(57) Abrégé/Abstract:
The present invention relates to pharmaceutical compositions for treating bulimia nervosa, male erectile dysfunction, female sexual dysfunction, thyroid cancer, breast cancer, or ameliorating ischemic nerve or muscle damage. The present invention also relates to kits that can be used in the treatment of bulimia nervosa, male erectile dysfunction, female sexual dysfunction, thyroid cancer, breast cancer, or ameliorating ischemic nerve or muscle damage. The present invention further relates to pharmaceutical compositions for increasing gastrointestinal motility after surgery and increasing gastrointestinal motility in patients who have been administered an agent that decreases gastrointestinal motility.
Abstract

The present invention relates to pharmaceutical compositions for treating bulimia nervosa, male erectile dysfunction, female sexual dysfunction, thyroid cancer, breast cancer, or ameliorating ischemic nerve or muscle damage. The present invention also relates to kits that can be used in the treatment of bulimia nervosa, male erectile dysfunction, female sexual dysfunction, thyroid cancer, breast cancer, or ameliorating ischemic nerve or muscle damage. The present invention further relates to pharmaceutical compositions for increasing gastrointestinal motility after surgery and increasing gastrointestinal motility in patients who have been administered an agent that decreases gastrointestinal motility.
Methods of Treatment and Kits
Comprising a Growth Hormone Secretagogue

Field of the Invention

The present invention relates to pharmaceutical compositions for treating bulimia nervosa, male erectile dysfunction, female sexual dysfunction, thyroid cancer, breast cancer, or ameliorating ischemic nerve or muscle damage. The present invention also relates to kits that can be used in the treatment of bulimia nervosa, male erectile dysfunction, female sexual dysfunction, thyroid cancer, breast cancer, or ameliorating ischemic nerve or muscle damage. The present invention also relates to pharmaceutical compositions for increasing gastrointestinal motility after surgery and increasing gastrointestinal motility in patients who have been administered an agent that decreases gastrointestinal motility.

Background of the Invention

The present invention relates to new pharmaceutical compositions and kits comprising a growth hormone secretagogue.

Growth hormone, which is secreted from the pituitary gland, stimulates growth of all tissues of the body that are capable of growing. In addition, growth hormone is known to have the following basic effects on the metabolic processes of the body: (1) increased rate of protein synthesis in all cells of the body; (2) decreased rate of carbohydrate utilization in cells of the body; and (3) increased mobilization of free fatty acids and use of fatty acids for energy. As is known to those skilled in the art, the known and potential uses of growth hormone are

Various ways are known to release growth hormone (see Recent Progress in Hormone Research, vol. 52, pp. 215-245 (1997); and Front. Horm. Res. Basel, Karger, vol. 24, pp. 152-175 (1999)). For example, chemicals such as arginine, L-3,4-dihydroxyphenylalanine (L-DOPA), glucagon, vasopressin, and insulin induced hypoglycemia, as well as activities such as sleep and exercise, indirectly cause growth hormone to be released from the pituitary by acting in some fashion on the hypothalamus, perhaps either to decrease somatostatin secretion or to increase secretion of growth hormone releasing factor (GRF) or ghrelin (see Nature, vol.
402, pp. 656-660 (9 December 1999)), or all of these. Moreover, it has recently been discovered that growth hormone secretagogues act as ghrelin mimetics. Ghrelin is a protein that binds to the growth hormone secretagogue receptor.

In cases where increased levels of growth hormone were desired, the problem was generally solved by providing exogenous growth hormone or by administering GRF, IGF-I or a peptidyl compound that stimulated growth hormone production and/or release. In any case, the peptidyl nature of the compound necessitated that it be administered by injection. Initially, the source of growth hormone was the extraction of the pituitary glands of cadavers. This resulted in a very expensive product and carried with it the risk that a disease associated with the source of the pituitary gland could be transmitted to the recipient of the growth hormone. Recombinant growth hormone has become available which, while no longer carrying any risk of disease transmission, is still a very expensive product which must be given by injection. In addition, administration of exogenous growth hormone may result in side-effects, including edema, and does not correlate with the pulsatile release seen in the endogenous release of growth hormone.

Certain compounds have been developed which stimulate the release of endogenous growth hormone. Peptides which are known to stimulate the release of endogenous growth hormone include growth hormone releasing hormone and its analogs, the growth hormone releasing peptides, GHRP-6 and GHRP-1 (described in U.S. Patent No. 4,411,890; International Patent Application Publication No. WO 89/07110; and International Patent Application Publication No. WO 89/07111), and GHRP-2 (described in International Patent Application Publication No. WO 93/04081), as well as hexarelin (J. Endocrinol. Invest., 15 (Suppl. 4): 45 (1992)).

In addition, the following growth hormone secretagogues are known in the art: MK-0677, L-162752 and L-163022 (Merck); NN703 and ipamorelin (Novo Nordisk); hexarelin (Pharmacia & Upjohn); GPA-748 (KP102, GHRP-2) (American Home Products); and LY444711 (Eli Lilly). The following agents that stimulate GH release via GHRH/GRF receptor (including GHRH/GRF derivatives, analogs and mimetics) are known in the art: Geref (Ares/Serono); GHRH (1-44) (BioNebraska); Somatorelin (GRF 1-44) (Fujisawa/ICN); and ThGRF (Theratechnologies).

International Patent Application Publication Nos. WO 97/24369 and WO 98/58947 disclose that certain growth hormone secretagogues are useful for the treatment or prevention of osteoporosis, congestive heart failure, frailty associated with aging, obesity, accelerating bone fracture repair, attenuating protein catabolic response after a major operation, reducing cachexia and protein loss due to chronic illness, accelerating wound healing or accelerating the recovery of burn patients or patients having undergone major surgery, improving muscle strength, mobility, maintenance of skin thickness, metabolic homeostasis or renal homeostasis.

Published European patent application 0995748 discloses that certain dipeptide growth hormone secretagogues are useful for the treatment or prevention of musculoskeletal frailty, including osteoporosis.
Summary of the Invention

The present invention provides pharmaceutical compositions for treating bulimia nervosa, male erectile dysfunction, female sexual dysfunction, thyroid cancer or breast cancer, or ameliorating ischemic nerve or muscle damage, to a patient in need thereof comprising a therapeutically effective amount of a compound that is a growth hormone secretagogue or a pharmaceutically acceptable salt or prodrug thereof and a pharmaceutically acceptable carrier.

In a preferred embodiment of the pharmaceutical composition, the growth hormone secretagogue is 2-amino-N-[2-(3a(R)-benzyl-2-methyl-3-oxo-2,3,3a,4,6,7-hexahydro-pyrazolo-[4,3-c]pyridin-5-yl)-1-(R)-benzylxoxymethyl-2-oxo-ethyl]-isobutyramide or 2-amino-N-(1-(R)-(2,4-difluoro-benzylxoxymethyl)-2-oxo-2-(3-oxo-3a-(R)-(pyridin-2-ylmethyl)-2-(2,2,2-trifluoro-ethyl)-2,3,3a,4,6,7-hexahydro-pyrazolo-[4,3-c]pyridin-5-yl)-ethyl)-2-methyl-propionamide or a pharmaceutically acceptable salt or prodrug thereof.

In another preferred embodiment of the pharmaceutical composition, the growth hormone secretagogue is 2-amino-N-[2-(3a(R)-benzyl-2-methyl-3-oxo-2,3,3a,4,6,7-hexahydro-pyrazolo-[4,3-c]pyridin-5-yl)-1-(R)-benzylxoxymethyl-2-oxo-ethyl]-isobutyramide, L-tartrate or the (L)-(+)–tartaric acid salt of 2-amino-N-(1-(R)-(2,4-difluoro-benzylxoxymethyl)-2-oxo-2-(3-oxo-3a-(R)-(pyridin-2-ylmethyl)-2-(2,2,2-trifluoro-ethyl)-2,3,3a,4,6,7-hexahydro-pyrazolo-[4,3-c]pyridin-5-yl)-ethyl)-2-methyl-propionamide.

Also provided are pharmaceutical compositions for increasing gastrointestinal motility in a patient who has taken or who is to take an agent that is known to decrease gastrointestinal motility comprising a therapeutically
effective amount of a growth hormone secretagogue or a pharmaceutically acceptable salt or prodrug thereof and a pharmaceutically acceptable carrier.

In a preferred embodiment of the pharmaceutical compositions for increasing gastrointestinal motility, the agent that is known to decrease gastrointestinal motility is a calcium channel blocker, a beta blocker, or a narcotic.

In another preferred embodiment of the pharmaceutical composition for increasing gastrointestinal motility, the growth hormone secretagogue is 2-amino-N-[2-(3a(R)-benzyl-2-methyl-3-oxo-2,3,3a,4,6,7-hexahydro-pyrazolo-[4,3-c]pyridin-5-yl)-1-(R)-benzyloxyethyl-2-oxo-ethyl]-isobutyramide, or 2-amino-N-(1-(R)-(2,4-difluoro-benzyloxy)methyl)-2-oxo-[2-(3-oxo-3a-(R)-(pyridin-2-ylmethyl)-2-(2,2,2-trifluoro-ethyl)-2,3,3a,4,6,7-hexahydro-pyrazolo-[4,3-c]pyridin-5-yl)-ethyl]-2-methyl-propionamide or a pharmaceutically acceptable salt or prodrug thereof.

In another preferred embodiment of the pharmaceutical composition for increasing gastrointestinal motility, the growth hormone secretagogue is 2-amino-N-[2-(3a(R)-benzyl-2-methyl-3-oxo-2,3,3a,4,6,7-hexahydro-pyrazolo-[4,3-c]pyridin-5-yl)-1-(R)-benzyloxyethyl-2-oxo-ethyl]-isobutyramide, L-tartrate or the (L)-(+-)-tartaric acid salt of 2-amino-N-(1-(R)-(2,4-difluoro-benzyloxy)methyl)-2-oxo-[2-(3-oxo-3a-(R)-(pyridin-2-ylmethyl)-2-(2,2,2-trifluoro-ethyl)-2,3,3a,4,6,7-hexahydro-pyrazolo-[4,3-c]pyridin-5-yl)-ethyl]-2-methyl-propionamide.

Also provided are pharmaceutical compositions for increasing gastrointestinal motility after surgery, in a patient in need thereof comprising a therapeutically effective amount of a growth hormone secretagogue or a
pharmacetically acceptable salt or prodrug thereof and a pharmaceutically acceptable carrier.

In a preferred embodiment of the pharmaceutical composition for increasing gastrointestinal motility after surgery, the growth hormone secretagogue is 2-amino-N-[2-(3a(R)-benzyl-2-methyl-3-oxo-2,3,3a,4,6,7-hexahydro-oxo-pyrazolo-[4,3-c]pyridin-5-yl)-1-(R)-benzyloxyethyl]-isobutryamide or 2-amino-N-(1-(R)-(2,4-difluorobenzyl)oxyethyl)-2-oxo-2-(3-oxo-3a-(R)-(pyridin-2-ylmethyl)-2-(2,2,2-trifluoro-ethyl)]-2,3,3a,4,6,7-hexahydro-pyrazolo-[4,3-c]pyridin-5-yl)-ethyl)-2-methyl-propionamide or a pharmaceutically acceptable salt or prodrug thereof.

In another preferred embodiment of the pharmaceutical composition for increasing gastrointestinal motility after surgery, the growth hormone secretagogue is 2-amino-N-[2-(3a(R)-benzyl-2-methyl-3-oxo-2,3,3a,4,6,7-hexahydro-oxo-pyrazolo-[4,3-c]pyridin-5-yl)-1-(R)-benzyloxyethyl]-isobutryamide, L-tartrate or the (L)-(+) tartramic acid salt of 2-amino-N-(1-(R)-(2,4-difluorobenzyl)oxyethyl)-2-oxo-2-(3-oxo-3a-(R)-(pyridin-2-ylmethyl)-2-(2,2,2-trifluoro-ethyl)]-2,3,3a,4,6,7-hexahydro-pyrazolo-[4,3-c]pyridin-5-yl)-ethyl)-2-methyl-propionamide.

Also provided are kits for the treatment of bulimia nervosa, male erectile dysfunction, female sexual dysfunction, thyroid cancer or breast cancer, or for ameliorating ischemic nerve or muscle damage, the kits comprising: a. a first pharmaceutical composition that comprises a growth hormone secretagogue or a pharmaceutically acceptable salt or prodrug thereof and a pharmaceutically acceptable carrier; and b. a written matter describing instructions for the use thereof to treat bulimia nervosa, male erectile dysfunction, female sexual
dysfunction, thyroid cancer or breast cancer, or for ameliorating ischemic nerve or muscle damage in a patient in need thereof.

Also provided are kits for the treatment of bulimia nervosa, male erectile dysfunction, female sexual dysfunction, thyroid cancer or breast cancer, or for ameliorating ischemic nerve or muscle damage, the kits comprising: a. a first pharmaceutical composition that comprises a growth hormone secretagogue or a pharmaceutically acceptable salt or prodrug thereof and a pharmaceutically acceptable carrier; b. a second pharmaceutical composition that comprises a second compound that can be used to treat bulimia nervosa, male erectile dysfunction, female sexual dysfunction, thyroid cancer or breast cancer, or that can be used for ameliorating ischemic nerve or muscle damage and a pharmaceutically acceptable carrier; and c. a written matter describing instructions for the use thereof to treat bulimia nervosa, male erectile dysfunction, female sexual dysfunction, thyroid cancer or breast cancer, or for ameliorating ischemic nerve or muscle damage in a patient in need thereof.

Detailed Description of the Invention

A growth hormone secretagogue can be used to treat bulimia nervosa, male erectile dysfunction, female sexual dysfunction, thyroid cancer, breast cancer, or ameliorate ischemic nerve or muscle damage. A growth hormone secretagogue can also be used to increase gastrointestinal motility after surgery and increase gastrointestinal motility in patients who have been administered or who are to be administered an agent that decreases gastrointestinal motility.

The disease bulimia nervosa is characterized by episodes of binge eating where a large quantity of food is
consumed followed by use of laxatives, self-induced vomiting, use of diuretics, vigorous exercise, or fasting to avoid weight gain. Bulimia primarily affects young women, but can also affect men. Bulimia is typically treated using psychotherapy and/or antidepressants.

Ischemic nerve and muscle damage is damage that occurs to nerve and muscle tissue as a result of ischemia. Ischemia is reduced blood flow to a tissue. Ischemic damage of muscle tissue includes skeletal muscle and cardiac muscle. Ischemia can occur in cardiac muscle as a result of a myocardial infarction, hemorrhage or other cardiac events.

Male erectile dysfunction is the inability of a male to attain or sustain an erection satisfactory for coitus.

Female sexual dysfunction (FSD) has several components including sexual arousal disorder, decreased libido, hypoactive sexual desire disorder, sexual
ahedonia, and dyspareunia. Each of these components can be considered separate conditions and treated separately with a growth hormone secretagogue. A patient suffering from FSD may have symptoms of more than one component.

Proper sexual functioning in women depends on the sexual response cycle, which consists of an anticipatory mental set (sexual motive state or state of desire), effective vasocongestive arousal (swelling and lubrication), orgasm, and resolution. In women, orgasm is accompanied by contractions (not always subjectively experienced as such) of the muscles of the outer third of the vagina. Generalized muscular tension, perineal contractions, and involuntary pelvic thrusting (every 0.8 sec) usually occur. Orgasm is followed by resolution—a sense of general pleasure, well-being, and muscular relaxation. During this phase, women may be able to respond to additional stimulation almost immediately.

The sexual response cycle is mediated by a delicate, balanced interplay between the sympathetic and parasympathetic nervous systems. Vasocongestion is largely mediated by parasympathetic (cholinergic) outflow; orgasm is predominantly sympathetic (adrenergic). These responses are easily inhibited by cortical influences or by impaired hormonal, neural, or vascular mechanisms. Disorders of sexual response may involve one or more of the cycle’s phases. Generally, both the subjective components of desire, arousal, and pleasure and the objective components of performance, vasocongestion, and orgasm are disturbed, although any may be affected independently. Sexual dysfunctions may be lifelong (no effective performance ever, generally due to intrapsychic conflicts) or acquired (after a period of normal function); generalized or limited to certain situations or certain partners; and total or partial.

Hypoactive sexual desire disorder is a disorder in which sexual fantasies and desire for sexual activity are persistently or recurrently diminished or absent, causing marked distress or interpersonal difficulties. Hypoactive sexual desire disorder may be lifelong or acquired, generalized (global) or situational (partner-specific). Sexual desire is a complex psychosomatic process based on brain activity (the "generator" or "motor" running in a rheostatic cyclic fashion), a poorly defined hormonal milieu, and cognitive scripting that includes sexual aspiration and motivation. Desynchronization of these components results in hypoactive sexual desire disorder.

The acquired form of hypoactive sexual desire disorder is commonly caused by boredom or unhappiness in a long-standing relationship, depression (which leads
more often to decreased interest in sex than it does to impotence in the male or to inhibited excitement in the female), dependence on alcohol or psychoactive drugs, side effects from prescription drugs (e.g., antihypertensives, antidepressants), and hormonal deficiencies. This disorder can be secondary to impaired sexual functioning in the arousal or orgasm phase of the sexual response cycle.

Symptoms and signs of hypoactive sexual desire disorder include the patient complaining of a lack of interest in sex, even in ordinarily erotic situations. The disorder is usually associated with infrequent sexual activity, often causing serious marital conflict. Some patients have sexual encounters fairly often to please their partners and may have no difficulty with performance but continue to have sexual apathy. When boredom is the cause, frequency of sex with the usual partner decreases, but sexual desire may be normal or even intense with others (the situational form).

Clinically significant sexual dysfunction that causes personal distress or interpersonal problems and is most likely fully explained by direct physiologic effects of a physical disorder. Sexual dysfunction due to a physical disorder is usually generalized (not specific to a given partner or situation). It is diagnosed when evidence from a patient’s history, physical examination, or laboratory assessment can explain the dysfunction physiologically and when mental disorders that may better explain it can be ruled out. Resolution of the underlying physical disorders often results in resolution or amelioration of the sexual dysfunction. When the cause of sexual dysfunction is a combination of psychologic and physical factors, the appropriate diagnosis is sexual dysfunction due to combined factors.

Sexual anhedonia (decreased or absent pleasure in sexual activity) is not an official diagnosis. It is almost always classified under hypoactive sexual desire disorder, because loss of pleasure almost always results in loss of desire (although loss of desire may occur first). The cause is likely to be depression or drugs if anhedonia is acquired and global (with all partners in all situations); interpersonal factors if anhedonia is confined to one partner or one situation; or repressive factors (e.g., guilt, shame) due to family dysfunction or childhood trauma if anhedonia is lifelong. Sexual aversion is the probable diagnosis in lifelong cases.

Sexual arousal disorder is the persistent or recurrent inability to attain or to maintain the lubrication-swelling response of sexual excitement until completion of sexual activity. This disturbance occurs despite adequate focus, intensity, and
duration of sexual stimulation. The disorder may be lifelong or, more commonly, acquired and restricted to the partner. The patient's complaints are usually related to lack of orgasm, although some women report lack of excitement.

Although women can be orgasmic throughout their lives, sexual activity often decreases after age 60 because of the relative lack of partners and untreated physiologic changes (e.g., atrophy of the vaginal mucosa, with resultant dryness and painful coitus).

Vaginal engorgement enables transudation to occur and this process is responsible for increased vaginal lubrication. Transudation allows a flow of plasma through the epithelium and onto the vaginal surface, the driving force for which is increased blood flow in the vaginal capillary bed during the aroused state. In addition engorgement leads to an increase in vaginal length and luminal diameter, especially in the distal two-thirds of the vaginal canal. The luminal dilatation of the vagina is due to a combination of smooth muscle relaxation of its wall and skeletal muscle relaxation of the pelvic floor muscles. Some sexual pain disorders such as vaginismus are thought to be due, at least in part, by inadequate relaxation preventing dilatation of the vagina; it has yet to be ascertained if this is primarily a smooth or skeletal muscle problem. (Masters, W. H., Johnson, V. E. Human Sexual Response. Little, Brown: Boston, 1996; Berman, J.R., Berman, L. & Goldstein, L., Urology, 1999:54; 385-391).

The components of FSD are best defined by contrasting them to the phases of normal female sexual response: desire, arousal and orgasm. Desire or libido is the drive for sexual expression. Its manifestations often include sexual thoughts either
when in the company of an interested partner or when exposed to other erotic stimuli. Arousal is the vascular response to sexual stimulation, an important component of which is vaginal lubrication and elongation of the vagina. Orgasm is the release of sexual tension that has culminated during arousal.

Hence, FSD occurs when a woman has an inadequate or unsatisfactory response in any of these phases; desire, arousal or orgasm. FSD categories include hypoactive sexual desire disorder, sexual arousal disorder, orgasmic disorders and sexual pain disorders.

Hypoactive sexual desire disorder is present if a woman has no or little desire to be sexual, and has no or few sexual thoughts or fantasies. This component of FSD can be caused by low testosterone levels, due either to natural menopause or to surgical menopause. Other causes include illness, medications, fatigue, depression and anxiety.

Sexual arousal disorder (FSAD) is characterized by inadequate genital response to sexual stimulation. The genitalia do not undergo the engorgement that characterizes normal sexual arousal. The vaginal walls are poorly lubricated, so that intercourse is painful. Orgasms may be impeded. Arousal disorder can be caused by reduced estrogen at menopause or after childbirth and during lactation, as well as by illnesses, with vascular components such as diabetes and atherosclerosis. Other causes result from treatment with diuretics, antihistamines, antidepressants, e.g., SSRIs or antihypertensive agents.

Sexual pain disorders (including dyspareunia and vaginismus) are characterized by pain resulting from penetration and may be caused by medications which reduce lubrication, endometriosis, pelvic inflammatory disease, inflammatory bowel disease or urinary tract problems.

Dyspareunia is painful coitus or attempted coitus. Dyspareunia can occur before, during, or after intercourse. Causes include menopausal involution with dryness and thinning of the mucosa. Pain during or after coitus is the chief complaint.

