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PARTIALLY SUPERVISED MACHINE LEARNING OF DATA
CLASSIFICATION BASED ON LOCAL-NEIGHBORHOOD LAPLACIAN
EIGENMAPS

FIELD OF THE INVENTION

[0001] The present invention relates generally to machine learning and more particularly to

machine based, semi-supervised, classification of unlabelled data.
BACKGROUND OF THE INVENTION

[0002] Semi-supervised machine learning involves the ability of a machine to learn a
classification or regression function from a set of both labelled and unlabelled sample data
points. This is an important problem because in many domains, such as for example image,
audio, and text documents, unlabelled data is much easier and cheaper to collect than labelled
data. However, a large amount of data is not very useful unless we can determine what the
. data is or what it relates to. Thus, the ability of a machine to classify unlabelled data provides
a significant advantage for processing large amounts of data for a useful purpose. For
example, machine-based classification of images is used in a myriad of applications, e.g., face
recognition, motion detection, and the like.

[0003] The basic idea of semi-supervised machine learning is to learn or estimate (often
implicitly) an underlying density function between labelled and unlabelled data points to
| classify the unlabelled data points. Generally, in most practical applications data points include
many variables or dimensions, i.e., the data points belong to a high dimensional space. For
example, a digital image may have as many dimensions as there are pixels in the image (e.g., 5
million dimensions). The estimation of density functions in such high dimensional spaces may
require exponentially many more examples than the dimensionality (“4”) of the space.
Therefore, generally an assumption is made with respect to the relationship between data
points in a dataset. A common assumption is that the data points in a dataset, due to the
relationships between the data points, form a lower-dimensional structure or manifold in a
high-dimensional space.

[0004] Generally there are two different approaches for machine-based classification of
unlabelled data: the transductive inference (“TIT”) approach and the semi-supervised inductive
inference (“SSII”) approach. Based on the TI approach, the machine classifies unlabelled data
points from a given set of labelled and unlabelled data points. All the data points are provided

to the system before the learning commences. Conversely, the SSII approach relies on a
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training set consisting of both labelled and unlabelled examples, and a separate set containing
unlabelled data points only for classification. According to the SSII approach, the training set
is first used to construct or learn a function that can then be used to classify the unlabelled data
points in the subsequent set.

[0005] An important distinction between the TI and SSII approaches is the amount of
computational resources required for their implementation. With unlimited resources, an SSII
problem can be solved by running a TI algorithm in real time, where data points are provided
to the system and classified in real time. However, because of computational resource
limitations, processing a training set first makes it so that classifying new examples is
substantially less computationally expensive than running a real time TT algorithm. In general,
SSII algorithms are not more accurate than T algorithms, because every SSII algorithm can be
trivially viewed as a TI algorithm. In other words, knowing the unlabelled data points before
learning begins cannot make classification more difficult. Therefore, SSII algorithms can
generally perform only as good as a “corresponding” TT algorithm. Where accuracy is more
desirable, TT algorithms are preferred and if they can be made sufficiently fast, they can
replace corresponding SSII algorithms. However, TI algorithms operate over a closed set of
data points. Thus, where flexibility to introduce new out-of-sample unlabelled data points is
desired, SSII algorithms are preferred because they avoid the computational expense of re-
learning the density functions for each new data point.

[0006] There are a number of algorithms for semi-supervised learning on manifolds. Several
of the manifold-learning algorithms are quite similar: work of Bengio et al. (2003) places
multi-dimensional scaling (Cox & Cox, 1994), spectral clustering (Ng et al., 2002), Laplacian
Eigenmaps (Belkin & Niyogi, 2004), isomap (Tenenbaum et al., 2000), and locally linear
embedding (Roweis & Saul, 2000) in a single mathematical framework (all of which are
incorporated herein by reference).

[0007] One effective approach for semi-supervised machine learning includes the Laplacian
Eigenmaps (“LE”) algorithm. The MATLAB code that implements the LE algorithm is
available at http://people.cs.uchicago.edu/~misha/ManifoldLearning/MATLAB/Laplacian.tar
and is incorporated herein by reference. The LE algorithm has been demonstrated on the
MNIST hand-written digit dataset (available at http://yann.lecun.com/exdb/mnist/index.html).
A sample dataset 100 from the MNIST database is shown in FIG. 1. A first set of labelled
points 102 is provided and a second set of unlabelled points 104 is to be classified. The LE

algorithm was used to perform a digit classification task (as well as on several other tasks)
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using very few labelled examples (as further detailed below) and showed a reasonably good
accuracy.

[0008] However, there are several drawbacks to the LE algorithm. The LE algorithm is very
computationally expensive. For example, one resource intensive computation LE requires is
the computation of the adjacency graph. Using a direct approach, the distance between all pairs
of data points is computed, and for each point, the closest neighbors are kept. For a large
dataset, the O(n’d) time to compute all the distances dwarfs the time required to keep track of
the closest neighbors. This step can be implemented to use only linear memory, but O(nd)
time can be prohibitive for very large problems.

