though not standard on OCT systems, can be added and
included as additional dimensions. This multi-dimensional data extracted from an OCT data
set can be shaped similar to that of RGB data, except it is not limited by the color channels of

the sensor but the number of useful derived or non-derived data that is captured.

Exemplary embodiments include a method of improving discrimination between
superficial lipid and calcium versus fibrous tissue and lipid, calcium tissues, and connective
tissue, the method comprising: acquiring an image, wherein the image is constructed signal
from a point or linear array transducer; analyzing how the image was constructed and
mathematically extracting derived data from the image; and applying an orthogonal

convolutional neural network (OCNN) to optimize consideration of the derived data.
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In certain embodiments, the image is obtained using an optical coherence tomography
(OCT) process. In particular embodiments, the derived data comprises attenuation data of an
A-scan performed during the OCT process. In some embodiments, the derived data comprises
two-dimensional (2D) standard deviation data. Specific embodiments further comprise
applying the OCNN to non-derived data. In certain embodiments, the non-derived data

comprises polarization data.

Exemplary embodiments of the present disclosure include an automated algorithmic
method to classify the plaque tissue present in the coronary artery that is based on IVOCT
images co-registered with histology for validation. The described powerful algorithmic method
for a tissue classification system based on histology, the clinical gold standard, as its ground

truth can bridge the gap between the potential of IVOCT and clinical acceptance.

Exemplary embodiments of the present disclosure include systems and methods for an
automated coronary plaque characterization and risk assessment using intravascular optical
coherence tomography and a smart-algorithm. Particular embodiments may incorporate optical
coherence tomography systems and methods as disclosed in U.S. Patent Publications

2014/0268168 and 2016/0078309, incorporated by reference herein.

Exemplary embodiments include a system comprising: an imaging device comprising
an optical coherence tomography light source, wherein the imaging device is configured to
obtain an image of intravascular tissue comprising plaque; and a non-transitory computer
readable medium configured to: analyze a pixel of the image with a first neural network
configured to classify the plaque as a first tissue type of a plurality of tissue types; analyze the
pixel of the image with a second neural network configured to classify the plaque as a second
tissue type of the plurality of tissue types; and analyze the pixel of the image with a third neural

network configured to classify the plaque as a third tissue type of the plurality of tissue types.

In certain embodiments, histological data from the plurality of tissue types is analyzed
to characterize tissue types of pixels selected to train the first, second and third neural networks.
In particular embodiments, the first tissue type is lipid plaque, the second tissue type is a calcific
plaque, and the third tissue type is a fibrous plaque. In some embodiments, the non-transitory
computer readable medium is configured to optimize the first, second and third neural networks
by evaluating a plurality of features of the image with nodes of the first, second and third neural

networks to calculate sensitivity and specificity of the plurality of features using a receiver
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operating characteristic (ROC) curve. In specific embodiments, the plurality of features
comprise one or more of the following Gray Level Co-Occurrence Matrix (GLCM) features:

contrast, energy, correlation, homogeneity, entropy, and maximum probability.

In certain embodiments, the plurality of features comprise one or more of the following
two-dimensional image statistics: mean value, variance, skewness, kurtosis, and energy. In
particular embodiments, the optical coherence tomography light source is configured as a swept
source optical coherence tomography light source. In some embodiments, the optical
coherence tomography light source is configured as a broadband optical coherence tomography
light source. In specific embodiments, the imaging device further comprises a short-pulsed
excitation light source. In certain embodiments, the short-pulsed excitation light source is a

two-photon luminescence light source.

In particular embodiments, the imaging device further comprises a photonic crystal
fiber configured to simultaneously: enable single-mode propagation of a first wavelength from
the optical coherence tomography light source to a sample site; enable single-mode propagation
of a second wavelength from the short-pulsed light source to the sample site; transmit an
optical coherence tomography signal from the sample site, wherein the optical coherence
tomography signal is generated from the first wavelength; and transmit an emission signal from
the sample site, wherein the emission signal is induced by the second wavelength from the

short-pulsed light source.

Specific embodiments further comprise a first dichroic element, and in some
embodiments, the first dichroic element is configured to direct the first and second wavelengths
to the sample path. Certain embodiments comprise a second dichroic element, and in particular
embodiments, the second dichroic element is configured to direct two photon luminescence
toward a photon counting detector. Specific embodiments comprise a balanced detector, and
in certain embodiments, the balanced detector is configured to minimize a non-interfering OCT
component. Particular embodiments comprise a photon counting detector, and in some
embodiments the photon counting detector is a photomultiplier tube or an avalanche photo
diode. In certain embodiments, the photon counting detector is configured to detect two-photon

luminescence.

Particular embodiments include a method of characterizing coronary plaque, the

method comprising: obtaining an image of a sample site using an optical coherence tomography
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light source emitting light from an optical fiber, wherein the image comprises intravascular
tissue comprising plaque; analyzing quantitative data of a pixel of the image with a first neural
network configured to classify the plaque as a first tissue type of a plurality of tissue types,
wherein the first neural network comprises a first plurality of nodes and reads a first plurality
of features; analyzing quantitative data of the pixel of the image with a second neural network
configured to classify the plaque as a second tissue type of the plurality of tissue types, wherein
the second neural network comprises a second plurality of nodes and reads a second plurality
of features; and analyzing quantitative data of the pixel of the image with a third neural network
configured to classify the plaque as a third tissue type of the plurality of tissue types, wherein
the third neural network comprises a third plurality of nodes and reads a third plurality of

features.

In certain embodiments, histological data from the plurality of tissue types is analyzed
to characterize tissue types of pixels selected to train the first, second and third neural networks.
IN particular embodiments, the first tissue type is lipid plaque, the second tissue type is a
calcific plaque, and the third tissue type is a fibrous plaque. In some embodiments, the
quantitative data includes classifying features comprising one or more of the following:
contrast, energy, correlation, homogeneity, entropy, and maximum probability. In some
embodiments, the quantitative data includes classifying features comprising one or more of the
following: mean value, variance, skewness, kurtosis, and energy. Specific embodiments
include optimizing the first, second and third neural networks by calculating a receiver
operating characteristic (ROC) curve which plots a true positive versus a false positive rate for
a plurality of classifying features of the image. Some embodiments further comprise
calculating an area under each receiver operating characteristic (ROC) curve for each of the
plurality of classifying features. Some embodiments have the ability to create features by
optimally weighting different portions of the input image. Such embodiments do not rely on

pre-formed quantitative values or features.

Certain embodiments further comprise ranking the plurality of classifying features by
the area under each receiver operating characteristic (ROC) curve for each of the plurality of
classifying features. Particular embodiments further comprise calculating a sensitivity and a
specificity of the classifying features for the first, second and third neural networks. In some
embodiments, the sensitivity is a proportion of known plaque type data points that are correctly

classified by each of the first, second and third neural networks. In specific embodiments, the
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specificity is a ratio of correct classifications to total classifications for a certain category of
plaque tissue types for each of the first, second and third neural networks. In certain
embodiments, each of the first, second and third neural networks is optimized by selecting a
combination of nodes and classifying features for each of the first, second and third neural

networks that result in the highest value of a sum of the specificity and sensitivity.