Examples of growth hormone secretagogues that can be used in the present pharmaceutical compositions and kits include, but are not limited, to a compound of the Formula I:
or a stereoisomeric mixture thereof, diastereomerically enriched, diastereomerically pure, enantiomerically enriched or enantiomerically pure isomer thereof, or a prodrug of such compound, mixture or isomer thereof, or a pharmaceutically acceptable salt of the compound, mixture, isomer or prodrug, or a tautomer thereof, wherein

HET is a heterocyclic moiety selected from the group consisting of

- $\text{Y}^2\text{N}(\text{CH}_2\text{N})\text{R}^2$ and $\text{R}^1\text{N}(\text{CH}_2\text{N})\text{R}^2$
- $\text{G}^1\text{G}^2\text{G}^3\text{N}(\text{CH}_2\text{N})\text{R}^2$
- WR^2
- $\text{A}\text{C}^1\text{N}(\text{CH}_2\text{N})\text{R}^2$
- $\text{R}^1\text{N}(\text{CH}_2\text{N})\text{R}^2$

d is 0, 1 or 2;
e is 1 or 2;
f is 0 or 1;
n and w are 0, 1 or 2, provided that n and w cannot both be 0 at the same time;
Y^2 is oxygen or sulfur;
A is a divalent radical, where the left hand side of the radical as shown below is connected to C" and the right hand side of the radical as shown below is connected to C', selected from the group consisting of

- NR²-C(O)-NR²-, -NR²-S(O)₂-NR²-, -O-C(O)-NR²-, -NR²-C(O)-O-, -C(O)-NR²-C(O)-

- C(O)-NR²-C(R⁹R¹₀)-, -C(R⁹R¹₀)-NR²-C(O)-, -C(R⁹R¹₀)-C(R⁹R¹₀)-C(R⁹R¹₀)-, -S(O)₂-

- C(R⁹R¹₀)-C(R⁹R¹₀)-, -C(R⁹R¹₀)-O-C(O)-, -C(R⁹R¹₀)-O-C(R⁹R¹₀)-, -NR²-C(O)-

- C(R⁹R¹₀)-, -O-C(O)-C(R⁹R¹₀)-, -C(R⁹R¹₀)-C(O)-NR²-, -C(R⁹R¹₀)-C(O)-O-, -C(O)-NR²-

- C(R⁹R¹₀)-C(R⁹R¹₀)-, -C(O)-O-C(R⁹R¹₀)-, -C(R⁹R¹₀)-C(R⁹R¹₀)-C(R⁹R¹₀)-, -S(O)₂-

- NR²-C(R⁹R¹₀)-C(R⁹R¹₀)-, -C(R⁹R¹₀)-C(R⁹R¹₀)-NR²-C(O)-, -C(R⁹R¹₀)-C(R⁹R¹₀)-

- O-C(O)-, -NR²-C(O)-C(R⁹R¹₀)-C(R⁹R¹₀)-, -NR²-S(O)₂-C(R⁹R¹₀)-C(R⁹R¹₀)-, -O-C(O)-

- C(R⁹R¹₀)-C(R⁹R¹₀)-, -C(R⁹R¹₀)-C(R⁹R¹₀)-C(O)-NR²-, -C(R⁹R¹₀)-C(R⁹R¹₀)-C(O)-

- C(R⁹R¹₀)-NR²-C(O)-O-, -C(R⁹R¹₀)-O-C(O)-NR²-, -C(R⁹R¹₀)-NR²-C(O)-NR²-, -NR²-

- C(O)-O-C(R⁹R¹₀)-, -NR²-C(O)-NR²-C(R⁹R¹₀)-, -NR²-S(O)₂-NR²-C(R⁹R¹₀)-, -O-C(O)-

- NR²-C(R⁹R¹₀)-, -C(O)-N=C(R¹₁)-NR²-, -C(O)-NR²-C(R¹₁)=N-, -C(R⁹R¹₀)-NR²-

- C(R⁹R¹₀)-, -NR²-C(R⁹R¹₀)-, -NR²-C(R⁹R¹₀)-C(R⁹R¹₀)-, -C(O)-O-C(R⁹R¹₀)-C(R⁹R¹₀)-

- C(O)-NR²-C(O)-, -C(R⁹R¹₀)-C(R⁹R¹₀)-C(R⁹R¹₀)-, -C(O)-C(R⁹R¹₀)-N(CR¹₁)-

- C(R⁹R¹₀)-N=C(O)-, -C(R⁹R¹₀)-C(R⁹R¹₀)-N(R¹₂), -C(R⁹R¹₀)-NR²-C(O)-, -C(R⁹R¹₀)-

- C(R⁹R¹₀)-C(R⁹R¹₀)-NR²-S(O)₂-O-, -C(R⁹R¹₀)-C(R⁹R¹₀)-S(O)₂-NR²-, -C(R⁹R¹₀)-

- C(R⁹R¹₀)-C(O)-O-, -C(R⁹R¹₀)-S(O)₂-C(R⁹R¹₀)-, -C(R⁹R¹₀)-C(R⁹R¹₀)-S(O)₂-

- C(R⁹R¹₀)-C(O)-C(R⁹R¹₀)-, -C(O)-C(R⁹R¹₀)-C(R⁹R¹₀)-O-, -C(R⁹R¹₀)-C(O)-C(R⁹R¹₀)-

Q is a covalent bond or CH₂;

W is CH or N;

X is CR⁹R¹₀, C=CH₂ or C=O;

Y is CR⁹R¹₀, O or NR²;

Z is C=O, C=S or S(O)₂;

G¹ is hydrogen, halo, hydroxy, nitro, amino, cyano, phenyl, carboxyl, -CONH₂, -(C₁-C₄)alkyl optionally independently substituted with one or more phenyl, one or more halogens or one or more hydroxy groups, -(C₁-C₄)alkoxy optionally independently substituted with one or more phenyl, one or more halogens or one or more hydroxy groups, -(C₁-C₄)alkylthio, phenoxy, -COO(C₁-C₄)alkyl, N,N-di-(C₁-C₄)alkylamino, -(C₅-C₆)alkenyl optionally independently substituted with one or more phenyl, one or more halogens or one or more hydroxy groups, -(C₅-C₆)alkynyl optionally independently substituted with one or more phenyl, one or more halogens or one or more hydroxy groups, -(C₃-C₆)cycloalkyl optionally independently substituted with
one or more \((C_{1-4})_{alkyl}\) groups, one or more halogens or one or more hydroxy groups, \(-(C_{1-4})_{alkylamino\ carbonyl}\ or\ di-(C_{1-4})_{alkylamino\ carbonyl}\); \(G^2\) and \(G^5\) are each independently selected from the group consisting of hydrogen, halo, hydroxy, \(-(C_{1-4})_{alkyl}\) optionally independently substituted with one to three halo groups and \(-(C_{1-4})_{alkoxy}\) optionally independently substituted with one to three halo groups;

\(R^1\) is hydrogen, -CN, \(-(CH_2)_qN(X^6)C(O)(CH_2)_r-A^1\), \(-(CH_2)_qN(X^6)S(O)(CH_2)_r-A^1\), \(-(CH_2)_qN(X^6)S(O)(CH_2)_r-X^6\), \(-(CH_2)_qN(X^6)C(O)(X^6)(CH_2)_r-A^1\), \(-(CH_2)_qN(X^6)C(O)N(X^6)(CH_2)_r-A^1\), \(-(CH_2)_qN(X^6)C(O)N(X^6)(CH_2)_r-A^1\), \(-(CH_2)_qC(O)X^6\), \(-(CH_2)_qC(O)O(CH_2)_r-A^1\), \(-(CH_2)_qOC(O)(CH_2)_r-A^1\), \(-(CH_2)_qOC(O)(CH_2)_r-A^1\), \(-(CH_2)_qOC(O)(X^6)(CH_2)_r-A^1\), \(-(CH_2)_qOC(O)(X^6)(CH_2)_r-A^1\), \(-(CH_2)_qN(X^6)C(O)X^6\), \(-(CH_2)_qN(X^6)C(O)(CH_2)_r-A^1\), \(-(CH_2)_qN(X^6)C(O)(CH_2)_r-A^1\), \(-(CH_2)_qN(X^6)C(O)X^6\), \(-(CH_2)_qN(X^6)C(O)(CH_2)_r-A^1\), \(-(CH_2)_qN(X^6)C(O)(CH_2)_r-A^1\), \(-(CH_2)_qN(X^6)C(O)(CH_2)_r-A^1\), \(-(CH_2)_qN(X^6)CO(O)(CH_2)_r-A^1\), \(-(CH_2)_qN(X^6)CO(O)(CH_2)_r-A^1\), \(-(CH_2)_qN(X^6)CO(O)(CH_2)_r-A^1\), \(-(CH_2)_qN(X^6)CO(O)(CH_2)_r-A^1\), \(-(CH_2)_qN(X^6)CO(O)(CH_2)_r-A^1\), \(\text{where the alkyl and cycloalkyl groups in the definition of } R^1 \text{ are optionally substituted with (C}_{1-4})_{alkyl}, \text{hydroxy, (C}_{1-4})_{alkoxy}, \text{carboxyl, } -CONH_2, \text{S(O)}_m(C_{1-6})_{alkyl}, \text{CO}_2(C_{1-4})_{alkyl} \text{ester, 1H-tetrazol-5-yl or 1, 2 or 3 fluoro groups};\)

\(Y^1\) is O, S(O)_m, C(O)NX^6, -CH=CH-, -C=C-, -N(X^6)C(O)-, -C(O)NX^6, -C(O)O-, -OC(O)N(X^6)- or \(-OC(O)-;\)

\(q\) is 0, 1, 2, 3 or 4;

\(t\) is 0, 1, 2 or 3;

said \((CH_2)_q\) group and \((CH_2)_h\) group in the definition of \(R^1\) are optionally independently substituted with hydroxy, \((C_{1-4})_{alkoxy}\), carboxyl, \(-CONH_2, \text{S(O)}_m(C_{1-6})_{alkyl}, \text{CO}_2(C_{1-4})_{alkyl} \text{ester, 1H-tetrazol-5-yl, 1, 2 or 3 fluoro groups or 1 or 2 (C}_{1-4})_{alkyl} \text{groups};\)

\(R^{1a}\) is selected from the group consisting of hydrogen, F, Cl, Br, I, \((C_{1-6})_{alkyl}, \text{phenyl(C}_{1-6})_{alkyl}, \text{pyridyl(C}_{1-6})_{alkyl}, \text{thiazoldy(C}_{1-6})_{alkyl} \text{and thiényl(C}_{1-6})_{alkyl}, \text{provided that } R^{1a} \text{ is not F, Cl, Br or I when a heteroatom is vicinal to C}^*;\)

\(R^2\) is hydrogen, \((C_{1-6})_{alkyl}, -(C_0-C_3)_{alkyl}-(C_3-C_6)_{cycloalkyl}, -(C_1-C_4)_{alkyl}A^1 \text{ or } A^1;\)

where the alkyl groups and the cycloalkyl groups in the definition of \(R^2\) are optionally substituted with hydroxy, \(-C(O)OX^6, -C(O)N(X^6)(X^6), -N(X^6)(X^6), -\)
S(O)ₘ(C₇₋C₆)alkyl, -C(O)A¹, -C(O)(X₄), CF₃, CN or 1, 2 or 3 independently selected halo groups;

R² is selected from the group consisting of A¹, (C₇₋C₁₀)alkyl, -(C₇₋C₆)alkyl-A¹, -(C₇₋C₆)alkyl-(C₃₋C₇)cycloalkyl, -(C₇₋C₆)alkyl-X¹-(C₇₋C₆)alkyl, -(C₇₋C₆)alkyl-X¹-(C₇₋C₆)alkyl-A¹ and -(C₇₋C₆)alkyl-X¹-(C₇₋C₆)alkyl-(C₃₋C₇)cycloalkyl;

where the alkyl groups in the definition of R² are optionally substituted with

-S(O)ₘ(C₇₋C₆)alkyl, -C(O)OX³, 1, 2, 3, 4 or 5 independently selected halo groups or 1, 2 or 3 independently selected -OX³ groups;

X¹ is O, S(O)ₘ, -N(X²)ₕC(O)⁻, -C(O)N(X²)⁻, -OC(O)⁻, -C(O)O⁻, -CX²=CTX²⁻, -N(X²)ₕC(O)O⁻, -OC(O)N(X²)⁻ or -C=O⁻;

R⁴ is hydrogen, (C₇₋C₆)alkyl or (C₃₋C₇)cycloalkyl, or R⁴ is taken together with R³ and the carbon atom to which they are attached and form (C₅₋C₇)cycloalkyl, (C₅₋C₇)cycloalkenyl, a partially saturated or fully saturated 4- to 6-membered ring having 1 to 4 heteroatoms independently selected from the group consisting of oxygen, sulfur and nitrogen, or is a bicyclic ring system consisting of a partially saturated or fully saturated 5- or 6-membered ring, fused to a partially saturated, fully unsaturated or fully saturated 5- or 6-membered ring, optionally having 1 to 4 heteroatoms independently selected from the group consisting of nitrogen, sulfur and oxygen;

X⁴ is hydrogen or (C₇₋C₆)alkyl or X⁴ is taken together with R⁴ and the nitrogen atom to which X⁴ is attached and the carbon atom to which R⁴ is attached and form a five to seven membered ring;

\[\begin{array}{c}
\text{(CH₂)ₐ} \\
\text{(CH₂)ₐ} \\
\text{Z¹} \\
\text{X⁵} \\
\text{X⁵a} \\
\text{C} \\
\text{X⁴} \\
\end{array} \]

R⁶ is a bond or is

where a and b are each independently 0, 1, 2 or 3;

X⁵ and X⁵a are each independently selected from the group consisting of hydrogen, CF₃, A¹ and optionally substituted (C₇₋C₆)alkyl;

the optionally substituted (C₇₋C₆)alkyl in the definition of X⁵ and X⁵a is optionally substituted with a substituent selected from the group consisting of A¹, OX², -S(O)ₘ(C₇₋C₆)alkyl, -C(O)OX², (C₃₋C₇)cycloalkyl, -N(X²)(X²)⁻ and -C(O)N(X²)(X²)⁻;
or the carbon bearing X\(^5\) or X\(^{5a}\) forms one or two alkyene bridges with the nitrogen atom bearing R\(^7\) and R\(^8\) wherein each alkyene bridge contains 1 to 5 carbon atoms, provided that when one alkyene bridge is formed then only one of X\(^5\) or X\(^{5a}\) is on the carbon atom and only one of R\(^7\) or R\(^8\) is on the nitrogen atom and further provided that when two alkyene bridges are formed then X\(^5\) and X\(^{5a}\) cannot be on the carbon atom and R\(^7\) and R\(^8\) cannot be on the nitrogen atom;

or X\(^5\) is taken together with X\(^{5a}\) and the carbon atom to which they are attached and form a partially saturated or fully saturated 3- to 7-membered ring, or a partially saturated or fully saturated 4- to 8-membered ring having 1 to 4 heteroatoms independently selected from the group consisting of oxygen, sulfur and nitrogen;

or X\(^5\) is taken together with X\(^{5a}\) and the carbon atom to which they are attached and form a bicyclic ring system consisting of a partially saturated or fully saturated 5- or 6-membered ring, optionally having 1 or 2 heteroatoms independently selected from the group consisting of nitrogen, sulfur and oxygen, fused to a partially saturated, fully saturated or fully unsaturated 5- or 6-membered ring, optionally having 1 to 4 heteroatoms independently selected from the group consisting of nitrogen, sulfur and oxygen;

Z\(^1\) is a bond, O or N-X\(^2\), provided that when a and b are both 0 then Z\(^1\) is not N-X\(^2\) or O;

or R\(^6\) is -\((CR^aR^b)_b\)-E-(CR^aR^b)_a-, where the -(CR^aR^b)_a- group is attached to the carbonyl carbon of the amide group of the compound of formula I and the -(CR^aR^b)_b- group is attached to the terminal nitrogen atom of the compound of Formula I;

E is -O-, -S-, -CH=CH- or an aromatic moiety selected from

\[
\begin{align*}
\text{\includegraphics[width=0.2\textwidth]{carbon-bond}} & \quad \text{\includegraphics[width=0.2\textwidth]{nitrogen-bond}} & \quad \text{\includegraphics[width=0.2\textwidth]{nitrogen-bond}} & \quad \text{\includegraphics[width=0.2\textwidth]{nitrogen-bond}} \\
\text{\includegraphics[width=0.2\textwidth]{carbon-bond}} & \quad \text{\includegraphics[width=0.2\textwidth]{carbon-bond}} & \quad \text{\includegraphics[width=0.2\textwidth]{nitrogen-bond}} & \quad \text{\includegraphics[width=0.2\textwidth]{nitrogen-bond}}
\end{align*}
\]
said aromatic moiety in the definition of E optionally substituted with up to three halo, hydroxy, -N(R')(R")(C-C6), alkyl or (C-C6)alkoxy; R' and R" are, for each occurrence, independently hydrogen, (C-C6)alkyl, trifluoromethyl, phenyl or monosubstituted (C-C6)alkyl where the substituents are imidazolyl, naphthyl, phenyl, indolyl, p-hydroxyphenyl, -OR', S(O)mR, C(O)OR', (C-C7)cycloalkyl, -N(R')(R")(C-C6), -C(O)N(R')(R")(R'), or R' or R" may independently be joined to one or both of R' or E (where E is other than O, S or -CH=CH-) to form an alkylene bridge between the terminal nitrogen and the alkyl portion of the R' or R" and the R' or E group, wherein the bridge contains 1 to 8 carbon atoms; or R' and R" may be joined to one another to form a (C-C7)cycloalkyl; R', for each occurrence, is independently hydrogen or (C-C6)alkyl; a and b are independently 0, 1, 2 or 3, with the proviso that if E is -O- or -S-, b is other than 0 or 1 and with the further proviso that if E is -CH=CH-, b is other than 0;

R' and R" are each independently hydrogen or optionally substituted (C-C6)alkyl; where the optionally substituted (C-C6)alkyl in the definition of R' and R" is optionally independently substituted with A', -C(O)O-(C-C6)alkyl, -S(O)m(C-C6)alkyl, 1 to 5 halo groups, 1 to 3 hydroxy groups, 1 to 3 -O-C(O)(C-C10)alkyl groups or 1 to 3 (C-C6)alkoxy groups; or R' and R" can be taken together to form -L-(CH2)-L-(CH2)-;

where L is C(X2)(X2), S(O)m or N(X2); R' and R" are each independently selected from the group consisting of hydrogen, fluoro, hydroxy and (C-C6)alkyl optionally independently substituted with 1-5 halo groups;

R' is selected from the group consisting of (C-C6)alkyl and phenyl optionally substituted with 1-3 substituents each independently selected from the group consisting of (C-C6)alkyl, halo and (C-C6)alkoxy;

R' is selected from the group consisting of (C-C6)alkylsulfonyl, (C-C6)alkanoyl and (C-C6)alkyl where the alkyl portion is optionally independently substituted by 1-5 halo groups;

A' for each occurrence is independently selected from the group consisting of (C-C7)cycloalkenyl, phenyl, a partially saturated, fully saturated or fully unsaturated 4- to 8-membered ring optionally having 1 to 4 heteroatoms indepentely selected
from the group consisting of oxygen, sulfur and nitrogen and a bicyclic ring system consisting of a partially saturated, fully unsaturated or fully saturated 5- or 6-membered ring, optionally having 1 to 4 heteroatoms independently selected from the group consisting of nitrogen, sulfur and oxygen, fused to a partially saturated, fully saturated or fully unsaturated 5- or 6-membered ring, optionally having 1 to 4 heteroatoms independently selected from the group consisting of nitrogen, sulfur and oxygen;

A for each occurrence is independently optionally substituted, on one or optionally both rings if A is a bicyclic ring system, with up to three substituents, each substituent independently selected from the group consisting of F, Cl, Br, I, OCF₃, OCF₂H, CF₃, CH₃, OCH₃, -OX₆, -C(O)N(X₆)(X₆), -C(O)OX₆, oxo, (C₁-C₆)alkyl, nitro, cyano, benzyl, -S(O)ₓ_m(C₁-C₆)alkyl, 1H-tetrazol-5-yl, phenyl, phenoxy, phenylalkyloxy, halophenyl, methylenedioxy, -N(X₆)(X₆), -N(X₆)C(O)(X₆), -S(O)ₓ₂N(X₆)(X₆), -N(X₆)S(O)ₓ₂phenyl, -N(X₆)S(O)ₓ₂X₆, -CONX₁₁X₁₂, -S(O)ₓ₂NX₁₁X₁₂, -NX₆S(O)ₓ₂X₁₂, -NX₆CONX₁₁X₁₂, -NX₆S(O)ₓ₂NX₁₁X₁₂, -NX₆C(O)X₁₂, imidazolyl, thiazolyl and tetrazolyl, provided that if A is optionally substituted with methylenedioxy then it can only be substituted with one methylenedioxy;

where X₁₁ is hydrogen or optionally substituted (C₁-C₆)alkyl;

the optionally substituted (C₁-C₆)alkyl defined for X₁₁ is optionally independently substituted with phenyl, phenoxy, (C₁-C₆)alkoxycarbonyl, -S(O)ₓ_m(C₁-C₆)alkyl, 1 to 5 halo groups, 1 to 3 hydroxy groups, 1 to 3 (C₁-C₁₀)alkanoyloxy groups or 1 to 3 (C₁-C₆)alkoxy groups;

X₁₂ is hydrogen, (C₁-C₆)alkyl, phenyl, thiazolyl, imidazolyl, furyl or thienny, provided that when X₁₂ is not hydrogen, the X₁₂ group is optionally substituted with one to three substituents independently selected from the group consisting of Cl, F, CH₃, OCH₃, OCF₃ and CF₃;

or X₁₁ and X₁₂ are taken together to form -(CH₃)ₓ-L₁-(CH₃)ₓ;

L₁ is C(X²)(X²), O, S(O)ₓ_m or N(X²);

for each occurrence is independently 1, 2 or 3;

X² for each occurrence is independently hydrogen, optionally substituted (C₁-C₆)alkyl or optionally substituted (C₃-C₇)cycloalkyl, where the optionally substituted
(C₁-C₆)alkyl and optionally substituted (C₃-C₇)cycloalkyl in the definition of X² are optionally independently substituted with -S(O)ₘ(C₁-C₆)alkyl, -C(O)OX³, 1 to 5 halo groups or 1-3 OX³ groups;

X³ for each occurrence is independently hydrogen or (C₁-C₆)alkyl;

X⁶ for each occurrence is independently hydrogen, optionally substituted (C₁-C₆)alkyl, (C₂-C₆)halogenated alkyl, optionally substituted (C₁-C₇)cycloalkyl, (C₃-C₇)halogenated cycloalkyl, where optionally substituted (C₁-C₆)alkyl and optionally substituted (C₃-C₇)cycloalkyl in the definition of X⁶ is optionally independently mono- or di-substituted with (C₁-C₄)alkyl, hydroxy, (C₁-C₄)alkoxy, carboxyl, CONH₂, -S(O)ₘ(C₁-C₆)alkyl, carboxylate (C₁-C₄)alkyl ester, or 1H-tetrazol-5-yl; or when there are two X⁶ groups on one atom and both X⁶ are independently (C₁-C₆)alkyl, the two (C₁-C₆)alkyl groups may be optionally joined and, together with the atom to which the two X⁶ groups are attached, form a 4- to 9- membered ring optionally having oxygen, sulfur or Nₓ⁻¹⁻⁻⁻⁻⁻⁻ as a ring member;

X⁷ is hydrogen or (C₁-C₆)alkyl optionally substituted with hydroxy;

m for each occurrence is independently 0, 1 or 2;

with the provisos that:

1) X⁶ and X¹² cannot be hydrogen when attached to C(O) or S(O)₂ in the form C(O)X⁶, C(O)X¹², S(O)₂X⁶ or S(O)₂X¹²; and

2) when R⁶ is a bond then L is N(X²) and each r in the definition -(CH₂)ₓ⁻⁻⁻⁻⁻⁻ is independently 2 or 3.
More preferably, the present invention provides such pharmaceutical compositions and kits wherein the compound is of the structural formula below, which is designated herein as Formula I-A

\[
\begin{align*}
\text{I-A} & \\
\text{a racemic-diastereomeric mixture or an optical isomer of said compound or a pharmaceutically-acceptable salt or prodrug thereof, or a tautomer thereof,}\n\end{align*}
\]

wherein

\[
\begin{align*}
f & = 0; \\
n & = 0 \text{ and } w = 2, \text{ or } n = 1 \text{ and } w = 1, \text{ or } n = 2 \text{ and } w = 0;
\end{align*}
\]
Y is oxygen or sulfur;
R³ is hydrogen, -CN, -(CH₂)₃N(X₆)C(O)X₆, -(CH₂)₆N(X₆)C(O)(CH₂)₃-A¹,
-(CH₂)₆N(X₆)SO₂(CH₂)₆-A¹, -(CH₂)₆N(X₆)SO₂X', -(CH₂)₆N(X₆)C(O)N(X₆)(CH₂)₆-A¹,
-(CH₂)₆N(X₆)C(O)N(X₆)(X₆), -(CH₂)₆C(O)N(X₆)(X₆), -(CH₂)₆C(O)N(X₆)(CH₂)₆-A¹,
-(CH₂)₆C(O)OX₆, -(CH₂)₆C(O)(CH₂)₆-A¹, -(CH₂)₆OC(O)X₆, -(CH₂)₆OC(O)(CH₂)₆-A¹,
-(CH₂)₆OC(O)N(X₆)(CH₂)₆-A¹, -(CH₂)₆OC(O)N(X₆)(X₆), -(CH₂)₆C(O)X₆, -(CH₂)₆C(O)(CH₂)₆-A¹,
-(CH₂)₆N(X₆)C(O)X₆, -(CH₂)₆N(X₆)C(O)OX₆, -(CH₂)₆S(O)mX₆, -(CH₂)₆S(O)m(CH₂)₆-A¹,
-(C₁₋C₆)alkyl, -(CH₂)₆-A¹, -(CH₂)₆-(C₃₋C₇)cycloalkyl, -(CH₂)₆-Y¹-(C₁₋C₆)alkyl,
-(CH₂)₆-Y¹-(CH₂)₆-A¹ or -(CH₂)₆-Y¹-(C₃₋C₇)cycloalkyl;
where the alkyl and cycloalkyl groups in the definition of R³ are optionally substituted with (C₁₋C₆)alkyl, hydroxyl, (C₁₋C₆)alkoxy, carboxyl, -CONH₂,
-S(O)m(C₁₋C₆)alkyl, -CO₂(C₁₋C₆)alkyl ester, 1H-tetrazol-5-yl or 1, 2 or 3 fluoro;
Y¹ is O, S(O)m, -C(O)N(X₆)-₂, -CH=CH-, -C≡C-, -N(X₆)C(O)⁻, -C(O)O⁻,
-OC(O)N(X₆)- or -OC(O)-;
q is 0, 1, 2, 3 or 4;
t is 0, 1, 2 or 3;
said (CH₂)₄ group and (CH₂)₆ group may each be optionally substituted with hydroxyl, (C₁₋C₄)alkoxy, carboxyl, -CONH₂, -S(O)m(C₁₋C₆)alkyl,
-CO₂(C₁₋C₄)alkyl ester, 1H-tetrazol-5-yl, 1, 2 or 3 fluoro, or 1 or 2 (C₁₋C₄)alkyl;
R² is hydrogen, (C₁₋C₆)alkyl, -(C₀₋C₃)alkyl-(C₃₋C₆)cycloalkyl, -(C₁₋C₆)alkyl-A¹ or A¹;
where the alkyl groups and the cycloalkyl groups in the definition of R² are optionally substituted with hydroxyl, -C(O)OX₆, -C(O)N(X₆)(X₆),
-N(X₆)(X₆), -S(O)m(C₁₋C₆)alkyl, -C(O)A¹, -C(O)(X₆), CF₃, CN or 1, 2 or 3 halogens;
R³ is A¹, (C₁₋C₆)alkyl, -(C₁₋C₆)alkyl-A¹, -(C₁₋C₆)alkyl-(C₃₋C₇)cycloalkyl,
-(C₁₋C₆)alkyl-X¹-(C₁₋C₆)alkyl, -(C₁₋C₆)alkyl-X¹-(C₀₋C₆)alkyl-A¹ or
-(C₁₋C₆)alkyl-X¹-(C₁₋C₆)alkyl-(C₃₋C₇)cycloalkyl;
where the alkyl groups in the definition of R³ are optionally substituted with,
-S(O)m(C₁₋C₆)alkyl, -C(O)OX₆, 1, 2, 3, 4 or 5 halogens, or 1, 2 or 3 OX₆;
X¹ is O, S(O)m, -N(X₆)C(O)-, -C(O)N(X₆)-, -OC(O)-, -C(O)O-, -CX²=CX²,
-N(X₆)C(O)O-, -OC(O)N(X₆)- or -C≡C-;
R^6 is hydrogen, (C_1-C_6)alkyl or (C_2-C_7)cycloalkyl;
X^5 is hydrogen or (C_1-C_6)alkyl or X^5 is taken together with R^6 and the nitrogen atom
to which X^5 is attached and the carbon atom to which R^6 is attached and form a five
to seven membered ring;

\[\text{where a and b are independently 0, 1, 2 or 3;} \]
X^5 and X^{5a} are each independently selected from the group consisting of
hydrogen, trifluoromethyl, A^1 and optionally substituted (C_1-C_6)alkyl;
the optionally substituted (C_1-C_6)alkyl in the definition of X^5 and X^{5a} is
optionally substituted with a substituent selected from the group
consisting of A^1, OX^2, -S(O)_m(C_1-C_6)alkyl, -C(O)OX^2,
(C_2-C_7)cycloalkyl, -N(X^2)(X^2) and -C(O)N(X^2)(X^2);