[0009] An even more computationally demanding step is the solution of the eigenvalue
problem. The LE algorithm requires the computation of an eigendecomposition of an
adjacency graph built over the dataset. Although this graph is extremely sparse, interior
eigenvectors are required, making the eigendecomposition extremely expensive. For a large,
sparse matrix, eigenproblems can be solved, for example based on MATLAB code using the
implicitly restarted Arnoldi method, an iterative method provided by ARPACK (Lehoucq &
Sorensen, 1996; Lehoucq et al., 1998), which are incorporated herein by reference. The largest
eigenvalues of a sparse matrix (and their corresponding eigenvectors) can be found rapidly
using only sparse matrix-vector multiplications (Golub & Loan, 1996, incorporated herein by
reference). However, the eigenvectors corresponding to the smallest eigenvalues of the
Laplacian graph matrix (“L”) are required; ARPACK needs to factorize L in the inner loop of
the algorithm in order to do this. This factorization will be substantially less sparse than L
itself. The factorization can require O(n®) time and O(n”) memory. In practice, a machine with
two gigabytes (“GB”) of random access memory (“RAM”) was unable to process the 60,000-
point MNIST dataset with the LE algorithm due to lack of memory. This indicates that
performing a global eigendecomposition on a very large dataset may well be infeasible in
many conventional systems.

[0010] Another drawback is that the LE algorithm is a transductive inference TI algorithm
without an obvious, computationally-effective way to convert it to an SSII algorithm. There is
no obvious way to apply the LE approach to new out-of-sample data points without solving the
resource-intensive global eigenvalue problem. Thus LE algorithm is ineffective for labeling
new data points that were not part of the initial dataset.

[0011] Accordingly, what is needed is a machine learning system and method for semi-

supervised learning on manifolds that (1) is less computationally expensive than existing
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methods, and (2) can provide new point classification without requiring re-computation over
the entire dataset.
SUMMARY OF THE INVENTION

[0012] The present invention includes methods, computer readable media, and systems for
semi-supervised machine learning based on local-neighborhood Laplacian eigenmaps
(“LNLE”) approaches. LNLE provides a fast TI algorithm that can be easily extended into an
SSII algorithm. LNLE enables machine classification of an unlabelled data point by
considering the entire dataset to consist of only those data points in a local neighborhood of the
data point to be classified. The notion of a local manifold structure is used to provide more
relevant information for classification of unlabelled data points than the global manifold of the
entire dataset.

[0013] According to one aspect of the invention, LNLE avoids computing an
eigendecomposition over the entire dataset because the classification is focused on a localized
version of the dataset, thus allowing a system to process much larger datasets. Additionally,
new points are easily classified by adding them to an adjacency graph structure and processing
them with respect to their local neighborhood.

[0014] According to another aspect of the invention, LNLE allows a system to divide
 classifications of unlabelled data points into “high confidence” and “low confidence”
classifications.

[0015] In accordance with one illustrative embodiment of the present invention, a computer-
based method, computer readable media, and a system are provided for learning labels for
unlabelled data points. In one embodiment, a method includes determining relative distances
between all the data points in a dataset. The method also includes determining a set of
" neighboring data points with respect to the unlabelled data point. An eigen decomposition of a
matrix of distances between the set of neighboring data points is performed to determine a
function. Finally, the unlabelled data point is labelled based on the result obtained from
evaluating the function with respect to the unlabelled data point.

[0016] In an alternative embodiment, a method also includes labeling an additional
unlabelled data point that was not part of the initial dataset. The additional unlabelled data
point is received and its relative distance with respect to the data points in the original dataset
is determined. A second set of neighboring data points with respect to the additional data point
is then determined. The method also includes determining an eigen decomposition of a matrix
of distances between this second set of neighboring data points to determine another function.

Then, based on an evaluation of the function the additional unlabelled data point is labelled.
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[0017] In an alternative embodiment a confidence value is provided based on a number of
labelled data points that are determined to be within the set of neighboring data points.

[0018] The features and advantages described in the specification are not all inclusive and, in
particular, many additional features and advantages will be apparent to one of ordinary skill in
the art in view of the drawings, specification, and claims. Moreover, it should be noted that the
language used in the specification has been principally selected for readability and instructional
purposes, and may not have been selected to delineate or circumscribe the inventive subject
matter.

BRIEF DESCRIPTION OF THE DRAWINGS

[0019] FIG. 1 is a sample dataset from the MNIST database of hand-written digits.

[0020] FIG. 2 shows a system block diagram illustrating a sample embodiment of a machine
learning system.

[0021] FIG. 3 shows a functional block diagram illustrating one embodiment of a semi-
supervised machine learning LNLE classifier module.

[0022] FIG. 4 shows a flow chart illustrating one embodiment of an LNLE method for
implementing a TI algorithm.

[0023] FIG. 5 shows a flow chart illustrating one embodiment of an LNLE method for
implementing an SSII algorithm.

[0024] The Figures and the following description relate to preferred embodiments of the
present invention by way of illustration only. It should be noted that from the following
discussion, alternative embodiments of the structures and methods disclosed herein will be
readily recognized as viable alternatives that may be employed without departing from the
principles of the claimed invention.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

[0025] Throughout the following description labelled data points are referred to as ny, and
unlabelled data points are referred to as ny. A dataset n is thus defined as n;, +ny. The letter
y is used to denote the labels of the labelled data points n;. The term eigenpair is used to refer
to an eigenvalue A and its corresponding eigenvector v, and the magnitude of an eigenpair is
defined as |( A, V)| =| A |.

[0026] Referring now to FIG. 2, a system block diagram illustrating a sample embodiment of
* a machine learning system is shown. The machine learning system 200 receives data units
(e.g., data points ny, and ny) from a data storage unit 202. The data units may belong to an
existing dataset n, e.g., the MNIST dataset, or may be received from a data source 204 and
stored in the data storage unit 202. For example, a data source 204 may include a digital
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- imaging device (e.g., a camera, image sensor, or the like), a digital audio recording device, or
other digital data capturing devices. Alternatively, a data source 204 may be a remote data
transmission system transmitting data through a wired or wireless network, e.g., an audio or
video broadcasting system. In one embodiment, the data source 204 and data storage unit 202
are external to a machine 206 for performing machine learning functions on the data. In an

‘ alternative embodiment the data source 204 is included within the machine 206. For example,
machine 206 may include a device for capturing the data units, e.g., a camera equipped
automotive vehicle. In yet another embodiment the data source 204 is combined with the data
storage unit 202, and is either internal or external to the machine 206, e.g., a video compact
disk ("CD”) may be a data source 204 and data storage unit 202 included in a computer with a
CD player.

