(54) Title: FUEL FLEXIBLE THERMOELECTRIC MICRO-GENERATOR WITH MICRO-TURBINE

(57) Abstract:
A micro-generator (10) for providing electrical energy to portable electronic devices and MEMS includes a micro-combustor (20), a micro-turbine (20) connected to the exhaust outlet of the micro-combustor (20) and a thermoelectric module (22) consisting of a number of quantum well thermoelectric panels (44) connected between spaced heat spreaders (40, 42), one of which is mounted
(57) **Abstract (continued):**

in thermal communication with the micro-combustor (26). Different types of hydrocarbon fuel may be supplied to the micro-combustor (26) where it is burned within a combustion chamber (32). The entire system is controlled in real time by a micro-controller (24) which is powered upon start up by an ultra capacitor (28) and thereafter by the electric energy produced by the thermoelectric module (22) and/or the micro-turbine (26).
Title: FUEL FLEXIBLE THERMOELECTRIC MICRO-GENERATOR WITH MICRO-TURBINE

Abstract: A micro-generator (10) for providing electrical energy to portable electronic devices and MEMS includes a micro-combustor (20), a micro-turbine (26) connected to the exhaust outlet of the micro-combustor (20) and a thermoelectric module (22) consisting of a number of quantum well thermoelectric panels (44) connected between spaced heat spreaders (40, 42), one of which is mounted in thermal communication with the micro-combustor (26). Different types of hydrocarbon fuel may be supplied to the micro-combustor (26) where it is burned within a combustion chamber (32). The entire system is controlled in real time by a micro-controller (24) which is powered upon start up by an ultra capacitor (28) and thereafter by the electric energy produced by the thermoelectric module (22) and/or the micro-turbine (26).
FUEL FLEXIBLE THERMEOLECTRIC MICRO-GENERATOR
WITH MICRO-TURBINE

BACKGROUND OF THE INVENTION

Portable electronic devices are conventionally powered by batteries. With the advancing sophistication of such devices, and an ever increasing need for more power, improvements have been made to the shelf life, efficiency and overall useful life of batteries in recent years.

Notwithstanding these improvements, batteries are fundamentally limited in terms of power generation per unit volume, energy storage per unit mass and disposal of the ultimate by-products of power generation, e.g. toxic metals.

The use of combustion processes for the generation of electrical energy has been recognized in the prior art as having a number of advantages over batteries. Hydrocarbon fuels provide an energy storage density of between 40 and 50 MJ/kg, while lithium ion batteries, for example, have an energy storage density of 0.4 MJ/kg. Even at comparatively low rates of efficiency in converting thermal energy resulting from the combustion of hydrocarbon fuels to electrical energy, the energy storage density is much higher using hydrocarbon fuels in comparison to batteries. Further, hydrocarbon fuels are readily available, easily stored and have a longer shelf life than batteries. Additionally, the by-products of combustion are primarily carbon dioxide and water which do not present disposal difficulties.

U.S. Patent No. 6,613,972 discloses a micro-generator system designed to generate electrical energy on a scale sufficient to power portable electrical devices and micro-electro-mechanical-systems ("MEMS") using a micro-combustor which operates with hydrocarbon fuel. Propane, butane or methylacetylene combined with air is supplied to the micro-combustor where it is burned within a combustion region
to produce heat. One or more internal walls of the micro-
combustor are formed of a thermoelectric material which is
capable of producing electrical energy when exposed to a
temperature differential. This temperature differential is
created by directing a flow of incoming, cooler air-fuel
mixture, and a flow of the heated exhaust gas produced from
combustion, past opposite surfaces of the thermoelectric
material.

The micro-generator of the '972 patent has a number
of the advantages described above pertaining to the use of
hydrocarbon fuels to generate electrical power. Nevertheless,
its efficiency in converting thermal energy to electrical
energy is on the order of about 5%, and no provision is made
to convert exhaust gases from combustion in the micro-
combustor to electrical energy. This limits the amount of
power which can be obtained from the device, and therefore
restricts the types of portable electronic devices and MEMS
with which it can be used. Additionally, fuel consumption can
become an issue given such a low conversion efficiency.

Consequently, the micro-generator of the '972 patent has
limited practical application in its present form.

