US 20100169458A1

a2y Patent Application Publication o) Pub. No.: US 2010/0169458 A1

a9 United States

Biderman et al.

43) Pub. Date: Jul. 1, 2010

(54) REAL-TIME OR NEAR REAL-TIME

STREAMING

(76) Inventors: David Biderman, San Jose, CA
(US); William May, JR.,
Sunnyvale, CA (US); Alan Tseng,
Baltimore, MD (US); Roger
Pantos, Sunnyvale, CA (US);
James David Batson, Saratoga, CA

Us)

Correspondence Address:

APPLE INC./BSTZ

BLAKELY SOKOLOFF TAYLOR & ZAFMAN
LLP

1279 OAKMEAD PARKWAY

SUNNYVALE, CA 94085-4040 (US)

@
(22)

Appl. No.: 12/479,690

Filed: Jun. 5, 2009

Related U.S. Application Data

(60) Provisional application No. 61/142,110, filed on Dec.

31, 2008, provisional application No. 61/160,693,

filed on Mar. 16, 2009, provisional application No.
61/161,036, filed on Mar. 17, 2009, provisional appli-
cation No. 61/167,524, filed on Apr. 7, 2009.

Publication Classification

(51) Int.CL

GOGF 15/16 (2006.01)
(52) US.Cl oo 709/219; 709/231
(57) ABSTRACT

Methods and apparatuses for real-time or near real-time
streaming of content using transfer protocols such as an
HTTP compliant protocol. In one embodiment, a method
includes dividing a stream of data representing the contiguous
time based content of a program (e.g. a live video broadcast),
into a plurality of distinct media files, and generating a play-
list file having a plurality of tags and Universal Resource
Indicators (URIs) indicating an order of presentation of the
plurality of distinct media files. The plurality of media files
and the playlist file can be made available for transmission to
a client device which can retrieve the media files using the
playlist file.

Segmenter| Indexer Security
Agent
130 135 140
HTTP
Server 145
Server 120

110

4

Assembler

160

Output
Generator

165

Security
Agent

170

Client 1

(e

Network(s)

Assembler

190

Output
Generator

195

Security
Agent

185

Client

Fig. 1

Patent Application Publication Jul. 1,2010 Sheet 1 of 15 US 2010/0169458 A1
Segmenter Indexer Security
Agent
130 135 140
HTTP
Server 145
Server 120
Network(s)
110
/y Assembler
Assembler

190

160
Qutput
Output Generator

Generator 195

165
Security
Security Agent

Agent 185

170
Client 180
Client 150

Patent Application Publication Jul. 1,2010 Sheet 2 of 15 US 2010/0169458 A1

(st)
!

200
Receive data to be
provided
¢ 210

Store data to be provided on server

¢ 220

Segment data

!

230
Store in media files in server memory
Generate playlist file(s) with tags and media 240
file indicators
v
250
Store playlist file(s) in server memory

'

In response to request, transmit media files 270
and/or playlist file(s) to client

(&) Fig. 2A

Patent Application Publication Jul. 1,2010 Sheet 3 of 15 US 2010/0169458 A1

(s)
!

.) 205
Receive data to be provided -
) 215
» Store data to be provided on server |
225
Segment data
- 235

Store in media files in server memory

!

Generate playlist file(s) with tags and | 245
media file indicators

285 ¢

Receive addlthnal data to be Store playlist file(s) in server memory |— 255
provided
A 4
In response to request, transmit
— 275

media files and/or playlist file(s) to
client

Fig. 2B (Etd)

Patent Application Publication

Jul. 1,2010 Sheet4 of 15

(s)
!

Receive data to be provided

!

Store at least temporarily data to be
provided on server

!

282 l

Segment data

Receive request for playlist
corresponding to a selected bitrate

Store multiple sets of media files in server
memory in multiple bitrate encodings

292 ¢

v

Transmit selected bitrate playlist file
to client

Generate playlist files with tags and playlist
file indicators

* -
P

297 ¢

Transmit media files to client in
response to requests

Store playlist files in server memory

US 2010/0169458 A1

202

212

- 222

232

— 242

252

! 272

l

e D

In response to request, transmit playlist file
to client, the playlist file specifying the
available playlists at the different bitrate
encodings

Fig. 2C

Patent Application Publication Jul. 1,2010 Sheet 5 of 15 US 2010/0169458 A1

(Start)
—>] Request playlist file from server

Y

Receive playlist file(s) havingoneor | - 310
more tags

Y

- 300

Store playlist file(s) in client memory - 320
- 330

—» Request media file(s) from server
340

Store media file(s) in client memory

Y

Yes 350
. I e e
Provide output utilizing media file(s)

351

Are there more unplayed
media files in the playlist?

No

_— 352

End Tag

Yes

(=) Fig.3A

Patent Application Publication Jul. 1,2010 Sheet 6 of 15 US 2010/0169458 A1

(Start)

+ 370
> Request playlist file from server

+ - 375

Receive playlist file(s) having one or

more tags

+ 380

e

Store playlist file(s) in client memory
y 385
— > Select bitrate /
+ // 390
Yes_ Retrieve playlist and mgdla files based
Change bitrate on selected bitrate y
No *

Provide output using media files; - 394

determine whether to change bitrate

No bitrate change

More unplayed media
files in the playlist?

No

End tag in the playlist?

Yes

Fig. 3B (e)

Patent Application Publication Jul. 1,2010 Sheet 7 of 15 US 2010/0169458 A1

Server Stream Agent 400

Server Stream Engine 420
Segmenter 430
CONTROL LOGIC
410 Indexer 440
APPLICATION(S)
412
Security 450
MEMORY 414
INTERFACE(S) 416 File Server 460

Patent Application Publication Jul. 1,2010 Sheet 8 of 15 US 2010/0169458 A1

Client Stream Agent 500

Client Stream Engine 520
Assembler 530
CONTROL LOGIC
Qutput Generator 540
210
APPLICATION(S)
512
Security 550
MEMORY 514
INTERFACE(S) 516

Patent Application Publication Jul. 1,2010 Sheet 9 of 15 US 2010/0169458 A1

610

—

Begin Tag

620

Duration Tag ~—

o 625
Date/Time Tag

— 630
Sequence Tag

840

Security Tag/

645

Variant List Ta§

650

Media File Indicators

660

Subsequent Plraylist
Indicators

870

—

Memory Tag

_— 680
End Tag —

Playlist File 600

Patent Application Publication Jul. 1,2010 Sheet 10 of 15 US 2010/0169458 A1

(Start)
Receive playlist file

l

Retrieve media files as indicated
by playlist file

l 720

Generate output signals based
on media files

Control
Input?

Yes _ 750

Rewind or
forward

Yes Yes
Y Y

e

Generate output signals based
760 - . : ;
~.| on previously displayed media
file if cached; if not, return to
710 to retrieve media files

Fig. 7

Patent Application Publication Jul. 1,2010 Sheet 11 of 15 US 2010/0169458 A1

=

-
0
0,
g .
) (®)]
L 1]
o o LL
& &
Qo < &
gL <
—_ > Et
oo 5 O
el el
n O Z <
o — O
™ O ~
e 0] -EOO
=)
O =
(e (o)
Tg) 0
O S
0 O
4
ol ol
N m .gq;w
0| 5 O®
E’ E>
o) So
£ =0
= S a
—_
< —
o 2
Pl
\";’,oo - 0
2 o 3
0 oS
8 ©“ o
/ o nAQ
|
o o
S
0

Patent Application Publication Jul. 1,2010 Sheet 12 of 15 US 2010/0169458 A1

FIG. 9A

901

RETRIEVE AND PROCESS VARIANT PLAYLIST |~/
TO DETERMINE AVAILABLE STREAMS

¢ 903

SELECT FIRST STREAM FROM VARIANT PLAYLIST | —_/
(E.G. STREAM AT FIRST BIT RATE) AND RETRIEVE
MEDIA PLAYLIST FOR FIRST STREAM

v 905
|/
PROCESS PLAYLIST FOR FIRST STREAM
! 907

MEASURE OR OTHERWISE DETERMINE BIT —_/
RATE OF CONNECTION FOR FIRST STREAM

v

SELECT ALTERNATIVE MEDIA PLAYLIST (E.G. 911
STREAM AT SECOND BIT RATE THATISHIGHER |~/
THAN FIRST BIT RATE) BASED ON MEASURED BIT
RATE AND BASED ON AVAILABLE STREAMS IN THE
VARIANT PLAYLIST (IF ALTERNATIVE IS BETTER)

¢ 913

RETRIEVE ALTERNATIVE PLAYLIST AND PROCESS —~/
ALTERNATIVE PLAYLIST (E.G. RETRIEVE SEGMENTS
INDICATED BY ALTERNATIVE PLAYLIST)