R^7 and R^8 are independently hydrogen or optionally substituted (C_1-C_6)alkyl;
where the optionally substituted (C_1-C_6)alkyl in the definition of R^7 and R^8 is
optionally independently substituted with A^1, -C(O)O-(C_1-C_6)alkyl,
-S(O)_m(C_1-C_6)alkyl, 1 to 5 halogens, 1 to 3 hydroxy, 1 to 3 -O-C(O)(C_1-
C_{10})alkyl or 1 to 3 (C_1-C_6)alkoxy; or

R^7 and R^8 can be taken together to form -(CH_2)_L-(CH_2)_r;

where L is C(X^2)(X^2), S(O)_m or N(X^2);

A^1 in the definition of R^1 is a partially saturated, fully saturated or fully unsaturated
4- to 8-membered ring optionally having 1 to 4 heteroatoms independently selected
from the group consisting of oxygen, sulfur and nitrogen, a bicyclic ring system
consisting of a partially saturated, fully unsaturated or fully saturated 5- or 6-
membered ring, having 1 to 4 heteroatoms independently selected from the group
consisting of nitrogen, sulfur and oxygen, fused to a partially saturated, fully
saturated or fully unsaturated 5- or 6-membered ring, optionally having 1 to 4
heteroatoms independently selected from the group consisting of nitrogen, sulfur
and oxygen;

A^1 in the definition of R^2, R^3, R^6, R^7 and R^8 is independently (C_6-C_7)cycloalkenyl,
phenyl or a partially saturated, fully saturated or fully unsaturated 4- to 8-
membered ring optionally having 1 to 4 heteroatoms independently selected from
the group consisting of oxygen, sulfur and nitrogen, a bicyclic ring system consisting of a partially saturated, fully unsaturated or fully saturated 5- or 6-membered ring, optionally having 1 to 4 heteroatoms independently selected from the group consisting of nitrogen, sulfur and oxygen, fused to a partially saturated, fully saturated or fully unsaturated 5- or 6-membered ring, optionally having 1 to 4 heteroatoms independently selected from the group consisting of nitrogen, sulfur and oxygen;

\[A^1 \text{ for each occurrence is independently optionally substituted, in one or } \]

optionally both rings if \(A^1 \) is a bicyclic ring system, with up to three \n
substituents, each substituent independently selected from the group \n
consisting of F, Cl, Br, I, OCF\(_3\), OCF\(_2\)H, CF\(_3\), CH\(_3\), OCH\(_3\), -OX\(_6\), \n
-C(O)N(X\(^6\))(X\(^6\)), -C(O)OX\(_6\), oxo, (C\(_1\)-C\(_6\))alkyl, nitro, cyan, benzyl, \n
-S(O)\(_m\)(C\(_1\)-C\(_6\))alkyl, 1H-tetrazol-5-yl, phenyl, phenoxy, phenylalkoxy, \n
halophenyl, methylenedioxy, -N(X\(^6\))(X\(^6\)), -N(X\(^6\))C(O)(X\(^6\)), -SO\(_2\)N(X\(^6\))(X\(^6\)), \n
-N(X\(^6\))SO\(_2\)-phenyl, -N(X\(^6\))SO\(_2\)X\(^6\), -CONX\(^{11}\)X\(^{12}\), -SO\(_2\)NX\(^{11}\)X\(^{12}\), -NX\(^6\)SO\(_2\)X\(^{12}\), \n
-NX\(^6\)CONX\(^{11}\)X\(^{12}\), -NX\(^6\)SO\(_2\)NX\(^{11}\)X\(^{12}\), -NX\(^6\)C(O)X\(^{12}\), imidazolyl, thiazolyl or \n
tetrazolyl, provided that if \(A^1 \) is optionally substituted with methylenedioxy \n
then it can only be substituted with one methylenedioxy; \n
where \(X^{11} \) is hydrogen or optionally substituted (C\(_1\)-C\(_6\))alkyl; \n
the optionally substituted (C\(_1\)-C\(_6\))alkyl defined for \(X^{11} \) is \n
optionally independently substituted with phenyl, phenoxy, \n
(C\(_1\)-C\(_6\))alkoxy carbonyl, -S(O)\(_m\)(C\(_1\)-C\(_6\))alkyl 1 to 5 halogens, 1 \n
to 3 hydroxy, 1 to 3 (C\(_1\)-C\(_{10}\))alkanoyloxy or 1 to 3 (C\(_1\)- \n
C\(_6\))alkoxy; \n
\(X^{12} \) is hydrogen, (C\(_1\)-C\(_6\))alkyl, phenyl, thiazolyl, imidazolyl, furyl or \n
thienyl, provided that when \(X^{12} \) is not hydrogen, \(X^{12} \) is optionally \n
substituted with one to three substituents independently selected \n
from the group consisting of Cl, F, CH\(_3\), OCH\(_3\), OCF\(_3\) and CF\(_3\); \n
or \(X^{11} \) and \(X^{12} \) are taken together to form -(CH\(_2\))\(_r\)-L\(^1\)-(CH\(_2\))\(_r\); \n
where \(L^1 \) is C(X\(^2\))(X\(^2\)), O, S(O)\(_m\) or N(X\(^2\)); \n
\(r \) for each occurrence is independently 1, 2 or 3; \n
\(X^2 \) for each occurrence is independently hydrogen, optionally substituted (C\(_1\)- \n
C\(_6\))alkyl, or optionally substituted (C\(_3\)-C\(_7\))cycloalkyl, where the optionally substituted \n
(C\(_1\)-C\(_6\))alkyl and optionally substituted (C\(_3\)-C\(_7\))cycloalkyl in the definition of \(X^2 \) are
optionally independently substituted with \(-\text{S(O)}\text{m}(\text{C}_1-\text{C}_6)\text{alkyl, }\)
\(-\text{C(O)}\text{OX}^3, 1 \text{ to } 5 \text{ halogens or } 1-3 \text{ OX}^3;\)

\(X^3\) for each occurrence is independently hydrogen or \((\text{C}_1-\text{C}_6)\text{alkyl};\)

\(X^6\) is independently hydrogen, optionally substituted \((\text{C}_1-\text{C}_6)\text{alkyl, } (\text{C}_2-\text{C}_6)\text{halogenated alkyl, optionally substituted } (\text{C}_3-\text{C}_7)\text{cycloalkyl, } (\text{C}_3-\text{C}_7)\text{halogenated cycloalkyl, where optionally substituted } (\text{C}_1-\text{C}_6)\text{alkyl and optionally substituted } (\text{C}_3-\text{C}_7)\text{cycloalkyl in the definition of } X^6\) is optionally independently substituted by 1 or 2 \((\text{C}_1-\text{C}_4)\text{alkyl, }\) hydroxyl, \((\text{C}_1-\text{C}_4)\text{alkoxy, carboxyl, CONH}_2, -\text{S(O)}\text{m}(\text{C}_1-\text{C}_6)\text{alkyl, carboxylate } (\text{C}_1-\text{C}_6)\text{alkyl ester, or } 1\text{H-tetrazol-5-yl; or when there are two } X^6 \text{ groups on one atom and both } X^6 \text{ are independently } (\text{C}_1-\text{C}_6)\text{alkyl, the two } (\text{C}_1-\text{C}_6)\text{alkyl groups may be optionally joined and, together with the atom to which the two } X^6 \text{ groups are attached, form a } 4-\text{ to } 9-\text{ membered ring optionally having oxygen, sulfur or } \text{NX}^7;\)

\(X^7\) is hydrogen or \((\text{C}_1-\text{C}_6)\text{alkyl optionally substituted with hydroxyl; and}\)

\(m\) for each occurrence is independently 0, 1 or 2;

with the proviso that:

\(X^6\) and \(X^{12}\) cannot be hydrogen when it is attached to \(\text{C(O)}\) or \(\text{SO}_2\) in the form \(\text{C(O)}X^6, \text{C(O)}X^{12}, \text{SO}_2X^6\) or \(\text{SO}_2X^{12};\) and

when \(R^6\) is a bond then \(L\) is \(\text{N}(X^7)\) and each \(r\) in the definition \(-(\text{CH}_2)_r-L-(\text{CH}_2)_r-\) is independently 2 or 3.

More preferably, the present invention provides such pharmaceutical compositions and kits wherein the compound is 2-amino-N-(2-(3a-(R)-benzyl-2-methyl-3-oxo-2,3,3a,4,6,7-hexahydro-pyrazolo-[4,3-c]pyridin-5-yl)-1-(R)-
benzyloxymethyl-2-oxo-ethyl)-isobutyramide, a prodrug thereof or a pharmaceutically acceptable salt of the compound or the prodrug. Even more preferably, the present invention provides such pharmaceutical composition wherein the compound is 2-amino-N-[2-(3a-(R)-benzyl-2-methyl-3-oxo-2,3,3a,4,6,7-hexahydro-pyrazolo[4,3-c]pyridin-5-yl)-1-(R)-benzyloxymethyl-2-oxo-ethyl]-isobutyramide, L-tartrate.

Also, more preferably, the present invention provides such pharmaceutical compositions and kits wherein the compound is 2-amino-N-(1-(R)-(2,4-difluoro-benzyloxymethyl)-2-oxo-2-(3-oxo-3a-(R)-(pyridin-2-ylmethyl)-2-(2,2,2-trifluoro-ethyl)-2,3,3a,4,6,7-hexahydro-pyrazolo-[4,3-c]pyridin-5-yl)-ethyl)-2-methyl-propionamide, a prodrug thereof or a pharmaceutically acceptable salt of the compound or the prodrug. Even more preferably, the present invention provides such pharmaceutical compositions and kits wherein the compound is the (L)-(+-)-tartaric acid salt of 2-amino-N-(1-(R)-(2,4-difluoro-benzyloxymethyl)-2-oxo-2-(3-oxo-3a-(R)-(pyridin-2-ylmethyl)-2-(2,2,2-trifluoro-ethyl)-2,3,3a,4,6,7-hexahydro-pyrazolo-[4,3-c]pyridin-5-yl)-ethyl)-2-methyl-propionamide.

Also, more preferably, the present invention provides such pharmaceutical compositions and kits wherein the compound is 2-amino-N-(1(R)-benzyloxymethyl-2-(1,3-dioxo-8a(S)-pyridin-2-ylmethyl-2-(2,2,2-trifluoro-ethyl)-hexahydro-imidazo[1,5-a]pyrazin-7-yl)-2-oxo-ethyl)-2-methyl-propionamide, a prodrug thereof or a pharmaceutically acceptable salt of the compound or the prodrug. Even more preferably, the present invention provides such pharmaceutical compositions wherein the compound is the (L)-(+-)-tartaric acid salt of 2-amino-N-(1(R)-benzyloxymethyl-2-(1,3-dioxo-8a(S)-pyridin-2-ylmethyl-2-(2,2,2-trifluoro-ethyl)-hexahydro-imidazo[1,5-a]pyrazin-7-yl)-2-oxo-ethyl)-2-methyl-propionamide.
-23a-

Even more preferably, the present invention provides such pharmaceutical compositions and kits wherein the compound is selected from the following: 2-amino-N-(2-(3a-(R)-benzyl-2-methyl-3-oxo-2,3,3a,4,6,7-hexahydro-pyrazolo-[4,3-c]pyridin-5-yl)-1-(R)-benzyloxymethyl-2-oxo-ethyl)-isobutyramide, a prodrug thereof or a pharmaceutically acceptable salt of the compound or the prodrug; 2-amino-N-[2-(3a-(R)-benzyl-2-methyl-3-oxo-2,3,3a,4,6,7-hexahydro-pyrazolo[4,3-c]pyridin-5-yl)-1-(R)-benzyloxymethyl-2-oxo-ethyl]-isobutyramide, L-tartrate; 2-amino-N-(1-(R)-(2,4-difluoro-benzyloxymethyl)-2-oxo-2-(3-oxo-3a-(R)-(pyridin-2-ylmethyl)-2-(2,2,2-trifluoro-ethyl)-2,3,3a,4,6,7-hexahydro-pyrazolo-[4,3-c]pyridin-5-yl)-ethyl)-2-methyl-propionamide, a prodrug thereof or a pharmaceutically acceptable salt of the compound or the prodrug; the (L)-(+-) -tartaric acid salt of 2-amino-N-(1-(R)-(2,4-difluoro-benzyloxymethyl)-2-oxo-2-(3-oxo-3a-(R)-(pyridin-2-ylmethyl)-2-(2,2,2-trifluoro-ethyl)-2,3,3a,4,6,7-hexahydro-pyrazolo-[4,3-c]pyridin-5-yl)-ethyl)-2-methyl-propionamide; 2-amino-N-{1(R)-benzyloxymethyl-2-[1,3-dioxo-8a(S)-pyridin-2-ylmethyl-2-(2,2,2-trifluoro-ethyl)-hexahydro-imidazo[1,5-a]pyrazin-7-yl]-2-oxo-ethyl}-2-methyl-propionamide, a prodrug thereof or a pharmaceutically acceptable salt of the compound or the prodrug; and the (L)-(+-) -tartaric acid salt of 2-amino-N-(1(R)-benzyloxymethyl-2-(1,3-dioxo-8a(S)-pyridin-2-ylmethyl-2-(2,2,2-trifluoro-ethyl)-hexahydro-imidazo[1,5-a]pyrazin-7-yl)-2-oxo-ethyl)-2-methyl-propionamide.

By the term "growth hormone secretagogue" is meant any exogenously administered compound or agent that directly or indirectly stimulates or increases the endogenous release of growth hormone, growth hormone-releasing hormone or
somatostatin in an animal, in particular, a human, or acts as a ghrelin mimetic. The growth hormone secretagogue may be peptidyl or non-peptidyl in nature, however, the use of an orally active growth hormone secretagogue is preferred. In addition, it is preferred that the growth hormone secretagogue induce or amplify a pulsatile release of endogenous growth hormone.

The expression "prodrug" refers to compounds that are drug precursors which, following administration, release the drug in vivo via some chemical or physiological process (e.g., a prodrug on being brought to the physiological pH is converted to the desired drug form). A prodrug of a growth hormone secretagogue may be used in the present invention. Exemplary prodrugs are disclosed in the art, particularly in the references cited herein.

The compounds useful in the present invention may be used alone or in combination with one or more growth hormone secretagogues or with one or more agents which are known to be beneficial for treating bulimia nervosa, male erectile dysfunction, female sexual dysfunction, thyroid cancer, or breast cancer, or ameliorating ischemic nerve or muscle damage. The compounds can be administered in the same dosage form, at the same time or in different dosage forms at the same time or at different times.

A representative first group of growth hormone secretagogues is set forth in International Patent Application Publication No. WO 97/24369 as compounds having the structural formula below, which is designated herein as Formula II:

$$\text{II,}$$

wherein the various substituents are as defined in WO 97/24369. Said compounds are prepared as disclosed therein.

2-Amino-N-(2-(3a-(R)-benzyl-2-methyl-3-oxo-2,3,3a,4,6,7-hexahydro-
pyrazolo-[4,3-c]pyridin-5-yl)-1-(R)-benzyloxymethyl-2-oxo-ethyl)-isobutyramide,

having the following structure:

and 2-amino-N-(1-(R)-(2,4-difluoro-benzylxoxymethyl)-2-oxo-2-(3-oxo-3a-(R)-(pyridin-
2-ylmethyl)-2-(2,2,2-trifluoro-ethyl)-2,3,3a,4,6,7-hexahydro-pyrazolo-[4,3-c]pyridin-
5-yl)-ethyl)-2-methyl-propionamide, having the following structure:
and the pharmaceutically acceptable salts thereof are within the scope of the disclosure of International Patent Application Publication Number WO 97/24369.

A representative second group of growth hormone secretagogues is set forth in International Patent Application Publication No. WO 98/58947, as compounds having the structural formula below, which is designated herein as Formula III:

\[
\text{III}
\]

wherein the various substituents are as defined in WO 98/58947. Said compounds are prepared as disclosed therein or as described herein.

The most preferred compound within this second group which may be employed in the present invention is identified as having the following name and structure: 2-amino-N-(1(R)-benzoxymethyl)-2-(1,3-dioxo-8a(S)-pyridin-2-ylmethyl)-2-(2,2,2-trifluoro-ethyl)-hexahydro-imidazo[1,5-a]pyrazin-7-yl)-2-oxo-ethyl)-2-methyl-propionamide,

This compound is within the scope of the disclosure of International Patent Application Publication No. WO 98/58947, and may be prepared as described in Examples Five and Six therein.

A representative third group of growth hormone secretagogues is set forth in Published European patent application 0995748, which discloses certain dipeptide growth hormone secretagogues of the structural formula above, which is designated herein as Formula III, and their use for the treatment or prevention of musculoskeletal frailty including osteoporosis.
A representative fourth group of growth hormone secretagogues is set forth in U.S. Patent No. 5,206,235 as having the following structure:

wherein the various substituents are as defined in U.S. Patent No. 5,206,235. Said compounds are prepared as disclosed therein.

The most preferred compounds within this fourth group are identified as having the following structures:

or

A representative fifth group of growth hormone secretagogues is set forth in U.S. Patent No. 5,283,241 as having the following structural formula:
wherein the various substituents are as defined in U.S. Patent 5,283,241. Said compounds are prepared as disclosed therein.

A representative sixth group of growth hormone secretagogues is disclosed in International Patent Application Publication No. WO 97/41879 as compounds having the following structural formulas:

![Structural formulas](image)

wherein the various substituents are as defined in WO97/41879. Said compounds are prepared as disclosed therein.

The most preferred compounds within this sixth group which may be employed in the present invention are identified as having the following structure:
and pharmaceutically acceptable salts thereof, in particular, the methanesulfonate salt.

A representative seventh group of growth hormone secretagogues is disclosed in U.S. Patent No. 5,492,916 as being compounds of the following structural formula:

\[
\begin{array}{c}
\text{R}_1 \text{R}_2 \\
\text{R}_3 \\
\text{A} \\
\text{N} \\
\text{R}_4 \text{R}_5 \\
\text{N} \\
\text{X} \\
\text{Y} \\
\end{array}
\]

wherein the various substituents are as defined in U.S. Patent No. 5,492,916. Said compounds are prepared as disclosed therein.

The compounds of Formula I used in the methods of the present invention all have at least one asymmetric center as noted, e.g., by the asterisk in the structural Formula I-B below. Additional asymmetric centers may be present in the compounds of Formula I depending upon the nature of the various substituents on the molecule. Each such asymmetric center will produce two optical isomers and it is intended that all such optical isomers, as separated, pure or partially purified optical isomers, racemic mixtures or diastereomeric mixtures thereof, be included within the scope of the methods and kits of the instant invention. In the case of the asymmetric center represented by the asterisk, it has been found that the absolute stereochemistry of the more active and thus more preferred isomer is shown in Formula I-B below:
With the R⁴ substituent as hydrogen, the spatial configuration of the asymmetric center corresponds to that in a D-amino acid. In most cases this is also designated an R-configuration although this will vary according to the values of R³ and R⁴ used in making R- or S-stereochemical assignments.

A growth hormone secretagogue can be administered in combination with another compound that can be used to treat bulimia nervosa, male erectile dysfunction, female sexual dysfunction, thyroid cancer, or breast cancer, or ameliorating ischemic nerve or muscle damage.

Examples of other compounds that can be used in combination with a growth hormone secretagogue for the treatment of bulimia nervosa include antidepressants including selective serotonin reuptake inhibitors (SSRIs) such as citalopram (Celexa®), paroxetine (Paxil®), fluoxetine (Prozac®), sertraline hydrochloride (Zoloft®) and fluvoxamine (Luvox®); tricyclic compounds such as amitriptyline (Elvanil®), perphenazine and amitriptyline (Etrafon®), imipramine (Tofranil®), clordiazepoxide and amitriptyline (Limbitrol®), desipramine (Norpramin®), doxepin (Sinequan®), trimipramine (Surmontil®) and protriptyline (Vivactil®); monoamine oxidase inhibitors such as phenelzine (Nardil®) and tranylcypromine (Parnate®); and other compounds that are used to treat depression such as venlafaxine (Effexor®), mirtazapine (Remeron®), nefazodone (Serzone®) and bupropion (Wellbutrin®).

In addition, a growth hormone secretagogue can be used in combination with estrogen agonists / antagonists, also known as selective estrogen receptor modulators (SERMs), for the treatment of female sexual dysfunction and its component conditions.

Preferred estrogen agonists / antagonists that can be used in combination with a growth hormone secretagogue for the treatment of female sexual dysfunction
or its component conditions include the compounds described in U.S. Patent No. 5,552,412. Those compounds are described by formula (IC) given below:

![Chemical Structure](image)

(IC)

wherein:

A is selected from CH₂ and NR;
B, D and E are independently selected from CH and N;
Y is
(a) phenyl, optionally substituted with 1-3 substituents
independently selected from R⁴;
(b) naphthyl, optionally substituted with 1-3 substituents
independently selected from R⁴;
(c) C₃-C₅ cycloalkyl, optionally substituted with 1-2 substituents
independently selected from R⁴;
(d) C₅-C₆ cycloalkenyl, optionally substituted with 1-2 substituents
independently selected from R⁴;
(e) a five membered heterocycle containing up to two heteroatoms
selected from the group consisting of -O-, -NR²- and -S(O)ₐ-, optionally substituted
with 1-3 substituents independently selected from R⁴;
(f) a six membered heterocycle containing up to two heteroatoms
selected from the group consisting of -O-, -NR²- and -S(O)ₐ- optionally substituted
with 1-3 substituents independently selected from R⁴; or
(g) a bicyclic ring system consisting of a five or six membered
heterocyclic ring fused to a phenyl ring, said heterocyclic ring containing up to two
heteroatoms selected from the group consisting of -O-, -NR²- and -S(O)ₐ-, optionally
substituted with 1-3 substituents independently selected from R⁴;

Z¹ is
(a) \(-(CH_2)_p W(CH_2)_q-\);
(b) \(-O(CH_2)_p CR^2R^3-\);
(c) \(-O(CH_2)_p W(CH_2)_q-\);
(d) \(-OCHR^2CHR^3-\); or
(e) \(-SCHR^2CHR^3-\);

\(G\) is
(a) \(-NR^2R^4\);

\(Z^2\) is \(-\text{NH}_2, -O-, -S-, \) or \(-\text{CH}_2-\);

15

(b) \(N\)
\[
\begin{array}{c}
\text{(CH}_2\text{)}_m \\
\text{(CH}_2\text{)}_n
\end{array}
\]

wherein \(n\) is 0, 1 or 2; \(m\) is 1, 2 or 3; \(Z^2\) is \(-\text{NH}_2, -O-, -S-, \) or \(-\text{CH}_2-\);

optionally fused on adjacent carbon atoms with one or two phenyl rings and,
optionally independently substituted on carbon with one to three substituents and,
optionally, independently on nitrogen with a chemically suitable substituent selected
from \(R^4\); or

(c) a bicyclic amine containing five to twelve carbon atoms, either
bridged or fused and optionally substituted with 1-3 substituents independently
selected from \(R^4\); or

\(Z^1\) and \(G\) in combination may be

\(W\) is
(a) \(-\text{CH}_2-\);
(b) \(-\text{CH}=\text{CH}_2-\);
(c) \(-\text{O}-\);
(d) \(-\text{NR}_2-\);
(e) \(-\text{S(O)}_n-\);
(f) \(-\text{OCH}_2-\);
(g) \(-\text{CR}_2(\text{OH})_-\);
(h) \(-\text{CONR}_2-\);
(i) \(-\text{NR}_2\text{CO}_2-\);
(j) \(\text{S} \); or

(k) \(-\text{C}==\text{C}=-\);

R is hydrogen or C\(_1\)–C\(_6\) alkyl;

R\(^2\) and R\(^3\) are independently

5
(a) hydrogen; or
(b) C\(_1\)–C\(_4\) alkyl;

R\(^4\) is
(a) hydrogen;
(b) halogen;
(c) C\(_1\)–C\(_6\) alkyl;
(d) C\(_1\)–C\(_4\) alkoxy;
(e) C\(_1\)–C\(_4\) acyloxy;
(f) C\(_1\)–C\(_4\) alkylthio;
(g) C\(_1\)–C\(_4\) alkylsulfanyl;
(h) C\(_1\)–C\(_4\) alkylsulfonyl;
(i) hydroxy (C\(_1\)–C\(_4\))alkyl;
(j) aryl (C\(_1\)–C\(_4\))alkyl;
(k) \(-\text{CO}_2\text{H}\);
(l) \(-\text{CN}\);

20
(m) \(-\text{CONHOR}\);
(n) \(-\text{SO}_2\text{NHR}\);
(o) \(-\text{NH}_2\);
(p) C\(_1\)–C\(_4\) alkylamino;
(q) C\(_1\)–C\(_4\) dialkylamino;
(r) \(-\text{NHSO}_2\text{R}\);
(s) \(-\text{NO}_2\);
(t) -aryl; or
(u) \(-\text{OH}\);

R\(^5\) and R\(^6\) are independently C\(_1\)–C\(_6\) alkyl or together form a C\(_3\)–C\(_{10}\)

30 carbocyclic ring;

R\(^7\) and R\(^8\) are independently
(a) phenyl;
(b) a C_{2}-C_{10} carbocyclic ring, saturated or unsaturated;
(c) a C_{2}-C_{10} heterocyclic ring containing up to two heteroatoms,
selected from -O-, -N- and -S-;
(d) H;
(e) C_{1}-C_{6} alkyl; or
(f) form a 3 to 8 membered nitrogen containing ring with R^7 or R^6;
R^7 and R^6 in either linear or ring form may optionally be substituted with up
to three substituents independently selected from C_{1}-C_{6} alkyl, halogen, alkoxy,
hydroxy and carboxy;

a ring formed by R^7 and R^8 may be optionally fused to a phenyl ring;

\[e \text{ is } 0, 1 \text{ or } 2; \]
\[m \text{ is } 1, 2 \text{ or } 3; \]
\[n \text{ is } 0, 1 \text{ or } 2; \]
\[p \text{ is } 0, 1, 2 \text{ or } 3; \]
\[q \text{ is } 0, 1, 2 \text{ or } 3; \]

and optical and geometric isomers thereof; and nontoxic pharmacologically
acceptable acid addition salts, N-oxides, esters, quaternary ammonium salts and
prodrugs thereof.