SUMMARY OF THE INVENTION

This invention is directed to a micro-generator for
providing electrical energy to portable electronic devices and
MEMS which includes a micro-combustor, a micro-turbine
connected to the exhaust outlet of the micro-combustor, and, a
thermoelectric module consisting of a number of quantum well
thermoelectric panels connected between spaced heat spreaders,
one of which is mounted in thermal communication with the
micro-combustor. Different types of hydrocarbon fuel may be
supplied to the micro-combustor where it is burned within a
combustion chamber. The entire system is controlled in real
time by a micro-controller which is powered at start up by an
ultra capacitor and thereafter by electric energy produced by
the thermoelectric module, and/or the micro-turbine.

One aspect of this invention is predicated upon the
concept of improving the efficiency of conversion of thermal
energy to electrical energy by employing a thermoelectric
module which includes quantum well thermoelectric modules. A
first heat spreader is mounted to the micro-combustor at or
near the combustion area where temperatures during operation
are on the order of 1300°C. A second heat spreader is spaced
from the first heat spreader to create a temperature
differential across the quantum well thermoelectric panels
connected between the two heat spreaders. These panels, in
combination with the thermal spreaders, convert thermal energy
to electrical energy at efficiencies on the order of 14 to 20% which
is far superior to that obtained from the micro-
generator of the 6,613,972 patent.

Another important aspect of this invention is that
the micro-combustor can be operated with a variety of
different hydrocarbon fuels including both those which are in
vapor form at ambient temperatures, such as propane and
butane, and those in liquid form, e.g., gasoline, kerosene,
diesel fuel and the like. This capability allows the micro-
generator of this invention to be used in virtually any
location where there is a source of hydrocarbon fuel.

Overall system efficiency and total electrical
energy output is enhanced by connecting a micro-turbine to the
exhaust outlet of the micro-combustor. This provides a second
source of electrical energy, in addition to that produced by
the thermoelectric module.

A low power micro-controller operates the entire
system, and a display can be provided to provide information
in real time on the quantity of fuel available, the voltage
output, temperature of the thermoelectric module and other
parameters of the system operation.
BRIEF DESCRIPTION OF THE DRAWINGS

The structure, operation and advantages of the presently preferred embodiment of this invention will become further apparent upon consideration of the following description, taken in conjunction with the accompanying drawings, wherein:

FIG. 1 is a schematic view of one embodiment of the micro-generator system of this invention coupled to a micro-turbine;

FIG. 2 is a block diagram depicting the system components shown in Fig. 1;

FIG. 3 is a schematic view of an alternative embodiment of the micro-generator system herein;

FIG. 4 is a block diagram of the system components illustrated in Fig. 3; and

FIG. 5 is a schematic cross-sectional view of the micro-combustor employed in the system of in Figs. 1 and 3.

DETAILED DESCRIPTION OF THE INVENTION

Referring now to the Figs. 1, 2 and 5, one embodiment of a micro-generator system 10 is schematically depicted in Fig. 1. The system 10 includes a fuel source 12, a fuel control valve 16, a micro-combustor 20, a thermoelectric module 22, a micro-controller 24 with an LCD or other display (not shown), a micro-turbine 26, and, an ultracapacitor 28. The thermoelectric module 22 of the system 10 is operative to generate approximately 168 milliamps at 12 volts DC using the configuration described below, and additional electrical energy is output from the micro-turbine 26. It should be understood, however, that the system 10 is scalable and its components can be altered in size and capacity to increase the power output, as desired. The several elements of the system 10, as well as an alternative
system 50, are described below followed by a discussion of their overall operation.

The heart of the system 10 is the micro-combustor 20 which is a modified version of the micro-combustor described in U.S. Patent No. 6,613,972 (the '972 patent), the disclosure of which is incorporated by reference in its entirety herein. Except for that described below, the construction of the micro-combustor 20 is the same as that disclosed in the '972 patent, forms no part of this invention and is therefore discussed only generally herein.