¢ 915

SWITCH BETWEEN VERSIONS OF STREAM —/

Patent Application Publication Jul. 1,2010 Sheet 13 of 15 US 2010/0169458 A1

921
RETRIEVE AND STORE (E.G. STORE IN L/
TEMPORARY BUFFER) CONTENT SPECIFIED
BY FIRST MEDIA PLAYLIST
¢ 923
PRESENT CONTENT SPECIFIED BY FIRST MEDIA |~/
PLAYLIST
925

WHILE PRESENTING CONTENT SPECIFIED BY)
FIRST PLAYLIST, RETRIEVE AND STORE (E.G.
IN TEMPORARY BUFFER) CONTENT SPECIFIED
BY SECOND MEDIA PLAYLIST

927
DETERMINE TRANSITION POINT AT WHICH TO .y

TRANSITION FROM CONTENT SPECIFIED BY
FIRST MEDIA PLAYLIST TO CONTENT SPECIFIED
BY SECOND MEDIA PLAYLIST

$ 931

PRESENT CONTENT SPECIFIED BY SECOND
MEDIA PLAYLIST

Patent Application Publication Jul. 1,2010 Sheet 14 of 15 US 2010/0169458 A1

FIG. 9C

941
STORE IN BUFFER CONTENT SPECIFIED BY L/
FIRST MEDIA PLAYLIST, THE CONTENT HAVING
A FIRST RANGE OF TIMESTAMPS

v

STORE IN BUFFER CONTENT SPECIFIED BY 943
SECOND MEDIA PLAYLIST, THIS CONTENT —/
HAVING A SECOND RANGE OF TIMESTAMPS
WHICH OVERLAPS AT LEAST PARTIALLY WITH
THE FIRST RANGE OF TIMESTAMPS

y

PERFORM PATTERN MATCHING ON AUDIO IN 945
BOTH CONTENTS TO DETERMINE A MATCHING F—~/
POINT IN THE TWO STREAMS AND SELECT NEXT
SELF CONTAINED VIDEO FRAME (E.G., AN i-FRAME),
IN THE CONTENT SPECIFIED BY THE SECOND
PLAYLIST, AFTER THE MATCHING POINT AS THE
TRANSITION POINT

US 2010/0169458 A1

Jul. 1,2010 Sheet 15 of 15

Patent Application Publication

SININO3S o
0laNY QIHOLYW NY3LLYd _
9, Y3V INVYL XN
m ~
O “ 03dIA
m K > €56
O OO @ CJ O C3J olany
w SINANO3S
m 0IaNY Q3HOLYI
m NYILLVA 8156
156 _%
0 O oO\o o o 03AIA
> 166
¥ N e Rl O oianv |
1 /(K }
ag6 V156
656 dV1d43A0

1SITAVd
aNZ NOYH4
WV3IHLS

1SITAYd
1SI WOu4
WVY3IHLS

Old

US 2010/0169458 Al

REAL-TIME OR NEAR REAL-TIME
STREAMING

RELATED APPLICATIONS

[0001] This application claims the benefit of the filing dates
of the following U.S. provisional applications:

[0002] (1) Application No. 61/142,110 filed on Dec. 31,
2008 (Docket No. P74377);

[0003] (2) Application No. 61/160,693 filed on Mar. 16,
2009 (Docket No. P743772),

[0004] (3) Application No. 61/161,036 filed on Mar. 17,
2009 (Docket No. P743773); and

[0005] (4)Application No. 61/167,524 filed on Apr. 7, 2009
(Docket No. P743774). All of these U.S. provisional appli-
cations are incorporated herein by reference to the extent that
they are consistent with this disclosure.

[0006] The present U.S. Patent application is related to the
following U.S. Patent applications, each of which is incorpo-
rated herein by reference:

[0007] (1) Application No. 12/ (Docket No.
P7437U82), filed Jun. 5, 2009, entitled “VARIANT
STREAMS FOR REAL-TIME OR NEAR REAL-TIME
STREAMING;”

[0008] (2) Application No. 12/ (Docket No.
P7437U83), filed Jun. 5, 2009, entitled “UPDATABLE
REAL-TIME OR NEAR REAL-TIME STREAMING;” and
[0009] (3) Application No. 12/ (Docket No.
P7437US4), filed Jun. 5, 2009, entitled “PLAYLISTS FOR
REAL-TIME OR NEAR REAL-TIME STREAMING.”

TECHNICAL FIELD

[0010] Embodiments of the invention relate to data trans-
mission techniques. More particularly, embodiments of the
invention relate to techniques that allow streaming of data
using non-streaming protocols such as, for example, Hyper-
Text Transfer Protocol (HTTP).

BACKGROUND

[0011] Streaming of content generally refers to multimedia
content that is constantly transmitted from a server device and
received by a client device. The content is usually presented to
an end-user while it is being delivered by the streaming
server. The name refers to the delivery method of the medium
rather than to the medium itself.

[0012] Current streaming services generally require spe-
cialized servers to distribute “live” content to end users. In
any large scale deployment, this can lead to great cost, and
requires specialized skills to set up and run. This results in a
less than desirable library of content available for streaming.

SUMMARY OF THE DESCRIPTION

[0013] In one embodiment, a server device stores at least a
portion of content to be streamed. The content is typically a
time based stream of images or audio (e.g. sounds or music)
or both; an example of a time based stream is a movie in which
the order and presentation of images is based on time, and
hence it can be considered a time based stream. The server
includes a segmenter agent to decompose the content to be
streamed into segments to be transmitted via packets accord-
ing to a network protocol and an indexer agent to generate one
or more playlist files that can facilitate a client in presenting
the segmented user data. A client device is coupled with the
server device (or another server which stores the segments

Jul. 1, 2010

and playlists and transmits them but does not generate them)
via a network. The client device has an assembler agent to
receive the one or more playlist files and facilitate retrieval of
the segmented media files into the content according to the
one or more playlist files. The client device can also have an
output generator agent to output the content via one or more
output components of the client device.

[0014] Inone embodiment, the server device acquires data
to be transmitted to the client device. The server device
divides the data to be transmitted into multiple media files
with a segmenter agent. The server device also stores the
multiple segments as individual media files in a memory. The
server device further generates one or more playlist files
having references to the multiple media files. In response to
requests for the data from the client device, the server device
(or another server device) transmits the one or more playlist
files and at least a subset of the multiple media files over a
network to the client device. The multiple media files can be
transmitted using a non-streaming transfer protocol in
response to requests from the client device; this protocol may
be, for example, HTTP.

[0015] In one embodiment, the client device can receive
and store the one or more playlist files. The client then can
request the segmented media files identified in the playlist
file(s) and download the linked media files. The client device
(or another client device) can then generate an audio and/or
video output representing the stream of content.

[0016] In one embodiment, an updated playlist can be
dynamically generated by a server and then retrieved by a
client. The updated playlist can include ancillary material
(e.g. advertisements in a sidebar user interface, related con-
tent, alternative versions, etc.) shown in addition to the pro-
gram in the original playlist or can include additional portions
of the program (e.g. the second half of a program which is
beyond the first half identified in the original playlist). In one
implementation, a server can use a rolling method, described
herein, to update the playlist which is then retrieved by the
client as an updated playlist.

[0017] Inoneembodiment, aplaylistcanspecify aplurality
of alternative streams representing the same content; these
alternative streams may be the same program transmitted at
different visual resolutions (and hence transmitted at different
bit rates) or with other different attributes. A server can gen-
erate multiple playlists, each for one of the alternative streams
and can generate a variant playlist which refers to or other-
wise specifies the alternative streams. The server (or another
server) can then transmit the variant playlist to a client device,
and the client device can decide, based on current network
conditions (e.g. the current throughput rate on a network used
to transfer the media files), which playlist to select from the
variant playlist, and the client device can download the
selected playlist (and further download the media files speci-
fied by that selected playlist).

[0018] Inoneembodiment, a client device can switch from
afirst playlist in the variant playlist to a second playlist in that
variant playlist while receiving and presenting content. For
example, a client device can be receiving a program, using the
first playlist, and a first bit rate and can determine through
measurements of the throughput rate of the network that it can
receive content of the same program at a higher, second bit
rate, that content being specified by the second playlist. In this
case, the client device can request the second playlist, receive
the second playlist and begin retrieving the media files speci-
fied in the second playlist while continuing to present the

US 2010/0169458 Al

content specified by the first playlist. The client device can
store the media files and the resulting decompressed content
in buffers for both playlists, and the client device can perform
an automatic operation to determine when and how to switch
or transition between the two versions of the content. For
example, a client device can use pattern matching ofthe audio
content in the two versions of the content to find a matching
point in the two versions and then cause a switch after iden-
tifying a transition in the new content from the second play-
list.