Particular embodiments include a system comprising: an imaging device comprising an
optical coherence tomography light source, wherein the imaging device is configured to obtain
an image of intravascular tissue; and a non-transitory computer readable medium configured
to analyze a pixel of the image with a first neural network configured to classify the
intravascular tissue in the image as a first tissue type of a plurality of tissue types. In certain
embodiments, a non-transitory computer readable medium configured to perform certain steps
may do so via a computer processor or other hardware configured to read the non-transitory
computer readable medium. In some embodiments, histological data from a plurality of tissue
types is analyzed to characterize tissue types of pixels selected to train the first neural network.
In particular embodiments, the non-transitory computer readable medium is configured to
analyze the pixel of the image with a second neural network configured to classify the
intravascular tissue in the image as a second tissue type of the plurality of tissue types. In some
embodiments, the non-transitory computer readable medium is configured to analyze the pixel
of the image with a third neural network configured to classify the intravascular tissue in the

image as a third tissue type of the plurality of tissue types.

In certain embodiments, histological data from the plurality of tissue types is analyzed
to characterize tissue types of pixels selected to train the first, second and third neural networks.
In particular embodiments, the first tissue type is lipid plaque, the second tissue type is a calcific
plaque, and the third tissue type is a fibrous plaque. In some embodiments, the non-transitory
computer readable medium is configured to optimize the first, second and third neural networks
by evaluating a plurality of features of the image with nodes of the first, second and third neural
networks to calculate sensitivity and specificity of the plurality of features using a receiver
operating characteristic (ROC) curve. In specific embodiments, the plurality of features
comprise one or more of the following Gray Level Co-Occurrence Matrix (GLCM) features:
contrast, energy, correlation, homogeneity, entropy, and maximum probability. In certain
embodiments, the plurality of features comprise one or more of the following two-dimensional

image statistics: mean value, variance, skewness, kurtosis, and energy.
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In particular embodiments, the optical coherence tomography light source is configured
as a swept source optical coherence tomography light source. In some embodiments, the
optical coherence tomography light source is configured as a broadband optical coherence
tomography light source. In specific embodiments, the imaging device further comprises a
short-pulsed excitation light source. In certain embodiments, the short-pulsed excitation light

source is a two-photon luminescence light source.

In particular embodiments, the imaging device further comprises a photonic crystal
fiber configured to simultaneously: enable single-mode propagation of a first wavelength from
the optical coherence tomography light source to a sample site; enable single-mode propagation
of a second wavelength from the short-pulsed light source to the sample site; transmit an
optical coherence tomography signal from the sample site, wherein the optical coherence
tomography signal is generated from the first wavelength; and transmit an emission signal from
the sample site, wherein the emission signal is induced by the second wavelength from the
short-pulsed light source. Some embodiments further comprise a first dichroic element, and in
specific embodiments the first dichroic element is configured to direct the first and second

wavelengths to the sample path.

Certain embodiments further comprise a second dichroic element, and in particular
embodiments the second dichroic element is configured to direct two photon luminescence
toward a photon counting detector. Some embodiments further comprise a balanced detector,
and in specific embodiments the balanced detector is configured to minimize a non-interfering
OCT component. Specific embodiments further comprise a photon counting detector. In
certain embodiments the photon counting detector is a photomultiplier tube or an avalanche
photo diode. In particular embodiments, the photon counting detector is configured to detect

two-photon luminescence.

Certain embodiments include a method of characterizing coronary plaque, where the
method comprises: obtaining an image of a sample site using an optical coherence tomography
light source emitting light from an optical fiber, wherein the image comprises intravascular
tissue comprising plaque; analyzing quantitative data of a pixel of the image with a first neural
network configured to classify the plaque as a first tissue type of a plurality of tissue types,
wherein the first neural network comprises a first plurality of nodes and reads a first plurality
of features; analyzing quantitative data of the pixel of the image with a second neural network

configured to classify the plaque as a second tissue type of the plurality of tissue types, wherein

-9.
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the second neural network comprises a second plurality of nodes and reads a second plurality
of features; and analyzing quantitative data of the pixel of the image with a third neural network
configured to classify the plaque as a third tissue type of the plurality of tissue types, wherein
the third neural network comprises a third plurality of nodes and reads a third plurality of

features.

In particular embodiments, histological data from the plurality of tissue types is
analyzed to characterize tissue types of pixels selected to train the first, second and third neural
networks. In some embodiments, the first tissue type is lipid plaque, the second tissue type is
a calcific plaque, and the third tissue type is a fibrous plaque. In specific embodiments, the
quantitative data includes classifying features comprising one or more of the following:
contrast, energy, correlation, homogeneity, entropy, and maximum probability. In certain
embodiments, the plurality of features comprise one or more of the following two-dimensional
image statistics: mean value, variance, skewness, kurtosis, and energy. Particular embodiments
further comprise optimizing the first, second and third neural networks by calculating a receiver
operating characteristic (ROC) curve which plots a true positive versus a false positive rate for

a plurality of classifying features of the image.

Some embodiments further comprise calculating an area under each receiver operating
characteristic (ROC) curve for each of the plurality of classifying features. Specific
embodiments further comprise ranking the plurality of classifying features by the area under
each receiver operating characteristic (ROC) curve for each of the plurality of classifying
features. Certain embodiments further comprise calculating a sensitivity and a specificity of
the classifying features for the first, second and third neural networks. In particular
embodiments, the sensitivity is a proportion of known plaque type data points that are correctly
classified by each of the first, second and third neural networks. In some embodiments, the
specificity is a ratio of correct classifications to total classifications for a certain category of
plaque tissue types for each of the first, second and third neural networks. In specific
embodiments, each of the first, second and third neural networks is optimized by selecting a
combination of nodes and classifying features for each of the first, second and third neural

networks that result in the highest value of a sum of the specificity and sensitivity.

Certain embodiments include a system comprising: an imaging device comprising an
optical coherence tomography light source, wherein the imaging device is configured to obtain

an image of intravascular tissue; and a non-transitory computer readable medium configured

-10 -



10

15

20

25

30

WO 2020/123739 PCT/US2019/065850

to analyze a pixel of the image with a first neural network configured to classify the
intravascular tissue in the image as a first tissue type of a plurality of tissue types. In particular
embodiments, histological data from a plurality of tissue types is analyzed to characterize tissue
types of pixels selected to train the first neural network. In some embodiments, the non-
transitory computer readable medium is configured to analyze the pixel of the image with a
second neural network configured to classify the intravascular tissue in the image as a second
tissue type of the plurality of tissue types. In specific embodiments, the non-transitory
computer readable medium is configured to analyze the pixel of the image with a third neural
network configured to classify the intravascular tissue in the image as a third tissue type of the

plurality of tissue types.

In some embodiments, to further improve discrimination between the three classified
tissue types, fibrous, calcium and lipid, individual A-scans in IVOCT images undergo pre-
processing and classification. First individual A-scans are delimited to signal from the start of
the lumen boundary to where the signal is attenuated. Additionally, the region of steepest
signal decay is also isolated from each A- scan. In an exemplary embodiment, this can be
accomplished by using panning windows which apply an algorithm approximating rate of
change in signal intensity. Rapid exemplary embodiments can have an algorithm where slope
is calculated between intensity values at the end points of a window. Other embodiments may
apply first or second derivative algorithms. Window sizes must be optimized to measure
change in slope with precision without being too computationally expensive.