Additional preferred estrogen agonists/antagonists are disclosed in U.S.

Patent No.5,552,412 and are described by formula (ID):

\[
\begin{align*}
\text{OCH}_2\text{CH}_2\text{G} \\
\end{align*}
\]

(ID)

wherein G is

\[
\begin{align*}
\text{N} \\
\end{align*}
\]

or

\[
\begin{align*}
\text{N} \\
\end{align*}
\]
R^4 is H, OH, F, or Cl; and B and E are independently selected from CH and N.

Especially preferred estrogen agonists/antagonists are:

5 cis-6-(4-fluoro-phenyl)-5-[4-(2-piperidin-1-yl-ethoxy)-phenyl]-5,6,7,8-tetrahydro-naphthalene-2-ol;
 (−)-cis-6-phenyl-5-[4-(2-pyrrolidin-1-yl-ethoxy)-phenyl]-5,6,7,8-tetrahydro-
 naphthalene-2-ol;
 cis-6-phenyl-5-[4-(2-pyrrolidin-1-yl-ethoxy)-phenyl]-5,6,7,8-tetrahydro-
10 naphthalene-2-ol;
 cis-1-[6′-pyrrolidinoethoxy-3′-pyridyl]-2-phenyl-6-hydroxy-1,2,3,4-
 tetrahydronaphthalene;
 1-(4′-pyrrolidinoethoxyphenyl)-2-(4′-fluorophenyl)-6-hydroxy-1,2,3,4-
 tetrahydroisoquinoline;
15 cis-6-(4-hydroxyphenyl)-5-[4-(2-piperidin-1-yl-ethoxy)-phenyl]-5,6,7,8-
 tetrahydro-naphthalene-2-ol;
 1-(4′-pyrrolidinoethoxyphenyl)-2-phenyl-6-hydroxy-1,2,3,4-
 tetrahydroisoquinoline and pharmaceutically acceptable salts thereof. An especially
 preferred salt of (−)-cis-6-phenyl-5-[4-(2-pyrrolidin-1-yl-ethoxy)-phenyl]-5,6,7,8-
20 tetrahydro-naphthalene-2-ol is the tartrate salt.

Other preferred estrogen agonists / antagonists are disclosed in U.S. Patent
5,047,431. The structure of these compounds is given by formula (IV) below:
wherein

\[R^{1A} \text{ and } R^{2A} \text{ may be the same or different and are either H, methyl, ethyl or a } \\
\text{benzyl group; and optical or geometric isomers thereof; and pharmaceutically } \\
\text{acceptable salts, N-oxides, esters, quaternary ammonium salts, and prodrugs } \\
\text{thereof.} \]

Additional preferred estrogen agonists / antagonists are tamoxifen:

(ethanamine, 2-[4-(1,2-diphenyl-1-butenyl)phenoxy]-N,N-dimethyl, (Z)-2-, 2-hydroxy-
1,2,3-propanetricarboxylate(1:1)) and other compounds as disclosed in U.S. Patent
4,536,516; 4-hydroxy tamoxifen (i.e., tamoxifen wherein the 2-phenyl moiety has a
hydroxy group at the 4 position) and other compounds as disclosed in U.S. Patent
4,623,660; raloxifene: (methanone, [6-hydroxy-2-(4-hydroxyphenyl)benzo[b]thien-3-
yl][4-[2-(1-piperidinyl)ethoxy]phenyl]-hydrochloride) and other compounds as
disclosed in U.S. Patents 4,418,068; 5,393,763; 5,457,117; 5,478,847 and
5,641,790; toremifene: (ethanamine, 2-[4-(4-chloro-1,2-diphenyl-1-butenyl)phenoxy]-
N,N-dimethyl-, (Z)-, 2-hydroxy-1,2,3-propanetricarboxylate (1:1) and other
compounds as disclosed in U.S. Patents 4,696,949 and 4,996,225; centchroman: 1-
[2-[4-(-methoxy-2,2, dimethyl-3-phenyl-chroman-4-yl)-phenoxy]-ethyl]-pyrrolidine and
other compounds as disclosed in U.S. Patent 3,822,287; idoxifene: pyrrolidine, 1-[4-
[(1-(4-iodophenyl)-2-phenyl-1-butenyl]phenoxy]ethyl] and other compounds as
disclosed in U.S. Patent 4,839,155; 6-(4-hydroxy-phenyl)-5-[4-(2-piperidin-1-yl-
ethoxyl)-benzy1]-naphthalen -2-ol and other compounds as disclosed in U.S. Patent
5,484,795; and 4-[2-(2-aza-bicyclo[2.2.1]hept-2-yl)-ethoxy]-phenyl]-[6-hydroxy-2-(4-
hydroxy-phenyl)]-benzo[b]thiophen-3-yl]-methanone and other compounds as
disclosed in published international patent application WO 95/10513. Other preferred
compounds include GW 5638 and GW 7604, the synthesis of which is described in

Further preferred estrogen agonists / antagonists include EM-652 (as shown
in formula (V) and EM-800 (as shown in formula (VI)). The synthesis of EM-652 and
EM-800 and the activity of various enantiomers is described in Gauthier et al., J.
wherein:

5 R_{18} is selected from H, OH or the C_1-C_{12} esters (straight chain or branched) or C_1-C_{12} (straight chain or branched or cyclic) alkyl ethers thereof, or halogens; or C_1-C_4 halogenated ethers including trifluoromethyl ether and trichloromethyl ether.

R_{28}, R_{38}, R_{48}, R_{58}, and R_{68} are independently selected from H, OH or the C_1-C_{12} esters (straight chain or branched) or C_1-C_{12} alkyl ethers (straight chain or branched or cyclic) thereof, halogens, or C_1-C_4 halogenated ethers including trifluoromethyl ether and trichloromethyl ether, cyano, C_1-C_6 alkyl (straight chain or branched), or trifluoromethyl, with the proviso that, when R_{18} is H, R_{28} is not OH.

x_A is selected from H, C_1-C_6 alkyl, cyano, nitro, trifluoromethyl, and halogen;

15 s is 2 or 3;

Y_A is selected from:

a) the moiety:

\[
\begin{array}{c}
\text{N} \\
\text{R}_{78}
\end{array}
\]

20 wherein R_{78} and R_{68} are independently selected from the group of H, C_1-C_6 alkyl, or phenyl optionally substituted by CN, C_1-C_6 alkyl (straight chain or branched), C_1-C_6 alkoxy (straight chain or branched), halogen, -OH, -CF_3, or -OCF_3;

25 b) a five-membered saturated, unsaturated or partially unsaturated heterocycle containing up to two heteroatoms selected from the group consisting of
-O-, -NH-, -N(C\textsubscript{1}C\textsubscript{4} alkyl)-, -N\textsubscript{u}-, and -S(O)\textsubscript{u}-, wherein u is an integer of from 0-2, optionally substituted with 1-3 substituents independently selected from the group consisting of hydrogen, hydroxyl, halo, C\textsubscript{1}C\textsubscript{4} alkyl, trihalomethyl, C\textsubscript{1}C\textsubscript{4} alkoxy, trihalomethoxy, C\textsubscript{1}C\textsubscript{4} acyloxy, C\textsubscript{1}C\textsubscript{4} alkylthio, C\textsubscript{1}C\textsubscript{4} alkylsulfinyl, C\textsubscript{1}C\textsubscript{4} alkylsulfonyl, hydroxy (C\textsubscript{1}C\textsubscript{4} alkyl), -CO\textsubscript{2}H, -CN, -CONHR\textsubscript{1B}, -NH\textsubscript{2}, C\textsubscript{1}C\textsubscript{4} alkylamino, di(C\textsubscript{1}C\textsubscript{4} alkylamino), -NHSO\textsubscript{2}R\textsubscript{1B}, -NHCOR\textsubscript{1B}, -NO\textsubscript{2}, and phenyl optionally substituted with 1-3 (C\textsubscript{1}C\textsubscript{4} alkyl);

c) a six-membered saturated, unsaturated or partially unsaturated heterocycle containing up to two heteroatoms selected from the group consisting of -O-, -NH-, -N(C\textsubscript{1}C\textsubscript{4} alkyl)-, -N\textsubscript{u}-, and -S(O)\textsubscript{u}-, wherein u is an integer of from 0-2, optionally substituted with 1-3 substituents independently selected from the group consisting of hydrogen, hydroxyl, halo, C\textsubscript{1}C\textsubscript{4} alkyl, trihalomethyl, C\textsubscript{1}C\textsubscript{4} alkoxy, trihalomethoxy, C\textsubscript{1}C\textsubscript{4} acyloxy, C\textsubscript{1}C\textsubscript{4} alkylthio, C\textsubscript{1}C\textsubscript{4} alkylsulfinyl, C\textsubscript{1}C\textsubscript{4} alkylsulfonyl, hydroxy (C\textsubscript{1}C\textsubscript{4} alkyl), -CO\textsubscript{2}H, -CN, -CONHR\textsubscript{1B}, -NH\textsubscript{2}, C\textsubscript{1}C\textsubscript{4} alkylamino, di(C\textsubscript{1}C\textsubscript{4} alkylamino), -NHSO\textsubscript{2}R\textsubscript{1B}, -NHCOR\textsubscript{1B}, -NO\textsubscript{2}, and phenyl optionally substituted with 1-3 (C\textsubscript{1}C\textsubscript{4} alkyl);

d) a seven-membered saturated, unsaturated or partially unsaturated heterocycle containing up to two heteroatoms selected from the group consisting of -O-, -NH-, -N(C\textsubscript{1}C\textsubscript{4} alkyl)-, -N\textsubscript{u}-, and -S(O)\textsubscript{u}-, wherein u is an integer of from 0-2, optionally substituted with 1-3 substituents independently selected from the group consisting of hydrogen, hydroxyl, halo, C\textsubscript{1}C\textsubscript{4} alkyl, trihalomethyl, C\textsubscript{1}C\textsubscript{4} alkoxy, trihalomethoxy, C\textsubscript{1}C\textsubscript{4} acyloxy, C\textsubscript{1}C\textsubscript{4} alkylthio, C\textsubscript{1}C\textsubscript{4} alkylsulfinyl, C\textsubscript{1}C\textsubscript{4} alkylsulfonyl, hydroxy (C\textsubscript{1}C\textsubscript{4} alkyl), -CO\textsubscript{2}H, -CN, -CONHR\textsubscript{1B}, -NH\textsubscript{2}, C\textsubscript{1}C\textsubscript{4} alkylamino, di(C\textsubscript{1}C\textsubscript{4} alkylamino), -NHSO\textsubscript{2}R\textsubscript{1B}, -NHCOR\textsubscript{1B}, -NO\textsubscript{2}, and phenyl optionally substituted with 1-3 (C\textsubscript{1}C\textsubscript{4} alkyl); or

e) a bicyclic heterocycle containing from 6-12 carbon atoms either bridged or fused and containing up to two heteroatoms selected from the group consisting of -O-, -NH-, -N(C\textsubscript{1}C\textsubscript{4} alkyl)-, and -S(O)\textsubscript{u}-, wherein u is an integer of from 0-2, optionally substituted with 1-3 substituents independently selected from the group consisting of hydrogen, hydroxyl, halo, C\textsubscript{1}C\textsubscript{4} alkyl, trihalomethyl, C\textsubscript{1}C\textsubscript{4} alkoxy, trihalomethoxy, C\textsubscript{1}C\textsubscript{4} acyloxy, C\textsubscript{1}C\textsubscript{4} alkylthio, C\textsubscript{1}C\textsubscript{4} alkylsulfinyl, C\textsubscript{1}C\textsubscript{4}
alkylsulfonyl, hydroxy (C₁-C₄)alkyl, -CO₂H, -CN, -CONHR₁₅, -NH₂, -N=, C₁-C₄ alkylamino, di(C₁-C₄)alkylamino, -NHSO₂R₁₅, -NHCOR₁₅, -NO₂, and phenyl optionally substituted with 1-3 (C₁-C₄) alkyl; and optical or geometric isomers thereof; and nontoxic pharmacologically acceptable acid addition salts, N-oxides, esters, quaternary ammonium salts, and prodrugs thereof.

The more preferred compounds of this invention are those having the general structures V or VI, above, wherein:

\[R_{1B} \] is selected from H, OH or the C₁-C₁₂ esters or alkyl ethers thereof, and halogen;

\[R_{2B}, R_{3B}, R_{4B}, R_{5B}, and R_{6B} \] are independently selected from H, OH or the C₁-C₁₂ esters or alkyl ethers thereof, halogen, cyano, C₁-C₆ alkyl, or trihalomethyl, preferably trifluoromethyl, with the proviso that, when \(R_{1B} \) is H, \(R_{2B} \) is not OH;

\[X_A \] is selected from H, C₁-C₆ alkyl, cyano, nitro, trifluoromethyl, and halogen;

\[Y_A \] is the moiety:

\[
\begin{align*}
N & \\
R & \\
R_{7B} & \\
R_{8B} & \\
\end{align*}
\]

\(R_{7B} \) and \(R_{8B} \) are selected independently from H, C₁-C₆ alkyl, or combined by -(CH₂)ₓ-, wherein \(w \) is an integer of from 2 to 6, so as to form a ring, the ring being optionally substituted by up to three substituents selected from the group of hydrogen, hydroxyl, halo, C₁-C₄ alkyl, trihalomethyl, C₁-C₄ alkoxy, trihalomethoxy, C₁-C₄ alkylthio, C₁-C₄ alkylsulfanyl, C₁-C₄ alkylsulfonyl, hydroxy (C₁-C₄)alkyl, -CO₂H, -CN, -CONH(C₁-C₄), -NH₂, C₁-C₄ alkylamino, C₁-C₄ dialkylamino,

\[\text{-NHSO}_2(C₁-C₄), \text{-HNCO(C₁-C₄), and -NO}_2; \text{ and optical and geometric isomers thereof; and nontoxic pharmacologically acceptable acid addition salts, N-oxides, esters, quaternary ammonium salts, and prodrugs thereof.} \]
The rings formed by a concatenated \(R_{7b} \) and \(R_{8b} \), mentioned above, may include, but are not limited to, aziridine, azetidine, pyrroloidine, piperidine, hexamethyleneamine or heptamethyleneamine rings.

Preferred compounds of structural formulas VII and VIII, above, are those wherein \(R_{1b} \) is OH; \(R_{2b} \) - \(R_{6b} \) are as defined above; \(X_a \) is selected from the group of Cl, NO\(_2\), CN, CF\(_3\), or CH\(_3\); \(Y_a \) is the moiety

\[
\begin{array}{c}
\text{N} \\
\text{R}_{7b} \\
\text{R}_{8b}
\end{array}
\]

and \(R_{7b} \) and \(R_{8b} \) are concatenated together as \(-(\text{CH}_2)_t-\), wherein \(t \) is an integer of from 4 to 6, to form a ring optionally substituted by up to three substituents selected from the group of hydrogen, hydroxyl, halo, \(C_1-C_4 \) alkyl, trihalomethyl, \(C_1-C_4 \) alkoxy, trihalomethoxy, \(C_1-C_4 \) alkylthio, \(C_1-C_4 \) alkylsulfinyl, \(C_1-C_4 \) alkylsulfonyl, hydroxy (\(C_1-C_4 \))alkyl, \(-\text{CO}_2\text{H}\), \(-\text{CN}\), \(-\text{CONH}(C_1-C_4)\)alkyl, \(-\text{NH}_2\), \(C_1-C_4 \) alkylamino, \(\text{di}(C_1-C_4)\)alkylamino, \(-\text{NHSO}_2(C_1-C_4)\)alkyl, \(-\text{NHCO}(C_1-C_4)\)alkyl, and \(-\text{NO}_2\); and optical and geometric isomers thereof; and nontoxic pharmacologically acceptable acid addition salts, N-oxides, esters, quaternary ammonium salts, and prodrugs thereof including the compound, TSE-424, of formula (VIIa) below:

![VIIa](image)

A growth hormone secretagogue can also be used in combination with compounds that can be used to treat erectile dysfunction such as sildenafil citrate (Viagra®) or other PDE5 ligands. Growth hormone secretagogues can also be used...
in combination with IC351 (Cialis™) or vardenafil. Additional compounds that can be used in combination with growth hormone secretagogues for treating male erectile dysfunction include alprostadil or yohimbine.

Further, for the treatment of female sexual dysfunction and male erectile dysfunction, cGMP elevator agents may be administered in combination with a growth hormone secretagogue.

Preferred as the cGMP elevator are cGMP PDE inhibitors. cGMP PDE inhibitors which are selective for cGMP PDEs rather than cyclic adenosine 3',5'-monophosphate phosphodiesterases (cAMP PDEs) and/or which are selective inhibitors of the cGMP PDE5 isoenzyme are particularly preferred. Such particularly preferred cGMP PDE inhibitors are disclosed in US patents 5,250,534; 5,346,901; 5,272,147, and in the international patent application published as WO 94/28902 designating, inter alia, the U.S.

Preferred cGMP PDE5 (also called PDE5) inhibitors include compounds of formula (IX):

![Chemical Structure](image)

wherein:

- \(R^{18} \) is H; C\(_1\)-C\(_3\) alkyl; C\(_1\)-C\(_3\) perfluoroalkyl; or C\(_2\)-C\(_6\) cycloalkyl;
- \(R^{28} \) is H; C\(_1\)-C\(_6\) alkyl optionally substituted with C\(_3\)-C\(_6\) cycloalkyl; C\(_1\)-C\(_3\) perfluoroalkyl; or C\(_3\)-C\(_6\) cycloalkyl;
- \(R^{38} \) is C\(_1\)-C\(_6\) alkyl optionally substituted with C\(_3\)-C\(_6\) cycloalkyl; C\(_1\)-C\(_6\) perfluoroalkyl; C\(_3\)-C\(_6\) cycloalkyl; C\(_3\)-C\(_6\) alkenyl; or C\(_3\)-C\(_6\) alkynyl;
- \(R^{48} \) is C\(_1\)-C\(_4\) alkyl optionally substituted with OH, NR\(^{68}\)R\(^{68}\), CN, CONR\(^{68}\)R\(^{68}\) or CO\(_2\)R\(^{78}\); C\(_2\)-C\(_4\) alkanoyl optionally substituted with NR\(^{68}\)R\(^{68}\); (hydroxy)C\(_2\)-C\(_4\) alkyl optionally...
substituted with NR_{56}^{R_{66}}; (C_2-C_3 alkoxy)C_1-C_2 alkyl optionally substituted with OH or NR_{56}^{R_{66}}; CONR_{56}^{R_{66}} B CO_2 R_{76}; halo; NR_{58}^{R_{66}}; NHSO_2 NR_{58}^{R_{66}}; NHSO_2 R_{88}; SO_2 NR_{56}^{R_{106}} or phenyl, pyridyl, pyrimidinyl, imidazolyl, oxazolyl, thiazolyl, thiencyl or triazolyl any of which is optionally substituted with methyl;

R_{58}^{R_{66}} and R_{58}^{R_{68}} are each independently H or C_1-C_4 alkyl, or together with the nitrogen atom to which they are attached form a pyrrolidinyl, piperidino, morpholino, 4-N(R_{118})-piperazinyl or imidazolyl group wherein said group is optionally substituted with methyl or OH;

R_{76}^{R_{66}} is H or C_1-C_4 alkyl;

R_{68}^{R_{66}} is C_1-C_3 alkyl optionally substituted with NR_{56}^{R_{66}};

R_{68}^{R_{66}} and R_{106}^{R_{106}} together with the nitrogen atom to which they are attached form a pyrrolidinyl, piperidino, morpholino or 4-N(R_{128})-piperazinyl group wherein said group is optionally substituted with C_1-C_4 alkyl, C_1-C_3 alkoxyl NR_{138}^{R_{148}} or CONR_{138}^{R_{148}};

R_{118}^{R_{128}} is H; C_1-C_3 alkyl optionally substituted with phenyl; (hydroxy)C_2-C_3 alkyl; or C_1-C_4 alkanoyl;

R_{128}^{R_{128}} is H; C_1-C_6 alkyl; (C_1-C_3 alkoxy)C_2-C_6 alkyl; (hydroxy)C_2-C_6 alkyl;

(R_{138}^{R_{148}} N)C_2-C_6 alkyl; (R_{138}^{R_{148}} NOC)C_1-C_6 alkyl; CONR_{138}^{R_{148}}; CSNR_{138}^{R_{148}}; or

C(NH)NR_{138}^{R_{148}}; and

R_{138}^{R_{148}} and R_{148}^{R_{148}} are each independently H; C_1-C_4 alkyl; (C_1-C_3 alkoxy)C_2-C_4 alkyl; or (hydroxy)C_2-C_4 alkyl;

or a pharmaceutically acceptable salt thereof;

or a pharmaceutically acceptable composition containing either entity.

Preferred cGMP PDE_V inhibitors include sildenafil (preferably the citrate salt)

{1-[[3-(6,7-dihydro-1-methyl-7-oxo-3-propyl-1H-pyrazolo[4,3-d]pyrimidin-5-yl)-4-ethoxy-phenyl]sulfonyl]-4-methylpiperazine}, which has the structure of formula (X):
and pharmaceutically acceptable salts thereof, the compound having the structure of formula (XI):

\[
\text{(XI)}
\]

and pharmaceutically acceptable salts thereof, and the compound, 3-ethyl-5-[(4-ethylpiperazino) sulphonyl]-2-(2-methoxethoxy)pyrid-3-yl]-2-(2-pyridylmethyl)-6,7-dihydro-2H-pyrazolo[4,3-d]pyrimidin-7-one of formula (XII) below:

\[
\text{(XII)}
\]
The compound of formula (XI) is disclosed, for example, in US Patents 5,272,147 and 5,426,107. Also preferred are cGMP PDE7 inhibitors are compounds disclosed in PCT/EP95/00183, published as WO 95/19978 and which designates, inter alia, the United States, said compounds having the formula (XIII):

and salts and solvates thereof, in which:

- \(R^{2c} \) represents hydrogen, halogen or \(C_1-C_6 \) alkyl;
- \(R^{1c} \) represents hydrogen, \(C_1-C_6 \) alkyl, \(C_2-C_6 \) alkenyl, \(C_2-C_6 \) alkynyl, halo\(C_1-C_6 \) alkyl, \(C_2-C_6 \) cycloalkyl, \(C_2-C_6 \) cycloalkyl\(C_1-C_6 \) alkyl, aryl\(C_1-C_6 \) alkyl or heteroaryl\(C_1-C_6 \) alkyl;
- \(R^{3c} \) represents an optionally substituted monocyclic aromatic ring selected from benzene, thiophene, furan and pyridine or an optionally
substituted bicyclic ring attached to the rest of the molecule via one of the benzene ring carbon atoms and wherein the fused ring A is a 5- or 6-membered ring which may be saturated or partially or fully unsaturated and comprises carbon atoms and optionally one or two heteroatoms selected from oxygen, sulphur and nitrogen; and \(R^{3C} \) represents hydrogen or \(C_1-C_3 \)alkyl, or \(R^{1C} \) and \(R^{3C} \) together represent a 3- or 4-membered alkyl or alkenyl ring.

A preferred subset of compounds having formula XIIIa (also disclosed in WO 95/19978) includes compounds of the formula:

![Chemical Structure](image)

(XIIIa)

and salts and solvates thereof, in which:

- \(R^{3C} \) represents hydrogen, halogen or \(C_1-C_6 \)alkyl;
- \(R^{1C} \) represents hydrogen, \(C_1-C_6 \)alkyl, halo\(C_1-C_6 \)alkyl, \(C_3-C_6 \)cycloalkyl, \(C_5-C_6 \)cycloalkyl-\(C_1-C_3 \)alkyl, aryl\(C_1-C_3 \)alkyl or heteroaryl\(C_1-C_3 \)alkyl; and
- \(R^{3C} \) represents an optionally substituted monocyclic aromatic ring selected from benzene, thiophene, furan and pyridine or an optionally substituted bicyclic ring attached to the rest of the molecule via one of the benzene ring carbon atoms and wherein the fused ring A is a 5- or 6-membered ring which may be saturated or partially or fully unsaturated and comprises carbon atoms and optionally one or two heteroatoms selected from oxygen, sulphur and nitrogen.