BRIEF DESCRIPTION OF THE DRAWINGS

[0019] The invention is illustrated by way of example, and
not by way of limitation, in the figures of the accompanying
drawings in which like reference numerals refer to similar
elements.

[0020] FIG. 1 is a block diagram of one embodiment of a
server and clients that can send and receive real-time, or near
real-time, content.

[0021] FIG. 2A is a flow diagram of one embodiment of a
technique for one or more server devices to support media
content using non-streaming protocols.

[0022] FIG. 2B is a flow diagram of one embodiment of a
technique for one or more server devices to provide dynami-
cally updated playlists to one or more client devices.

[0023] FIG. 2C is a flow diagram of one embodiment of a
technique for one or more server devices to provide media
content to client devices using multiple bit rates.

[0024] FIG. 3A is a flow diagram of one embodiment of a
technique for a client device to support streaming of content
using non-streaming protocols.

[0025] FIG. 3B is a flow diagram of one embodiment of a
technique for a client device to support streaming of content
using multiple bit rates.

[0026] FIG. 4 is a block diagram of one embodiment of a
server stream agent.

[0027] FIG. 5 is a block diagram of one embodiment of a
client stream agent.

[0028] FIG. 6 illustrates on embodiment, of a playlist file
with multiple tags.

[0029] FIG. 7 is a flow diagram of one embodiment of a
playback technique for assembled streams as described
herein.

[0030] FIG. 8is a block diagram of one embodiment of an
electronic system.

[0031] FIG. 9A is a flowchart showing an example of how
a client device can switch between alternative content in a
variant playlist.

[0032] FIG. 9B is a further flowchart showing how a client
device can switch between content in two playlists.

[0033] FIG. 9C is a further flowchart showing an example
otfhow a client device can switch between content using audio
pattern matching.

[0034] FIG. 9D shows diagrammatically how the method
of FIG. 9C is implemented with audio pattern matching.

DETAILED DESCRIPTION

[0035] In the following description, numerous specific
details are set forth. However, embodiments of the invention
may be practiced without these specific details. In other
instances, well-known circuits, structures and techniques
have not been shown in detail in order not to obscure the
understanding of this description.

Jul. 1, 2010

[0036] The present description includes material protected
by copyrights, such as illustrations of graphical user interface
images. The owners of the copyrights, including the assignee
of'the present invention, hereby reserve their rights, including
copyright in these materials. The copyright owner has no
objection to the facsimile reproduction by anyone of the
patent document or the patent disclosure, as it appears in the
Patent and Trademark Office file or records, but otherwise
reserves all copyrights whatsoever. Copyright Apple Inc.
2009.

[0037] In one embodiment, techniques and components
described herein can include mechanisms to deliver stream-
ing experience using non-streaming protocols (e.g., HT'TP)
and other technologies (e.g., Motion Picture Expert Group
(MPEG) streams). For example, near real-time streaming
experience can be provided using HTTP to broadcasta “live”
musical or sporting event, live news, a Web camera feed, etc.
In one embodiment, a protocol can segment incoming media
data into multiple media files and store those segmented
media files on a server. The protocol can also build a playlist
file that includes Uniform Resource Identifiers (URIs) that
direct the client to the segmented media files stored on a
server. When the segmented media files are played back in
accordance with the playlist file(s), the client can provide the
user with a near real-time broadcast of a “live” event. Pre-
recorded content can be provided in a similar manner.

[0038] In one embodiment, the server can dynamically
introduce supplementary or alternative media content (e.g.,
advertisements, statistics related to a sporting event, addi-
tional media content to the main presentation) into the broad-
cast event. For example, during client playback of a media
event, the server can add additional URIs to the playlist file,
the URIs may identify a location from which a client can
download a supplementary media file. The client can be
instructed to periodically retrieve from the server one or more
updated playlist file(s) in order to access any supplementary
or additional (or both) media content the server has intro-
duced.

[0039] Inone embodiment, the server can operate in either
cumulative mode or in rolling mode. In cumulative mode, the
server can create a playlist file and append media file identi-
fiers to the end of the playlist file. The client then has access
to all parts of the stream from a single playlist file (e.g., a user
can start at the middle of'a show) when downloaded. In rolling
mode, the server may limit the availability of media files by
removing media file identifiers from the beginning of the
playlist file on a rolling basis, thereby providing a sliding
window of media content accessible to a client device. The
server can also add media file identifiers to the playlist and, in
rolling mode, the server can limit the availability of media
files to those that have been most recently added to the play-
list. The client then repeatedly downloads updated copies of
the playlist file to continue viewing. The rolling basis for
playlist downloading can be useful when the content is poten-
tially unbounded in time (e.g. content from a continuously
operated web cam). The client can continue to repeatedly
request the playlist in the rolling mode until it finds an end tag
in the playlist.

[0040] Inoneembodiment,the mechanism supports bitrate
switching by providing variant streams of the same presenta-
tion. For example, several versions of a presentation to be
served can be stored on the server. Each version can have
substantially the same content but be encoded at different bit
rates. This can allow the client device to switch between bit

US 2010/0169458 Al

rates depending on, for example, a detection of the available
bandwidth, without compromising continuity of playback.
[0041] Inoneembodiment, protection features may be pro-
vided to protect content against unauthorized use. For
example, non-sequential media file numbering may be used
to prevent prediction. Encryption of media files may be used.
Partial media file lists may be used. Additional and/or difter-
ent protection features may also be provided.

[0042] FIG. 1 is a block diagram of one embodiment of a
server and clients that can send and receive real-time, or near
real-time, content. The example of FIG. 1 provides a simple
server-client connection with two clients coupled with a
server via a network. Any number of clients may be supported
utilizing the techniques and mechanisms described herein.
Further, multiple servers may provide content and/or may
operate together to provide content according to the tech-
niques and mechanisms described herein. For example, one
server may create the content, create the playlists and create
the multiple media (e.g. files) and other servers store and
transmit the created content.

[0043] Network 110 may be any type of network whether
wired, wireless (e.g., IEEE 802.11, 802.16) or any combina-
tion thereof. For example, Network 100 may be the Internet or
an intranet. As another example, network 110 may be a cel-
Iular network (e.g., 3G, CDMA). In one embodiment, client
devices 150 and 180 may be capable of communicating over
multiple network types (e.g. each device can communicate
over a WiFi wireless LAN and also over a wireless cellular
telephone network). For example, client devices 150 and 180
may be smart phones or cellular-enabled personal digital
assistants that can communicate over cellular radiotelephone
networks as well as data networks. These devices may be able
to utilize the streaming mechanisms described herein over
either type of network or even switch between networks as
necessary.

[0044] Server 120 may operate as a HT'TP server in any
manner known in the art. That is server 120 includes a HTTP
server agent 145 that provides content using HTTP protocols.
While the example of FIG. 1 is described in terms of HTTP,
other protocols can be utilized in a similar manner. Segmenter
130 and indexer 135 are agents that reside on server 120 (or
multiple servers) to provide content in media files with a
playlist file as described herein. These media files and playlist
files may be provided over network 110 via HTTP server
agent 145 (or via other servers) using HITP protocols.
Agents as discussed herein can be implemented as hardware,
software, firmware or a combination thereof.

[0045] Segmenter 130 may function to divide the stream of
media data into multiple media files that may be transmitted
via HTTP protocols. Indexer 135 may function to create a
playlist file corresponding to the segmented media files so
that client devices can reassemble the media files to provide
real-time, or near real-time, transmission of the content pro-
vided by server 120. In response to one or more requests from
a client device, HT'TP server agent 145 (or other servers) may
transmit one or more playlist files as generated by indexer 135
and media files of content as generated by segmenter 130.
Server 120 may further include optional security agent 140
that provides one or more of the security functions (e.g.
encryption) discussed herein. Server 120 may also include
additional components not illustrated in FIG. 1.

[0046] Client devices 150 and 180 may receive the playlist
files and media files from server 120 over network 110. Client
devices may be any type of electronic device that is capable of

Jul. 1, 2010

receiving data transmitted over a network and generate output
utilizing the data received via the network, for example, wire-
less mobile devices, PDAs, entertainment devices, consumer
electronic devices, etc. The output may be any media type of
combination of media types, including, for example, audio,
video or any combination thereof.

[0047] Client device 150 can include assembler agent 160
and output generator agent 165. Similarly, client device 180
can include assembler agent 190 and output generator agent
195. Assembler agents 160 and 180 receive the playlist files
from server 120 and use the playlist files to access and down-
load media files from server 120. Output generator agents 165
and 195 use the downloaded media files to generate output
from client devices 150 and 160, respectively. The output may
be provided by one or more speakers, one or more display
screens, a combination of speakers and display screens or any
other input or output device. The client devices can also
include memory (e.g. flash memory or DRAM, etc.) to act as
a buffer to store the media files (e.g. compressed media files
or decompressed media files) as they are received; the buffer
can provide many seconds worth of presentable content
beyond the time of content currently being presented so that
the buffered content can later be displayed while new content
is being downloaded. This buffer can provide presentable
content while the client device is attempting to retrieve con-
tent through an intermittently slow network connection and
hence the buffer can hide network latency or connection
problems.