[0027] In one embodiment, machine 206 is a conventional general-purpose computer, such as
for example, an Intel® processor based personal computer. However, machine 206 includes
any machine with computing resources capable of implementing the algorithms described
herein, for example, machine 206 may be embodied as an intelligent vehicle, a humanoid
robot, or other computing capable systems.

[0028] In one embodiment, machine 206 includes an input/output (“I/0”) module 208 for
interfacing with external devices, such as an external data storage unit 202. The I/O module
208 loads data to a memory 214 internal to the machine 206. For example, in one
embodiment, a general-purpose computer with two GB of RAM is used as further described
below. Other embodiments may include different memory 214 configurations, such as on-chip
cache memory, flash memory, or the like.

[0029] The machine 206 also includes a processor 210. In one embodiment, processor 210 is
a conventional computer microprocessor, such as a Pentium® processor available from Intel
Corporation of Santa Clara, CA, an Athlon™ processor available from Advanced Micro
Devices, Inc. of Sunnyvale, CA, a G5 processor from Apple Computer, Inc. of Cupertino, CA,
or the like. In alternative embodiments, processor 210 may be one or more of other logic
processing devices, such as embedded processors, custom processors, microcontrollers,
programmable ASICs, or the like.

[0030] Machine 206 also includes a local-neighborhood Laplacian eigenmaps (“LNLE”)
classifier module 212. In one embodiment, the LNLE classifier module 212 is implemented in
software with instructions that when executed by processor 210 implement one or more
methods as described below. The LNLE classifier module 212 can be stored in data storage

unit 202 and loaded to RAM 214 for execution by processor 210. In an alternative
6
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embodiment the LNLE classifier module 212 is implemented in hardware as an ASIC for semi-
supervised machine learning. In yet another embodiment, the LNLE classifier module 212 is
implemented as firmware in an internal flash memory device configured to operate with a
custom controller processor 210. Other embodiments with various combinations of software
and hardware for the LNLE classifier module 210 are possible and considered to be included
within the scope of the claimed invention.

[0031] In one embodiment, the machine learning system 200 also includes one or more user
interface devices 216. For example, user interface devices 216 may include a graphics display
'~ (e.g., a monitor, flat panel display, or the like), a keyboard, a pointing device, and other similar
user input/output devices. The user interface devices 216 are coupled to the machine 206
through one or more I/O modules 208. In one embodiment, although user interface devices
216 are not present during normal operation, machine 206 includes an I/O module 208
configured to provide a connection (either wired or wireless) to one or more user interface
devices 216, for example, for labeling a training set of data points n;, programming, trouble-
shooting, monitoring, or the like. Such an embodiment of the machine 206 may include an
intelligent vehicle, a robot, or the like.

[0032] Now referring to FIG. 3, a functional block diagram illustrating one embodiment of a
semi-supervised machine learning LNLE classifier module is shown. In one embodiment, the
LNLE classifier module 212 includes a map module 302. The map module 302 has access to
the dataset n for constructing an adjacency graph or matrix, also called the adjacency map.
Generally, the adjacency map is stored in memory 214 accessible to other modules. The
LNLE classifier module 212 also includes a neighborhood module 304. The neighborhood
module 304 accesses the adjacency map, e.g., from memory 214, to determine a set or cluster
of neighboring data points with respect to a given data point ny. In addition, the LNLE
classifier module 212 includes an eigen decomposition (“ED”) module 306 that is coupled to
the neighborhood module 304 for estimating density functions with respect to the set or cluster
of neighboring data points. An evaluation module 308 evaluates the density functions
estimated by the ED module 306 for the unlabelled data point ny and provides a result with an
associated confidence value. The label classifier 310 is coupled to the evaluation module 308
to receive the evaluation result and classify the ny data point according to the evaluation result.

[0033] Now referring to FIG. 4, a flow chart illustrating one embodiment of an LNLE
method for implementing a TI algorithm is shown. In this embodiment, an initial dataset n is
input 402. The dataset n includes a small number of labelled sample data points n;, and

unlabelled sample data points ny for classification. Based on the dataset n, a global adjacency
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graph or matrix is generated 404, for example, as a sparse symmetric adjacency matrix W. To
generate 404 the adjacency matrix W, with respect to each data point, a matrix element w;; = 1
if data point i is one of the nearest neighbors £ of data point j or if j is one of the nearest
neighbors of data point 7, and w;; = 0 otherwise. For the construction of the global adjacency
matrix W, £ is a programmable parameter to define the number of nearest neighbors for each
point, e.g., eight. It should be noted that, in addition to simple 1s and Os, other values, e.g.,
relative distances between data points or the like, can be used to compose the adjacency matrix
(e.g., weighted adjacency matrices). For example, in one embodiment, point distances
weighted by the “heat kernel” distance (“d”), i.e., d(x1, x2) = exp( ||x1-x2|[*/c ), are used. In
this embodiment, ¢ corresponds to a programmable parameter for normalizing the distance
values, for example, in one embodiment c is set to the square root of the expected distance
between pairs of data points. In another embodiment, instead of using the “heat kernel”
distance, actual distances between data points in the high-dimensional space are used, e.g.,
distance measured in number of pixels.