Analysis of A-scans is conducted by extracting statistical signal features and features derived
from a gaussian fit. Statistical features in an exemplary embodiment would include area
under the entire A-scan signal and corresponding region of interest, and the starting and
ending points of the region of steepest signal decay. For gaussian analysis, entire A-scans and
the isolated region of steepest signal decay are mirrored to create a symmetric signal
distribution. This mirrored distribution is fitted to a gaussian function of the following

equation:

Variables a, b, and ¢ from the equation above are collected as features for each
mirrored distribution. Additionally, Goodness of Fit (GOF) to the gaussian is calculated as a

feature for each mirrored signal. The statistical and gaussian features can be fed into a

-11 -
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classifier, like Linear Discriminant Analysis in an exemplary embodiment, to classify each A-
scan as corresponding to Lipid, Fibrous, or Calcium tissue. This classification is then used to

threshold the outputs of a neural network.

Neural network outputs have a threshold applied to them to generate a classification
into a certain tissue type. After pixels from B-scans are fed into the neural networks and
outputs generated, the A-scans these pixels exist within are determined and registered. Neural
network outputs then have a threshold applied to them to bias classification towards the
classification determined in A-scan processing. For example, If an A-scan was classified as
Lipid in the preprocessing stage, then the very hard to meet or high thresholds would be
applied to Calcium and Fibrous neural network outputs, while the Lipid network outputs
would only have to exceed a threshold of 0.5. This would make classification into a category

other than Lipid for any pixels in this A-scan only possible in high unambiguous cases.

Certain embodiments include a method of improving discrimination between
superficial lipid and calcium versus fibrous tissue and lipid, calcium tissues, and connective
tissue, the method comprising: (1) creating a database of a-scans characteristic of each fibrous,
calcium, lipid, and connective tissue based on histology and user input; (2) parsing individual
a-scans one at a time from a b-scans; (3) delimiting a tissue region; (4) identifying an index of
an initiation of a signal decay region; (5) identifying an index of a termination of the signal
decay region; (6) calculating a goodness-of-fit (GOF) to a Gaussian function; (7) extracting a
denominator coefficient in the Gaussian function; (8) calculating an area under a signal decay
region; (9) calculating an area under a total delimited tissue region; and (10) inputting statistics
from steps (4) and (5) into a linear discrimination analysis (LDA) trained on the database to

classify an a-scan as fibrous, calcium or lipid.

Particular embodiments further comprise biasing thresholds on a neural network based
on a-scan classification obtained in step (10) above. In some embodiments, delimiting a tissue
region comprises sampling from a start of a lumen to a point where an intensity is five percent
of a maximum intensity. In specific embodiments, identifying an index of an initiation of a
signal decay region comprises: using a panning window algorithm where slope is calculated
between intensity values at end points of a window; and determining a signal decay region
iwhen five consecutive windows show a negative slope. In certain embodiments, identifying
an index of a termination of the signal decay region comprises identifying five consecutive

windows with positive slope one in the signal decay region.
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In the following, the term “coupled” is defined as connected, although not necessarily

directly, and not necessarily mechanically.

The use of the word “a” or “an” when used in conjunction with the term “comprising™
in the claims and/or the specification may mean “one,” but it is also consistent with the meaning
of “one or more” or “at least one.” The term “about” means, in general, the stated value plus
or minus 5%. The use of the term “or” in the claims is used to mean “and/or” unless explicitly
indicated to refer to alternatives only or the alternative are mutually exclusive, although the

disclosure supports a definition that refers to only alternatives and “and/or.”

The terms “comprise” (and any form of comprise, such as “comprises” and
“comprising”), “have” (and any form of have, such as “has™ and “having™), “include” (and any
form of include, such as “includes™ and “including™) and “contain” (and any form of contain,
such as “contains™ and “containing”) are open-ended linking verbs. As a result, a method or
device that “comprises,” “has,” “includes™ or “contains” one or more steps or elements,
possesses those one or more steps or elements, but is not limited to possessing only those one
or more elements. Likewise, a step of a method or an element of a device that “comprises,”
“has,” “includes” or “contains” one or more features, possesses those one or more features, but
is not limited to possessing only those one or more features. Furthermore, a device or structure

that is configured in a certain way is configured in at least that way, but may also be configured

in ways that are not listed.

Other objects, features and advantages of the present invention will become apparent
from the following detailed description. It should be understood, however, that the detailed
description and the specific examples, while indicating specific embodiments of the invention,
are given by way of illustration only, since various changes and modifications within the spirit
and scope of the invention will be apparent to those skilled in the art from this detailed

description.

-13 -



10

15

20

25

30

WO 2020/123739 PCT/US2019/065850

BRIEF DESCRIPTION OF THE DRAWINGS

The following drawings form part of the present specification and are included to
further demonstrate certain aspects of the present disclosure. The invention may be better
understood by reference to one of these drawings in combination with the detailed description

of specific embodiments presented herein.

FIG. 1 shows a schematic of a method according to an exemplary embodiment.

FIG. 2 shows an image obtained from an IV-OCT system.

FIG. 3 shows graphs for feature selection and network architecture optimization.

FIG. 4 shows a schematic of a feature and node optimized neural network (FANNON)
optimization process.

FIG. 5 shows a schematic of an optical coherence tomography system according to
exemplary embodiments.

FIG. 6 shows a perspective view of patient interface module of the embodiment of FIG.

FIG. 7 shows a schematic view of the catheter of FIG. 6.

FIG. 8 shows a partial section view of the distal end of catheter of FIG. 7.

FIG. 9 shows an optical coherence tomography and short-pulsed laser system
according to exemplary embodiments.

FIG. 10 shows a diagram of a network structure according to an exemplary
embodiment.

FIG. 11 shows an in-vivo image produced by an exemplary embodiment.

FIG. 12 shows an ex-vivo image produced by an exemplary embodiment.

DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

Referring now to FIG. 1, an overview of an exemplary method 101 comprises various
steps performed to classify different types of tissue observed in intravascular optical coherence
tomography images. An outline of exemplary methods and systems will be presented initially,
followed by more detailed discussion of specific features and elements. As shown in the
exemplary embodiment of FIG. 1, method 101 comprises a first step 111 of scanning an artery
to obtain intravascular optical coherence tomography images. An example of one such image

201 1s provided in FIG. 2. Inimage 201, a catheter 211 with a light source 221 is used to image
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arterial tissue 231. It is understood that not all components of catheter 211 are labeled in FIG.
2 for purposes of clarity. As previously noted, in particular embodiments such images may be
obtained using optical coherence tomography systems and methods as disclosed in U.S. Patent

Publications 2014/0268168 and 2016/0078309, incorporated by reference herein.