[0048] Client devices 150 and 180 may further include
optional security agents 170 and 185, respectively that pro-
vide one or more of the security functions discussed herein.
Client devices 150 and 180 may also include additional com-
ponents not illustrated in FIG. 1.

[0049] In one embodiment, the techniques that are
described in this application may be used to transmit an
unbounded stream of multimedia data over a non-streaming
protocol (e.g., HTTP). Embodiments can also include
encryption of media data and/or provision of alternate ver-
sions of a stream (e.g., to provide alternate bit rates). Because
media data can be transmitted soon after creation, the data can
be received in near real-time. Example data formats for files
as well as actions to be taken by a server (sender) and a client
(receiver) of the stream of multimedia data are provided;
however, other formats can also be supported.

[0050] A media presentation that can be transmitted as a
simulated real-time stream (or near real-time stream) is speci-
fied by a Universal Resource Indicator (URI) that indicates a
playlist file. In one embodiment, the playlist file is an ordered
list of additional URIs. Each URI in the playlist file refers to
a media file that is a segment of a stream, which may be a
single contiguous stream of media data for a particular pro-
gram.

[0051] Inorder to play the stream of media data, the client
device obtains the playlist file from the server. The client also
obtains and plays each media data file indicated by the playlist
file. In one embodiment, the client can dynamically or repeat-
edly reload the playlist file to discover additional and/or dif-
ferent media segments.

[0052] The playlist files may be, for example, Extended
M3U Playlist files. In one embodiment, additional tags that
effectively extend the M3U format are used. M3U refers to
Moving Picture Experts Group Audio Layer 3 Uniform
Resource Locator (MP3 URL) and is a format used to store

US 2010/0169458 Al

multimedia playlists. A M3U file is a text file that contains the
locations of one or more media files for a media playerto play.
[0053] Theplaylist file, in one embodiment, is an Extended
M3U-formatted text file that consists of individual lines. The
lines can be terminated by either a single LF character oraCR
character followed by a LF character. Each line can be a URI,
ablank line, or start with a comment character (e.g. ‘#’). URIs
identify media files to be played. Blank lines can be ignored.
[0054] Lines that start with the comment character can be
either comments or tags. Tags can begin with #EXT, while
comment lines can begin with #. Comment lines are normally
ignored by the server and client. In one embodiment, playlist
files are encoded in UTF-8 format. UTF-8 (8-bit Unicode
Transformation Format) is a variable-length character encod-
ing format. In alternate embodiments, other character encod-
ing formats can be used.
[0055] In the examples that follow, an Extended M3U for-
mat is utilized that includes two tags: EXTM3U and EXTINF.
An Extended M3U file may be distinguished from a basic
M3U file by a first line that includes “#EXTM3U”.
[0056] EXTINF is a record marker that describes the media
file identified by the URI that follows the tag. In one embodi-
ment, each media file URI is preceded by an EXTINF tag, for
example:

[0057] #EXTINF: <duration>,<title>
where “duration” specifies the duration of the media file and
“title” is the title of the target media file.
[0058] Inone embodiment, the following tags may be used
to manage the transfer and playback of media files:

EXT-X-TARGETDURATION
EXT-X-MEDIA-SEQUENCE
EXT-X-KEY
EXT-X-PROGRAM-DATE-TIME
EXT-X-ALLOW-CACHE
EXT-X-STREAM-INF
EXT-X-ENDLIST

These tags will each be described in greater detail below.
While specific formats and attributes are described with
respect to each new tag, alterative embodiments can also be
supported with different attributes, names, formats, etc.
[0059] The EXT-X-TARGETDURATION tag can indicate
the approximate duration of the next media file that will be
added to the presentation. It can be included in the playback
file and the format can be:

[0060] #EXT-X-TARGETDURATION:<seconds>

where “seconds” indicates the duration of the media file. In
one embodiment, the actual duration may differ slightly from
the target duration indicated by the tag. In one embodiment,
every URI indicating a segment will be associated with an
approximate duration of the segment; for example, the URI
for a segment may be prefixed with a tag indicating the
approximate duration of that segment.
[0061] Each media file URI in a playlist file can have a
unique sequence number. The sequence number, if present, of
a URI is equal to the sequence number of the URI that pre-
ceded it, plus one in one embodiment. The EXT-X-MEDIA-
SEQUENCE tag can indicate the sequence number of the first
URI that appears in a playlist file and the format can be:

[0062] #EXT-X-MEDIA-SEQUENCE:<number>
where “number” is the sequence number of the URI. If the
playlist file does not include a #EXT-X-MEDIA-SE-

Jul. 1, 2010

QUENCE tag, the sequence number of the first URI in the
playlist can be considered 1. In one embodiment, the
sequence numbering can be non-sequential; for example,
non-sequential sequence numbering such as 1, 5, 7, 17, etc.
can make it difficult to predict the next number in a sequence
and this can help to protect the content from pirating. Another
option to help protect the content is to reveal only parts of a
playlist at any given time.
[0063] Some media files may be encrypted. The EXT-X-
KEY tag provides information that can be used to decrypt
media files that follow it and the format can be:
[0064] #EXT-X-KEY:METHOD=<method>[,
URI=“<URI>"]
The METHOD parameter specifies the encryption method
and the URI parameter, if present, specifies how to obtain the
key.
[0065] An encryption method of NONE indicates no
encryption. Various encryption methods may be used, for
example AES-128, which indicates encryption using the
Advance Encryption Standard encryption with a 128-bit key
and PKCS7 padding [see RFC3852]. A new EXT-X-KEY tag
supersedes any prior EXT-X-KEY tags.
[0066] An EXT-X-KEY tag with a URI parameter identi-
fies the key file. A key file may contain the cipher key that is
to be used to decrypt subsequent media files listed in the
playlistfile. For example, the AS-128 encryption method uses
16-octet keys. The format of he key file can be a packed array
of 16 octets in binary format.
[0067] Use of AES-128 normally requires that the same
16-octet initialization vector (IV) be supplied when encrypt-
ing and decrypting. Varying the IV can be used to increase the
strength of the cipher. When using AES-128 encryption, the
sequence number of the media file can be used as the IV when
encrypting or decrypting media files.
[0068] The EXT-X-PROGRAM-DATE-TIME tag can
associate the beginning of the next media file with an absolute
date and/or time and can include or indicate a time zone. In
one embodiment, the date/time representation is ISO/IEC
8601:2004. The tag format can be:
[0069] EXT-X-PROGRAM-DATE-TIME:<YYYY-
MM-DDThh:mm:ssZ>
[0070] The EXT-X-ALLOW-CACHE tag can be used to
indicate whether the client may cache the downloaded media
files for later playback. The tag format can be:
[0071] EXT-X-ALLOW-CACHE:<YESINO>
[0072] The EXT-X-ENDLIST tag indicates in one embodi-
ment that no more media files will be added to the playlist file.
The tag format can be:
[0073] EXT-X-ENDLIST
In one embodiment, if a playlist contains the final segment or
media file then the playlist will have the EXT-X-ENDLIST
tag.
[0074] The EXT-X-STREAM-INF tag can be used to indi-
cate that the next URI in the playlist file identifies another
playlist file. The tag format can be, in one embodiment:
[0075] EXT-X-STREAM-INF:[attribute=value][,at-
tribute-value] *<URI>
where the following attributes may be used. The attribute
BANDWIDTH=<n> is an approximate upper bound of the
stream bit rate expressed as a number of bits per second. The
attribute PROGRAM-ID=<i> is a number that uniquely iden-
tifies a particular presentation within the scope of the playlist
file. A playlist file may include multiple EXT-X-STREAM-
INF URIs with the same PROGRAM-ID to describe variant

US 2010/0169458 Al

streams of the same presentation. Variant streams and variant
playlists are described further in this disclosure (e.g. see
FIGS. 9A-9D).