Suitable cGMP PDE5 inhibitors for the use according to the present invention include: the pyrazolo [4,3-d]pyrimidin-7-ones disclosed in EP-A-0463756; the pyrazolo [4,3-d]pyrimidin-7-ones disclosed in EP-A-0526004; the pyrazolo [4,3-d]pyrimidin-7-ones disclosed in published international patent application WO
93/06104; the isomeric pyrazolo [3,4-d]pyrimidin-4-ones disclosed in published international patent application WO 93/07149; the quinazolin-4-ones disclosed in published international patent application WO 93/12095; the pyrido [3,2-d]pyrimidin-4-ones disclosed in published international patent application WO 94/05661; the purin-6-ones disclosed in published international patent application WO 94/00453; the pyrazolo [4,3-d]pyrimidin-7-ones disclosed in published international patent application WO 98/49166; the pyrazolo [4,3-d]pyrimidin-7-ones disclosed in published international patent application WO 99/54333; the pyrazolo [4,3-d]pyrimidin-4-ones disclosed in EP-A-0995751; the pyrazolo [4,3-d]pyrimidin-7-ones disclosed in published international patent application WO 00/24745; the pyrazolo [4,3-d]pyrimidin-4-ones disclosed in EP-A-0995750; the compounds disclosed in published international application WO95/19978; the compounds disclosed in published international application WO 99/24433 and the compounds disclosed in published international application WO 93/07124.

Preferred type V phosphodiesterase inhibitors for the use according to the present invention include: 5-[2-ethoxy-5-(4-methyl-1-piperazinylsulphonyl)phenyl]-1-methyl-3-n-propyl-1,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one (sildenafil) also known as 1-[[3-((6,7-dihydro-1-methyl-7-oxo-3-propyl-1H-pyrazolo[4,3-d]pyrimidin-5-yl)-4-ethoxyphenyl)sulphonyl]-4-methylpiperazine (see EP-A-0463756);

5-(2-ethoxy-5-morpholinoacetylphenyl)-1-methyl-3-n-propyl-1,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one (see EP-A-0526004);
3-ethyl-5-[5-(4-ethylpiperazin-1-ylsulphonyl)-2-n-propoxyphenyl]-2-(pyridin-2-yl)methyl-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one (see WO98/49166);
3-ethyl-5-[5-(4-ethylpiperazin-1-ylsulphonyl)-2-(2-methoxyethoxy)pyridin-3-yl]-2-(pyridin-2-yl)methyl-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one (see WO99/54333);
(+)-3-ethyl-5-[5-(4-ethylpiperazin-1-ylsulphonyl)-2-(2-methoxy-(1R)-methylthoxy)pyridin-3-yl]-2-methyl-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one, also known as 3-ethyl-5-[5-[4-ethylpiperazin-1-ylsulphonyl]-2-((1R)-2-methoxy-1-methylethyl[oxy]pyridin-3-yl]-2-methyl-2,6-dihydro-7H-pyrazolo[4,3-d] pyrimidin-7-one (see WO99/54333);
5-[2-ethoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-yl]-3-ethyl-2-[2-methoxyethyl]-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one, also known as 1-(6-ethoxy-5-[3-ethyl-
6,7-dihydro-2-(2-methoxyethyl)-7-oxo-2H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-pyridylsulphonyl)-4-ethylpiperazine (see Example 1 hereinafter);
5-[2-iso-Butoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-yl]-3-ethyl-2-(1-methylpiperidin-4-yl)-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one (see Example 2 hereinafter);
5-[2-ethoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-yl]-3-ethyl-2-phenyl-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one (see Example 3 hereinafter);
5-(5-acetyl-2-propoxy-3-pyridinyl)-3-ethyl-2-(1-isopropyl-3-azetidinyl)-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one (see Example 4 hereinafter);
5-(5-acetyl-2-butoxy-3-pyridinyl)-3-ethyl-2-(1-ethyl-3-azetidinyl)-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one (see Example 5 hereinafter);
(6R,12aR)-2,3,6,7,12,12a-hexahydro-2-methyl-6-(3,4-methylenedioxyphenyl)-pyrazino[2,1-b]pyrido[3,4-b]indole-1,4-dione (IC-351), i.e. the compound of examples 78 and 95 of published international application WO95/19978, as well as the compound of examples 1, 3, 7 and 8 therein;
2-[2-ethoxy-5-(4-ethyl-piperazin-1-yl-1-sulphonyl)-phenyl]-5-methyl-7-propyl-3H-imidazo[5,1-f][1,2,4]triazin-4-one (vardenafil) also known as 1-[[3-(3,4-dihydro-5-methyl-4-oxo-7-propylimidazo[5,1-f]-as-triazin-2-yl)-4-ethoxyphenyl]sulphonyl]-4-ethylpiperazine, i.e., the compound of examples 20, 19, 337 and 336 of published international application WO99/24433; and the compound of example 11 of published international application WO93/07124; and compounds 3 and 14 from Rotella, D P, J. Med. Chem., 2000, 43, 1257.

Still other types of cGMP PDE5 inhibitors useful in conjunction with the present invention include: 4-bromo-5-(pyridylmethylamino)-6-[3-(4-chlorophenyl)-propoxy]-3(2H)pyridazinone; 1-[4-[1,3-benzodioxol-5-ylmethyl]amino]-6-chloro-2-quinozolinyl]-4-piperidine-carboxylic acid, monosodium salt; (+)-cis-5,6a,7,9,9a-hexahydro-2-[4-(trifluoromethyl)-phenylmethyl]-5-methyl-cyclopent-4,5]imidazo[2,1-b]purin-4(3H)one; furazlocillin; cis-2-hexyl-5-methyl-3,4,5,6a,7,8,9,9a-octahydrocyclopent[4,5]-imidazo[2,1-b]purin-4-one; 3-acetyl-1-(2-chlorobenzyl)-2-propyindole-6-carboxylate; 3-acetyl-1-(2-chlorobenzyl)-2-propyindole-6-carboxylate; 4-bromo-5-(5-pyridylmethylamino)-6-(3-(4-chlorophenyl)-propoxy)-3-(2H)pyridazinone; I-methyl-5(5-morpholinoacetyl-2-n-propoxyphenyl)-3-n-propyl-1,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one; 1-[4-[1,3-benzodioxol-5-ylmethyl]amino]-6-chloro-2-quinozolinyl]-4-piperidine-carboxylic acid, monosodium.
salt; Pharmaprojects No. 4516 (Glaxo Wellcome); Pharmaprojects No. 5051 (Bayer);
Pharmaprojects No. 5064 (Kyowa Hakko; see WO 96/26940); Pharmaprojects No.
5069 (Schering Plough); GF-196960 (Glaxo Wellcome); E-8010 and E-4010 (Eisai);
Bay-38-3045 & 38-9456 (Bayer) and Sch-51866.

The suitability of any particular cGMP PDE5 inhibitor can be readily
determined by evaluation of its potency and selectivity using literature methods
followed by evaluation of its toxicity, absorption, metabolism, pharmacokinetics, etc in
accordance with standard pharmaceutical practice.

Preferably, the cGMP PDE5 inhibitors have an IC₅₀ at less than 100
nanomolar, more preferably, at less than 50 nanomolar, more preferably still at less
than 10 nanomolar.

IC₅₀ values for the cGMP PDE5 inhibitors may be determined using
established literature methodology, for example as described in EP0463756-B1 and

Preferably the cGMP PDE5 inhibitors used are selective for the PDE5
enzyme. Preferably they are selective over PDE3, more preferably over PDE3 and
PDE4. Preferably, the cGMP PDE5 inhibitors have a selectivity ratio greater than 100
more preferably greater than 300, over PDE3 and more preferably over PDE3 and
PDE4.

Selectivity ratios may readily be determined by the skilled person. IC₅₀ values
for the PDE3 and PDE4 enzyme may be determined using established literature
methodology, see S A Ballard et al., Journal of Urology, 1998, vol. 159, pages 2164-
2171.

cGMP Example 1

2-(Methoxyethyl)-5-[2-ethoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-y1]-3-ethyl-
2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one
A mixture of the product from stage i) below (0.75mmol), potassium bis(trimethylsilyl)amide (298mg, 1.50mmol) and ethyl acetate (73 microlitres, 0.75mmol) in ethanol (10ml) was heated at 120°C in a sealed vessel for 12 hours.

The cooled mixture was partitioned between ethyl acetate and aqueous sodium bicarbonate solution, and the layers separated. The organic phase was dried (MgSO₄), and evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel using dichloromethane:methanol (98:2) as eluant to afford the title compound, 164mg; Found : C, 53.18; H, 6.48; N, 18.14;

C₂₉H₃₃N₄O₅S·0.20C₄H₆CO₂CH₃ requires C, 53.21; H, 6.49; N, 18.25%; δ (CDCl₃) : 1.04 (3H, t), 1.40 (3H, t), 1.58 (3H, t), 2.41 (2H, q), 2.57 (4H, m), 3.08 (2H, q), 3.14 (4H, m), 3.30 (3H, s), 3.92 (2H, t), 4.46 (2H, t), 4.75 (2H, q), 8.62 (1H, d), 9.04 (1H, d), 10.61 (1H, s); LRMS : m/z 520 (M+1)⁺; mp 161-162°C.

Preparation of Starting Materials

a) **Pyridine-2-amino-5-sulphonic acid**

2-Aminopyridine (80g, 0.85mol) was added portionwise over 30 minutes to oleum (320g) and the resulting solution heated at 140°C for 4 hours. On cooling, the reaction was poured onto ice (200g) and the mixture stirred in an ice/salt bath for a further 2 hours. The resulting suspension was filtered, the solid washed with ice water...
(200ml) and cold IMS (200ml) and dried under suction to afford the title compound as a solid, 111.3g; LRMS: m/z 175 (M+1)*

b) **Pyridine-2-amino-3-bromo-5-sulphonic acid**

\[
\begin{array}{c}
\text{NH}_2 \\
\text{Br} \\
\text{O=S=O} \\
\text{OH}
\end{array}
\]

Bromine (99g, 0.62mol) was added dropwise over an hour to a hot solution of the product from stage a) (108g, 0.62mol) in water (600ml) so as to maintain a steady reflux. Once the addition was complete the reaction was cooled and the resulting mixture filtered. The solid was washed with water and dried under suction to afford the title compound, 53.4g; δ (DMSO, 300MHz): 8.08 (1H, s), 8.14 (1H, s); LRMS: m/z 253 (M)*.

c) **Pyridine-3-bromo-2-chloro-5-sulphonyl chloride**

\[
\begin{array}{c}
\text{Cl} \\
\text{Br} \\
\text{O=S=O} \\
\text{Cl}
\end{array}
\]

A solution of sodium nitrite (7.6g, 110.0mmol) in water (30ml) was added dropwise to an ice-cooled solution of the product from stage b) (25.3g, 100.0mmol) in aqueous hydrochloric acid (115ml, 20%), so as to maintain the temperature below 6°C. The reaction was stirred for 30 minutes at 0°C and for a further hour at room temperature. The reaction mixture was evaporated under reduced pressure and the residue dried under vacuum at 70°C for 72 hours. A mixture of this solid, phosphorus pentachloride (30.0g, 144mmol) and phosphorus oxychloride (1ml, 10.8mmol) was heated at 125°C for 3 hours, and then cooled. The reaction mixture was poured onto ice (100g) and the resulting solid filtered, and washed with water. The product was dissolved in dichloromethane, dried (MgSO₄), and evaporated under reduced pressure to afford the title compound as a yellow solid, 26.58g; δ (CDCl₃, 300MHz): 8.46 (1H, s), 8.92 (1H, s).
d) 3-Bromo-2-chloro-5-(4-ethylpiperazin-1-ylsulphonyl)pyridine

A solution of 1-ethylpiperazine (11.3ml, 89.0mmol) and triethylamine (12.5ml, 89.0mmol) in dichloromethane (150ml) was added dropwise to an ice-cooled solution of the product from stage c) (23.0g, 79.0mmol) in dichloromethane (150ml) and the reaction stirred at 0°C for an hour. The reaction mixture was concentrated under reduced pressure and the residual brown oil was purified by column chromatography on silica gel, using an elution gradient of dichloromethane:methanol (99:1 to 97:3) to afford the title compound as an orange solid, 14.5g; δ (CDCl₃, 300MHz) : 1.05 (3H, t), 2.42 (2H, q), 2.55 (4H, m), 3.12 (4H, m), 8.24 (1H, m), 8.67 (1H, s).

3-Bromo-2-ethoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridine

A mixture of the product from stage d) (6.60g, 17.9mmol) and sodium ethoxide (6.09g, 89.55mmol) in ethanol (100ml) was heated under reflux for 18 hours, then cooled. The reaction mixture was concentrated under reduced pressure, the residue partitioned between water (100ml) and ethyl acetate (100ml), and the layers separated. The aqueous phase was extracted with ethyl acetate (2x100ml), the combined organic solutions dried (MgSO₄) and evaporated under reduced pressure to afford the title compound as a brown solid, 6.41g; Found : C, 41.27; H, 5.33; N, 11.11. C₁₃H₂₅BrN₂O₃S requires C, 41.35; H, 5.28; N, 10.99%; δ (CDCl₃, 300MHz) :
1.06 (3H, t), 1.48 (3H, t), 2.42 (2H, q), 2.56 (4H, m), 3.09 (4H, m), 4.54 (2H, q), 8.10 (1H, s), 8.46 (1H, s); LRMS : m/z 378, 380 (M+1)*.

f) Pyridine 2-ethoxy-5-(4-ethylpiperazin-1-ylsulphonyl)-3-carboxylic acid ethyl ester

A mixture of the product from stage e) (6.40g, 16.92mmol), triethylamine (12ml, 86.1mmol), and palladium (0) tris(triphenylphosphine) in ethanol (60ml) was heated at 100°C and 200 psi, under a carbon monoxide atmosphere, for 18 hours, then cooled. The reaction mixture was evaporated under reduced pressure and the residue purified by column chromatography on silica gel, using an elution gradient of dichloromethane:methanol (100:0 to 97:3) to afford the title compound as an orange oil, 6.2g; δ (CDCl₃, 300MHz) : 1.02 (3H, t), 1.39 (3H, t), 1.45 (3H, t), 2.40 (2H, q), 2.54 (4H, m), 3.08 (4H, m), 4.38 (2H, q), 4.55 (2H, q), 8.37 (1H, s), 8.62 (1H, s); LRMS : m/z 372 (M+1)*.

g) Pyridine 2-ethoxy-5-(4-ethylpiperazin-1-ylsulphonyl)-3-carboxylic acid
A mixture of the product from stage f) (4.96g, 13.35mmol) and aqueous sodium hydroxide solution (25ml, 2N, 50.0mmol) in ethanol (25ml) was stirred at room temperature for 2 hours. The reaction mixture was concentrated under reduced pressure to half its volume, washed with ether and acidified to pH 5 using 4N hydrochloric acid. The aqueous solution was extracted with dichloromethane (3x30ml), the combined organic extracts dried (MgSO₄) and evaporated under reduced pressure to afford the title compound as a tan coloured solid, 4.02g; δ (DMSOd₆, 300MHz) : 1.18 (3H, t), 1.37 (3H, t), 3.08 (2H, q), 3.17-3.35 (8H, m), 4.52 (2H, q), 8.30 (1H, s), 8.70 (1H, s).

h) 4-[2-Ethoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-ylcarbamidol]-1H-3-ethylpyrazole-5-carboxamide

A solution of 4-amino-3-ethyl-1H-pyrazole-5-carboxamide (WO 9849166, preparation 8) (9.2g, 59.8mmol) in N,N-dimethylformamide (60ml) was added to a solution of the product from stage g) (21.7g, 62.9mmol), 1-hydroxybenzotriazole hydrate (10.1g, 66.0mmol) and triethylamine (13.15ml, 94.3mmol) in dichloromethane (240ml). 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (13.26g, 69.2mmol) was added and the reaction stirred at room temperature for 6 hours. The dichloromethane was removed under reduced pressure, the remaining solution poured into ethyl acetate (400ml), and this mixture washed with aqueous sodium bicarbonate solution (400ml). The resulting crystalline precipitate was filtered, washed with ethyl acetate and dried under vacuum, to afford the title compound, as a white powder, 22g; δ (CDCl₃+1 drop DMSOd₆) 0.96 (3H, t), 1.18 (3H, t), 1.50 (3H, t), 2.25-2.56 (6H, m), 2.84 (2H, q), 3.00 (4H, m), 4.70 (2H, q), 5.60 (1H, br s), 6.78 (1H, br s), 8.56 (1H, d), 8.76 (1H, d), 10.59 (1H, s), 12.10-12.30 (1H, s); LRMS: m/z 480 (M+1)⁺.
i) 2-Methoxyethyl-4-[2-ethoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-ylcarboxamido]-3-ethylpyrazole-5-carboxamide

1-Bromo-2-methoxyethane (1.72mmol) was added to a solution of the product from stage h) (750mg, 1.56mmol) and cesium carbonate (1.12g, 3.44mmol) in N,N-dimethylformamide (15ml) and the reaction stirred at 60°C for 18 hours. The cooled mixture was partitioned between water and ethyl acetate, and the layers separated. The organic layer was dried (MgSO₄), concentrated under reduced pressure and azeotroped with toluene to give a solid. This product was recrystallised from ether, to afford the title compound as a white solid.

cGMP Example 2
5-[2-iso-Butoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-yl]-3-ethyl-2-(1-methylpiperidin-4-yl)-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one

A mixture of the product from stage b) below (90mg, 0.156mmol), potassium bis(trimethylsilyl)amide (156mg, 0.78mmol) and ethyl acetate (14mg, 0.156mmol) in iso-propanol (12ml) was stirred at 130°C for 6 hours in a sealed vessel. The cooled reaction mixture was poured into saturated aqueous sodium bicarbonate solution (60ml), and extracted with ethyl acetate (60ml). The combined organic extracts were
dried (MgSO₄), and evaporated under reduced pressure to give a gum. The crude product was purified by column chromatography on silica gel using dichloromethane:methanol:0.88 ammonia (92.6:6:6:0.6) to afford the title compound as a beige foam, 36 mg; δ (CDCl₃) 1.01 (3H, t), 1.12 (6H, d), 1.39 (3H, t), 1.94 (2H, m), 2.15 (2H, m), 2.22-2.44 (6H, m), 2.55 (6H, m), 3.02 (4H, m), 3.14 (4H, m), 4.22 (1H, m), 4.43 (2H, d), 8.60 (1H, d), 9.00 (1H, d), 10.54 (1H, s).

Preparation of Starting Materials

a) 2-(1-tert-Butyloxycarbonylpiperidin-4-yl)-4-[2-ethoxy-5-(4-ethylpiperazin-1-yl)sulphonyl]pyridin-3-ylcarboxamido]-3-ethylpyrazole-5-carboxamide

Sodium hydride (64mg, 60% dispersion in mineral oil, 1.6mmol) was added to a solution of the product from Example 1, stage h) (1.46mmol) in tetrahydrofuran (10ml), and the solution stirred for 10 minutes. tert-Butyl 4-[(methylsulphonyloxy]-1-piperidinecarboxylate (WO 9319059) (1.60mmol) was added and the reaction stirred at 60°C for 3 days. The cooled mixture was partitioned between ethyl acetate and aqueous sodium bicarbonate solution, and the phases separated. The aqueous layer was extracted with ethyl acetate, the combined organic solutions dried (MgSO₄) and evaporated under reduced pressure. The residue was purified by column chromatography on silica gel using dichloromethane:methanol (98:2) as eluant to afford the title compound as a white foam, 310 mg; δ (CDCl₃) 1.02 (3H, t), 1.23 (3H, t), 1.49 (9H, s), 1.57 (3H, m), 1.93 (2H, m), 2.16 (2H, m), 2.40 (2H, q), 2.54 (4H, m), 2.82-2.97 (4H, m), 3.10 (4H, m), 4.30 (3H, m), 4.79 (2H, q), 5.23 (1H, s), 6.65 (1H, s), 8.63 (1H, d), 8.82 (1H, d), 10.57 (1H, s).

b) 4-[2-Ethoxy-5-(4-ethylpiperazin-1-yl)sulphonyl]pyridin-3-ylcarboxamido]-3-ethyl-2-(1-methylpiperidin-4-yl)pyrazole-5-carboxamide
Trifluoroacetic acid (1.5ml) was added to a solution of the product from stage a) above (320mg, 0.48mmol) in dichloromethane (2ml) and the solution stirred at room temperature for 2 ½ hours. The reaction mixture was evaporated under reduced pressure and the residue triturated well with ether and dried under vacuum, to provide a white solid. Formaldehyde (217 microlitres, 37% aqueous, 2.90mmol) was added to a solution of the intermediate amine in dichloromethane (8ml), and the solution stirred vigorously for 30 minutes. Acetic acid (88 microlitres, 1.69mmol) was added, the solution stirred for a further 30 minutes, then sodium triacetoxyborohydride (169mg, 0.80mmol) was added and the reaction stirred at room temperature for 16 hours. The reaction mixture was poured into aqueous sodium bicarbonate solution, and extracted with ethyl acetate. The combined organic extracts were dried (MgSO₄) and evaporated under reduced pressure. The residue was purified by column chromatography on silica gel using dichloromethane:methanol:0.88 ammonia (91.75:7.5:0.75) as eluant to afford the title compound, 70mg; δ (CDCl₃) 1.02 (3H, t), 1.22 (3H, t), 1.58 (3H, t), 1.92 (2H, m), 2.14 (2H, m), 2.25-2.45 (7H, m), 2.54 (4H, m), 2.91 (2H, q), 2.99-3.16 (6H, m), 4.08 (1H, m), 4.78 (2H, q), 5.11 (1H, br s), 6.65 (1H, br s), 8.63 (1H, d), 8.83 (1H, d), 10.53 (1H, s).

cGMP Example 3
5-[2-Ethoxy-5-(4-ethylpiperazin-1-yl)sulphonyl]pyridin-3-yl]-3-ethyl-2-phenyl-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one
Pyridine (0.1ml, 1.08mmol) was added to a mixture of the product from stage a) below (250mg, 0.54mmol), copper (II) acetate monohydrate (145mg, 0.72mmol), benzeneboronic acid (132mg, 1.08mmol) and 4Å molecular sieves (392mg) in dichloromethane (5ml), and the reaction stirred at room temperature for 4 days. The reaction mixture was filtered and the filtrate evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel using dichloromethane:methanol:0.88 ammonia (97:3:0.5) as eluant, and triturated with ether:hexane. The resulting solid was filtered and recrystallised from isopropanol:dichloromethane to give the title compound as a solid, 200mg, δ (CDCl₃) 1.02 (3H, t), 1.47 (3H, t), 1.60 (3H, t), 2.42 (2H, q), 2.58 (4H, m), 3.10 (2H, q), 3.17 (4H, m), 4.76 (2H, q), 7.40 (1H, m), 7.51 (2H, m), 7.80 (2H, d), 8.67 (1H, d), 9.16 (1H, s), 10.90 (1H, s); LRMS : m/z 538 (M+1)⁺.

Preparation of Starting Materials

a) 5-[2-Ethoxy-5-(4-ethylpiperazin-1-ylsulphonyl)pyridin-3-yl]-3-ethyl-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one
Potassium bis(trimethylsilyl)amide (8.28g, 41.6mmol) was added to a solution of the product from Example 1, stage h) (10.0g, 20.8mmol) and ethyl acetate (2ml, 20mmol) in ethanol (160ml), and the reaction mixture heated at 120°C for 12 hours in a sealed vessel. The cooled mixture was evaporated under reduced pressure and the residue was purified by column chromatography on silica gel using dichloromethane:methanol:0.88 ammonia (95:5:0.5) as eluant, to give the title compound, 3.75g; δ (CDCl₃) 1.03 (3H, t), 1.42 (3H, t), 1.60 (3H, t), 2.42 (2H, q), 2.58 (4H, m), 3.02 (2H, q), 3.16 (4H, m), 4.78 (2H, q), 8.66 (1H, d), 9.08 (1H, d), 11.00 (1H, s) 11.05-11.20 (1H, br s), LRMS : m/z 462 (M+1)⁺.

cGMP Example 4

5-(5-acetyl-2-propoxy-3-pyridinyl)-3-ethyl-2-(1-isopropyl-3-azetidinyl)-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one

The product from stage h) below (0.23 mmol) was dissolved in dichloromethane (10 ml) and acetone (0.01 ml) was added. After 30 min stirring sodium triacetoxyborohydride (0.51 mmol) was added and stirring continued for 14 h. Further acetone (0.01 ml) and sodium triacetoxyborohydride (0.51 mmol) were added and stirring continued for a further 4.5 h. Starting material still remained so further acetone (0.01 ml) and sodium triacetoxyborohydride (0.51 mmol) were added and stirring continued for a further 18 h. The reaction mixture was diluted with dichloromethane, washed with sodium bicarbonate solution then brine, dried (MgSO₄) and concentrated. Purification by flash column chromatography (elution with 94:6:0.6 dichloromethane/methanol/0.88 ammonia) gave the product as a solid, M.p. 162.8-

163.6°C; 1H NMR (400MHz, MeOD): δ = 1.00 (app. d, 9H), 1.30 (t, 3H), 1.84 (app. q, 2H), 2.60 (s, 3H), 2.62-2.72 (m, 1H), 3.00-3.10 (q, 2H), 3.75 (t, 2H), 3.90 (t, 2H), 4.50 (t, 2H), 5.25 (t, 1H), 8.70 (s, 1H), 8.90 (s, 1H); LRMS (TSP – positive ion) 439 (MH⁺);
Anal. Found C, 61.92; H, 6.84; N, 18.70 Calcd for C_{29}H_{30}O_{3}N_6.0.1CH_{2}Cl_{2}: C, 62.07; H, 6.81; N, 18.80.