As schematically shown in Fig. 5, the micro-combustor 20 is preferably a double spiral or "swiss-roll" design having two sides which are essentially mirror images of one another with a common fuel inlet 30. Vaporized fuel mixed with air, as described below, is introduced through the inlet 30 and moves along the flow paths shown by arrows 31 to a combustion chamber 32 near the center of each side. An igniter 34 is positioned in the area of each combustion chamber 32, which can take the form of conductive material that is resistively heated to ignite combustion, or several other variants described in the '972 patent. Hot exhaust gas produced by combustion of the fuel exits the combustion chambers 32 and moves along each side of the micro-combustor as depicted by arrows 36 to exhaust outlets 38. While two exhaust outlets 38 are shown in Fig. 5, it should be understood that a single exhaust outlet 38 may be provided or the two exhaust outlets 38 can be combined as one.

For purposes of illustration, the exhaust outlets 38 are depicted by a single line in Figs. 1 and 3 extending from the micro-combustor 20 to the micro-turbine 26. The heated exhaust gas produced by the combustion process in the micro-combustor 20 is input to the micro-turbine 26 through the outlet(s) 38 where it is used to produce a second source of electrical energy. One micro-turbine 26 which is suitable for
use with the apparatus 10 and 50 of this invention is that described in the article by C.M. Spadaccini, A. Mehra, J. Lee, X. Zhang, S. Lukachko and I.A. Waitz entitled "High Power Density Silicon Combustion Systems For Micro Gas Turbine Engines" published in the July, 2003 edition of the Journal of Engineering for Gas Turbines and Power, Volume 125, pages 709-718, the disclosure of which is incorporated by reference in its entirety herein. The micro-turbine 26 has control electronics and DC output power conversion electronics, schematically depicted with the reference number 39 in the Figs., which are connected to and controlled by the micro-controller 24.

The principal difference between micro-combustor 20 and the one disclosed in the '972 patent is that in the patented system one or more internal walls of the micro-combustor are formed of a thermoelectric material to generate power. A temperature differential is created by the flow of cooler, air-fuel mixture along one side of such wall(s), and the flow of hot exhaust gas along the opposite side of the thermoelectric material. It has been found that greatly improved efficiency in converting thermal energy to electrical energy is obtained by the use of the thermoelectric module 22 of this invention, which is mounted externally of the micro-combustor 20 but in thermal communication with each of its combustion chambers 32. Whereas the efficiency of the system described in the '972 patent is on the order of 5%, efficiencies in the range of 14% to 20% are obtained with the present invention.

In the presently preferred embodiment, the thermoelectric module 22 comprises a first heat spreader 40 mounted to the micro-combustor 20 in thermal communication with its combustion chambers 32, a second heat spreader 42 spaced from the first heat spreader 40 and a number of quantum well thermoelectric panels 44 oriented parallel to one another.
and connected between the first and second heat spreaders 40, 42. Each heat spreader 40 and 42 is preferably formed as a plate from aluminum silica carbide. This material is a combination of metal and ceramics which is used extensively in the semiconductor industry. It exhibits excellent heat transfer capability, and can withstand the temperatures produced by the micro-combustor 20 which are typically on the order of about 1300°C during operation.

The quantum well thermoelectric panels 44 are preferably of the type described in U.S. Patent Nos. 5,436,467; 5,550,387 and/or 6,096,965, the disclosures of which are incorporated by reference in their entireties herein. The detailed construction of the quantum well thermoelectric panels 44 forms no part of this invention, and is therefore not discussed herein. As is well known, thermoelectric material has the ability of generating electric energy when exposed to a temperature differential across its surface. Panels 44 are particularly efficient in converting thermal energy to electrical energy, and the first heat spreader 40 is effective to uniformly transfer the heat from micro-combustor 20 over its entire surface area to one end of each of the panels 44. Because the second heat spreader 42 is physically spaced from the first heat spreader 40, as depicted in Fig. 1, its temperature is approximately ambient.

Consequently, a substantial ΔT or temperature differential is provided from the "hot" end of each panel 44, e.g. at a minimum of 200°C, to its opposite, "cool" end which is at about ambient temperature. A thermistor 46 or other temperature sensing device coupled to the micro-controller 24 is mounted to each heat spreader 40, 42 to permit monitoring of their temperatures, as discussed below.