In the embodiment disclosed in FIG. 1, method 101 then co-registers image data with
histological data in step 121, as described in more detail below. Image data point selection is
performed in step 131, followed by feature extraction in step 141, also further discussed below.
Feature and Node Optimized Neural Networks (FANONN) for different types of tissue (e.g.
lipid plaque, fibrous plaques, and calcific plaques) can then be used to classify the tissue in the
image in step 151. In exemplary embodiments, image data point selection may be manually
selected by a user (e.g. “point-and-click™ selection), or via sampling from regions of interest in
B-scans of the tissue. It is understood that the classification techniques disclosed herein may

be applied to other tissue types (including non-diseased tissues) as well.

Referring now to FIG. 3 graphs are provided for feature selection and network
architecture optimization for fibrous-optimized and lipid-optimized features and architecture.
As shown in the graph on the left side of FIG. 3, sensitivity and specificity is highest for a
neural network with features selected to optimize for classification of a specific tissue. Lipid
sensitivity and specificity is worse with a network running on features optimized for fibrous
plaque. Likewise, fibrous sensitivity and specificity is worse with a network running on

features optimized for lipid plaque.

The graph on the right side of FIG. 3 illustrates that sensitivity and specificity is highest
for a neural network with number of nodes (e.g. neurons) optimized for classification of a
specific tissue type. Lipid sensitivity and specificity is worse with a network with number of
nodes optimized for fibrous plaque. Likewise, fibrous tissue sensitivity and specificity is worse
with a network with number of nodes optimized for lipid tissue. Accordingly, tissue
classification is dependent on both the specific features used and the number of nodes

comprising the network.

As previously mentioned, exemplary embodiments co-register intravascular OCT
image data with histological data. In one example, IVOCT imaging was conducted on 10
human hearts (from 3 women and 7 men) collected within 24 hours of death. The age at death

was 65 = 11 years. Imaging was conducted on 14 coronary arteries (n=10, left anterior
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descending artery [LAD]; n=4 right coronary artery [RCA]). From these artery scans, image

data points were extracted.

IVOCT imaging was conducted using a 1310 nm swept source laser (HSL-1000,
Santec, Hackensack, NJ) with a bandwidth of 80 nm scanning, a repetition rate of 34 kHz, and
a measured free-space axial resolution of 20 um with a 2.8 mm scan depth. The IVOCT signal
was sampled with a linear k-space clock to allow real-time OCT image acquisition and display.
Per artery, 100 cross-section images (B-scans) were collected. A fluoroscopy system (GE
Medical Systems) and a chamber designed to maintain the tissue at 37°C were used. Left and
right coronary 6F guide catheters were sewn into the coronary ostia, 0.014 inch guide-wire
access to the coronary arteries was gained under fluoroscopic guidance, and a stent was
deployed 80 mm from the guide catheter tip as a fiduciary marker. IVOCT pullbacks were
acquired from the stent to the guide catheter (80 mm total pullback length). The left anterior
descending (LAD) artery and right coronary artery (RCA) were imaged. Following imaging,
the RCA and LAD were perfusion-fixed with formalin at 100 mm Hg. Histology cross-sections
were taken from the same 14 coronary arteries and 10 human hearts with 100 histology slices

at the same depth as 100 cross-section B-scans for each artery.

To conduct histology after IVOCT imaging, LADs and RCAs were perfusion-fixed
with 10% neutral-buffered formalin, excised from each heart, individually radiographed on a
Faxitron MX-20 (Faxitron Bioptics LLC, Tucson AZ), and decalcified overnight with Cal-Rite
(Richard Allen Scientific) if necessary. The arterial segments were sliced into 2-3 mm thick
rings and further processed on a Tissue-Tek Vacuum Infiltration Processor (Sakura Finetek
USA, Torrance, CA) for standard paraffin-embedded sections. An average of 25 rings were
generated from each artery. Serial tissue sections (5 um thick) were cut at 150-um intervals
and stained with hematoxylin and eosin (H&E), modified Movat’s pentachrome, and Von
Kossa. Anti-CD68 (Dako North America, Inc, Carpinteria, CA) and anti-a-smooth muscle cell-
actin (Sigma-Aldrich, St. Louis, MO) antibodies were used in immunohistochemical studies to

identify macrophages and smooth muscle cells, respectively.

In this embodiment, histology rings were then matched to respective IVOCT frames.
Co-registration was performed between IVOCT images and histological sections based on the
following: (1) two fiducial landmarks—a stent deployed at the distal end of the pullback and
the sewn-in guide catheter at the proximal edge—that were visible in IVOCT images,

fluoroscopy, and radiography before histopathological processing, and (2) the physical position
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of IVOCT images in the pullbacks measured against the estimated distance in microns from

the fiducial landmarks in the tissue sections.

Classification was automated based on a series of quantifiable image features acquired
using an IVOCT scan of the coronary artery. Extraction of image data for classification of
plaque required reading specific quantitative measures from the images, known as quantitative
features. The quantitative feature set was created using two-dimensional windowed image
statistics along with Gray Level Co-Occurrence Matrix (GLCM) textural features and are

explained herein.

In this embodiment, the two-dimensional windowed image statistics are determined by
generating a square window around a pixel of interest and calculating the following statistics:

) Mean Value

2 Variance

3) Skewness

@ Kurtosis

(&) Energy

These measures are calculated for both the horizontal and vertical averages within the
square window with both image intensity and attenuation data. The intensity is defined as the
backscattered light from the tissue measured in decibels. The attenuation data represents how

the backscattered light intensity decays as a function of radial distance from the light source.

The GLCM is a method for texture analysis and characterization based on the spatial
relationship between pixels. In this method, image texture is characterized by determining the
frequency with which pairs of pixels with certain values and a pre-defined spatial relationship
occur. In exemplary embodiments, specific GLCM textural features include:

) Contrast

2 Energy

3) Correlation

(4)  Homogeneity

&) Entropy

6) Max Probability

Each of these textural features is again calculated with intensity and attenuation. The

optimization process for the algorithm to classify each tissue type selects from these windowed
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and GLCM features. Additional discussion of GLCM can be found in Yang, Xiaofeng, et al.
"Ultrasound GLCM texture analysis of radiation-induced parotid-gland injury in head-and-
neck cancer radiotherapy: an in vivo study of late toxicity." Medical physics 39.9 (2012): 5732-

5739, incorporated by reference herein.

In exemplary embodiments, a classification technique uses an optimized neural network
to classify plaque tissue from a set of images. A neural network has the ability to sort a dataset
into many different classes. In the embodiment disclosed herein, three different classes of tissue
types are identified: lipid, calcium, and fibrous plaque. It is understood that different

embodiments may include different classes of tissue types.

A set of quantitative image features is provided to the network as a basis for judgment
and using these features, the neural network will make decisions as to what class to sort a pixel

nto.

There are several design considerations associated with the use of these quantitative
features, however. First, the sensitivity and specificity of a neural network can change based
on the features that are provided to it. All of the available features to be inputted into the neural
network are called candidate features. For example, if one has 300 candidate features to choose
from, it might be found that the neural network functions best with a specific set of 150 of those
features instead of the full 300. In order to best classify data, the best features should be selected
amongst a pool of candidates. Having either too few or too many features than optimum can

be damaging to the resulting sensitivity and specificity of the method.

IVOCT expert imaging technicians typically use different features to classify different
types of plaque. For example, when looking for fibrous plaque, imaging technicians will
typically look for high backscattering and homogeneity whereas when searching for calcium
plaque an expert might look at signal quality and delineation of tissue borders. Accordingly,
it is not optimal to use a single network with a single set of features to classify all types of

tissue.