Preparation of Starting Materials

a) 2-Propoxy-5-iodonicotinic acid

\[
\text{N-Iodosuccinimide (18.22 g, 0.08 mol), trifluoroacetic acid (100 ml) and}
\text{ trifluoroacetic anhydride (25 ml) were added to 2-propoxynicotinic acid (0.054 mol).}
\]

The mixture was refluxed for 2.5 h, cooled and the solvents evaporated. The residue
was extracted from water with ethyl acetate and the organics washed with water
(twice) and brine (twice), dried (MgSO_{4}) and concentrated. The red residue was
redissolved in ethyl acetate washed with sodium thiosulfate solution (twice), water
(twice), brine (twice), redried (MgSO_{4}) and concentrated to give the desired product
as a solid; 1H NMR (300 MHz, CDCl_{3}): \delta = 1.05 (t, 3H), 1.85-2.0 (m, 2H), 4.5 (t, 2H),

b) N-[3-(Aminocarbonyl)-5-ethyl-1H-pyrazol-4-yl-5-iodo-2-propoxy-nicotinamide

Oxalyl chloride (15.9 mmol) was added to a stirred solution of the product from stage
a) (3.98 mmol) in dichloromethane (20 ml) and 3 drops N,N-dimethylformamide
added. After 2.5 h the solvent was evaporated and the residue azeotroped 3 times with dichloromethane. The residue was resuspended in dichloromethane (4 ml) and added to a stirred mixture 4-amino-3-ethyl-1H-pyrazole-5-carboxamide (prepared as described in WO 98/49166) (3.58 mmol) and triethylamine (7.97 mmol) in dichloromethane (10 ml). After 1 h the solvent was evaporated and the residue partitioned between ethyl acetate and water. The organic phase was separated and washed with 2N HCl (twice), sodium bicarbonate solution (twice) and brine before being dried (MgSO₄) and concentrated. The product was triturated with ether and filtered to give the title product as a solid. The mother liquor was concentrated and purified by flash column chromatography (elution with 80% ethyl acetate : hexane) to give further product; 'H NMR (300 MHz, d₄-MeOH): δ = 1.0 (t, 3H), 1.25 (t, 3H), 1.85-2.0 (m, 2H), 2.8 (q, 2H), 4.5 (t, 2H), 8.5 (s, 1H), 8.6 (s, 1H); LRMS (TSP) 444 (MH⁺).

c) tert-Butyl 3-iodo-1-azetidinecarboxylate

A mixture of tert-butyl 3-[(methylsulfonyl)oxy]-1-azetidinecarboxylate (prepared as described in Synlett 1998, 379; 5.0 g, 19.9 mmol), and potassium iodide (16.5 g, 99.4 mmol) in N,N-dimethylformamide (25 ml), was heated at 100°C for 42 h. The cooled mixture was partitioned between water and ethyl acetate, and the layers separated. The organic phase was dried over MgSO₄, concentrated under reduced pressure and the residue azeotroped with xylene. The crude product was purified by flash column chromatography (dichloromethane as eluant) to give the title compound, 3.26 g; 'H NMR (300 MHz, CDCl₃) δ = 1.43 (s, 9H), 4.28 (m, 2H), 4.46 (m, 1H), 4.62 (m, 2H); LRMS (TSP) 284 (MH⁺)

d) tert-Butyl 3-(3-(aminocarbonyl)-5-ethyl-4-{[(5-iodo-2-propoxy-3-pyridinyl)carbonyl]amino}-1H-pyrazol-1-yl)-1-azetidinecarboxylate
Cesium carbonate (3.59 mmol) was added to a stirred solution of the product from stage b) (1.79 mmol) and the product from stage c) (2.15 mmol) in N,N-dimethylformamide (10 ml) under a nitrogen atmosphere. The mixture was heated at 80°C for 24 h. The mixture was cooled and extracted from water with ethyl acetate. The organics were dried (MgSO₄) and concentrated to give a brown oil. Purification by flash column chromatography (gradient elution from 100% dichloromethane to 90% dichloromethane/MeOH) gave the title product; 1H NMR (400MHz, DMSO): δ = 0.95 (t, 3H), 1.05 (t, 3H), 1.40 (s, 9H), 1.78-1.88 (m, 2H), 2.68 (q, 2H), 4.22-4.35 (m, 4H), 4.40 (t, 2H), 5.33 (t, 1H), 7.35 (bs, 1H), 7.52 (bs, 1H), 8.40 (s, 1H), 8.55 (s, 1H), 10.10 (s, 1H); LRMS (TSP – positive ion) 373.2 (MH⁺ - BOC and I); Anal. Found C, 45.11; H, 5.07; N, 13.56 Calcd for C₂₃H₃₁O₅N₆I. 0.2 DCM: C, 45.28; H, 5.14; N, 13.66.

e) tert-Butyl 3-(3-ethyl-5-(5-iodo-2-propoxy-3-pyridinyl)-7-oxo-6,7-dihydro-2H-pyrazolo[4,3-d]pyrimidin-2-yl)-1-azetidinecarboxylate

The product from stage d) (28.4 mmol) was dissolved in n-propanol (200 ml), ethyl acetate (6 ml) and potassium t-butoxide (28.4 mmol) were added and the resultant mixture heated to reflux for 6h. Additional potassium t-butoxide (14.2 mmol) was added and the mixture heated for a further 2h, after which the solvent was removed
in vacuo. The residue was partitioned between water (50 ml) and methylene chloride (100 ml) and the organic phase separated. The aqueous phase was extracted with dichloromethane (2 x 100 ml) and the combined organics dried over MgSO₄ and reduced to a solid. Purification by column chromatography (elution with ethyl acetate) gave the title compound; 1H NMR (400MHz, CDCl₃): δ = 1.05 (t, 3H), 1.30 (t, 3H), 1.43 (s, 9H), 1.87-1.96 (m, 2H), 3.00 (q, 2H), 4.34 (t, 2H), 4.49 (t, 2H), 4.60 (br s, 2H), 5.20 (t, 1H), 8.41 (d, 1H), 8.94 (s, 1H), 10.75 (br s, 1H); LRMS (TSP – positive ion) 598.1 (MNH₄⁺); Anal. Found C, 47.54; H, 5.02; N, 14.09 Calcd for C₂₃H₂₈O₆N₆: C, 47.60; H, 5.04; N, 14.48.

f) tert-Butyl 3-(3-ethyl-7-oxo-5-{2-propoxy-5-[[(trimethylsilyl)ethynyl]-3-pyridinyl]-6,7-dihydro-2H-pyrazolo[4,3-d]pyrimidin-2-yl)-1-azetidinecarboxylate

The product from stage e) (0.25 mmol) was suspended in triethylamine (2 ml) and trimethylsilylacetylene (0.39 mmol) and acetonitrile (2 ml to try and solubilise reactants). Pd(PPh₃)₂Cl₂ (0.006 mmol) and cuprous iodide (0.006 mmol) were added and the reaction mixture stirred. After 1 h a further portion of trimethylsilylacetylene (0.19 mmol) was added and stirring continued for 2 h. The solvent was evaporated and the residue partitioned between ethyl acetate and water. The organics were washed with brine, dried (MgSO₄) and concentrated. Purification by flash column chromatography (gradient elution from 100% dichloromethane to 99% dichloromethane/methanol) gave the title compound; 1H NMR (400MHz, MeOD): δ = 0.25 (s, 9H), 1.05 (t, 3H), 1.31 (t, 3H), 1.44 (s, 9H), 1.87-1.96 (m, 2H), 3.00 (q, 2H), 4.33 (t, 2H), 4.52 (t, 2H), 4.54-4.80 (m, 2H), 5.18-5.25 (m, 1H), 8.32 (d, 1H), 8.74 (d, 1H); LRMS (TSP – positive ion) 569 (MNH₄⁺), 452.0 (MH⁺); Anal. Found C, 60.82; H, 6.90; N, 15.15 Calcd for C₂₃H₃₈O₆N₆Si: C, 61.07; H, 6.95; N, 15.26.
g) tert-Butyl 3-[3-ethyl-5-(5-ethyl-2-propoxy-3-pyridinyl)-7-oxo-6,7-dihydro-2H-pyrazolo[4,3-d]pyrimidin-2-yl]-1-azetidinecarboxylate

Potassium fluoride (0.38 mmol) was added to a stirred solution of the product of stage f) (0.19 mmol) in aqueous N,N-dimethylformamide (2 ml N,N-dimethylformamide /0.2 ml water) at 0°C. After 10 min the reaction was allowed to warm to room temperature and stirred for 2 h. The reaction mixture was diluted with ethyl acetate and washed with water, 1 N hydrochloric acid (3 times) and brine. The organic layer was dried (MgSO₄) and concentrated to give the title compound as a solid; 1H NMR (400MHz, CDCl₃): δ = 1.05 (t, 3H), 1.30 (t, 3H), 1.43 (s, 9H), 1.88-2.00 (m, 2H), 3.00 (q, 2H), 3.19 (s, 1H), 4.35 (app t, 2H), 4.52 (app t, 2H), 4.60-4.80 (br s, 2H), 5.22 (t, 1H), 8.39 (s, 1H), 8.80 (s, 1H), 10.75 (br s, 1H); LRMS (TSP – positive ion) 496 (MNH⁺).

h) 5-(5-Acetyl-2-propoxy-3-pyridinyl)-2-(3-azetidinyl)-3-ethyl-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one

The product from stage g) (1.44 g, 3.0 mmol) in acetone (50 ml) and sulphuric acid (1N, 3 ml) was treated with mercuric sulphate (268 mg, 9.0 mmol) and heated to
reflux for 6h. The reaction mixture was concentrated to ~20 ml in vacuo, poured into sodium bicarbonate (sat. aq., 20ml) and extracted into methylene chloride (6 x 20 ml). Combined organics were washed with brine (20 ml), dried over MgSO₄, and concentrated to a brown oil which was taken up in 40% trifluoroacetic acid in methylene chloride (50ml) and water (1 ml) and stirred for 1h at room temperature. After evaporation in vacuo, the residue was purified by column chromatography (eluting with 95:5:1 methylene chloride:methanol:0.88 ammonia) to afford the title compound as a white hydroscopic foam (1.65 g); m.p. 128.5-130.0°C; 1H NMR (400MHz, MeOD): δ = 1.00 (t, 3H), 1.30 (t, 3H), 1.79-1.90 (m, 2H), 2.60 (s, 3H), 3.00-3.10 (q, 2H), 4.50 (t, 2H), 4.60-4.70 (m, 4H), 5.65-5.78 (m, 1H), 8.65 (s, 1H), 8.90 (s, 1H); LRMS (TSP – positive ion) 397 (MH⁺).

cGMP Example 5
5-(5-Acetyl-2-butoxy-3-pyridinyl)-3-ethyl-2-(1-ethyl-3-azetidinyl)-2,6-dihydro-7H-pyrazolo[4,3-d]pyrimidin-7-one

The starting material (120 mg, 0.28 mmol) and cesium carbonate (274 mg, 0.84 mmol) were dissolved in n-butanol (4 ml), and heated at 90°C under nitrogen with molecular sieves for 9h. The mixture was then partitioned between water (10 ml) and dichloromethane (10 ml). The organic layer was separated, and the aqueous layer extracted further with dichloromethane (3 x 15 ml). The combined organic layers were dried (MgSO₄), and concentrated in vacuo. The crude product was purified by flash column chromatography (95:5:0.5-90:10:1 ethyl acetate:methanol:0.88 NH₃ as eluents), to yield the title compound as a colourless glass (77 mg, 0.18 mmol); m.p. 91.6-93.7°C; 1H NMR (400MHz, CDCl₃): δ = 1.00-
1.05 (m, 6H), 1.38 (t, 3H), 1.50-1.62 (m, 2H), 1.90-2.00 (m, 2H), 2.63 (s, 3H), 2.63-2.70 (m, 2H), 3.02 (q, 2H), 3.75 (t, 2H), 3.90 (t, 2H), 4.68 (t, 2H), 5.10-5.20 (m, 1H), 8.84 (s, 1H), 9.23 (s, 1H), 10.63 (br s, 1H); LRMS (TSP – positive ion) 439 (MH⁺);
Anal. Found C, 60.73; H, 7.06; N, 18.03 Calcd for C₂₃H₃₀O₃N₆·0.2MeOH·0.1 DIPE: C, 60.88; H, 7.26; N, 17.90.

Preparation of Starting Materials

5-(5-Acetyl-2-propoxy-3-pyridinyl)-3-ethyl-2-(1-ethyl-3-azetidinyl)-2,6-dihydro-7H-
pyrazolo[4,3-d]pyrimidin-7-one

Sodium cyanoborohydride (92 mg, 1.47 mmol) was added to a stirred solution of the product from Example 4 stage h) (500 mg, 0.98 mmol) and sodium acetate (161 mg, 1.96 mmol) in methanol (10 ml) under nitrogen at room temperature. After 1h the mixture was poured into NaHCO₃ (sat. aq., 20 ml), and extracted with dichloromethane (3 x 15 ml). The combined organic layers were dried (MgSO₄) and concentrated in vacuo. The crude product was purified by flash column chromatography (95:5:0.5-80:20:1 ethyl acetate:methanol:0.88 NH₃ as eluent) to yield the title compound as a white solid (140 mg, 0.33 mmol); 1H NMR (400MHz, CDCl₃):
δ = 0.97 (t, 3H), 1.03 (t, 3H), 1.30 (t, 3H), 2.82-2.97 (m, 2H), 2.58-2.65 (m, 5H), 2.98 (q, 2H), 3.68 (t, 2H), 3.85 (dd, 2H), 4.58 (dd, 2H), 5.05-5.17 (m, 1H), 8.79 (s, 1H), 9.18 (s, 1H), 10.62 (br s, 1H); LRMS (TSP – positive ion) 426 (MH⁺).

Oral daily dosages of the above cGMP elevators can range from about 1 mg to about 200 mg with a preferred range of from about 20 mg to about 100 mg.

Dosage is ad libitum from about 15 minutes to about 4 hours prior to sexual activity. Dosages and timing of dosing can be adjusted for topical dosage forms such as
creams or aerosols. cGMP elevators of the present invention include produgs, stereoisomers, hydrates, tautomers and salts of the described compounds.

The cGMP PDE inhibitors useful in this invention as cGMP elevators may be chosen from among any of those already known to the art or subsequently discovered and/or hereafter developed. Suitable cGMP PDE inhibitors include those disclosed in any of the following US patents:

- a 5-substituted pyrazolo[4,3-d]pyrimidine-7-one as disclosed in US 4,666,908;
- a griseolic acid derivative as disclosed in any of US 4,634,706, 4,783,532, 5,498,819, 5,532,369, 5,556,975, and 5,616,600;
- a 2-phenylpurinone derivative as disclosed in US 4,885,301;
- a phenylpyridone derivative as disclosed in US 5,254,571;
- a fused pyrididine derivative as disclosed in US 5,047,404;
- a condensed pyrimidine derivative as disclosed in US 5,075,310;
- a pyrimidopyrimidine derivative as disclosed in US 5,162,316;
- a purine compound as disclosed in US 5,073,559;
- a quinazoline derivative as disclosed in US 5,147,875;
- a phenylpyrimidone derivative as disclosed in US 5,118,686;
- an imidazoquinoxalinone derivative or its aza analog as disclosed in US 5,055,465 and 5,166,344;
- a phenylpyrimidone derivative as disclosed in US 5,290,933;

Other disclosures of cGMP PDE inhibitors include the following:

European patent Application (EPA) publication no. 0428268;
European patent 0442204;
International patent application publication no. WO 94/19351;
Japanese patent application 5-222000;
European Journal of Pharmacology, 251, (1994), 1;
International patent application publication no. WO 94/22855;
a pyrazolo pyrimidine derivative as disclosed in European patent application
0636626;
a 4-aminopyrimidine derivative as disclosed in European patent application
0640599;
an imidazooquinazoline derivative as disclosed in International patent
application WO95/06648;
an anthranilic acid derivative as disclosed in International patent application
WO95/18097;
a tetracyclic derivative as disclosed in International patent application
WO95/19978;
an imidazooquinazoline derivative as disclosed in European patent
application 0668280; and
a quinazoline compound as disclosed in European patent application
0669324.

The cGMP PDE inhibition of a compound can be determined by standard
assays known to the art, for example as disclosed in US 5,250,534. Compounds
which are selective inhibitors of cGMP PDE relative to cAMP PDE are preferred, and
determination of such compounds is also taught in US 5,250,534. Particularly
preferred are compounds which selectively inhibit the PDE\textsubscript{V} isoenzyme, as disclosed

The growth hormone secretagogues of the present invention may also be
used in combination with other compounds that treat cancer, particularly thyroid
cancer or breast cancer. Examples of compounds that can be used in combination
with a growth hormone secretagogue for the treatment of cancer includes alkylating
agents, nitrogen mustards, nitrosoureas, antimetabolites, hormonal agonists /
antagonists, all of which are well known to those skilled in the art.

The present invention also provides pharmaceutical compositions to increase gastrointestinal motility in a patient
that has suffered or will suffer from reduced gastrointestinal motility as a result of being administered an agent that decreases gastrointestinal motility. Certain agents are known to cause reduced gastrointestinal motility. Such
agents include calcium channel blockers, beta-blockers and narcotics (particularly opiates). The reduction in gastrointestinal motility can be treated by administering to a patient who has or who is going to be administered an agent that causes reduced gastrointestinal motility a therapeutically effective amount of a growth hormone secretagogue, or a pharmacologically acceptable salt or prodrug thereof. The growth hormone secretagogue can be administered to the patient before that patient takes the gastrointestinal motility reducing agent, at the same time or after. Any administration method is contemplated that results in an attenuation or avoidance of reduced gastrointestinal motility. In one embodiment, the growth hormone secretagogue is administered in the same dosage form as the gastrointestinal motility reducing agent. In another embodiment, the growth hormone secretagogue is administered in different dosage forms, at the same time or at different times than the gastrointestinal motility reducing compound.

Growth hormone secretagogues can also be used to increase gastrointestinal motility after surgery. Patients undergoing or having undergone surgery can experience reduced gastrointestinal motility. This reduced gastrointestinal motility can be avoided or ameliorated by administering to a patient who is to undergo or who is undergoing or has undergone surgery a therapeutically effective amount of a growth hormone secretagogue, or a pharmacologically acceptable salt or prodrug thereof.

Certain compounds used in the present invention may have the potential to exist in different tautomeric forms. All tautomers of a compound of the present invention are within the scope of the present invention. Also, for example, all keto-enol or imine-enamine forms of the compounds are included in the present invention. Those skilled in the art will recognize that the compound names contained herein may be based on a particular tautomer of a compound. While the name for only a particular tautomer may be used, it is intended that all tautomers are encompassed by the name of the particular tautomer and all tautomers are considered part of the present invention.

A compound within the scope of the present invention may exist in unsolvated as well as solvated forms with pharmaceutically acceptable solvents such as water, ethanol, and the like. The present invention contemplates and encompasses both the solvated and unsolvated forms.
Also included within the scope of the present invention are isotopically-labelled compounds, which are identical to those recited herein, but for the fact that one or more atoms are replaced by an atom having an atomic mass or mass number different from the atomic mass or mass number usually found in nature.

Examples of isotopes that can be incorporated into compounds of the invention include isotopes of hydrogen, carbon, nitrogen, oxygen, phosphorous, fluorine and chlorine, such as 2H, 3H, 13C, 14C, 15N, 16O, 17O, 31P, 32P, 35S, 36F, and 36Cl, respectively. Compounds of the present invention, prodrugs thereof, and pharmaceutically acceptable salts of said compounds or of said prodrugs which contain the aforementioned isotopes and/or other isotopes of other atoms are within the scope of this invention. Certain isotopically-labelled compounds of the present invention, for example those into which radioactive isotopes such as 3H and 14C are incorporated, are useful in compound and/or substrate tissue distribution assays. Tritiated, i.e., 3H, and carbon-14, i.e., 14C, isotopes are particularly preferred for their ease of preparation and detectability. Further, substitution with heavier isotopes such as deuterium, i.e., 2H, may afford certain therapeutic advantages resulting from greater metabolic stability, for example increased in vivo half-life or reduced dosage requirements and, hence, may be preferred in some circumstances. Isotopically labelled compounds of this invention and prodrugs thereof can generally be prepared by substituting a readily available isotopically labelled reagent for a non-isotopically labelled reagent.

The expression "pharmaceutically acceptable salts" includes both pharmaceutically acceptable acid addition salts and pharmaceutically acceptable cationic salts. The expression "pharmaceutically acceptable cationic salts" is intended to include, but is not limited to, such salts as the alkali metal salts, (e.g., sodium and potassium), alkaline earth metal salts (e.g., calcium and magnesium), aluminum salts, ammonium salts, and salts with organic amines such as benzathine (N,N'-dibenzylethylediamine), choline, diethanolamine, ethylenediamine, meglumine (N-methylglucamine), benethamine (N-benzylphenethylamine), diethylamine, piperazine, tromethamine (2-amino-2-hydroxymethyl-1,3-propanediol) and procaine. The expression "pharmaceutically acceptable acid addition salts" is intended to include, but is not limited to, such salts as the hydrochloride, hydrobromide, sulfate, hydrogen sulfate, phosphate, hydrogen phosphate, dihydrogenphosphate, acetate, succinate, tartrate, citrate, methanesulfonate (mesylate) and p-toluenesulfonate (tosylate) salts.
The pharmaceutically acceptable acid addition salts of the compounds of this invention may be formed of the compound itself, or of any of its esters, and include the pharmaceutically acceptable salts that are often used in pharmaceutical chemistry. For example, salts may be formed with inorganic or organic acids such as hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfonic acids including such agents as naphthalenesulfonic, methanesulfonic and toluenesulfonic acids, sulfuric acid, nitric acid, phosphoric acid, tartaric acid, pyrosulfuric acid, metaphosphoric acid, succinic acid, formic acid, phthalic acid, lactic acid and the like, most preferably with hydrochloric acid, citric acid, benzoic acid, maleic acid, acetic acid or propionic acid.

The salts of basic compounds can be formed by reacting the compound with a suitable acid. The salts are typically formed in high yields at moderate temperatures, and often are prepared by isolating the compound from a suitable acidic wash as the final step of the synthesis. The salt-forming acid is dissolved in an appropriate organic solvent, or aqueous organic solvent, such as an alkanol, ketone or ester. On the other hand, if a compound is desired in the free base form, it can be isolated from a basic final wash step. A preferred technique for preparing hydrochlorides is to dissolve the free base in a suitable solvent and dry the solution thoroughly, as over molecular sieves, before bubbling hydrogen chloride gas through it. It will also be recognized that it is possible to administer amorphous forms of the compounds.

The term "prodrug" means a compound that is transformed in vivo to yield a compound of the present invention. The transformation may occur by various mechanisms, such as through hydrolysis in blood. A discussion of the use of prodrugs is provided by T. Higuchi and W. Stella, "Pro-drugs as Novel Delivery Systems," Vol. 14 of the A.C.S. Symposium Series, and in Bioreversible Carriers in Drug Design, ed. Edward B. Roche, American Pharmaceutical Association and Pergamon Press, 1987.

For example, if a compound of the present invention contains a carboxylic acid functional group, a prodrug can comprise an ester formed by the replacement of the hydrogen atom of the acid group with a group such as (C₆₋C₉)alkyl, (C₅₋C₁₂)alkanoyloxymethyl, 1-(alkanoyloxy)ethyl having from 4 to 9 carbon atoms, 1-methyl-1-(alkanoyloxy)-ethyl having from 5 to 10 carbon atoms, alkoxy carbonyloxymethyl having from 3 to 6 carbon atoms, 1-
(alkoxycarbonyloxy)ethyl having from 4 to 7 carbon atoms, 1-methyl-1-
(alkoxycarbonyloxy)ethyl having from 5 to 8 carbon atoms, N-
(alkoxycarbonyl)aminomethyl having from 3 to 9 carbon atoms, 1-(N-
(alkoxycarbonyl)amino)ethyl having from 4 to 10 carbon atoms, 3-phthalidyl, 4-
crotonolactonyl, gamma-butyrolacton-4-yl, di-N,N-(C₁₋C₂)alkylamino(C₂₋C₃)alkyl
(such as α-dimethylaminoethyl), carbamoyl-(C₁₋C₂)alkyl, N,N-di(C₁₋C₂)
alkylcarbamoyl-(C₁₋C₂)alkyl or piperidino-, pyrrolidino- or morpholino(C₂₋C₃)alkyl.

Similarly, if a compound of the present invention comprises an alcohol
functional group, a prodrug can be formed by the replacement of the hydrogen
atom of the alcohol group with a group such as (C₁₋C₆)alkanoyloxyethyl, 1-((C₁₋C₆)alkanoyloxy)ethyl, 1-methyl-1-((C₁₋C₆)alkanoyloxy)ethyl, (C₁₋C₆)
alkoxycarbonyloxymethyl, N-(C₁₋C₆)alkoxy carbonylaminomethyl, succinoyl, (C₁₋C₆)
alkanoyl, α-amino(C₁₋C₄)alkanoyl, aroyl, or α-aminoacyl, or α-aminoacyl-α-
aminoacyl, where each α-aminoacyl group is independently selected from the
naturally occurring L-amino acids, P(O)(OH)₂, -P(O)(O(C₁₋C₆)alkyl)₂ or glycosyl (the
radical resulting from the removal of a hydroxyl group of the hemiacetal form of a
carbohydrate).

If a compound of the present invention comprises an amine functional
group, a prodrug can be formed by the replacement of a hydrogen atom in the
amine group with a group such as Rₓ-carbonyl, RₓO-carbonyl, NRₓRₓ'-carbonyl
where Rₓ and Rₓ' are each independently (C₁₋C₁₀)alkyl, (C₃₋C₇)cycloalkyl, benzyl, or
Rₓ-carbonyl is a natural α-aminoacyl or natural α-aminoacyl-natural α-aminoacyl,
-C(OH)C(O)OYₓ wherein Yₓ is H, (C₁₋C₆)alkyl or benzyl, -C(OYₓ₀) Yₓ₁ wherein Yₓ₀
is (C₁₋C₄) alkyl and Yₓ₁ is (C₁₋C₆)alkyl, carboxy(C₁₋C₆)alkyl, amino(C₁₋C₄)alkyl or
mono-N- or di-N,N-(C₁₋C₆)alkylaminoalkyl, or -C(Yₓ²) Yₓ₃ wherein Yₓ² is H or methyl
and Yₓ₃ is mono-N- or di-N,N-(C₁₋C₆)alkylamino, morpholinoo, piperidin-1-yl or
pyrrolidin-1-yl.