An important aspect of this invention involves the ability of the system to employ different types of hydrocarbon fuel for combustion in the micro-combustor 20. In the
embodiment of Figs. 1 and 2, the apparatus 10 is designed to supply hydrocarbon fuel which is in vapor form at ambient temperature, such as propane, butane and methylacetylene. The apparatus 50 illustrated in Figs. 3 and 4, and discussed below, is intended for use with hydrocarbon fuels in liquid form, e.g. gasoline, kerosene, diesel and others. This adds to the versatility and flexibility of the system of this invention, and allows for its use in field applications of all types, including, for example, use where existing infrastructure can be employed to provide a source of fuel.

In the embodiment of Figs. 1 and 2, pressurized propane or butane is contained in a tank identified as fuel source 12 in the Figs., the volume of which is dictated by the size of the other system components. Preferably, a level sensor 52 is mounted within the fuel source 12 which is connected by a lead 54 to the micro-controller 24 to permit measurement of the fuel level therein. The fuel control valve 16 is connected between the fuel source 12 and micro-combustor 20 within line 55, and it is coupled by lead 56 to the micro-controller 24. Preferably, the fluid control valve 14 is a commercially available solenoid valve whose operation is described below in connection with a discussion of the overall operation of the system 10.

The apparatus 50 depicted in Figs. 3 and 4 is similar to apparatus 10, and structure common to both is given the same reference numbers in Figs. 3 and 4 as in Figs. 1 and 2. As noted above, apparatus 50 is intended for use with liquid hydrocarbon fuels such as gasoline. In order to maximize efficiency of combustion within the micro-combustor 20, the liquid fuel must be converted to vapor form prior to introduction into the inlet 30 of micro-combustor 20. In the presently preferred embodiment, a vaporizer/pump 58 is connected along the line 55 between a fuel source 60 containing liquid fuel and the micro-combustor 20. The fuel
source 60 includes a level sensor 62 connected by a lead 64 to the micro-controller 24. One suitable commercially available vaporizer/pump 58 is a Vapore-Jet Capillary Force Vaporizer/Pump, Part No. 100059, (5 mm diameter) manufactured by Vapore, Inc. of Richmond, California. This unit is operative to pump liquid fuel from then fuel source 60, convert it to vapor form and then pump the vaporized fuel to the inlet 30 of the micro-combustor 20, all in response to signals from the micro-controller 24 as described below.

System Operation

With reference to Figs. 1 and 2, operation of the system 10 proceeds as follows. The micro-controller 24 controls system operation in real time. It is preferably a commercially available item, such as the MSP-430 series from Texas Instruments, having data acquisition capability and multiple sleep modes. At start up, the micro-controller 24 receives electrical energy from the ultra-capacitor 28 which is charged during operation of the system 10. The micro-controller 24 inputs a signal through lead 56 to the fuel control valve 16 causing it to open and permit fuel under pressure within the fuel source 12 to flow to the micro-combustor 20. The fuel control valve 16 may be operated to remain in an open position to allow for a constant flow of fuel to the micro-controller 20. Alternatively, a pulse width modulated signal may be generated by the micro-controller 24 and input to the fuel control valve 16 to sequentially open and close it, thus producing a pulsed flow of fuel to the micro-combustor 20. In either case, the fuel is directed to the fuel inlet 30 of the micro-combustor 20 where it flows along the path depicted by arrows 31 to the combustion chambers 32 on either side of the micro-combustor 20.

The micro-controller 24 is coupled to each igniter 34, as schematically depicted by lead 66 in Figs. 1 and 2, to
initiate combustion of the fuel within combustion chambers 32. In one presently preferred embodiment, the micro-controller 20 inputs a pulse width modulated signal to the igniters 34 thus allowing for an adjustable burn rate of fuel. For example, activation of the igniters 34 can be timed to coincide with the pulsed supply of fuel from the fuel control valve 16- to improve efficiency and adjust the rate at which the fuel is burned in the micro-combustor 20.