[0076] The foregoing tags and attributes can be used by the
server device to organize, transmit and process the media files
that represent the original media content. The client devices
use this information to reassemble and present the media files
in a manner to provide a real-time, or near real-time, stream-
ing experience (e.g. viewing of a live broadcast such as a
music or sporting event) to a user of the client device.
[0077] Each media file URI in a playlist file identifies a
media file that is a segment of the original presentation (i.e.,
original media content). In one embodiment, each media file
is formatted as a MPEG-2 transport stream, a MPEG-2 pro-
gram stream, or a MPEG-2 audio elementary stream. The
format can be specified by specifying a CODEC, and the
playlist can specify a format by specifying a CODEC. In one
embodiment all media files in a presentation have the same
format; however, multiple formats may be supported in other
embodiments. A transport stream file should, in one embodi-
ment, contain a single MPEG-2 program, and there should be
a Program Association Table and a Program Map Table at the
start of each file. A file that contains video SHOULD have at
least one key frame and enough information to completely
initialize a video decoder. Clients SHOULD be prepared to
handle multiple tracks of a particular type (e.g. audio or
video) by choosing areasonable subset. Clients should, in one
embodiment, ignore private streams inside Transport Streams
that they do not recognize. The encoding parameters for
samples within a stream inside a media file and between
corresponding streams across multiple media files SHOULD
remain consistent. However clients SHOULD deal with
encoding changes as they are encountered, for example by
scaling video content to accommodate a resolution change.
[0078] FIG. 2A is a flow diagram of one embodiment of a
technique for one or more server devices to support media
content using non-streaming protocols. The example of FIG.
2A is provided in terms of HTTP; however, other non-stream-
ing protocols can be utilized in a similar manner. The example
of FIG. 2A is provided in terms of a single server performing
certain tasks. However, any number of servers may be uti-
lized. For example, the server that provides media files to
client devices may be a different device than a server that
segments the content into multiple media files.

[0079] The server device receives content to be provided in
operation 200. The content may represent live audio and/or
video (e.g., a sporting event, live news, a Web camera feed).
The content may also represent pre-recorded content (e.g., a
concert that has been recorded, a training seminar, etc.). The
content may be received by the server according to any format
and protocol known in the art, whether streamed or not. In one
embodiment, the content is received by the server in the form
of a MPEG-2 stream; however, other formats can also be
supported.

[0080] The server may then store temporarily at least por-
tions of the content in operation 210. The content or at least
portions of the content may be stored temporarily, for
example, on a storage device (e.g., hard disk in a Storage Area
Network, etc.) or in memory. Alternatively, the content may
be received as via a storage medium (e.g., compact disc, flash
drive) from which the content may be transferred to a storage
device or memory. In one embodiment, the server has an
encoder that converts, if necessary, the content to one or more
streams (e.g., MPEG-2). This conversion can occur without

Jul. 1, 2010

storing permanently the received content, and in some
embodiments, the storage operation 210 may be omitted or it
may be alongerterm storage (e.g. an archival storage) in other
embodiments.

[0081] The content to be provided is segmented into mul-
tiple media files in operation 220. In one embodiment, the
server converts a stream into separate and distinct media files
(i.e., segments) that can be distributed using a standard web
server. In one embodiment, the server segments the media
stream at points that support effective decode of the indi-
vidual media files (e.g., on packet and key frame boundaries
such as PES packet boundaries and i-frame boundaries). The
media files can be portions of the original stream with
approximately equal duration. The server also creates a URI
for each media file. These URIs allow client devices to access
the media files.

[0082] Because the segments are served using HTTP serv-
ers, which inherently deliver whole files, the server should
have a complete segmented media file available before it can
be served to the clients. Thus, the client may lag (in time) the
broadcast by at least one media file length. In one embodi-
ment, media file size is based on a balance between lag time
and having too many files.

[0083] Inone embodiment, two session types (live session
and event session) are supported. For a live session, only a
fixed size portion of the stream is preserved. In one embodi-
ment, content media files that are out of date are removed
from the program playlist file, and can be removed from the
server. The second type of session is an event session, where
the client can tune into any point of the broadcast (e.g., start
from the beginning, start from a mid-point). This type of
session can be used for rebroadcast, for example.

[0084] The media files are stored in the server memory in
operation 230. The media files can be protected by a security
feature, such as encryption, before storing the files in opera-
tion 230. The media files are stored as files that are ready to
transmit using the network protocol (e.g., HTTP or HTTPS)
supported by the Web server application on the server device
(or supported by another device which does the transmis-
sion).

[0085] One or more playlist files are generated to indicate
the order in which the media files should be assembled to
recreate the original content in operation 240. The playlist
file(s) can utilize Extended M3U tags and the tags described
herein to provide information for a client device to access and
reassemble the media files to provide a streaming experience
on the client device. A URI for each media file is included in
the playlist file(s) in the order in which the media files are to
beplayed. The server can also create one or more URIs for the
playlist file(s) to allow the client devices to access the playlist
file(s).

[0086] The playlist file(s) can be stored on the server in
operation 250. While the creation and storing of media files
and playlist file(s) are presented in a particular order in FIG.
2A, a different order may also be used. For example, the
playlist file(s) may be created before the media files are cre-
ated or stored. As another example, the playlist file(s) and
media files may be created before either are stored.

[0087] If media files are to be encrypted the playlist file(s)
can define a URI that allows authorized client devices to
obtain a key file containing an encryption key to decrypt the
media files. An encryption key can be transmitted using a
secure connection (e.g., HTTPS). As another example, the
playlist file(s) may be transmitted using HTTPS. As a further

US 2010/0169458 Al

example, media files may be arranged in an unpredictable
order so that the client cannot recreate the stream without the
playlist file(s).

[0088] If the encryption method is AES-128, AES-128
CBC encryption, for example, may be applied to individual
media files. In one embodiment, the entire file is encrypted.
Cipher block chaining is normally not applied across media
files in one embodiment. The sequence of the media files is
use as the IV as described above. In one embodiment, the
server adds an EXT-X-KEY tag with the key URI to the end
of the playlist file. The server then encrypts all subsequent
media files with that key until a change in encryption con-
figuration is made.

[0089] To switch to a new encryption key, the server can
make the new key available via a new URI that is distinct from
all previous key URIs used in the presentation. The server also
adds an EXT-X-KEY tag with the new key URI to the end of
aplaylist file and encrypts all subsequent media files with the
new key.

[0090] To end encryption, the server can add an EXT-X-
KEY tag with the encryption method NONE at the end of the
playlist file. The tag (with “NONE” as the method) does not
include a URI parameter in one embodiment. All subsequent
media files are not encrypted until a change in encryption
configuration is made as described above. The server does not
remove an EXT-X-KEY tag from a playlist file if the playlist
file contains a URI to a media file encrypted with that key. The
server can transmit the playlist file(s) and the media files over
the network in response to client requests in operation 270, as
described in more detail with respect to FIG. 3A.

[0091] In one embodiment, a server transmits the playlist
file to a client device in response to receiving a request from
aclient device for a playlist file. The client device may access/
request the playlist file using a URI that has been provided to
the client device. The URI indicates the location of the play-
list file on the server. In response, the server may provide the
playlist file to the client device. The client device may the
utilize tags and URIs (or other identifiers) in the playlist file to
access the multiple media files.

[0092] In one embodiment, the server may limit the avail-
ability of media files to those that have been most recently
added to the playlist file(s). To do this, each playlist file can
include only one EXT-X-MEDIA-SEQUENCE tag and the
value can be incremented by one for every media file URI that
is removed from the playlist file. Media file URIs can be
removed from the playlist file(s) in the order in which they
were added. In one embodiment, when the server removes a
media file URI from the playlist file(s) the media file remains
available to clients for a period of time equal to the duration of
the media file plus the duration of the longest playlist file in
which the media file has appeared.

[0093] The duration of a playlist file is the sum of the
durations of the media files within that playlist file. Other
durations can also be used. In one embodiment, the server can
maintain at least three main presentation media files in the
playlist at all times unless the EXT-X-ENDLIST tag is
present.

[0094] FIG. 2B is a flow diagram of one embodiment of a
technique for one or more server devices to provide dynami-
cally updated playlists to one or more client devices. The
playlists can be updated using either of the cumulative mode
or the rolling mode described herein. The example of FIG. 2B
is provided in terms of HTTP, however, other non-streaming
protocols (e.g. HI'TPS, etc.) can be utilized in a similar man-

Jul. 1, 2010

ner. The example of FIG. 2B is provided in terms of a server
performing certain tasks. However, any number of servers
may be utilized. For example, the server that provides media
files to client devices may be a different device than the server
that segments the content into multiple media files.

[0095] The server device receives content to be provided in
operation 205. The server may then temporarily store at least
portions of the content in operation 215. Operation 215 can be
similar to operation 210 in FIG. 2A. The content to be pro-
vided is segmented into multiple media files in operation 225.
The media files can be stored in the server memory in opera-
tion 235. The media files can be protected by a security
feature, such as encryption, before storing the files in opera-
tion 235.

[0096] One or more playlist files are generated to indicate
the order in which the media files should be assembled to
recreate the original content in operation 245. The playlist
file(s) can be stored on the server in operation 255. While the
creation and storing of media files and playlist file(s) are
presented in a particular order in FIG. 2B, a different order
may also be used.

[0097] The server (or another server) can transmit the play-
list file(s) and the media files over the network in response to
client requests in operation 275, as described in more detail
with respect to FIGS. 3A-3B.