The identification of a compound as a growth hormone secretagogue, which
is able to directly or indirectly stimulate or increase the endogenous release of
growth hormone in an animal, may be readily determined by methodology well
known in the art, such as the assay described by Smith et al., Science, 260, 1640-
1643 (1993) (see text of Figure 2 therein). In a typical experiment, pituitary glands
are aseptically removed from 150-200 g Wistar male rats and cultures of pituitary
cells are prepared according to Cheng et al., Endocrinol., 124, 2791-2798 (1989).
The cells are treated with the subject compound and assayed for growth hormone secreting activity, as described by Cheng et al. (ibid.). In particular, the intrinsic growth hormone secretagogue activity of a compound which may be used in the present invention may be determined by this assay.

The term "patient" means animals, such as humans, companion animals such as dogs, cats and horses, and livestock such as cattle, swine and sheep. Particularly preferred patients are mammals, including both males and females, with humans being even more preferred.

The term "pharmaceutically acceptable" means that a substance or mixture of substances must be compatible with the other ingredients of a formulation, and not deleterious to the patient.

The terms "treating", "treat" or "treatment" include preventive (e.g., prophylactic) and palliative treatment.

The term "therapeutically effective amount" means an amount of a compound that ameliorates, attenuates, or eliminates a particular disease or condition, or prevents or delays the onset of a disease or condition.

In view of their use according to the present invention, the compounds of the present invention may be formulated into various pharmaceutical forms for administration purposes. A compound may be administered, alone or in combination, by oral, parenteral (e.g., intramuscular, intraperitoneal, intravenous or subcutaneous injection, or implant), nasal, vaginal, rectal, sublingual, or topical routes of administration and can be formulated with pharmaceutically acceptable carriers to provide dosage forms appropriate for each route of administration.

Solid dosage forms for oral administration include capsules, tablets, pills, powders and granules and for companion animals the solid dosage forms include an admixture with food and chewable forms. In such solid dosage forms, the compounds and combinations of this invention can be admixed with at least one inert pharmaceutically acceptable carrier such as sucrose, lactose, or starch. Such dosage forms can also comprise, as is normal practice, additional substances other than such inert diluents, e.g., lubricating agents such as magnesium stearate. In the case of capsules, tablets and pills, the dosage forms may also comprise buffering agents. Tablets and pills can additionally be prepared with enteric coatings. In the case of chewable forms, the dosage form may comprise flavoring agents and perfuming agents.
Liquid dosage forms for oral administration include pharmaceutically acceptable emulsions, solutions, suspensions, syrups and elixirs containing inert diluents commonly used in the art, such as water. Besides such inert diluents, compositions can also include adjuvants, such as wetting agents, emulsifying and suspending agents, and sweetening, flavoring and perfuming agents.

Preparations according to this invention for parenteral administration include sterile aqueous or non-aqueous solutions, suspensions, or emulsions. Examples of non-aqueous solvents or vehicles are propylene glycol, polyethylene glycol, vegetable oils, such as olive oil and corn oil, gelatin, and injectable organic esters such as ethyl oleate. Such dosage forms may also contain adjuvants such as preserving, wetting, emulsifying, and dispersing agents. They may be sterilized by, for example, filtration through a bacteria-retaining filter, by incorporating sterilizing agents into the compositions, by irradiating the compositions, or by heating the compositions. They can also be manufactured in the form of sterile solid compositions which can be dissolved in sterile water, or some other sterile injectable medium immediately before use.

Compositions for rectal or vaginal administration are preferably suppositories which may contain, in addition to the active substance, excipients such as cocoa butter or a suppository wax. Compositions for nasal or sublingual administration are also prepared with standard excipients well known in the art.

The dosage of active ingredients in the compositions, methods and combinations of the present invention may be varied; however, it is necessary that the amount of the active ingredients be such that a suitable dosage form is obtained. The selected dosage depends upon the desired therapeutic effect, on the route of administration, and on the duration of the treatment. Generally, dosage levels of between 0.0001 to 100 mg/kg of body weight daily are administered to humans and other animals, e.g., mammals. A preferred dosage range in humans is 0.01 to 5.0 mg/kg of body weight daily which can be administered as a single dose or divided into multiple doses.

A preferred dosage range in animals other than humans is 0.01 to 10.0 mg/kg of body weight daily which can be administered as a single dose or divided into multiple doses. A more preferred dosage range in animals other than humans is 0.1 to 5 mg/kg of body weight daily which can be administered as a single dose or divided into multiple doses.
Where the tartrate salt or other pharmaceutically acceptable salt of the above compounds is used in the present invention, the skilled person will be able to calculate effective dosage amounts by calculating the molecular weight of the salt form and performing simple stoichiometric ratios.

Also, the present invention includes within its scope the use of a compound according to the present invention, alone or in combination with another growth hormone secretagogue, such as those referenced herein, including the growth hormone releasing peptides GHRP-6 and GHRP-1 (described in U.S. Patent No. 4,411,890 and International Patent Applications, Publication Nos. WO 89/07110, WO 89/07111), GHRP-2 (described in WO 93/04081) and B-HT920, as well as hexarelin and growth hormone releasing hormone (GHRH, also designated GRF) and its analogs, growth hormone and its analogs and somatomedins including IGF-I and IGF-II, or in combination with other therapeutic agents, such as α-adrenergic agonists such as clonidine or serotonin 5-HT1D agonists such as sumatriptan, or agents which inhibit somatostatin or its release such as physostigmine and pyridostigmine. Preferably, the compound may be used in combination with growth hormone releasing factor, an analog of growth hormone releasing factor IGF-1 or IGF-II.

Methods to obtain the growth hormone releasing peptides GHRP-6 and GHRP-1 are described in U.S. Patent No. 4,411, 890 and PCT Publications WO 89/07110, WO 89/07111, methods to obtain the growth hormone releasing peptide GHRP-2 are described in PCT Publication WO 93/04081, and methods to obtain hexarelin are described in J. Endocrin. Invest., 15 (Suppl. 4), 45 (1992).

In addition, the present invention includes within its scope the use of a pharmaceutical composition according to the present invention comprising, as an active ingredient, at least one compound of the present invention in association with a pharmaceutical vehicle, carrier or diluent.

The compounds or combination of compounds of the present invention may be formulated into pharmaceutical compositions as known in the art and as discussed herein.

The present invention also relates to kits for the treatment of bulimia nervosa, male erectile dysfunction, female sexual dysfunction, thyroid cancer, breast cancer, or ameliorating ischemic nerve or muscle damage. The present invention also relates to kits useful for increasing gastrointestinal motility after surgery and increasing
gastrointestinal motility in patients who have been administered an agent that decreases gastrointestinal motility.

In one embodiment, the kits comprise two separate pharmaceutical compositions: a first pharmaceutical composition comprising a growth hormone secretagogue or a prodrug thereof or a pharmaceutically acceptable salt of said growth hormone secretagogue or said prodrug; and a second therapeutic agent as described herein. The kit comprises a container for containing the separate compositions such as a divided bottle or a divided foil packet, however, the separate compositions may also be contained within a single, undivided container.

Typically, the kit comprises directions for the administration of the separate components. The kit form is particularly advantageous when the separate components are preferably administered in different dosage forms (e.g., oral and parenteral), are administered at different dosage intervals, or when titration of the individual components of the combination is desired by the prescribing physician.

In another embodiment of the kits, the kit comprises a pharmaceutical composition comprising a growth hormone secretagogue and instructions for administering the composition for the treatment of bulimia nervosa, male erectile dysfunction, female sexual dysfunction, thyroid cancer, breast cancer, or ameliorating ischemic nerve or muscle damage.

An example of such a kit is a so-called blister pack. Blister packs are well known in the packaging industry and are being widely used for the packaging of pharmaceutical unit dosage forms (tablets, capsules, and the like). Blister packs generally consist of a sheet of relatively stiff material covered with a foil of a preferably transparent plastic material. During the packaging process, recesses are formed in the plastic foil. The recesses have the size and shape of the tablets or capsules to be packed. Next, the tablets or capsules are placed in the recesses and the sheet of relatively stiff material is sealed against the plastic foil at the face of the foil which is opposite from the direction in which the recesses were formed. As a result, the tablets or capsules are sealed in the recesses between the plastic foil and the sheet. Preferably, the strength of the sheet is such that the tablets or capsules can be removed from the blister pack by manually applying pressure on the recesses whereby an opening is formed in the sheet at the place of the recess. The tablet or capsule can then be removed via said opening.
It may be desirable to provide a memory aid on the kit, e.g., in the form of numbers next to the tablets or capsules whereby the numbers correspond with the days of the regimen which the dosage form so specified should be ingested. Another example of such a memory aid is a calendar printed on the card e.g., as follows "First Week, Monday, Tuesday, ...etc.... Second Week, Monday, Tuesday,..." etc. Other variations of memory aids will be readily apparent. A "daily dose" can be a single tablet or capsule or several tablets or capsules to be taken on a given day. Also, a daily dose of a second therapeutic agent as describe herein can consist of one tablet or capsule while a daily dose of a compound of the present invention, a prodrug thereof or pharmaceutically acceptable salt of said compound or said prodrug can consist of several tablets or capsules and vice versa. The memory aid should reflect this.

In another specific embodiment of the invention, a dispenser designed to dispense the daily doses one at a time in the order of their intended use is provided. Preferably, the dispenser is equipped with a memory-aid, so as to further facilitate compliance with the regimen. An example of such a memory-aid is a mechanical counter which indicates the number of daily doses that has been dispensed. Another example of such a memory-aid is a battery-powered micro-chip memory coupled with a liquid crystal readout, or audible reminder signal which, for example, reads out the date that the last daily dose has been taken and/or reminds one when the next dose is to be taken.

The utility of the compounds described herein in the methods of the present invention are demonstrated by their activity in one or more of the assays described below:

Assay for Stimulation of Growth Hormone Release from Rat Pituicytes

Compounds having the ability to stimulate GH secretion from cultured rat pituitary cells are identified using the following protocol. This test is also useful for comparison to standards to determine dosage levels.

Cells are isolated from pituitaries of 6-week old male Wistar rats. Following decapitation, the anterior pituitary lobes are removed into cold, sterile Hank's balanced salt solution without calcium or magnesium (HBSS). Tissues are finely
minced, then subjected to two cycles of mechanically assisted enzymatic dispersion using 10 U/mL bacterial protease (EC 3.4.24.4, Sigma P-6141, St. Louis, Missouri) in HBSS. The tissue-enzyme mixture is stirred in a spinner flask at 30 rpm in a 5% CO₂ atmosphere at 37 °C for 30 min., with manual trituration after 15 min. and 30 min. using a 10-mL pipet. This mixture is centrifuged at 200 x g for 5 min. Horse serum (35% final concentration) is added to the supernatant to neutralize excess protease. The pellet is resuspended in fresh protease (10 U/mL), stirred for about 30 min. more under the previous conditions, and manually triturated, ultimately through a 23-gauge needle. Again, horse serum (35% final concentration) is added, then the cells from both digests are combined, pelleted (200 x g for about 15 min.), resuspended in culture medium (Dulbecco's Modified Eagle Medium (DMEM) supplemented with 4.5 g/L glucose, 10% horse serum, 2.5% fetal bovine serum, 1% non-essential amino acids, 100 U/mL nystatin and 50 mg/mL gentamycin sulfate (Gibco, Grand Island, New York) and counted. Cells are plated at 6.0-6.5x10⁴ cells per cm² in 48-well Costar™ (Coastar, Cambridge, Massachusetts) dishes and cultured for 3-4 days in culture medium.

Just prior to carrying out a GH secretion assay, culture wells are rinsed twice with release medium, then equilibrated for 30 minutes in release medium (DMEM buffered with 25 mM Hepes, pH 7.4 and containing 0.5% bovine serum albumin at 37 °C). Test compositions are dissolved in DMSO, then diluted into pre-warmed release medium. Assays are typically run in quadruplicate. The assay is initiated by adding 0.5 mL of release medium (with vehicle or test compound) to each culture well. Incubation is carried out at 37 °C for 15 minutes, then terminated by removal of the release medium, which is centrifuged at 2000 x g for 15 minutes to remove cellular material. Rat growth hormone concentrations in the supernatants are determined by a standard radioimmunoassay protocol described below.

Assay for Exogenously-Stimulated Growth Hormone Release in the Rat after Intravenous Administration of Test Compounds

Twenty-one day old female Sprague-Dawley rats (Charles River Laboratory, Wilmington, MA) are allowed to acclimate to local vivarium conditions (24 °C, 12 hr light, 12 hr dark cycle) for approximately 1 week before testing of a compound of this invention. All rats are allowed access to water and a pelleted commercial diet (Agway Country Food, Syracuse NY) ad libitum.
On the day of the experiment, test compounds are dissolved in vehicle containing 1% ethanol, 1 mM acetic acid and 0.1% bovine serum albumin in saline. Each test is conducted in three rats. Rats are weighed and anesthetized via intraperitoneal injection of sodium pentobarbital (Nembutol®, 50 mg/kg body weight). Fourteen minutes after anesthetic administration, a blood sample is taken by nicking the tip of the tail and allowing the blood to drip into a microcentrifuge tube (baseline blood sample, approximately 100 μl). Fifteen minutes after anesthetic administration, a test compound is delivered by intravenous injection into the tail vein, with a total injection volume of 1 mL/kg body weight. Additional blood samples are taken from the tail at 5, 10 and 15 minutes after administration of a compound of this invention. Blood samples are kept on ice until serum separation by centrifugation (1430 x g for 10 minutes at 10°C). Serum is stored at -80 °C until serum growth hormone determination by radioimmunoassay as described below.

Measurement of Rat Growth Hormone

Rat growth hormone concentrations are determined by double antibody radioimmunoassay using a rat growth hormone reference preparation (NIDDK-rGH-RP-2) and rat growth hormone antiserum raised in monkey (NIDDK-anti-rGH-S-5) obtained from Dr. A. Parlow (Harbor-UCLA Medical Center, Torrance, CA). Additional rat growth hormone (1.5U/mg, #G2414, Scripps Labs, San Diego, CA) is iodinated to a specific activity of approximately 30 μCi/μg by the chloramine T method for use as tracer. Immune complexes are obtained by adding goat antiserum to monkey IgG (ICN/Cappel, Aurora, OH) plus polyethylene glycol, MW 10,000-20,000 to a final concentration of 4.3%; recovery is accomplished by centrifugation according to methods well known to those skilled in the art. This assay has a working range of 0.08-2.5 μg rat growth hormone per tube.

Assessment of Growth Hormone Release in the Dog after Oral Administration

On the day of dosing, the test compound is weighed out for the appropriate dose and dissolved in water. Doses are delivered at a volume of 0.5-3 mL/kg by oral gavage to 2-4 dogs for each dosing regimen. Blood samples (5 mL) are collected from the jugular vein by direct venipuncture pre-dose and at 0.17, 0.33, 0.5, 0.75, 1, 2, 4, 6, 8 and 24 hours post dose using 5 mL vacutainers containing lithium heparin. The prepared plasma is stored at -20 °C until analysis.
Measurement of Canine Growth Hormone

Canine growth hormone concentrations are determined by a standard radioimmunoassay protocol using canine growth hormone (antigen for iodination and reference preparation AFP-1983B) and canine growth hormone antiserum raised in monkey (AFP-21452578) obtained from Dr. A. Parlow (Harbor-UCLA Medical Center, Torrence, CA). Tracer is produced by chloramine T-iodination of canine growth hormone to a specific activity of 20-40 μCi/μg. Immune complexes are obtained by adding goat antiserum to monkey IgG (ICN/Cappel, Aurora, OH) plus polyethylene glycol, MW 10,000-20,000 to a final concentration of 4.3%; recovery is accomplished by centrifugation according to methods well known to those skilled in the art. This assay has a working range of 0.08-2.5 μg canine GH/tube.

Assessment of Canine Growth Hormone and Insulin-Like Growth Factor-1 Levels in the Dog after Chronic Oral Administration

The dogs receive test compound daily for either 7 or 14 days. Each day of dosing, the test compound is weighed out for the appropriate dose and dissolved in water. Doses are delivered at a volume of 0.5-3 ml/kg by gavage to 5 dogs for each dosing regimen. Blood samples are collected at days 0, 3, 7, 10 and 14. Blood samples (5 ml) are obtained by direct venipuncture of the jugular vein at pre-dose, 0.17, 0.33, 0.5, 0.75, 1, 2, 3, 6, 8, 12 and 24 hours post administration on days 0, 7 and 14 using 5 ml vacutainers containing lithium heparin for GH determination. In addition, blood is drawn pre-dose and 8 hours after dosing on days 3 and 10 for IGF-I determination. The prepared plasma is stored at −20 °C until analysis.

Plasma samples are extracted with acid ethanol (0.25N HCl in 90% ethanol), centrifuged, then the supernatant is neutralized with tris[hydroxymethyl]amino-methane (TRIZMA base, manufactured by Sigma Chemical Co.) prior to determination of IGF-I concentration using the Nichols Institute IGF-I extraction kit (San Juan Capistrano, CA).
CLAIMS:

1. A pharmaceutical composition for treating bulimia nervosa, male erectile dysfunction, female sexual dysfunction, thyroid cancer or breast cancer, or for ameliorating ischemic nerve or muscle damage in a patient in need thereof, comprising a therapeutically effective amount of a compound that is a growth hormone secretagogue, or a pharmaceutically acceptable salt or prodrug thereof and a pharmaceutically acceptable carrier.

2. The pharmaceutical composition according to claim 1, wherein the growth hormone secretagogue is a compound according to Formula I or a pharmaceutically acceptable salt thereof:

\[
\text{HET} \quad \text{R}^4 \quad \text{R}^7
\]

\[
\text{R}^3 \quad \text{X}^4 \quad \text{R}^6 \quad \text{N} \quad \text{R}^8
\]

\[
(I)
\]

wherein

HET is a heterocyclic moiety selected from the group consisting of

\[
\text{Y} \quad \text{N} \quad \text{Z} \quad \text{N} \quad \text{R}^1
\]

\[
\text{X} \quad \text{Q} \quad \text{R}^1
\]

\[
\text{A} \quad \text{C}^\text{R}^1 \quad \text{C}^\text{R}^1 \quad \text{N} \quad \text{R}^1
\]

\[
\text{Y}^2 \quad \text{R}^2 \quad \text{N} \quad \text{N} \quad \text{R}^1 \quad \text{Z} \quad \text{N} \quad \text{R}^1
\]

\[
\text{R}^2 \quad \text{(CH}_2)_e \quad \text{(CH}_2)_d \quad \text{CH}_2
\]
D is 0, 1 or 2;
E is 1 or 2;
F is 0 or 1;
n and w are 0, 1 or 2, provided that n and w cannot both be 0 at the same time;
Y² is oxygen or sulfur;

A is a divalent radical, where the left hand side of the radical as shown below is connected to C" and the right hand side of the radical as shown below is connected to C', selected from the group consisting of

- NR² - C(O) - NR² -,
- NR² - C(O) - O -,
- C(O) - NR² - C(O) -,
- C(O) - NR² - C(R³R¹⁰) -,
- C(R³R¹⁰) - NR² - C(O) -,
- C(R³R¹⁰) - C(R³R¹⁰) - C(R³R¹⁰) -,
- S(O) - C(R³R¹⁰) - C(R³R¹⁰) -,
- C(R³R¹⁰) - O - C(O) -,
- C(R³R¹⁰) - O - C(O) -,
- C(R³R¹⁰) - O - C(O) - C(R³R¹⁰) -,
- C(R³R¹⁰) - O - C(O) - C(R³R¹⁰) -,
- C(R³R¹⁰) - O - C(O) - C(R³R¹⁰) -,
- C(R³R¹⁰) - O - C(O) - C(R³R¹⁰) -,
- C(R³R¹⁰) - O - C(O) - C(R³R¹⁰) -,
- C(R³R¹⁰) - O - C(O) - C(R³R¹⁰) -,
- C(R³R¹⁰) - O - C(O) - C(R³R¹⁰) -,
- C(R³R¹⁰) - O - C(O) - C(R³R¹⁰) -,
- C(R³R¹⁰) - O - C(O) - C(R³R¹⁰) -,
- C(R³R¹⁰) - O - C(O) - C(R³R¹⁰) -,
- C(R³R¹⁰) - O - C(O) - C(R³R¹⁰) -,
- C(R³R¹⁰) - O - C(O) - C(R³R¹⁰) -,
- C(R³R¹⁰) - O - C(O) - C(R³R¹⁰) -,
- C(R³R¹⁰) - O - C(O) - C(R³R¹⁰) -,
- C(R³R¹⁰) - O - C(O) - C(R³R¹⁰) -,
- C(R³R¹⁰) - O - C(O) - C(R³R¹⁰) -,
- C(R³R¹⁰) - O - C(O) - C(R³R¹⁰) -,
- C(R³R¹⁰) - O - C(O) - C(R³R¹⁰) -,
- C(R³R¹⁰) - O - C(O) - C(R³R¹⁰) -,
- C(R³R¹⁰) - O - C(O) - C(R³R¹⁰) -,
- C(R³R¹⁰) - O - C(O) - C(R³R¹⁰) -,
- C(R³R¹⁰) - O - C(O) - C(R³R¹⁰) -,
- C(R³R¹⁰) - O - C(O) - C(R³R¹⁰) -,
- C(R³R¹⁰) - O - C(O) - C(R³R¹⁰) -,
C(R^9R^{10}) - N(R^{12}) - , - C(R^9R^{10}) - NR^{12}, - N=C(R^{11}) - NR^2 - C(O) - , - C(R^9R^{10}) - C(R^9R^{10}) - NR^2 - S(O)_2 - , - O=C(R^9R^{10}) - C(R^9R^{10}) - S(O)_2 - , - O-C(R^9R^{10}) - C(R^9R^{10}) - , - C(R^9R^{10}) - C(R^9R^{10}) - O-, - C(R^9R^{10}) - C(R^9R^{10}) - C(O) - C(R^9R^{10}) - , - C(O) - C(R^9R^{10}) - C(R^9R^{10}) - and - C(R^9R^{10}) - NR^2 - S(O)_2 - NR^2 - ;

Q is a covalent bond or CH₂;

W is CH or N;

X is CR^9R^{10}, C=CH₂ or C=O;

Y is CR^9R^{10}, O or NR^2;

Z is C=O, C=S or S(O)_2;

G¹ is hydrogen, halo, hydroxy, nitro, amino, cyano, phenyl, carboxyl, -CONH₂, -(C₁-C₄)alkyl optionally independently substituted with one or more phenyl, one or more halogens or one or more hydroxy groups, -(C₁-C₄)alkoxy optionally independently substituted with one or more phenyl, one or more halogens or one or more hydroxy groups, -(C₁-C₄)alkylthio, phenoxy, -COO-(C₁-C₄)alkyl, N,N-di-(C₁-C₄)alkylamino, -(C₂-C₆)alkenyl optionally independently substituted with one or more phenyl, one or more halogens or one or more hydroxy groups, -(C₂-C₆)alkynyl optionally independently substituted with one or more phenyl, one or more halogens or one or more hydroxy groups, -(C₃-C₆)cycloalkyl optionally independently substituted with one or more (C₁-C₄)alkyl groups, one or more halogens or one or more hydroxy groups, -(C₁-C₄)alkylamino carbonyl or di-(C₁-C₄)alkylamino carbonyl; G² and G³ are each independently selected from the group consisting of hydrogen, halo, hydroxy, -(C₁-C₄)alkyl optionally independently substituted with one to three halo groups and -(C₁-C₄)alkoxy optionally independently substituted with one to three halo groups;
R^1 is hydrogen, -CN, -(CH_2)_qN(X^6)C(O)X^6,
-(CH_2)_qN(X^6)C(O)(CH_2)_t-A^1, -(CH_2)_qN(X^6)S(O)_2(CH_2)_t-A^1,
-(CH_2)_qN(X^6)S(O)_2X^6, -(CH_2)_qN(X^6)C(O)N(X^6)(CH_2)_t-A^1,
-(CH_2)_qN(X^6)C(O)N(X^6)(X^6), -(CH_2)_qC(O)N(X^6)(X^6),
-(CH_2)_qC(O)(X^6)(CH_2)_t-A^1, -(CH_2)_qC(O)OX^6, -(CH_2)_qC(O)O(CH_2)_t-A^1,
-(CH_2)_qOC(O)(X^6), -(CH_2)_qOC(O)(CH_2)_t-A^1,
-(CH_2)_qOC(O)(X^6)(CH_2)_t-A^1, -(CH_2)_qOC(O)(X^6)(X^6), -(CH_2)_qOC(O)(X^6),
-(CH_2)_qC(O)(CH_2)_t-A^1, -(CH_2)_qN(X^6)C(O)OX^6,
-(CH_2)_qN(X^6)S(O)_2N(X^6)(X^6), -(CH_2)_qS(O)_2X^6, -(CH_2)_qS(O)(CH_2)_t-A^1,
-(C_1-C_{10})alkyl, -(CH_2)_t-A^1, -(CH_2)_q-(C_3-C_7)cycloalkyl, -(CH_2)_q-Y^1-(C_1-C_6)alkyl,
-(CH_2)_q-Y^1-(CH_2)_t-A^1 or -(CH_2)_q-Y^1-(CH_2)_t-(C_3-C_7)cycloalkyl;

where the alkyl and cycloalkyl groups in the
definition of R^1 are optionally substituted with