Once the combustion process has begun within the micro-combustor 20, its combustion chambers 32 and the surrounding walls quickly reach a temperature on the order of 800°C. Because the first heat spreader 40 is mounted to the micro-combustor 20 in close proximity to and in thermal communication with the combustion chambers 32 and surrounding walls, it too reaches substantially the same temperature. The heat spreader 40 uniformly distributes the heat from micro-combustor 20 throughout its length and width, which, in turn, is transferred to the end of each quantum well thermoelectric panel 44 connected to the heat spreader 40. The opposite end of each panel 44 is connected to the "cool" or second heat spreader 42 which is spaced from the hot heat spreader 40 and resides at approximately ambient temperature. The ΔT between the heat spreaders 40 and 42 induces the panels 44 to convert thermal energy to electrical energy, and they do so at an efficiency of about 14% to 20%. The higher the ΔT, the higher the efficiency within the current theoretical limits of the Quantum Well technology. The panels 44 produce an output, schematically identified with the reference number 68 in Fig. 2, which, in the presently preferred embodiment, is on the order of 168 milliamps at 12 volts DC.

The micro-controller 24 receives a signal from each thermistor 46 via leads 69 and 70, which are representative of the temperature of the heat spreaders 40 and 42. This data is displayed in real time on the display of the micro-controller.
24. The micro-controller 24 is also coupled to the thermoelectric panels 44 by leads 72 and 74 to receive electrical energy while the system 10 is running for its own operation, and to re-charge the ultra-capacitor 28. The micro-controller 24 is operative to display the voltage being produced by the panels 44 on the LCD display 26, also in real time. Due to the connection via lead 54 between the level sensor 52 in the fuel source 12 and the micro-controller 24, the quantity of fuel remaining and/or the anticipated run time of the system 10 with the amount of fuel present in the fuel source 12 can also be displayed by the micro-controller 24. The connection between the micro-turbine 26 and micro-controller 24 through a line 76 permits the display of voltage output from the micro-turbine 26.

The apparatus 50 shown in Figs. 3 and 4 operates in the same manner as apparatus 10, except for the supply of fuel to the micro-combustor 20. In this embodiment, the micro-controller 24 inputs a signal to the vaporizer/pump 58 via a lead 78 causing liquid fuel from the fuel source 60 to be pumped into the vaporizer/pump 58 where it is converted to vapor form and then transmitted through line 55 to the inlet 30 of micro-combustor 20. The micro-controller 24 can operate the vaporizer/pump 58 to remain in a constant "open" position during operation, or, it can input a pulse width modulated signal to the vaporizer/pump 58 to alternately open and close it in the same manner as the valve 16 in Figs. 1 and 2, as described above. The apparatus 50 otherwise operates in the same fashion as apparatus 10.

The apparatus 10 and 50 of this invention provide a compact, relatively efficient and fuel flexible system for the generation of electric energy whose operation can be controlled and monitored in real time. The system is a viable alternative to existing battery technology for powering portable electronic devices and MEMS.
1. A system for generating electrical energy, comprising:

 a micro-combustor having a fuel inlet, an exhaust outlet, a combustion chamber and an igniter operative to initiate combustion of fuel within said combustion chamber which produces hot exhaust gas directed to said exhaust outlet;

 a micro-controller coupled to said igniter of said micro-combustor;

 a fluid control device which supplies fuel from a source to said micro-combustor, said fluid control device being coupled to said micro-controller which controls opening and closing of said fluid control device;

 a thermoelectric module having a first end mounted in thermal communication with said micro-combustor, and a second end spaced from said first end, a temperature differential being produced between said first and second ends of said thermoelectric module which induces said thermoelectric module to generate a first supply of electrical energy; and

 a micro-turbine communicating with said exhaust outlet of said micro-combustor to receive said hot exhaust gas, said micro-turbine being effective to generate a second supply of electrical energy.

2. The system of claim 1 in which the source of fuel contains hydrocarbon fuel in vapor form at ambient temperature, said fuel control device comprising a fuel control valve connected between the source of fuel and said micro-combustor.
3. The system of claim 1 in which the source of fuel contains liquid hydrocarbon fuel, said fuel control device comprising a vaporizer/pump connected between the source of fuel and said micro-combustor.

4. The system of claim 1 in which said thermoelectric module includes a first heat spreader mounted in thermal communication with said micro-combustor, a second heat spreader spaced from said first heat spreader and a number of quantum well thermoelectric panels connected between said first and second panels, said temperature differential being produced between said first and second heat spreaders which induces said quantum well thermoelectric modules to generate a first supply of electrical power.

5. The system of claim 4 in which each of said first and second heat spreaders is formed of aluminum silicon carbide.