As previously mentioned in the discussion of FIG. 3, a set of features that work best for
sorting fibrous plaque will not be the best features to use for sorting calcific plaque.
Furthermore, the number of nodes comprising the neural network affects its performance with
a given set of features. The optimal set of features and network structure are interdependent

because the inputted features affect the optimal distribution of weights associated with the
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connections between nodes in the network and this can have an impact on sensitivity and
specificity. Therefore, in order to construct an optimized network, one must optimize not only
the features selected to classify the tissue but also the structure of a network based on the

features used.

Accordingly, exemplary embodiments of the present disclosure utilize a multiple-pass,
co-optimized classification system for each tissue type. The method maximizes the sensitivity
and specificity for each type of tissue. The classification system first gathers the quantitative
image features associated with the IVOCT image data along with the truth data from co-
registered histology slides of the tissue. Each type of tissue is handled individually. In the
embodiment disclosed herein, a first network is optimized to detect fibrous plaque, then another
network is optimized to detect calcific plaque, and a third network is optimized to detect lipid
plaque. It is understood, that for additional tissue classes, additional networks can be

constructed.

Referring now to FIG. 4, the feature and node optimized neural network (FANNON)
optimization process 401 for each tissue begins by using each feature individually to evaluate
the data with a neural network to sort each tissue type. The process begins by initializing a
neural network with one node in step 411. The resulting sensitivity and specificity of each
feature method is calculated using a receiver operating characteristic (ROC) curve which plots
the true positive vs. false positive rates of the classifier. The greater the area under the ROC
curve, the greater the sensitivity and specificity of the neural network based on the feature. In
step 421, the features are all ranked according to the area under the ROC curves of the neural
networks they serve as inputs to, from greatest sensitivity and specificity to least sensitivity

and specificity.

After the rank features step in 421, the classification system uses an increasing number
of features from the ranked feature list, starting from 1 to the number of candidate features, and
records the sensitivity and specificity of each group of features in step 431. This process is
repeated for a range of neural network architectures, varying the number of nodes involved. In
step 441, the best combination of number of features and nodes used is selected based on the
sum of sensitivity and specificity of the network to detect the specific type of tissue involved.
The best network for each tissue type has a unique feature set and a unique number of nodes
paired together, creating a Feature and Node Optimized Neural Network (FANONN) that is
used to optimally classify each plaque type.
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The FANONN classification algorithm of exemplary embodiments has been

demonstrated to sort plaque tissue as fibrous, calcium, or lipid plaque as verified by histology

analysis with sensitivities and specificities listed in the table below:

Athanisiou, Prati FANONN n=10
Tissue Type Ughi et al ’ ’ Testing Set
et al
Accuracy
ROI overlap

Accuracy Accuracy Accuracy
Fibrous 89.5 81 96.2
Calcium 72 87 89.7
Lipid 79.5 71 94

The data presented in the table above compares results using FANNON techniques
disclosed herein to studies in literature that attempt to automate the plaque classification
process using IVOCT. The accuracy for each technique is the average of sensitivity and
specificity, where the sensitivity is the proportion of the known plaque type data points that the
algorithm correctly classifies and the specificity is the ratio of correct classifications to total

classifications for a certain category of plaque.

Using accuracy as a reported metric, the direct comparison to current literature studies
helps show the power and novelty of the techniques disclosed herein. It should also be noted
that the typical current approaches [113, 123] to automated plaque classification are limited in

that they are not co-registered with histology, making their classification ground truth weaker.

In addition to this primary classification ability, exemplary embodiments can further
classify lipid lesions as the particularly high-risk TCFA type of lesion with 100% sensitivity
and 100% specificity. Taken with the classification of lipid plaque as the limiting factor, the

algorithm can detect TCFA lesions with 94% accuracy.

Discussion and Conclusion

The described classification techniques and systems can characterize arterial plaque
tissue in the coronary artery into fibrous, calcium, or lipid plaque without any human input

better than other reported methods. Other groups have conducted similar studies to automate
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the characterization of coronary plaque with similar motivations but have not had the same
degree of success. Specific groups in the field include Ughi et al. who have achieved accuracies
of 89.5%, 72%, and 79.5%, and Athanasiou et al. who have achieved accuracies of 81%, 87%,
and 71% accuracies in automated characterization of fibrous, calcium, and lipid plaque,
respectively. The current leading studies by Ughi and Athanasiou use human observers as their
ground truth which makes their classification technique inherently less accurate. In contrast,
exemplary embodiment disclosed herein use histology as the ground truth for training which

improves accuracy and stability.

Exemplary embodiments of the present disclosure achieve high accuracy through not
only the use of histology as the reference truth but also through the classification techniques
disclosed herein. Exemplary embodiments achieve improved results by treating each
individual plaque type individually and allowing the creation of a tailored neural network
structure to optimally classify each type. Such techniques provide for improved results for each

plaque type and can be expanded to as many tissue types as desired.

The FANONN classification method disclosed herein not only classifies plaque tissue
composition with high accuracy but can also provide risk analysis of the tissue after
classification. Of the classified lipid plaque points in an artery, the classification method can
identify plaque lesions as TCFA which are known to be indicative of unstable plaque and lead
to a majority of acute coronary event such as plaque ruptures (Fujii et al, 2015). Such plaque
ruptures can occlude a blood vessel, leading to heart attack or stroke. Unlike previous attempts
to classify TCFA lesions via IVUS imaging (Swada), the FANONN smart algorithm paired
with the micron-level resolution of IVOCT has both the physical resolution and machine
intelligence required to accurately classify these risk-prone plaques. This ability of the
classification method makes it very powerful but also special in that no other group in the world

can provide automated analysis with a higher degree of accuracy.

Referring now to FIGS. 5-8, and in particular FIG. 5, an exemplary embodiment of an
optical coherence tomography system 500 is shown. System 500 can be used to obtain images
of tissue for analysis and classification as described herein. In this embodiment, system 500
comprises an optical coherence tomography light source 510, a splitter 515, optical circulator
520, coupler 525 and balanced detector 530. Splitter 515 is configured to direct light from
OCT light source 510 to a reference path 511 and a sample path 521. In the embodiment
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shown, sample path 521 is directed through patient interface module 502 and catheter 501,
while reference path 511 is directed to a fiber reflector 512 via a photonic crystal fiber 513.

A perspective view of patient interface module 502 is shown in FIG. 6, while a
schematic view of catheter 501 is shown in FIG. 7, and a partial section view of the distal end
of catheter 501 is shown in FIG. 8. As shown in FIG. 7, catheter 501 comprises a bead 535
and an optical connector 534 near proximal end 532. In this embodiment, patient interface
module 502 is configured to control catheter 501 via a torque cable 509 (shown in FIG. 8) that

transmits torque from patient interface module 502 to distal end 531 of catheter 501,

In certain embodiments, patient interface module 502 can be configured to provide 100
mm of linear stroke to catheter 501 at variable translation speeds up to 50 mm per second in
two directions (e.g. push forward or pull back). In addition, patient interface module 502 can
be configured to rotate an imaging port 533 at speeds up to 3,600 revolutions per minute and

obtain 1,000 A-scans per rotation.