[0034] Next, in one embodiment, an unlabelled point x is selected 406 for classification. The
selection 406 may be provided by a user, randomly chosen, or based on other factors. With
respect to the selected point x (ny = x), a local neighborhood or cluster is determined 408. In
one embodiment, a breadth-first search is used to construct a subgraph or local adjacency
matrix Wy of the full adjacency graph W consisting of the determined local neighborhood
around x. To generate 408 the local adjacency matrix Wy, a number £, of nearest neighbors of
data point x are found. For example, in one embodiment 2000 nearest neighbors are used. The
ky closest data points to x in the adjacency graph W are selected, where £, is another
programmable parameter and it can be tuned according to computational resources and
required accuracy e.g., in the experiments conducted %, values of between 2000 to 4000 were
used. With the £; local neighbors, the graph local Laplacian Ly (Ly= Wy — By) is constructed.
By is a diagonal matrix whose elements are the row sums of Wy (i.e., bii = X; wj; ).

[0035] In this embodiment, a local eigen decomposition is performed 410 next. The local
Laplacian Ly is symmetric and positive semi-definite. From spectral graph theory, it is known
that any function defined at the vertices of the adjacency graph can be decomposed into a sum
of eigenfunctions of its Laplacian. In addition, eigenfunctions corresponding to the smallest
eigenvalues of the Laplacian are known to be smooth. Therefore, to perform the local eigen
decomposition 410 of the local Laplacian Ly, the p smallest eigenpairs (A, v) of Ly are derived
(where p is another programmable parameter of the algorithm). In one embodiment, the

eigenvalues (A) themselves are ignored. The » by p eigenvector matrix E is partitioned into the
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ng, by p matrix E; and the ny by p matrix Ey corresponding to the labelled and unlabelled
points. If p is much smaller than the dimensionality of the data points d, this transformation to
the eigenfunction space can be viewed as a dimensionality reduction. However, generally, a
better choice of p is larger than d. After the eigen decomposition is completed, a smooth
function ay in the local graph Wy is determined. In one embodiment, a linear least-squares fit
is performed to find a smooth function ay in the local subgraph Wy.

[0036] Next, the function ay is evaluated 412 with respect to the selected data point x. In one
embodiment, a simple linear least-squares regression is solved with respect to the local
subgraph Wy. Assuming that the problem is binary (i.e., only two labels are provided in the

labelled set for classification), the p-dimensional hyperplane ay is constructed by solving:
E Ea. =Ey
[0037] Given ay, the output at the unlabelled points is given by:
Yo =Eya,.
[0038] In one embodiment, if the classification task is multiclass (i.e., the sample labelled set
includes more than two classes), a one-vs-all hyperplane a° is constructed for each class ¢ by

solving the equation above with a right-hand-side y°, where y; =1 if the ith labelled data point

ny,; belongs to class ¢ and y/= 0 otherwise.

[0039] Once the function y is evaluated, the selected data point x is classified 414 by
applying a label or classification to the previously unlabelled data point. In one embodiment,
one of two labels is selected based on the result of the function. For example, a first label
corresponds to a positive result (yy > 0) and a second label corresponds to a negative result (yy
<0). In a multiclass embodiment, the final classification can be made by applying each of the
a° to an unlabelled point ny and selecting the class ¢ with the highest score. It should be noted
that the eigenvector matrix E;, does not depend on the class ¢. Accordingly, the second
equation above is solved for each class ¢, but the eigendecomposition is performed only once.

[0040] Additional unlabelled data points ny in the dataset n are similarly processed 416 by
repeating steps 406-414. At any time, the classification of one or more data points is output
418. In one embodiment, the output involves accessing a dataset data structure and writing the
class label in a predefined field associated with each data point. In another embodiment, the
output 418 involves displaying the data point, e.g., an image, as a result of a recognition task,
e.g., an image based face recognition application. Many other output methods are possible and

considered within the scope of the present invention.
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[0041] The LNLE algorithm has several advantages. For example, one advantage includes
the absence of a global eigendecomposition of the entire adjacency graph W. In conventional
approaches, the global eigendecomposition is the most time-consuming and computationally
intensive step. In addition, due to the significant memory requirements for processing, a global
~ eigendecomposition for very large datasets may not be possible in conventional computer
systems. The LNLE algorithm alleviates this problem by performing a local
eigendecomposition, which allows the algorithm to be extended to much larger datasets.
Another advantage is that given the local nature of LNLE, it is easy to construct an SSII variant
of the algorithm as illustrated in FIG. 5.

[0042] Referring now to FIG. 5, a flow chart illustrating one embodiment of an LNLE
method for implementing an SSII algorithm is shown. In this embodiment, the steps described
with respect to FIG. 4 are assumed to be performed with respect to the initial dataset n
(illustrated by connector A). A new out-of-sample unlabelled data point x’ is received 502.
The out-of-sample data point X’ is not part of the original dataset n, which was input at step
402. For example, out-of-sample data point x’ may be a new image captured by a data source
204. The new data point x’ is added 504 to the adjacency graph W building an augmented
adjacency graph W’ by determining the & local neighbors, e.g., eight, around x” and adding the
corresponding values to the adjacency matrix, e.g., distances, 0/1, or the like. Then, the larger
group of k, local neighbors (e.g., 4000) around new data point x’ are found 508 to build a local
neighborhood subgraph Wy in the augmented adjacency graph W’. Then, steps 510-518 are
essentially a repetition of steps 410-418 with respect to the new data point x’. Thus, the
treatment of out-of-sample and in-sample points is similar. Accordingly, the algorithms
perform nearly identically on out-of-sample and in-sample points.