[0098] The playlist file(s) may be updated by a server for
various reasons. The server may receive additional data to be
provided to the client devices in operation 285. The additional
data can be received after the playlist file(s) are stored in
operation 255. The additional data may be, for example,
additional portions of a live presentation, or additional infor-
mation for an existing presentation. Additional data may
include advertisements or statistics (e.g. scores or data relat-
ing to a sporting event). The additional data could be overlaid
(through translucency) on the presentation or be presented in
a sidebar user interface. The additional data can be segmented
in the same manner as the originally received data. If the
additional data constitutes advertisements, or other content to
be inserted into the program represented by the playlist, the
additional data can be stored (at least temporarily) in opera-
tion 215, segmented in operation 225 and stored in operation
235; prior to storage of the segmented additional data, the
segments of the additional data can be encrypted. Then in
operation 245 an updated playlist, containing the program
and the additional data, would be generated. The playlist is
updated based on the additional data and stored again in
operation 255. Changes to the playlist file(s) should be made
atomically from the perspective of the client device. The
updated playlist replaces, in one embodiment, the previous
playlist. As discussed below in greater detail, client devices
can request the playlist multiple times. These requests enable
the client devices to utilize the most recent playlist. In one
embodiment, the additional data may be metadata; in this
case, the playlist does not need to be updated, but the seg-
ments can be updated to include metadata. For example, the
metadata may contain timestamps which can be matched with
timestamps in the segments, and the metadata can be added to
segments having matching timestamps.

[0099] The updated playlist may also result in the removal
of media files. In one embodiment, a server should remove
URIs, for the media files, from the playlist in the order in
which they were added to the playlist. In one embodiment, if
the server removes an entire presentation, it makes the playlist
file(s) unavailable to client devices. In one embodiment, the

US 2010/0169458 Al

server maintains the media files and the playlist file(s) for the
duration of the longest playlist file(s) containing a media file
to be removed to allow current client devices to finish access-
ing the presentation. Accordingly, every media file URI in the
playlist file can be prefixed with an EXT-X-STREAM-INF
tag to indicate the approximate cumulative duration of the
media files indicated by the playlist file. In alternate embodi-
ments, the media files and the playlist file(s) may be removed
immediately.

[0100] Subsequent requests for the playlist from client
devices result in the server providing the updated playlist in
operation 275. In one embodiment, playlists are updated on a
regular basis, for example, a period of time related to the
target duration. Periodic updates of the playlist file allow the
server to provide access to servers to a dynamically changing
presentation.

[0101] FIG. 2C is a flow diagram of one embodiment of a
technique for one or more server devices to provide media
content to client devices using multiple bit rates, which is one
form of the use of alternative streams. The example of FIG.
2C is provided in terms of HT'TP; however, other non-stream-
ing protocols can be utilized in a similar manner. The example
of FIG. 2C is provided in terms of a server performing certain
tasks. However, any number of servers may be utilized. For
example, the server that provides media files to client devices
may be a different device than a server that segments the
content into multiple media files.

[0102] In one embodiment, the server can offer multiple
playlist files or a single playlist file with multiple media file
lists in the single playlist file to provide different encodings of
the same presentation. If different encodings are provided,
playlist file(s) may include each variant stream providing
different bit rates to allow client devices to switch between
encodings dynamically (this is described further in connec-
tion with FIGS. 9A-9D). Playlist files having variant streams
can include an EXT-X-STREAM-INF tag for each variant
stream. Each EXT-X-STREAM-INF tag for the same presen-
tation can have the same PROGRAM-ID attribute value. The
PROGRAM-ID value for each presentation is unique within
the variant streams.

[0103] In one embodiment, the server meets the following
constraints when producing variant streams. Each variant
stream can consist of the same content including optional
content that is not part of the main presentation. The server
can make the same period of content available for all variant
streams within an accuracy of the smallest target duration of
the streams. The media files of the variant streams are, in one
embodiment, either MPEG-2 Transport Streams or MPEG-2
Program Streams with sample timestamps that match for
corresponding content in all variant streams. Also, all variant
streams should, in one embodiment, contain the same audio
encoding. This allows client devices to switch between vari-
ant streams without losing content.

[0104] Referring to FIG. 2C, the server device receives
content to be provided in operation 202. The server may then
at least temporarily store the content in operation 212. The
content to be provided is segmented into multiple media files
in operation 222. Each media file is encoded for a selected bit
rate (or a selected value of other encoding parameters) and
stored on the server in operation 232. For example, the media
files may be targeted for high-, medium- and low-bandwidth
connections. The media files can be encrypted prior to stor-
age. The encoding of the media files targeted for the various

Jul. 1, 2010

types of connections may be selected to provide a streaming
experience at the target bandwidth level.

[0105] Inoneembodiment, a variant playlist is generated in
operation 242 with tags as described herein that indicate
various encoding levels. The tags may include, for example,
an EXT-X-STREAM-INF tag for each encoding level with a
URI to a corresponding media playlist file.

[0106] This variant playlist can include URIs to media
playlist files for the various encoding levels. Thus, a client
device can select a target bit rate from the alternatives pro-
vided in the variant playlist indicating the encoding levels and
retrieve the corresponding playlist file. In one embodiment, a
client device may change between bit rates during playback
(e.g. as described with respect to FIGS. 9A-9D). The variant
playlist indicating the various encoding levels is stored on the
server in operation 252. In operation 242, each of the playlists
referred to in the variant playlist can also be generated and
then stored in operation 252.

[0107] In response to a request from a client device, the
server may transmit the variant playlist that indicates the
various encoding levels in operation 272. The server may
receive a request for one of the media playlists specified in the
variant playlist corresponding to a selected bit rate in opera-
tion 282. In response to the request, the server transmits the
media playlist file corresponding to the request from the
client device in operation 292. The client device may then use
the media playlist to request media files from the server. The
server provides the media files to the client device in response
to requests in operation 297.

[0108] FIG. 3A is a flow diagram of one embodiment of a
technique for a client device to support streaming of content
using non-streaming protocols. The example of FIG. 3A is
provided in terms of HTTP; however, other non-streaming
protocols can be utilized in a similar manner. The methods
shown in FIGS. 3A-3B can be performed by one client device
or by several separate client devices. For example, in the case
of any one of these methods, a single client device may
perform all of the operations (e.g. request a playlist file,
request media files using URIs in the playlist file, assemble
the media files to generate and provide a presentation/output)
or several distinct client devices can perform some but not all
of the operations (e.g. a first client device can request a
playlist file and request media files using URIs in the playlist
file and can store those media files for use by a second client
device which can process the media files to generate and
provide a presentation/output).

[0109] The client device may request a playlist file from a
server in operation 300. In one embodiment, the request is
made according to an HTTP-compliant protocol. The request
utilizes a URI to an initial playlist file stored on the server. In
alternate embodiments, other non-streaming protocols can be
supported. In response to the request, the server will transmit
the corresponding playlist file to the client over a network. As
discussed above, the network can be wired or wireless and can
be any combination of wired or wireless networks. Further,
the network may be a data network (e.g., IEEE 802.11, IEEE
802.16) or a cellular telephone network (e.g., 3G).

[0110] The client device can receive the playlist file in
operation 310. The playlist file can be stored in a memory of
the client device in operation 320. The memory can be, for
example, a hard disk, a flash memory, a random-access
memory. In one embodiment, each time a playlist file is
loaded or reloaded from the playlist URI, the client checks to
determine that the playlist file begins with a #EXTM3U tag

US 2010/0169458 Al

and does not continue if the tag is absent. As discussed above,
the playlist file includes one or more tags as well as one or
more URIs to media files.

[0111] The client device can include an assembler agent
that uses the playlist file to reassemble the original content by
requesting media files indicated by the URIs in the playlist file
in operation 330. In one embodiment, the assembler agent is
a plug-in module that is part of a standard Web browser
application. In another embodiment, the assembler agent may
be a stand-alone application that interacts with a Web browser
to receive and assemble the media files using the playlist
file(s). As a further example, the assembler agent may be a
special-purpose hardware or firmware component that is
embedded in the client device.

[0112] The assembler causes media files from the playlist
file to be downloaded from the server indicated by the URIs.
If the playlist file contains the EXT-X-ENDLIST tag, any
media file indicated by the playlist file may be played first. If
the EXT-X-ENDLIST tag is not present, any media file
except for the last and second-to-last media files may be
played first. Once the first media file to play has been chosen,
subsequent media files in the playlist file are loaded, in one
embodiment, in the order that they appear in the playlist file
(otherwise the content is presented out of order). In one
embodiment, the client device attempts to load media files in
advance of when they are required (and stores them in a
buffer) to provide uninterrupted playback and to compensate
for temporary variations in network latency and throughput.