In certain embodiments, catheter 501 can be a sterile, single-use disposable catheter
with a 3.2 F crossing profile and monorail design compatible with a 6F guide catheter and a
0.014 inch guide wire. In particular embodiments, catheter 501 may comprise a stationary
outer sheath 551 with an imaging port 557, a rotating and translating torque cable 509 and
optics assembly 552. In specific embodiments, catheter 501 comprises an optical fiber through
its length, with an optic assembly (e.g. a ferrule, gradient index [GRIN] lens, and prism) near
imaging port 557 and distal end 531 of catheter 501. In addition, catheter 501 may comprise a
radiopaque marker 553 on the outer assembly near distal end 531, as well as a radiopaque
marker 554 on the inner assembly near imaging port 557. Catheter 501 may further comprise
a guidewire exit port 558 near distal end 531. It is understood that the dimensions shown in
FIGS. 7 and 8 are merely exemplary, and that other embodiments may comprise configurations

with dimensions different from those shown in this embodiment.

As previously mentioned, certain embodiments may incorporate optical coherence
tomography systems and methods as disclosed in U.S. Patent Publications 2014/0268168 and
2016/0078309 (incorporated by reference herein) to acquire images for analysis. Referring
now to FIG. 9, one exemplary embodiment of such an apparatus 50 comprises an optical
coherence tomography light source 100, a splitter 200, a short pulsed (e.g. two-photon

luminescence) excitation light source 300, a first dichroic element 400 and a second dichroic
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element 450. It is understood that other embodiments may comprise an apparatus with a

different combination of components or fewer components than those shown in FIG. 9.

In this embodiment, optical coherence tomography light source 100 is configured to
emit a first wavelength 110 and splitter 200 is configured to direct first wavelength 110 to a
reference path 210 and a sample path 220. In certain embodiments, optical coherence
tomography light source 100 can be configured as a swept source optical coherence
tomography light source or a broadband optical coherence tomography light source. In
particular embodiments, sample path 220 can be directed through a photonic crystal fiber. In
the embodiment shown, two-photon luminescence excitation light source 300 is configured to
emit a second wavelength 320.

During operation, apparatus 50 can be positioned such that sample path 220 and second
wavelength 320 are directed to a sample site 280 (e.g. via first dichroic element 400 as well as

other components in FIG. 9).

In certain exemplary embodiments, sample site 280 may comprise nanoparticles 260
and in specific embodiments, nanoparticles 260 may be configured as nanorods. In particular
embodiments, nanoparticles 260 may be configured as nanorods comprising gold with a surface
plasmon resonance of approximately 756 nm. In certain embodiments, the configuration of the
nanorods can be selected according to the procedures established in the Example Section 4

provided below.

Apparatus 50 further comprises a photon counting detector 350 configured to detect
two-photon luminescence (TPL) and a balanced detector 250 configured to minimize a non-
interfering OCT component. In specific embodiments, photon counting detector 350 can be
configured as one or more photomultiplier tubes (PMTs). In other embodiments, photon

counting detector 350 can be configured as an avalanche photo diode.

In particular embodiments, components of the system illustrated in FIG. 9 can be
incorporated into a catheter-based system that utilizes a photonic crystal fiber (PCF) to enable
the propagation of light in sample path 220 and second wavelength 320 from TPL excitation
light source 300 to sample site 280. The PCF allows single-mode transmission of both OCT
and TPL excitation light. Single-mode transmission is required in OCT imaging to insure the
modal interference does not occur. Single mode transmission is required for TPL imaging to

ensure the pulse duration of TPL excitation light is not broadened due to modal dispersion. In
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specific embodiments the catheter can be inserted into a blood vessel to obtain intravascular

images utilizing system 50.

During operation, system 50 provides the benefits of both OCT and TPL imaging
technologies in a single system. In exemplary embodiments, the components of system 50
function according to established principles in OCT and TPL fields. Accordingly, while an
overview of the individual OCT and TPL will be provided, it is understood that exemplary
embodiments may utilize various combinations of parameters according to environmental
conditions or other factors. For example, OCT light source 100 can produce near-infrared
light, and the use of relatively long wavelength light allows deeper penetration into the
scattering medium such as an arterial wall. In a particular embodiment OCT light source 100

can be configured to provide light at a wavelength of approximately 1310 nm.

As light in sample path 220 is directed at sample site 280, a small portion of this light
that reflects from sub-surface features of sample site 280 is collected. During operation, a
significant portion of light in sample path 220 is not reflected but, rather, backscatters from the
sample. Although backscattered light contributes background that obscures an image in
conventional imaging, this light can be used beneficially in OCT systems via interferometry.
For example, balanced detector 250 can be used to record the optical path length of received
photons, allowing rejection of most photons that multiply scatter in the tissue before detection.
This can allow recording three-dimensional images of thick samples to be constructed by
rejecting background signal while collecting light directly reflected from regions of interest in
sample site 280. In exemplary embodiments, OCT imaging is generally limited to one to two
millimeters below the surface in biological tissue in sample site 280. At greater depths, the

proportion of light that escapes without scattering is typically too small for detection.

During operation of system 50, TPL light source 300 and photon counting detector 350
are also utilized consistent with established principles in two-photon luminescence microscopy.
In certain embodiments, TPL light source 300 can be configured as a tunable femtosecond laser
producing excitation energy of second wavelength 320 at 760-1040 nm with a maximum pulse
energy of 6 nJ-5 uJ, a pulse width of 100 fs-1 ps, and a repetition rate of 500 kHz-80 MHz. In
particular embodiments, TPL light source 300 may also be configured to produce a spot size
of 10-30 um with a spot area of approximately 78-706.8 um? and a pixel dwell time of 20 ps.
In addition, TPL light source 300 may also be configured to produce 10-1600 pulses per pixel,
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with an average power on sample of 500-2500 mW, an instantaneous power of 0.0625-5 MW

and an instantaneous power density of 2E-4-16E-3 MW/um?.

In the embodiment shown in FIG. 5, first dichroic element 400 can be positioned to
direct second wavelength 320 to sample site 280 via a photonic crystal fiber (PCF). In
particular embodiments, the PCF can have a large sized mode field diameter (20 um) (LMA-
20) available from NKT Photonics. In certain embodiments, the PCF may be configured as a
double-clad fiber, and in specific embodiments, may be a double-clad high NA fiber such as a
model number DC-165-16-Passive Fiber available from Crystal Fibre. Exemplary double-clad
photonic crystal fibers may comprise a large-mode area, single-mode core embedded in a high-
NA multimode fiber structure. Such fibers can allow a single-mode beam to be propagated
forward in the fiber and at the same time scattered light or two-photon luminescence may be
collected and propagated backwards for detection. The use of a double-clad fiber instead of a
single-clad photonic crystal fiber can increase the two-photon luminescence detection
efficiency with a high-NA inner cladding (compared to the low-NA core). It is understood that
the particular specifications of components are presented for purposes of example only, and
that other embodiments may comprise components with different specifications than those

described herein.