[0043] Another aspect according to one embodiment of the present invention involves a
confidence determination with respect to the classification result. According to one
embodiment, an LNLE algorithm constructs a local neighborhood subgraph Wy, performs a
local eigendecomposition, and solves a least-squares problem for each unlabelled data point ny
to be classified. Under some circumstances the initial dataset n may include a very small
number of sample labelled data points n;. Under these circumstances, there is a substantial
chance that a local neighborhood around an unlabelled data point ny will contain no labelled
data points ny, within it.

[0044] To address this potential problem, in one embodiment, two approaches for LNLE
classification methods are provided. A first approach, LNLE(G), operates based on a random
estimate of a label. Using an LNLE(G) approach, when the local neighborhood Wy for a given

10
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data point x (ny = X) contains no labelled data points ny, a random guess for the class label to

- give the data point x is made. The resulting classification ¢ of the data point includes a “low
confidence” indication. Conversely, in one embodiment, where labelled data points n, exist in
the local neighborhood Wy, a “high confidence” indication is provided. In yet another
embodiment, the confidence determination is based on a scale (e.g., including more than two
values) according to the number of labelled data points ny, within the local neighborhood Wy of
. the data point x being classified.

[0045] Another approach to address the low labelled-samples problem is the LNLE(R)
rejection approach. Using an LNLE(R) approach, when an unlabelled point x is selected for
classification and there are no labelled data points ny, are within the local neighborhood Wy, a
classification rejection is made and no classification results. Alternatively, in one embodiment,
when a rejection condition is determined, the neighborhood size £, is enlarged by a factor A (&,
= k. + A) iteratively until the rejection condition does not occur, i.e., at least one labelled data
point n;, becomes part of the local neighborhood Wy, or until the size of the neighborhood W
becomes excessively large (e.g., a maximum £ is reached).

EXPERIMENTAL RESULTS ACCORDING TO EXPERIMENTAL EMBODIMENTS

[0046] In this section a report on a collection of experiments designed to compare the LE and
LNLE algorithms is provided. Two primary questions are addressed. The first question is
whether LNLE is as accurate as LE. The second is whether LNLE is computationally less
demanding than LE.

[0047] With respect to one experimental embodiment, a dataset of the MINST database was
preprocessed by using principal component analysis (“PCA”) to represent each 28 by 28 image
as a 100-dimensional vector. A conventional general-purpose computer with two GB of RAM
was used to implement the LNLE algorithms according to various embodiments of the present
invention.

[0048] In previous published experiments, an LE algorithm exhibited striking improvement
over a baseline k-nearest neighbor algorithm that ignored the unlabelled data points ny. In
preliminary experiments, these results for k-NN were replicated and very similar results were
obtained using well-tuned support vector machines (“SVMs”) as a baseline classifier.

[0049] Although Belkin and Niyogi, authors of the LE algorithmic approach, stated that “the
adjacency matrices are very sparse which makes solving eigenvector problems for matrices as
big as 60000 by 60000 possible”, it was not possible to run the LE algorithm on a 60,000 point
dataset using the code provided by the authors on a machine with two GB of RAM. After

investigating the cause of the problem, it was discovered that the machine was running out of
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memory while trying to solve the eigen problem on the 60,000-point dataset. It was
determined that at least four GB of RAM were required to solve the size 60,000 problem, an
amount of RAM that is not conventionally available in off-the-shelf computing systems.

[0050] With the 2GB machine, the dataset size was reduced to 30,000 points for application
of the LE algorithmic techniques. A 30,000-point subset of the MNIST data was used in the LE
related experiments. For the LNLE algorithms, the full 60,000-point dataset was also used. For
a fixed number of labelled data points nr, 20 replications were performed, each time choosing
a different random subset of the data points to classify. The sets of labelled data points n; used
. with respect to each algorithm were identical. For each experiment, the mean and the standard
deviation of the error rate were recorded. Assuming normality in the distribution of the results,
a 90% “confidence interval” is reported as a four standard deviation interval centered at the
mean.

[0051] Previous experiments by Belkin and Niyogi were performed using varying numbers
of labelled data points n;, between 20 and 5,000. The experiments performed with respect to
embodiments of the present invention were focused on datasets with between 20 and 500
labelled data points because it was in this range that the benefits provided by using unlabelled
data were most striking.

[0052] In their work, Belkin and Niyogi tested a wide choice of the number of eigenvectors
P, and gave two-dimensional tables for varying numbers of labelled data points n, and numbers
- p of eigenvectors v. Similar experiments are described herein, reporting only the optimal result
for each experiment. It was determined that for a fixed number of labelled data points ny, there
was an optimal number p of eigenvectors v, with degraded performance using fewer or more
than p. In addition, the optimal number of eigenvectors p increased with the number of
labelled data points n;.. For the LNLE algorithms, the optimal number of eigenvectors was in
general much smaller than for the full LE algorithm, and LNLE(R) and LNLE(G) had the same
optimal choice. Table 1 reports the optimal number of eigenvectors p for each algorithm as a
function of the number of labelled data points ny..

[0053] It should be noted that, with respect to the following tables, a notation is used to
indicate the size of the dataset n and the size of a local neighborhood used. With respect to the
LE algorithm, (A) refers to the A-point dataset (e.g., (30) indicates 30,000 data points in the
dataset). Similarly, with respect to the LNLE algorithms, (A, k) refers to an A-point dataset
(e.g., A may be 30,000 or 60,000 or a similar amount) with a local neighborhood of size &
points (e.g., 2,000 or 4,000 points), referred to above as k.
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[0054] Table 1 shows an optimal number p of eigenvectors for the LE and LNLE algorithms,
as a function of the number of labelled data points ny,. The optimum number was chosen to be

the number of eigenvectors that resulted in the smallest mean error rate (averaged over the 20

replications).
Table 1 (p)
LE LNLE
ng (30) (30,2) (60,2) (60,4)
20 10 10 10 10
50 20 10 7 10
100 20 20 7 15
500 50 20 10 20
ACCURACY RESULTS

[0055] Tables 2 and 3 contain basic results comparing LE and the LNLE algorithms, and

Table 4 gives the probability of rejection for the experiments in Table 3.