[0113] The downloaded media file(s) can be stored in a
memory on the client device in operation 340. The memory in
which the content can be stored may be any type of memory
on the client device, for example, random-access memory, a
hard disk, or a video buffer. The storage may be temporary to
allow playback or may be permanent. If the playlist file con-
tains the EXT-X-ALLOW-CACHE tag and its value is NO,
the client does not store the downloaded media files after they
have been played. If the playlist contains the EXT-X-AL-
LOW-CACHE tag and its value is YES, the client device may
store the media files indefinitely for later replay. The client
device may use the value of the EXT-X-PROGRAM-DATE-
TIME tag to display the program origination time to the user.
In one embodiment, the client can buffer multiple media files
so that it is less susceptible to network jitter, in order to
provide a better user experience.

[0114] In one embodiment, if the decryption method is
AES-128, then AES-128 CBC decryption is applied to the
individual media files. The entire file is decrypted. In one
embodiment, cipher block chaining is not applied across
media files. The sequence number of the media file can be
used as the initialization vector as described above.

[0115] From the memory, the content can be output from
the client device in operation 350. The output or presentation
may be, for example, audio output via built-in speakers or
head phones. The output may include video that is output via
a screen or projected from the client device. Any type of
output known in the art may be utilized. In operation 351, the
client device determines whether there are any more media
files in the stored, current playlist which have not been played
or otherwise presented. If such media files exist (and if they
have not been requested) then processing returns to operation
330 in which one or more media files are requested and the
process repeats. [f there are no such media files (i.e., all media
files in the current playlist have been played), then processing

Jul. 1, 2010

proceeds to operation 352, which determines whether the
playlist file includes an end tag.

[0116] If the playlist includes an end tag (e.g., EXT-X-
ENDLIST) in operation 352, playback ceases when the media
files indicated by the playlist file have been played. If the end
tag is not in the playlist, then the client device requests a
playlist again from the server and reverts back to operation
300 to obtain a further or updated playlist for the program.

[0117] As discussed in greater detail with respect to FIG.
2B, a server may update a playlist file to introduce supple-
mentary content (e.g., additional media file identifiers corre-
sponding to additional media content in a live broadcast) or
additional content (e.g. content further down the stream). To
access the supplementary content or additional content, a
client can reload the updated playlist from the server. This can
provide a mechanism by which playlist files can be dynami-
cally updated, even during playback of the media content
associated with a playlist file. A client can request a reload of
the playlist file based on a number of triggers. The lack of an
end tag is one such trigger.

[0118] In one embodiment, the client device periodically
reloads the playlist file(s) unless the playlist file contains the
EXT-X-ENDLIST tag. When the client device loads a playlist
file for the first time or reloads a playlist file and finds that the
playlist file has changed since the last time it was loaded, the
client can wait for a period of time before attempting to reload
the playlist file again. This period is called the initial mini-
mum reload delay. It is measured from the time that the client
began loading the playlist file.

[0119] In one embodiment, the initial minimum reload
delay is the duration of'the last media file in the playlist file or
three times the target duration, whichever is less. The media
file duration is specified by the EXTINF tag. If the client
reloads a playlist file and finds that it has not chanced then the
client can wait for a period of time before retrying. The
minimum delay in one embodiment is three times the target
duration or a multiple of the initial minimum reload delay,
whichever is less. In one embodiment, this multiple is 0.5 for
afirstattempt, 1.5 for a second attempt and 3.0 for subsequent
attempts; however, other multiples may be used.

[0120] Each time a playlist file is loaded or reloaded, the
client device examines the playlist file to determine the next
media file to load. The first file to load is the media file
selected to play first as described above. If the first media file
to be played has been loaded and the playlist file does not
contain the EXT-X-MEDIA-SEQUENCE tag then the client
can verify that the current playlist file contains the URI of the
last loaded media file at the offset where it was originally
found, halting playback if the file is not found. The next media
file to load can be the first media file URI following the
last-loaded URI in the playlist file.

[0121] Ifthe first file to be played has been loaded and the
playlist file contains the EXT-X-MEDIA-SEQUENCE tag,
then the next media file to load can be the one with the lowest
sequence number that is greater than the sequence number of
the last media file loaded. If the playlist file contains an
EXT-X-KEY tag that specifies a key file URI, the client
device obtains the key file and uses the key inside the key file
to decrypt the media files following the EXT-X-KEY tag until
another EXT-X-KEY tag is encountered.

[0122] In one embodiment, the client device utilizes the
same URI as previously used to download the playlist file.
Thus, if changes have been made to the playlist file, the client

US 2010/0169458 Al

device may use the updated playlist file to retrieve media files
and provide output based on the media files.

[0123] Changes to the playlist file may include, for
example, deletion of'a URI to a media file, addition of a URI
to a new media file, replacement of a URI to a replacement
media file. When changes are made to the playlist file, one or
more tags may be updated to reflect the change(s). For
example, the duration tag may be updated if changes to the
media files result in a change to the duration of the playback
of the media files indicated by the playlist file.

[0124] FIG. 3B is a flow diagram of one embodiment of a
technique for a client device to support streaming of content
using multiple bit rates which is one form of alternative
streams. The example of FIG. 3B is provided in terms of
HTTP; however, other non-streaming protocols can be uti-
lized in a similar manner.

[0125] The client device can request a playlist file in opera-
tion370. As discussed above, the playlist file may be retrieved
utilizing a URI provided to the client device. In one embodi-
ment, the playlist file includes listings of variant streams of
media files to provide the same content at different bit rates;
in other words, a single playlist file includes URIs for the
media files of each ofthe variant streams. The example shown
in F1G. 3B uses this embodiment. In another embodiment, the
variant streams may be represented by multiple distinct play-
list files separately provided to the client that each provide the
same content at different bit rates, and a variant playlist can
provide a URI for each of the distinct playlist files. This
allows the client device to select the bit rate based on client
conditions.

[0126] The playlist file(s) can be retrieved by the client
device in operation 375. The playlist file(s) can be stored in
the client device memory in operation 380. The client device
may select the bit rate to be used in operation 385 based upon
current network connection speeds. Media files are requested
from the server utilizing URIs included in the playlist file
corresponding to the selected bit rate in operation 390. The
retrieved media files can be stored in the client device
memory. Output is provided by the client device utilizing the
media files in operation 394 and the client device determines
whether to change the bit rate.

[0127] Inone embodiment, a client device selects the low-
est available bit rate initially. While playing the media, the
client device can monitor available bandwidth (e.g. current
network connection bit rates) to determine whether the avail-
able bandwidth can support use of a higher bit rate for play-
back. If so, the client device can select a higher bit rate and
access the media files indicated by the higher bit rate media
playlistfile. The reverse can also be supported. If the playback
consumes too much bandwidth, the client device can select a
lower bit rate and access the media files indicated by the lower
bit rate media playlist file.

[0128] Ifthe client device chances the bit rate in operation
394, for example, in response to a change in available band-
width or in response to user input, the client device may select
a different bit rate in operation 385. In one embodiment, to
select a different bit rate the client device may utilize a dif-
ferent list of URIs included in the playlist file that corresponds
to the new selected bit rate. In one embodiment, the client
device may change bit rates during access of media files
within a playlist.

[0129] Ifthe bit rate does not change in operation 394, then
the client device determines whether there are any more
unplayed media files in the current playlist which have not

Jul. 1, 2010

been retrieved and presented. If such media files exist, then
processing returns to operation 390 and one or more media
files are retrieved using the URIs for those files in the playlist.
If there are no such media files (i.e. all media files in the
current playlist haven been played), then processing proceeds
to operation 396 in which it is determined whether the playlist
includes an end tag. If it does, the playback of the program has
ended and the process has completed; if it does not, then
processing reverts to operation 370, and the client device
requests to reload the playlist for the program, and the process
repeats through the method shown in FIG. 3B.

[0130] FIG. 4 is a block diagram of one embodiment of a
server stream agent. It will be understood that the elements of
server stream agent 400 can be distributed across several
server devices. For example, a first server device can include
the segmenter 430, the indexer 440 and security 450 but not
the file server 460 and a second server device can include the
file server 450 but not the segmenter 430, the indexer 440 and
security 450. In this example, the first server device would
prepare the playlists and media files but would not transmit
them to client devices while one or more second server
devices would receive and optionally store the playlists and
media files and would transmit the playlists and media files to
the client devices. Server stream agent 400 includes control
logic 410, which implements logical functional control to
direct operation of server stream agent 400, and hardware
associated with directing operation of server stream agent
400. Logic may be hardware logic circuits or software rou-
tines or firmware. In one embodiment, server stream agent
400 includes one or more applications 412, which represent
code sequence and/or programs that provide instructions to
control logic 410.