During operation of system 50, second wavelength 320 can provide excitation energy
to nanoparticles 260, which can emit luminescence 270 that is directed to photon counting
detector 350 via second dichroic element 450. In exemplary embodiments, the outputs from
the photon counting detector 350 and balanced detector 250 can be configured to be combined
in a single display that allows a user to visualize the results of both OCT and TPL imaging

overlayed.

FIG. 10 illustrates a diagram of a network structure according to an exemplary

embodiment utilizing a CNN.

FIG. 11 illustrates an in-vivo image produced by an exemplary embodiment utilizing a
CNN. In the image, calcific plaque is identified in blue (or darker gray, when viewed in
grayscale), while fibrous tissue in the artery is shown in green (or lighter gray, when viewed in

grayscale).

FIG. 12 illustrates an ex-vivo image produced by an exemplary embodiment utilizing a

CNN. In the image, calcific plaque is again identified in blue (or darker gray, when viewed in
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grayscale), while fibrous tissue in the artery is also shown in green green (or lighter gray, when

viewed in grayscale).

L I S I K I I I O I

All of the devices, systems and/or methods disclosed and claimed herein can be made
and executed without undue experimentation in light of the present disclosure. While the
devices, systems and methods of this invention have been described in terms of particular
embodiments, it will be apparent to those of skill in the art that variations may be applied to
the devices, systems and/or methods in the steps or in the sequence of steps of the method
described herein without departing from the concept, spirit and scope of the invention. All
such similar substitutes and modifications apparent to those skilled in the art are deemed to be

within the spirit, scope and concept of the invention as defined by the appended claims.
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CLAIMS:

1. A method of improving discrimination between superficial lipid and calcium versus fibrous
tissue and lipid, calcium tissues, and connective tissue, the method comprising:
aquiring an image, wherein the image is constructed signal from a point or linear array
transducer;
analyzing how the image was constructed and mathematically extracting derived data from
the image; and
applying an orthogonal convolutional neural network (OCNN) to optimize consideration

of the derived data.

2. The method of claim 1 wherein the image is obtained using an optical coherence tomography
(OCT) process.

3. The method of claim 2 wherein the derived data comprises attenuation data of an A-scan

performed during the OCT process.

4. The method of claim 1 wherein the derived data comprises two-dimensional (2D) standard

deviation data.

5. The method of claim 1 further comprising appyling the OCNN to non-derived data.

6. The method of claim 5 wherein the non-derived data comprises polarization data.

7. A system comprising:

an imaging device comprising an optical coherence tomography light source, wherein
the imaging device is configured to obtain an image of intravascular tissue

comprising plaque; and

a non-transitory computer readable medium configured to:
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analyze a pixel of the image with a first neural network configured to classify the

plaque as a first tissue type of a plurality of tissue types;

analyze the pixel of the image with a second neural network configured to classify

the plaque as a second tissue type of the plurality of tissue types; and

analyze the pixel of the image with a third neural network configured to classify

the plaque as a third tissue type of the plurality of tissue types.

8. The system of claim 7 wherein histological data from the plurality of tissue types is analyzed

to characterize tissue types of pixels selected to train the first, second and third neural networks.

9. The system of claim 7 wherein the first tissue type is lipid plaque, the second tissue type is

a calcific plaque, and the third tissue type is a fibrous plaque.

10. The system of claim 7 wherein the non-transitory computer readable medium is configured
to optimize the first, second and third neural networks by evaluating a plurality of features of
the image with nodes of the first, second and third neural networks to calculate sensitivity and

specificity of the plurality of features using a receiver operating characteristic (ROC) curve.

11. The system of claim 10 wherein the plurality of features comprise one or more of the
following Gray Level Co-Occurrence Matrix (GLCM) features: contrast, energy, correlation,

homogeneity, entropy, and maximum probability.
12. The system of claim 10 wherein the plurality of features comprise one or more of the
following two-dimensional image statistics: mean value, variance, skewness, kurtosis, and

energy.

13. The system of claim 7 wherein the optical coherence tomography light source is configured

as a swept source optical coherence tomography light source.

14. The system of claim 7 wherein the optical coherence tomography light source is configured

as a broadband optical coherence tomography light source.
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15. The system of claim 7 wherein the imaging device further comprises a short pulsed

excitation light source.

16. The system of claim 15 wherein the short pulsed excitation light source is a two photon

luminescence light source.

17. The system of claim 15 wherein the imaging device further comprises a photonic crystal
fiber configured to simultaneously:
enable single-mode propagation of a first wavelength from the optical coherence
tomography light source to a sample site;
enable single-mode propagation of a second wavelength from the short-pulsed light
source to the sample site;
transmit an optical coherence tomography signal from the sample site, wherein the optical
coherence tomography signal is generated from the first wavelength; and
transmit an emission signal from the sample site, wherein the emission signal is induced by

the second wavelength from the short-pulsed light source.

18. The system of claim 17 further comprising a first dichroic element.

19. The system of claim 17 wherein the first dichroic element is configured to direct the first

and second wavelengths to the sample path.

20. The system of claim 17 further comprising a second dichroic element.

21. The system of claim 20 wherein the second dichroic element is configured to direct two

photon luminescence toward a photon counting detector.

22. The system of claim 15 further comprising a balanced detector.

23. The system of claim 22 wherein the balanced detector is configured to minimize a non-

interfering OCT component.

24. The apparatus of claim 7 further comprising a photon counting detector.
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25. The apparatus of claim 24 wherein the photon counting detector is a photomultiplier tube.

26. The apparatus of claim 24 wherein the photon counting detector is an avalanche photo
diode.

27. The apparatus of claim 24 wherein the photon counting detector is configured to detect

two-photon luminescence.

28. A method of characterizing coronary plaque, the method comprising:

obtaining an image of a sample site using an optical coherence tomography light source
emitting light from an optical fiber, wherein the image comprises intravascular tissue

comprising plaque;

analyzing quantitative data of a pixel of the image with a first neural network configured
to classify the plaque as a first tissue type of a plurality of tissue types, wherein the first neural

network comprises a first plurality of nodes and reads a first plurality of features;

analyzing quantitative data of the pixel of the image with a second neural network
configured to classify the plaque as a second tissue type of the plurality of tissue types, wherein
the second neural network comprises a second plurality of nodes and reads a second plurality

of features; and

analyzing quantitative data of the pixel of the image with a third neural network
configured to classify the plaque as a third tissue type of the plurality of tissue types, wherein
the third neural network comprises a third plurality of nodes and reads a third plurality of

features.

29. The method of claim 28 wherein histological data from the plurality of tissue types is
analyzed to characterize tissue types of pixels selected to train the first, second and third

neural networks.

30. The method of claim 28 wherein the first tissue type is lipid plaque, the second tissue type

is a calcific plaque, and the third tissue type is a fibrous plaque.
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31

32.

33.

34.

35.

36.

37.

38.

39.

The method of claim 28 wherein the quantitative data includes classifying features
comprising one or more of the following: contrast, energy, correlation, homogeneity,

entropy, and maximum probability.

The method of claim 28 wherein the plurality of features comprise one or more of the
following two-dimensional image statistics: mean value, variance, skewness, kurtosis, and

energy.