[0056] Table 2 shows an accuracy comparison of LE and LNLE(G) algorithms. All

accuracies are reported as 90% confidence intervals on the percent error rate.
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Table 2 (% error rate — mean, 4X std dev)
LE LNLE(G)
nL 30) (30,2) (60,2) (60,4)
20 [25,45] [34,49] [48,62] [31,52]
50 [8.5,26] [13,27] [24,35] [8.2,29]
100 [7.5,13] [6.8,14] [9.1,18] [5.4,12]
500 [3.8,5.7] [4.4,5.1] [3.8,4.6] [3.5,4.0]

[0057] The standard deviation of the accuracy was observed to be large relative to the

observed difference in accuracy between the algorithms. In all cases studied, the confidence

intervals of all algorithms tested overlap substantially. Taking a strict viewpoint and assuming
independent experiments, the hypothesis that the performance of all the algorithms tested is
identical cannot be rejected. However, the experiments are replicated, using the same labelled
data points ny, for different algorithms. Thus, it is expected that a large amount of the variance
will depend on the random choice of labelled data points ny, rather than the algorithms.
Accordingly, confidence intervals that overlap but are substantially different are interpreted as
being somewhat indicative of differing performance.

[0058] Table 3 shows an accuracy comparison of LE and LNLE(R) algorithms. All

accuracies are reported as 90% confidence intervals on the percent error rate.

Table 3 (% error rate — mean, 4X std dev)
LNLE®R)
ng LE(30) (30,2) (60,2) (60,4)
20 [25,44] [19,33] [13,28] [17,35]
50 [8.5,25] [12,23] [10.8,21] [8.8,24]
100 [7.5,13] [6.8,14] [8.0,14] [5.5,12]
500 [3.8,5.7] [4.4,5.1] [3.8,4.6] [3.5,4.0]

[0059] Table 4 shows rejection percentages for LNLE(R) as a function of the neighborhood

size k and the number of data points, averaged over all experiments. In general, when

describing the performance of LNLE(R) algorithms, reference is made to the performance on

the non-rejected data points.

Table 4 (% rejection rate)

LNLE(R)

np

(30,2)

(60,2)

(60,4
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20 24 50 25
50 .03 18 .03
100 .001 .030 .001

[0060] Although these experiments are somewhat preliminary, several observations can be
made. Comparing the LE and the LNLE algorithms on 30,000 data points, it can be seen that
- for low numbers of labelled data points ng, (e.g., between 20 to 50), LE outperforms LNLE(G),
but LNLE(R) outperforms LE. For larger numbers of labelled data points ny, (e.g., between
100 to 500), LNLE(R) and LNLE(G) perform nearly identically (very few points are rejected),
and the performance is very close to that of LE.

[0061] In general, performing LNLE using 60,000 points rather than 30,000 leads to an
increase in error if the neighborhood size k is kept fixed at 2,000 data points. However, the
error decreases if the neighborhood size & is allowed to increase proportionally, e.g., to 4,000
data points. The increased performance seems to be highly comparable to the performance
reported using the full LE algorithm on all 60,000 points. The apparent decrease in error from
using a smaller neighborhood for the LNLE(R) algorithms with 20 labelled points and all
60,000 points is somewhat misleading because using a size 2,000 neighborhood provides a
rejection rate of an additional quarter of the data as compared to the size 4,000 neighborhood
(see Table 4). Roughly summarizing, for the smallest size dataset, the original LE algorithm
outperforms LNLE(G), where every unlabelled data ny point is classified. However, LNLE(R)
is able to identify a large subset of the data on which the classification is more accurate than
that of the LE algorithm. For larger datasets, the performance of all the algorithms is very
similar but the computational requirements for LNLE algorithms are much smaller.

[0062] Next, the use of LNLE algorithmic approaches in an SSII algorithm for classifying
out-of-sample points (as described above with respect to FIG. 5) is considered. In this
experiment, the 30,000-point subset of the MNIST data is used as the training set, and the
remaining 30,000 points are used as the test set. Each test point x is classified by augmenting
the adjacency graph Wy, finding the local neighborhood of size 2,000, solving the resulting
eigen problem, and performing least-squares classification. The results for both LNLE(G) and
LNLE(R) are shown in Table 5.

[0063] Table 5 shows out-of-sample error rates for the LNLE(G) and LNLE(R) algorithms.
For each of the 30,000 out-of-sample data points X’, the adjacency graph W is augmented (W’)
by adding that data point x’, finding the local neighborhood Wy, and classifying the data point
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X’ as described above. The additional out-of-sample data point x is then removed from the

graph W and the next out-of-sample data point x** is similarly processed.

Table 5 (error rate — mean, 4X std dev)
ng, LNLE(G) LNLE(R)
20 [33,48] [18,32]
50 [12,26] [11,23]
100 [7.1,14] [7.1,14]
500 [5.0,5.9] [5.0,5.9]

[0064] The results are very similar to the in-sample results for LNLE(G) and LNLE(R) given
in Tables 2 and 3, thereby confirming the expected result that the natural extension of LNLE to
out-of-sample points is essentially as accurate as LNLE on in-sample points.

TIMING RESULTS

[0065] Time requirements for various aspects of the algorithms are described herein. All
measurements were made on a single machine, with a 2.4 GHz Intel® processor with two GB
of RAM.