(C_1-C_4)alkyl, hydroxy, (C_1-C_4)alkoxy, carboxyl, -CONH_2,
-S(O)_m(C_1-C_6)alkyl, -CO_2(C_1-C_4)alkyl ester, 1H-tetrazol-5-yl
or 1, 2 or 3 fluoro groups;

Y^1 is O, S(O)_m, -C(O)NX^6-, -CH=CH-, -C=C-, -N(X^6)C(O)-, -C(O)NX^6-, -C(O)O-, -OC(O)N(X^6)- or -OC(O)-;

q is 0, 1, 2, 3 or 4;

t is 0, 1, 2 or 3;

the (CH_2)_q group and (CH_2)_t group in the definition
of R^1 are optionally independently substituted with hydroxy,
(C_1-C_4)alkoxy, carboxyl, -CONH_2, -S(O)_m(C_1-C_6)alkyl,
-CO_2(C_1-C_4)alkyl ester, 1H-tetrazol-5-yl, 1, 2 or 3 fluoro
groups or 1 or 2 (C_1-C_4)alkyl groups;

R^{1A} is selected from the group consisting of
hydrogen, F, Cl, Br, I, (C_1-C_4)alkyl, phenyl(C_1-C_3)alkyl,
pyridyl(C_1-C_3)alkyl, thiazolyl(C_1-C_3)alkyl and
thienyl(C_1-C_3)alkyl, provided that R^{1A} is not F, Cl, Br or I
when a heteroatom is vicinal to C";
R² is hydrogen, (C₁⁻C₆)alkyl, -(C₀⁻C₆)alkyl-(C₅⁻C₆)cyloalkyl, -(C₁⁻C₄)alkyl-A¹ or A¹'; where the alkyl groups and the cycloalkyl groups in the definition of R² are optionally substituted with hydroxy, -C(O)OX⁶, -C(O)N(X⁶)(X⁶), -N(X⁶)(X⁶), -S(O)m(C₁⁻C₆)alkyl, -C(O)A¹, -C(O)(X⁶), CF₃, CN or 1, 2 or 3 independently selected halo groups;

R³ is selected from the group consisting of A¹', (C₁⁻C₁₀)alkyl, -(C₁⁻C₆)alkyl-A¹', -(C₁⁻C₆)alkyl-(C₃⁻C₇)cycloalkyl, -(C₁⁻C₆)alkyl-X¹'(C₁⁻C₆)alkyl, -(C₁⁻C₆)alkyl-X¹'(C₀⁻C₆)alkyl-A¹' and -(C₁⁻C₆)alkyl-X¹'(C₁⁻C₆)alkyl-(C₃⁻C₇)cycloalkyl;

where the alkyl groups in the definition of R³ are optionally substituted with
-S(O)m(C₁⁻C₆)alkyl, -C(O)OX³, 1, 2, 3, 4 or 5 independently selected halo groups or 1, 2 or 3 independently selected -OX³ groups;

X¹ is O, S(O)m, -N(X³)C(O)-, -C(O)N(X³)-, -OC(O)-, -C(O)O-, -CX²=CX²-, -N(X³)C(O)O-, -OC(O)N(X³)- or -C≡C-;

R⁴ is hydrogen, (C₁⁻C₆)alkyl or (C₃⁻C₇)cycloalkyl, or R⁴ is taken together with R³ and the carbon atom to which they are attached and form (C₅⁻C₇)cycloalkyl, (C₅⁻C₇)cycloalkenyl, a partially saturated or fully saturated 4- to 8-membered ring having 1 to 4 heteroatoms independently selected from the group consisting of oxygen, sulfur and nitrogen, or is a bicyclic ring system consisting of a partially saturated or fully saturated 5- or 6-membered ring, fused to a partially saturated, fully unsaturated or fully saturated 5- or 6-membered ring, optionally having 1 to 4 heteroatoms independently selected from the group consisting of nitrogen, sulfur and oxygen;

X⁴ is hydrogen or (C₁⁻C₆)alkyl or X⁴ is taken together with R⁴ and the nitrogen atom to which X⁴ is attached and the carbon atom to which R⁴ is attached and form a five to seven membered ring;

R⁵ is a bond or is

where a and b are each independently 0, 1, 2 or 3;

X⁵ and X⁵a are each independently selected from the group consisting of hydrogen, CF₃, A¹' and optionally substituted (C₁⁻C₆)alkyl;

the optionally substituted (C₁⁻C₆)alkyl in the definition of X⁵ and X⁵a is optionally substituted with a substituent selected from the group consisting of A¹', OX², -S(O)m(C₁⁻C₆)alkyl, -C(O)OX², (C₃⁻C₇)cycloalkyl, -N(X³)(X³) and -C(O)N(X³)(X³);
or the carbon bearing X⁵ or X⁵a forms one or two alkylene bridges with the nitrogen atom bearing R⁷ and R⁸ wherein each alkylene bridge contains 1 to 5 carbon atoms, provided that when one alkylene bridge is formed then only one of X⁵ or X⁵a is on the carbon atom and only one of R⁷ or R⁸ is on the nitrogen atom and further provided that when two alkylene bridges are formed then X⁵ and X⁵a cannot be on the carbon atom and R⁷ and R⁸ cannot be on the nitrogen atom;

or X⁵ is taken together with X⁵a and the carbon atom to which they are attached and form a partially saturated or fully saturated 3- to 7-membered ring, or a partially saturated or fully saturated 4- to 8-membered ring having 1 to 4 heteroatoms independently selected from the group consisting of oxygen, sulfur and nitrogen;

or X⁶ is taken together with X⁶a and the carbon atom to which they are attached and form a bicyclic ring system consisting of a partially saturated or fully saturated 5- or 6-membered ring, optionally having 1 or 2 heteroatoms independently selected from the group consisting of nitrogen, sulfur and oxygen, fused to a partially saturated, fully saturated or fully unsaturated 5- or 6-membered ring, optionally having 1 to 4 heteroatoms independently selected from the group consisting of nitrogen, sulfur and oxygen;

Z¹ is a bond, O or N-X², provided that when a and b are both 0 then Z¹ is not N-X² or O;

or R⁸ is -(CR⁵R⁴)b-E-(CR⁵R⁴)b-, where the -(CR⁵R⁴)b- group is attached to the carbonyl carbon of the amide group of the compound of formula I and the -(CR⁵R⁴)b- group is attached to the terminal nitrogen atom of the compound of

Formula I;

E is -O-, -S-, -CH=CH- or an aromatic moiety selected from

\[
\begin{align*}
\text{(aromatic moiety)}
\end{align*}
\]
the aromatic moiety in the definition of E optionally substituted with up to three halo, hydroxy, -N(R')(R''), (C\textsubscript{1-6}) alkyl, or (C\textsubscript{1-6}) alkoxy; Ra and Rb are, for each occurrence, independently hydrogen, (C\textsubscript{1-6}) alkyl, trifluoromethyl, phenyl or monosubstituted (C\textsubscript{1-6}) alkyl where the substituents are imidazolyl, naphthyl, phenyl, indolyl, p-hydroxyphenyl, -ORc, S(O)\textsubscript{m}Rc, C(O)ORc, (C\textsubscript{3-7}) cycloalkyl, -N(Rd)(Re), -C(O)N(Rd)(Re), or Ra or Rb may independently be joined to one or both of R7 or E (where E is other than O, S or -CH=CH-) to form an alkyene bridge between the terminal nitrogen and the alkyl portion of the R8 or Rb and the R7 or E group, wherein the bridge contains 1 to 8 carbon atoms; or Ra and Rb may be joined to one another to form a (C\textsubscript{3-7}) cycloalkyl; Rc, for each occurrence, is independently hydrogen or (C\textsubscript{1-6}) alkyl; a and b are independently 0, 1, 2 or 3, with the proviso that if E is -O- or -S-, b is other than 0 or 1 and with the further proviso that if E is -CH=CH-, b is other than 0;

R7 and R8 are each independently hydrogen or optionally substituted (C\textsubscript{1-6}) alkyl; where the optionally substituted (C\textsubscript{1-6}) alkyl in the definition of R7 and R8 is optionally independently substituted with A', -C(O)O-(C\textsubscript{1-6}) alkyl, -S(O)\textsubscript{m}(C\textsubscript{1-6}) alkyl, 1 to 5 halo groups, 1 to 3 hydroxy groups, 1 to 3

-O-C(O)(C\textsubscript{1-6}Alkyl groups or 1 to 3 (C\textsubscript{1-6}) alkoxy groups; or

R7 and R8 can be taken together to form -(CH\textsubscript{2})\textsubscript{L}-(CH\textsubscript{2})\textsubscript{R}; where L is C(X2)(X3), S(O)\textsubscript{m} or N(X3); R8 and R10 are each independently selected from the group consisting of hydrogen, fluoro, hydroxy and (C\textsubscript{1-6}) alkyl optionally independently substituted with 1-5 halo groups;

R11 is selected from the group consisting of (C\textsubscript{1-6}) alkyl and phenyl optionally substituted with 1-3 substituents each independently selected from the group consisting of (C\textsubscript{1-6}) alkyl, halo and (C\textsubscript{1-6}) alkoxy;

R12 is selected from the group consisting of (C\textsubscript{1-6}) alkylsulfonyl, (C\textsubscript{1-6}) alkanoyl and (C\textsubscript{1-6}) alkyl where the alkyl portion is optionally independently substituted by 1-5 halo groups;

A' for each occurrence is independently selected from the group consisting of (C\textsubscript{5-7}) cycloalkenyl, phenyl, a partially saturated, fully saturated or fully unsaturated 4- to 8-membered ring optionally having 1 to 4 heteroatoms independently selected
from the group consisting of oxygen, sulfur and nitrogen and a bicyclic ring system
consisting of a partially saturated, fully unsaturated or fully saturated 5- or 6-
membered ring, optionally having 1 to 4 heteroatoms independently selected from
the group consisting of nitrogen, sulfur and oxygen, fused to a partially saturated,
fully saturated or fully unsaturated 5- or 6-membered ring, optionally having 1 to 4
heteroatoms independently selected from the group consisting of nitrogen, sulfur
and oxygen;

A for each occurrence is independently optionally substituted, on one or
optionally both rings if A is a bicyclic ring system, with up to three
substituents, each substituent independently selected from the group
consisting of F, Cl, Br, I, OCF₃, OCF₂H, CF₃, CH₃, OCH₃, -Oₓ₆,
-C(O)N(X₆)(X₆), -C(O)Oₓ₆, oxo, (C₁₋C₆)alkyl, nitro, cyano, benzyl, -S(O)ₓ₆(C₁₋C₆)alkyl,
1H-tetrazol-5-yl, phenyl, phenoxy, phenylalkoxy, halophenyl,
methyleneedioxy, -N(X₆)(X₆), -N(X₆)C(O)(X₆), -S(O)ₓ₆N(X₆)(X₆),
-N(X₆)S(O)ₓ₂-phenyl, -N(X₆)S(O)ₓ₂X₆, -CONX₁¹X₁², -S(O)ₓ₂NX₁¹X₁²,
-NX₆S(O)ₓ₂X₁², -NX₆CONX₁¹X₁², -NX₆S(O)ₓ₂NX₁¹X₁², -NX₆C(O)X₁², imidazolyl,
thiazolyl and tetrazolyl, provided that if A is optionally substituted with
methyleneedioxy then it can only be substituted with one methyleneedioxy;

where X₁¹ is hydrogen or optionally substituted (C₁₋C₆)alkyl;

the optionally substituted (C₁₋C₆)alkyl defined for X₁¹ is
optionally independently substituted with phenyl, phenoxy,
(C₁₋C₆)alkoxy carbonyl, -S(O)ₓ₆(C₁₋C₆)alkyl, 1 to 5 halo groups,
1 to 3 hydroxy groups, 1 to 3 (C₁₋C₁₀)alkanoyloxy groups or 1
to 3 (C₁₋C₆)alkoxy groups;

X₁² is hydrogen, (C₁₋C₆)alkyl, phenyl, thiazolyl, imidazolyl, furyl or
thienyl, provided that when X₁² is not hydrogen, the X₁² group is
optionally substituted with one to three substituents independently
selected from the group consisting of Cl, F, CH₃, OCH₃, OCF₃ and
CF₃;

or X₁¹ and X₁² are taken together to form -(CH₂)ₓL₁(CH₂)ₓ;

L₁ is C(X₆)ₓ(X₆), O, S(O)ₓ₆ or N(X₆);

r for each occurrence is independently 1, 2 or 3;

X₂ for each occurrence is independently hydrogen, optionally substituted (C₁₋C₆)alkyl or optionally substituted (C₃₋C₇)cycloalkyl, where the optionally substituted
(C₁-C₆)alkyl and optionally substituted (C₃-C₇)cycloalkyl in the definition of X² are optionally independently substituted with \(-S(O)_m(C₁-C₆)alkyl\), \(-C(O)O_X³\), 1 to 5 halo groups or 1-3 OX³ groups;

X³ for each occurrence is independently hydrogen or (C₁-C₆)alkyl;

X⁶ for each occurrence is independently hydrogen, optionally substituted (C₁-C₆)alkyl, (C₂-C₆)halogenated alkyl, optionally substituted (C₃-C₇)cycloalkyl, (C₃-C₇)halogenated cycloalkyl, where optionally substituted (C₁-C₆)alkyl and optionally substituted (C₃-C₇)cycloalkyl in the definition of X⁶ is optionally independently mono- or di-substituted with (C₁-C₄)alkyl, hydroxy, (C₁-C₄)alkoxy, carboxyl, CONH₂,

-S(O)_m(C₁-C₆)alkyl, carboxylate (C₁-C₄)alkyl ester, or 1H-tetrazol-5-yl; or when there are two X⁶ groups on one atom and both X⁶ are independently (C₁-C₆)alkyl, the two (C₁-C₆)alkyl groups may be optionally joined and, together with the atom to which the two X⁶ groups are attached, form a 4- to 9- membered ring optionally having oxygen, sulfur or

NX⁷ as a ring member;

X⁷ is hydrogen or (C₁-C₆)alkyl optionally substituted with hydroxy;

m for each occurrence is independently 0, 1 or 2;

with the provisos that:

1) X⁶ and X¹² cannot be hydrogen when attached to C(O) or S(O)₂ in the form C(O)X⁶, C(O)X¹², S(O)₂X⁶ or S(O)₂X¹²; and

2) when R⁶ is a bond then L is N(X²) and each r in the definition -(CH₂)ₗ-L-(CH₂)ₗ- is independently 2 or 3.
3. The pharmaceutical composition of claim 1, wherein the growth hormone secretagogue is 2-amino-N-[2-(3a(R)-benzyl-2-methyl-3-oxo-2,3,3a,4,6,7-hexahydropyrazolo-[4,3-c]pyridin-5-yl)-1-(R)-benzyloxymethyl-2-oxo-ethyl]-isobutyramide or 2-amino-N-(1-(R)-(2,4-difluoro-benzylxomethyl)-2-oxo-2-(3-oxo-3a-(R)-(pyridin-2-ylmethyl)-2-(2,2,2-trifluoroo-ethyl)-2,3,3a,4,6,7-hexahydropyrazolo-[4,3-c]pyridin-5-yl)-ethyl)-2-methyl-propionamide or a pharmaceutically acceptable salt or prodrug thereof.

4. The pharmaceutical composition of claim 1, wherein the growth hormone secretagogue is 2-amino-N-[2-(3a-(R)-benzyl-2-methyl-3-oxo-2,3,3a,4,6,7-hexahydropyrazolo-[4,3-c]pyridin-5-yl)-1-(R)-benzyloxymethyl-2-oxo-ethyl]-isobutyramide, L-tartrate or the (L)-(+) -tartaric acid salt of 2-amino-N-(1-(R)-(2,4-difluoro-benzylxomethyl)-2-oxo-2-(3-oxo-3a-(R)-(pyridin-2-ylmethyl)-2-(2,2,2-trifluoro-ethyl)-2,3,3a,4,6,7-hexahydropyrazolo-[4,3-c]pyridin-5-yl)-ethyl)-2-methyl-propionamide.

5. The pharmaceutical composition according to claim 1, wherein the growth hormone secretagogue is 2-amino-N-(1(R)-benzyloxymethyl-2-(1,3-dioxo-8a(S)-pyridin-2-ylmethyl-2-(2,2,2-trifluoro-ethyl)-hexahydro-imidazo[1,5-a]pyrazin-7-yl)-2-oxo-ethyl)-2-methyl-propionamide or the (L)-(+) -tartaric acid salt thereof.

6. A pharmaceutical composition for increasing gastrointestinal motility in a patient who has taken or who is to take an agent that is known to decrease gastrointestinal motility comprising a therapeutically effective amount of a growth hormone secretagogue, or a pharmaceutically acceptable salt or prodrug thereof and a pharmaceutically acceptable carrier.
7. The pharmaceutical composition according to claim 6, wherein the growth hormone secretagogue is a compound according to Formula I or a pharmaceutically acceptable salt thereof, as defined in claim 2.

8. The pharmaceutical composition of claim 6 or 7, wherein the agent that is known to decrease gastrointestinal motility is a calcium channel blocker, a beta blocker or a narcotic.

9. The pharmaceutical composition of claim 6, wherein the growth hormone secretagogue is 2-amino-N-[2-(3a(R)-benzyl-2-methyl-3-oxo-2,3,3a,4,6,7-hexahydro-pyrazolo-[4,3-c]pyridin-5-yl)-1-(R)-benzyloxymethyl-2-oxo-ethyl]-isobutyramide or 2-amino-N-(1-(R)-(2,4-difluoro-benzylxymethyl)-2-oxo-2-(3-oxo-3a-(R)-(pyridin-2-ylmethyl)-2-(2,2,2-trifluoro-ethyl)-2,3,3a,4,6,7-hexahydro-pyrazolo-[4,3-c]pyridin-5-yl)-ethyl)-2-methyl-propionamide or a pharmaceutically acceptable salt or prodrug thereof.

10. The pharmaceutical composition of claim 6, wherein the growth hormone secretagogue is 2-amino-N-[2-(3a-(R)-benzyl-2-methyl-3-oxo-2,3,3a,4,6,7-hexahydro-pyrazolo-[4,3-c]pyridin-5-yl)-1-(R)-benzyloxymethyl-2-oxo-ethyl]-isobutyramide, L-tartrate or the (L)-(+) -tartaric acid salt of 2-amino-N-(1-(R)-(2,4-difluoro-benzylxymethyl)-2-oxo-2-(3-oxo-3a-(R)-(pyridin-2-ylmethyl)-2-(2,2,2-trifluoro-ethyl)-2,3,3a,4,6,7-hexahydro-pyrazolo-[4,3-c]pyridin-5-yl)-ethyl)-2-methyl-propionamide.

11. The pharmaceutical composition according to claim 6, wherein the growth hormone secretagogue is 2-amino-N-(1(R)-benzyloxymethyl-2-(1,3-dioxo-8a(S)-pyridin-2-ylmethyl)-2-(2,2,2-trifluoro-ethyl)-hexahydro-imidazo[1,5-a]pyrazin-7-
yl)-2-oxo-ethyl)-2-methyl-propionamide or the
(L)-(+) tartaric acid salt thereof.

12. A pharmaceutical composition for increasing
gastrointestinal motility after surgery in a patient in need
thereof comprising a therapeutically effective amount of a
growth hormone secretagogue, or a pharmaceutically
acceptable salt or prodrug thereof and a pharmaceutically
acceptable carrier.

13. The pharmaceutical composition according to claim
12, wherein the growth hormone secretagogue is a compound
according to Formula I or a pharmaceutically acceptable salt
thereof, as defined in claim 2.

14. The pharmaceutical composition of claim 12,
wherein the growth hormone secretagogue is 2-amino-N-[2-
(3a(R)-benzyl-2-methyl-3-oxo-2,3,3a,4,6,7-hexahydro-
pyrazolo-[4,3-c]pyridin-5-yl]-1-(R)-benzyloxymethyl-2-oxo-
ethyl]-isobutyramide or 2-amino-N-(1-(R)-(2,4-difluoro-
benzyloxymethyl)-2-oxo-2-(3-oxo-3a-(R)-(pyridin-2-ylmethyl)-
2-(2,2,2-trifluoro-ethyl)-2,3,3a,4,6,7-hexahydro-pyrazolo-
[4,3-c]pyridin-5-yl)-ethyl]-2-methyl-propionamide, or a
pharmaceutically acceptable salt or prodrug thereof.

15. The pharmaceutical composition of claim 12,
wherein the growth hormone secretagogue is 2-amino-N-[2-
(3a-(R)-benzyl-2-methyl-3-oxo-2,3,3a,4,6,7-hexahydro-
pyrazolo-[4,3-c]pyridin-5-yl]-1-(R)-benzyloxymethyl-2-oxo-
ethyl]-isobutyramide, L-tartrate or the (L)-(+) tartaric
acid salt of 2-amino-N-(1-(R)-(2,4-difluoro-
benzyloxymethyl)-2-oxo-2-(3-oxo-3a-(R)-(pyridin-2-ylmethyl)-
2-(2,2,2-trifluoro-ethyl)-2,3,3a,4,6,7-hexahydro-pyrazolo-
[4,3-c]pyridin-5-yl)-ethyl]-2-methyl-propionamide.
16. The pharmaceutical composition according to claim 12, wherein the growth hormone secretagogue is 2-amino-N-[(R)-benzyloxyethyl]-2-(1,3-dioxo-8a(S)-pyridin-2-ylmethyl-2-(2,2,2-trifluoro-ethyl)-hexahydro-imidazo[1,5-a]pyrazin-7-yl]-2-oxo-ethyl)-2-methyl-propionamide or the (L)-(+)-tartaric acid salt thereof.

17. A kit for the treatment of bulimia nervosa, male erectile dysfunction, female sexual dysfunction, thyroid cancer or breast cancer, or for ameliorating ischemic nerve or muscle damage, the kit comprising:

 a. a first pharmaceutical composition that comprises a growth hormone secretagogue, or a pharmaceutically acceptable salt or prodrug thereof and a pharmaceutically acceptable carrier; and

 b. a written matter describing instructions for the use thereof for treating bulimia nervosa, male erectile dysfunction, female sexual dysfunction, thyroid cancer or breast cancer, or for ameliorating ischemic nerve or muscle damage in a patient in need thereof.

18. A kit for the treatment of bulimia nervosa, male erectile dysfunction, female sexual dysfunction, thyroid cancer or breast cancer, or for ameliorating ischemic nerve or muscle damage, the kit comprising:

 a. a first pharmaceutical composition that comprises a growth hormone secretagogue, or a pharmaceutically acceptable salt or prodrug thereof and a pharmaceutically acceptable carrier;

 b. a second pharmaceutical composition that comprises a second compound that can be used to treat bulimia nervosa, male erectile dysfunction, female sexual dysfunction,
thyroid cancer or breast cancer, or that can be used for ameliorating ischemic nerve or muscle damage and a pharmaceutically acceptable carrier; and

c. a written matter describing instructions for the use thereof to treat bulimia nervosa, male erectile dysfunction, female sexual dysfunction, thyroid cancer or breast cancer, or for ameliorating ischemic nerve or muscle damage in a patient in need thereof.

19. The kit according to claim 17 or 18, wherein the growth hormone secretagogue of the first pharmaceutical composition is a compound according to Formula I, or a pharmaceutically acceptable salt thereof, as defined in claim 2.

20. The kit according to claim 17 or 18, wherein the growth hormone secretagogue of the first pharmaceutical composition is 2-amino-N-[2-(3a(R)-benzyl-2-methyl-3-oxo-2,3,3a,4,6,7-hexahydro-pyrazolo-[4,3-c]pyridin-5-yl)-1-(R)-benzyloxymethyl-2-oxo-ethyl]-isobutyramide or 2-amino-N-(1-(R)-(2,4-difluoro-benzyloxymethyl)-2-oxo-2-(3-oxo-3a-(R)-pyridin-2-ylmethyl)-2-(2,2,2-trifluoro-ethyl)-2,3,3a,4,6,7-hexahydro-pyrazolo-[4,3-c]pyridin-5-yl)-ethyl)-2-methyl-propionamide or a pharmaceutically acceptable salt or prodrug thereof.

21. The kit according to claim 17 or 18, wherein the growth hormone secretagogue of the first pharmaceutical composition is 2-amino-N-[2-(3a-(R)-benzyl-2-methyl-3-oxo-2,3,3a,4,6,7-hexahydro-pyrazolo-[4,3-c]pyridin-5-yl)-1-(R)-benzyloxymethyl-2-oxo-ethyl]-isobutyramide, L-tartrate or the (L)-(++)-tartaric acid salt of 2-amino-N-(1-(R)-(2,4-difluoro-benzyloxymethyl)-2-oxo-2-(3-oxo-3a-(R)-(pyridin-2-
ylmethyl)-2-(2,2,2-trifluoro-ethyl)-2,3,3a,4,6,7-hexahydro-
pyrazolo-[4,3-c]pyridin-5-yl)-ethyl)-2-methyl-propionamide.

22. The kit according to claim 17 or 18, wherein the
growth hormone secretagogue of the first pharmaceutical
composition is 2-amino-N-(1(R)-benzyloxy-methyl-2-(1,3-dioxo-
8a(S)-pyridin-2-ylmethyl-2-(2,2,2-trifluoro-ethyl)-
hexahydro-imidazo[1,5-a]pyrazin-7-yl)-2-oxo-ethyl)-2-methyl-
propionamide or the (L)-(+)--tartaric acid salt thereof.

SMART & BIGGAR
OTTAWA, CANADA

PATENT AGENTS