The method of claim 28 further comprising optimizing the first, second and third neural
networks by calculating a receiver operating characteristic (ROC) curve which plots a true

positive versus a false positive rate for a plurality of classifying features of the image.

The method of claim 33 method further comprising calculating an area under each receiver

operating characteristic (ROC) curve for each of the plurality of classifying features.

The method of claim 34 further comprising ranking the plurality of classifying features by
the area under each receiver operating characteristic (ROC) curve for each of the plurality

of classifying features.

The method of claim 35 further comprising calculating a sensitivity and a specificity of the
classifying features for the first, second and third neural networks.
The method of claim 36 wherein the sensitivity is a proportion of known plaque type data

points that are correctly classified by each of the first, second and third neural networks.

The method of claim 36 wherein the specificity is a ratio of correct classifications to total
classifications for a certain category of plaque tissue types for each of the first, second and

third neural networks.

The method of claim 36 wherein each of the first, second and third neural networks is
optimized by selecting a combination of nodes and classifying features for each of the
first, second and third neural networks that result in the highest value of a sum of the

specificity and sensitivity.
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40. A system comprising:

an imaging device comprising an optical coherence tomography light source, wherein

the imaging device is configured to obtain an image of intravascular tissue; and

a non-transitory computer readable medium configured to analyze a pixel of the
image with a first neural network configured to classify the intravascular tissue in

the image as a first tissue type of a plurality of tissue types.

41. The system of claim 40 wherein histological data from a plurality of tissue types is analyzed

to characterize tissue types of pixels selected to train the first neural network.

42. The system of claim 40 wherein the non-transitory computer readable medium is
configured to analyze the pixel of the image with a second neural network configured to
classify the intravascular tissue in the image as a second tissue type of the plurality of

tissue types.

43. The system of claim 42 wherein the non-transitory computer readable medium is
configured to analyze the pixel of the image with a third neural network configured to

classify the intravascular tissue in the image as a third tissue type of the plurality of tissue

types.

44. A method of improving discrimination between superficial lipid and calcium versus fibrous
tissue and lipid, calcium tissues, and connective tissue, the method comprising:
(1) creating a database of a-scans characteristic of each fibrous, calcium, lipid, and
connective tissue based on histology and user input;
(2) parsing individual a-scans one at a time from a b-scans;
(3) delimiting a tissue region;
(4) identifying an index of an initiation of a signal decay region;
(5) identifying an index of a termination of the signal decay region;
(6) calculating a goodness-of-fit (GOF) to a Gaussian function;
(7) extracting a denominator coefficient in the Gaussian function;
(8) calculating an area under a signal decay region;

(9) calculating an area under a total delimited tissue region; and
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(10) inputting statistics from steps (4) and (5) into a linear discrimination analysis

(LDA) trained on the database to classify an a-scan as fibrous, calcium or lipid.

45. The method of claim 44 further comprising biasing thresholds on a neural network based

on a-scan classification obtained in step (10) of method 38.

46. The method of claim 44 wherein delimiting a tissue region comprises sampling from a start

of a lumen to a point where an intensity is five percent of a maximum intensity.

47. The method of claim 44 wherein identifying an index of an initiation of a signal decay
region comprises:
using a panning window algorithm where slope is calculated between intensity
values at end points of a window; and
determining a signal decay region i when five consecutive windows show anegative

slope.
48. The method of claim 44 wherein identifying an index of a termination of the signal decay

region comprises identifying five consecutive windows with positive slope one in the

signal decay region.
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Group I: Claims 1-6 are directed to obtain images to analyze how they were constructed and extract derived data in order to apply
orthogonal convolutional neural network (OCNN) to optimize consideration and improve discrimination.

Group Il: Claims 7-43 are directed to obtaining an image and analyzing the pixel in the image using three different neural networks in
order to classify the type of plaque.

Group WI: Claims 44-48 are directed to parsing a-scans, deliminting and calculating a tissue region and the area under a signal decay
region, using a Gaussian function to calculate and extract data, and inputting index data into a linear discrimination analysis to classify
an a-scan as fibrous, calcium or lipid.
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The special technical feature of Group 1l is parsing a-scans, deliminting and calculating a tissue region and the area under a signal
decay region, using a Gaussian function to calculate and extract data, and inputting index data into a linear discrimination analysis to
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Research teaches obtaining and analyzing images/a-scans (e.g.the imaging device is configured to obtain an image of intravascular
tissue; and a non-transitory computer readable medium configured to analyze a pixel of the image with a first neural network configured
to classify the intravascular tissue in the image as a first tissue type of a plurality of tissue types, pg. 9, In 15-18);

and neural network/linear discrimination analysis (e.g. Each of these textural features is again calculated with intensity and attenuation.
The optimization process for the algorithm to classify each tissue type selects from these windowed and GLCM features ...a
classification technique uses an optimized neural network to classify plaque tissue from a set of images. A neural network has the ability
to sort a dataset into many different classes. In the embodiment disclosed herein, three different classes of tissue types are identified:
lipid, calcium, and fibrous plaque, pg. 16, In 7-15; e.g. The statistical and gaussian features can be fed into a classifier, like Linear
Discriminant Analysis in an exemplary embodiment, to classify each Ascan as corresponding to Lipid, Fibrous, or Calcium tissue, pg. 10,
in 15-17).

Groups |, and Il share the technical feature of a method of improving discrimination between superficial lipid and calcium versus fibrous
tissue and lipid, calcium tissues, and connective tissue, the method comprising and extracting/parsing data. However, this shared
technical features does not represent a contribution over Research.

Research teaches a method of improving discrimination between superficial lipid and calcium versus fibrous tissue and lipid, calcium
tissues, and connective tissue, the method comprising (e.g.improve discrimination between the three classified tissue types, fibrous,
calcium and lipid, individual A-scans in IVOCT images undergo pre processing and classification. First individual A-scans are delimited
to signal from the start of the lumen boundary to where the signal is attenuated, pg. 9. In 27-30; e.g. improving discrimination between
superficial lipid and calcium versus fibrous tissue and lipid, calcium tissues, and connective tissue, pg. 10, In 28-30);

and extracting/parsing data (e.g. From these artery scans, image data points were extracted, pg. 14,In 9-10; e.g. Classification was
automated based on a series of quantifiable image features acquired using an IVOCT scan of the coronary artery. Extraction of image
data for classification of plaque required reading specific quantitative measures from the images, known as quantitative features, pg. 15,
In 11-14).
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Groups Il and I share the technical feature of classifying plaque/tissuefimage/a-scan. However, this shared technical features does not
represent a contribution over Research.

Research teaches classifying plaqueftissue/image/a-scan (e.g. Each of these textural features is again calculated with intensity and
attenuation. The optimization process for the algorithm to classify each tissue type selects from these windowed and GLCM features ...a
classification technique uses an optimized neural network to classify plaque tissue from a set of images. A neural network has the ability
to sort a dataset into many different classes. In the embodiment disclosed herein, three different classes of tissue types are identified:
lipid, calcium, and fibrous plaque, pg. 16, In 7-15).

Thus, unity of invention is lacking under PCT Rule 13.1 because Groups | through i do not share a same or corresponding special
technical feature that would provide a unifying contribution over the prior art. None of these special technical features are common to the
other groups.
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