[0066] Table 6 shows the time (in seconds) required to compute an eight-neighbor (i.e., k=8
) adjacency graph W over 30,000 and 60,000 points based on experimental embodiments of
LNLE algorithms. The time for 60,000 points is almost precisely four times the time for
30,000 points, which is of course expected given that the bulk of the time in this part of the

algorithm is spent computing the n’ distances between the data points.

Table 6
Dataset size (A) Time (s)
30,000 863
60,000 3444

[0067] Table 7 reports the time (in seconds) required to solve the interior eigen problem for
varying dataset size and number of desired eigenvectors that arises in the LE and LNLE
algorithms. For the size 2,000 and 4,000 eigenproblems, the time reported is the average over
100 trials. Only a single trial at size 30,000 was performed. It can be seen that for a fixed
dataset size, the time required as a function of the number of eigenvalues is increasing
approximately linearly. On the other hand, the dependence on the dataset size is much more
drastic. The measurements indicate that the time requirement is increasing faster than O(n?),

although much closer to O(n®) than o@m?).
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Table 7 (sec)
Dataset size Number of Eigenvectors (p)
A 5 10 20 50 100
2,000 1.07 1.44 2.40
4,000 3.4 4.3 5.47 6.6
30,000 344 429 687 1331

[0068] In LNLE algorithms, for each unlabelled point x we find a subgraph of the adjacency
graph using breadth-first search. Table 8'shows the time required to find the required
subgraphs of the adjacency graph for neighborhoods of size k, = 2,000 and £, = 4,000,

averaged over 100 trials.

Table 8 (sec)
Neighborhood Size Time
(%)
2,000 .035
4,000 .051

[0069] In addition to finding the eigenvector matrix E, we must solve a positive-semidefinite
linear system of the form E! E,a, = E] y, and use the hyperplane a to classify the unlabelled

- data. Because the number of eigenvectors p is much smaller than the number of data points n,
the time to perform these operations is insignificant in comparison to the construction of the
adjacency graph or the eigendecomposition process. For example, Cholesky factoring of' a 100
by 100 positive definite matrix requires approximately two milliseconds, while Cholesky
factoring of a 20 by 20 system takes less than one millisecond. Therefore, these times are
ignored in the remainder of the analysis presented herein.

[0070] Adding up the times from the various tables, Table 9 shows the time required per
point to classify unlabelled data points ny, for a training set size 30,000 (for both LE and
LNLE) and for size 60,000 (for LNLE only). The classification times are shown in seconds
and amortized over the entire dataset. For amortization purposes, it is assumed that the entire
dataset n is unlabelled. In this table, with respect to LE, (n, p) refers to an » number of
unlabelled data points ny and p is the number of eigenvectors v used. LNLE(#,k,p) refers to
the LNLE algorithm using n-thousand data points, a local neighborhood of size k thousand data

points (%), and p eigenvectors v.
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Table 9 (sec)
Algorithm Time per Point
LE(30,10) .040
LE(30,20) .043
LE(30,50) 051
LNLE(30,2,10) 1.50
LNLE(30,2,20) 2.46
LNLE(60,2,10) 1.53
LNLE(60,4,10) 4.41
LNLE(60,4,15) 5.58
LNLE(60,4,20) 6.71

[0071] When used to classify an entire unlabelled dataset, LNLE algorithm is approximately
two orders of magm'tudé slower than LE. However, there are several additional considerations.
For example, for the larger dataset size, the LE algorithm could not be used at all in the
experimental system because it requires an extremely large amount of RAM. Thus, while
LNLE may not be faster under all circumstances, it provides the ability to solve larger
problems than LE with lower memory requirements. In addition, LNLE can easily scale
substantially farther. Moreover, because of its local nature, LNLE enables the classification of
a desired subset of the points rather than the entire set and thus, incur only a subset of the
computational expense. For example, if only a single data point needs to be classified out of
30,000 data points, LE(30,50) would take 1,550 seconds, while LNLE(30,2,20) would take
only 869 seconds.

[0072] Perhaps most importantly, LNLE can be implemented by both SSII and TI algorithms,
while LE is only a TT algorithm. With LE, for example assuming n = 30,000 and n;, = 100, the
cost to classify a single additional out-of-sample data point x’ given at a later time is
approximately 429 seconds. With LE, the adjacency graph W can be reused, but it requires the
computation of the global eigendecomposition for each subsequent addition of an out-of-
sample data point x’. On the other hand, with LNLE, with for example a size 2,000
neighborhood (%), only about 2.45 seconds would be required to compute the neighborhood
and perform the local eigendecomposition computations for an additional out-of-sample data
point xX*. This makes LNLE especially advantageous in scenarios where a single test data point
is provided for immediate classification, i.e., situations in which batch processing is not

possible.
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[0073] Further, for additional computational efficiency, simple extensions to the LNLE
algorithm can be used. For example, in one embodiment a small “center” consisting of & very
close together data points is formed and a neighborhood is built around that center. A single
eigen problem is then used to classify all the data points in the center (not the entire
neighborhood k) simultaneously. In this embodiment, the LNLE approach could provide
essentially the same accuracy as other LNLE approaches, while providing a faster performance
similar to LE based approaches while requiring less computational resources.

[0074] In alternative embodiments, instead of building an adjacency graph over the entire

dataset, data structures such as kd-trees or ball trees may be used to speed up the algorithms.
7 Moreover, these techniques may be used in conjunction with the “center” approach, since
using the center approach the time to compute the adjacency graph can be a much larger
fraction of the total time to process the classification.

[0075] While particular embodiments and applications of the present invention have been
illustrated and described herein, it is to be understood that the invention is not limited to the
* precise construction and components disclosed herein and that various modifications, changes,
and variations may be made in the arrangement, operation, and details of the methods and
apparatuses of the present invention without departing from the spirit and scope of the

invention as it is defined in the appended claims.
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What is claimed is:

1. A computer based method for learning a label of an unlabelled data point from a
plurality of data points, the method comprising:
determining relative distances between all data points in the plurality of data points;
determining a set of neighboring data points with respect to the unlabelled data point;
performing an eigen decomposition of a matrix of distances between the set of
neighboring data points to determine a function; and
labeling the unlabelled data point based on a result from evaluating the function with
respect to the unlabelled data point.
2. The method of claim 1, further comprising:
receiving an additional unlabelled data point;
determining a relative distance between the additional unlabelled data point and the
plurality data points;
determining a second set of neighboring data points with respect to the additional
unlabelled data point;
performing an eigen decomposition of a matrix of distances between the second set of
neighboring data points to determine a second function; and
labeling the additional unlabelled data point based on a result from evaluating the
second function with respect to the additional unlabelled data point.
3. The method of claim 1, further comprising providing a confidence value based on a
number of labelled data points determined within the set of neighboring data points.
4, The method of claim 1, wherein the eigen decomposition is not performed in response
to determining that no labelled data points are within the set of neighboring data points and
further wherein the labeling of the unlabelled data point results in an error condition.
5. The method of claim 1, further comprising:
determining that no labelled data point is within the set of neighboring data points
with respect to the unlabelled data point;
increasing a number of neighbors for determining the set of neighboring data points;
and
determining a second set of neighboring data points with respect to the unlabelled
data point based on the increased number of neighbors.
6. The method of claim 1, wherein determining relative distances between all data points

includes computing an adjacency matrix.
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7. A computer based system for learning a label of an unlabelled data point from a
plurality of data points, the system comprising:
means for determining relative distances between all data points in the plurality of
data points;
means for determining a set of neighboring data points with respect to the unlabelled
data point;
means for performing an eigen decomposition of a matrix of distances between the set
of neighboring data points to determine a function; and
means for labeling the unlabelled data point based on a result from evaluating the
function with respect to the unlabelled data point.
8. The system of claim 7, further comprising:
means for receiving an additional unlabelled data point;
means for determining a relative distance between the additional unlabelled data point
and the plurality data points;
means for determining a second set of neighboring data points with respect to the
additional unlabelled data point;
means for performing an eigen decomposition of a matrix of distances between the
second set of neighboring data points to determine a second function; and
means for labeling the additional unlabelled data point based on a result from
evaluating the second function with respect to the additional unlabelled data
point.
9. The system of claim 7, further comprising means for providing a confidence value
based on a number of labelled data points determined within the set of neighboring data
points.
10.  The system of claim 7, wherein the means for performing the eigen decomposition
fails to perform the eigen decomposition in response to receiving from the means for
determining the set of neighboring data points an indication that no labelled data points are
within the set of neighboring data points and further wherein the means for labeling the
unlabelled data point provides an error condition.
11.  The system of claim 7, further comprising:
means for determining that no labelled data point is within the set of neighboring data
points with respect to the unlabelled data point; and
means for increasing a number of neighbors for determining the set of neighboring
data points;
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wherein the means for determining the set of neighboring data points determines a
second set of neighboring data points with respect to the unlabelled data point
based on the increased number of neighbors.

12.  The system of claim 7, wherein the means for determining relative distances between
all data points includes a means for computing an adjacency matrix.

13. A computer based system for learning a label of an unlabelled data point from a
plurality of data points, the system comprising:

a local-neighborhood Laplacian Eigenmap (LNLE) classifier module for determining
a set of neighboring data points with respect to the unlabelled data point and
performing an eigen decomposition of a matrix of distances between the set of
neighboring data points to determine a function.

14. A computer readable medium for learning a label of an unlabelled data point from a
plurality of data points, the computer readable medium comprising software instructions that
when executed in a computer processor cause a computer system to implement the steps of:
determining relative distances between all data points in the plurality of data points;
determining a set of neighboring data points with respect to the unlabelled data point;
performing an eigen decomposition of a matrix of distances between the set of
neighboring data points to determine a function; and

labeling the unlabelled data point based on a result from evaluating the function with
respect to the unlabelled data point.

15.  The computer readable medium of claim 14, wherein the steps further comprise the
steps of:

receiving an additional unlabelled data point;

determining a relative distance between the additional unlabelled data point and the
plurality data points;

determining a second set of neighboring data points with respect to the additional
unlabelled data point;

performing an eigen decomposition of a matrix of distances between the second set of
neighboring data points to determine a second function; and

labeling the additional unlabelled data point based on a result from evaluating the
second function with respect to the additional unlabelled data point.
16.  The computer readable medium of claim 14, wherein the steps further comprise the
step of providing a confidence value based on a number of labelled data points determined
within the set of neighboring data points.
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17. The computer readable medium of claim 14, wherein the eigen decomposition is not
performed in response to determining that no labelled data points are within the set of
neighboring data points and further wherein the labeling of the unlabelled data point results in
an error condition.
18.  The computer readable medium of claim 14, wherein the steps further comprise the
steps of:
determining that no labelled data point is within the set of neighboring data points
| with respect to the unlabelled data point;
increasing a number of neighbors for determining the set of neighboring data points;
and
determining a second set of neighboring data points with respect to the unlabelled
data point based on the increased number of neighbors.
19.  The computer readable medium of claim 14, wherein determining relative distances

between all data points includes computing an adjacency matrix.
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