[0131] Server stream agent 400 includes memory 414,
which represents a memory device or access to a memory
resource for storing data or instructions. Memory 414 may
include memory local to server stream agent 400, as well as,
or alternatively, including memory of the host system on
which sever stream agent 400 resides. Server stream agent
400 also includes one or more interfaces 416, which represent
access interfaces to/from (an input/output interface) server
stream agent 400 with regard to entities (electronic or human)
external to server stream agent 400.

[0132] Server stream agent 400 also can include server
stream engine 420, which represents one or more functions
that enable server stream agent 400 to provide the real-time or
near real-time, streaming as described herein. The example of
FIG. 4 provides several components that may be included in
server stream engine 420; however, different or additional
components may also be included. Example components that
may be involved in providing the streaming environment
include segmenter 430, indexer 440, security 450 and file
server 460. Each of these components may further include
other components to provide other functions. As used herein,
a component refers to routine, a subsystem, etc., whether
implemented in hardware, software, firmware or some com-
bination thereof.

[0133] Segmenter 430 divides the content to be provided
into media files that can be transmitted as files using a Web
server protocol (e.g., HT'TP). For example, segmenter 430
may divide the content into predetermined, fixed-size blocks
of'data in a pre-determined file format.

[0134] Indexer 440 may provide one or more playlist files
that provide an address or URI to the media files created by
segmenter 430. Indexer 440 may, for example, create one or

US 2010/0169458 Al

more files with a listing of an order for identifiers correspond-
ing to each file created by segmenter 430. The identifiers may
be created or assigned by either segmenter 430 or indexer
440. Indexer 440 can also include one or more tags in the
playlist files to support access and/or utilization of the media
files.

[0135] Security 450 may provide security features (e.g.
encryption) such as those discussed above. Web server 460
may provide Web server functionality related to providing
files stored on a host system to a remote client device. Web
server 460 may support, for example, HTTP-compliant pro-
tocols.

[0136] FIG. 5 is a block diagram of one embodiment of a
client stream agent. It will be understood that the elements of
a client stream agent can be distributed across several client
devices. For example, a first client device can include an
assembler 530 and security 550 and can provide a decrypted
stream of media files to a second client device that includes an
output generator 540 (but does not include an assembler 530
and security 550). In another example, a primary client device
can retrieve playlists and provide them to a secondary client
device which retrieves media files specified in the playlist and
generates an output to present these media files. Client stream
agent 500 includes control logic 510, which implements logi-
cal functional control to direct operation of client stream
agent 500, and hardware associated with directing operation
of client stream agent 500. Logic may be hardware logic
circuits or software routines or firmware. In one embodiment,
client stream agent 500 includes one or more applications
512, which represent code sequence or programs that provide
instructions to control logic 510.

[0137] Client stream agent 500 includes memory 514,
which represents a memory device or access to a memory
resource for storing data and/or instructions. Memory 514
may include memory local to client stream agent 500, as well
as, or alternatively, including memory of the host system on
which client stream agent 500 resides. Client stream agent
500 also includes one or more interfaces 516, which represent
access interfaces to/from (an input/output interface) client
stream agent 500 with regard to entities (electronic or human)
external to client stream agent 500.

[0138] Client stream agent 500 also can include client
stream engine 520, which represents one or more functions
that enable client stream agent 500 to provide the real-time, or
near real-time, streaming as described herein. The example of
FIG. 5 provides several components that may be included in
client stream engine 520; however different or additional
components may also be included. Example components that
may be involved in providing the streaming environment
include assembler 530, output generator 540 and security
550. Each of these components may further include other
components to provide other functions. As used herein, a
component refers to routine, a subsystem, etc., whether
implemented in hardware, software, firmware or some com-
bination thereof.

[0139] Assembler 530 can utilize a playlist file received
from a server to access the media files via Web server protocol
(e.g., HTTP) from the server. In one embodiment, assembler
530 may cause to be downloaded media files as indicated by
URIs in the playlist file. Assembler 530 may respond to tags
included in the playlist file.

[0140] Output generator 540 may provide the received
media files as audio or visual output (or both audio and visual)
on the host system. Output generator 540 may, for example,

Jul. 1, 2010

cause audio to be output to one or more speakers and video to
be output to a display device. Security 550 may provide
security features such as those discussed above.

[0141] FIG. 6 illustrates one embodiment of a playlist file
with multiple tags. The example playlist of FIG. 6 includes a
specific number and ordering of tags. This is provided for
description purposes only. Some playlist files may include
more, fewer or different combinations of tags and the tags can
be arranged in a different order than shown in FIG. 6.
[0142] Begin tag 610 can indicate the beginning of a play-
listfile. In one embodiment, begintag 610 is a #EXTM?3U tag.
Duration tag 620 can indicate he duration of the playback list.
That is, the duration of the playback of the media files indi-
cated by playback list 600. In one embodiment, duration tag
620 is an EXTX-TARGETDURATION tag; however, other
tags can also be used.

[0143] Date/Time tag 625 can provide information related
to the date and time of the content provided by the media files
indicated by playback list 600. In one embodiment. Date/
Time tag 625 is an EXT-X-PROGRAM-DATE-TIME tag;
however, other tags can also be used. Sequence tag 630 can
indicate the sequence of playlist file 600 in a sequence of
playlists. In one embodiment, sequence tag 630 is an EXT-
X-MEDIA-SEQUENCE tag; however, other tags can also be
used.

[0144] Security tag 640 can provide information related to
security and/or encryption applied to media files indicated by
playlistfile 600. For example, the security tag 640 can specify
a decryption key to decrypt files specified by the media file
indicators. In one embodiment, security tag 640 is an EXT-
X-KEY tag; however, other tags can also be used. Variant list
tag 645 can indicate whether variant streams are provided by
playlist 600 as well as information related to the variant
streams (e.g., how many, bitrate). In one embodiment, variant
list tag 645 is an EXT-X-STREAM-INF tag.

[0145] Media file indicators 650 can provide information
related to media files to be played. In one embodiment, media
file indicators 650 include URIs to multiple media files to be
played. In one embodiment, the order of the URIs in playlist
600 corresponds to the order in which the media files should
beaccessed and/or played. Subsequent playlist indicators 660
can provide information related to one or more playback files
to be used after playback file 600. In one embodiment, sub-
sequent playlist indicators 660 can include URIs to one or
more playlist files to be used after the media files of playlist
600 have been played.

[0146] Memory tag 670 can indicate whether and/or how
long a client device may store media files after playback of the
media file content. In one embodiment, memory tag 670 is an
EXT-X-ALLOW-CACHE tag. End tag 680 indicates whether
playlist file 600 is the last playlist file for a presentation. In
one embodiment, end tag 680 is an EXT-X-ENDLIST tag.
[0147] The following section contains several example
playlist files according to one embodiment.

Simple Playlist file

HEXTM3U
H#EXT-X-TARGETDURATION:10
#EXTINF:5220,
http://media.example.com/entire.ts
#EXT-X-ENDLIST

Sliding Window Playlist, using HTTPS
HEXTM3U

US 2010/0169458 Al

-continued

#EXT-X-TARGETDURATION:&
#EXT-X-MEDIA-SEQUENCE:2680

#EXTINF:g,
https://priv.example.com/fileSequence2680.ts
#EXTINF:g,
https://priv.example.com/fileSequence2681.ts
#EXTINF:g,
https://priv.example.com/fileSequence2682.ts

Playlist file with encrypted media files

#EXTM3U

#EXT-X-MEDIA-SEQUENCE:7794
#EXT-X-TARGETDURATION:15
#EXT-X-KEY:METHOD=AES-128, URI="
https:/priv.example.com/key.php?r=52"
#EXTINF:15,
http://media.example.com/fileSequence7794.ts
#EXTINF:15,
http://media.example.com/fileSequence7795.ts
#EXTINF:15,
http://media.example.com/fileSequence7796.ts
#EXT-X-KEY:METHOD=AES-128 URI=*
http://priv.example.com/key.php?r=53"
#EXTINF:15,
http://media.example.com/fileSequence7797.ts
Variant Playlist file

#EXTM3U
#EXT-X-STREAM-INF:PROGRAM-ID=1,BANDWIDTH=1280000
http://example.com/low.m3u8
#EXT-X-STREAM-INF:PROGRAM-ID=1,BANDWIDTH=2560000
http://example.com/mid.m3u8
#EXT-X-STREAM-INF:PROGRAM-ID=1,BANDWIDTH=7 680000
http://example.com/hi.m3u8
#EXT-X-STREAM-INF:PROGRAM-
ID=1,BANDWIDTH=65000,CODECS="“mp4a.40.5”
http://example.com/audio-only.m3u8

[0148] FIG. 7 is a flow diagram of one embodiment of a
playback technique for assembled streams as described
herein. In one embodiment, playback of the received media
files can be controlled by the user to start, stop, rewind, etc.
The playlist file is received by the client device in operation
700. The media files indicated by the playlist file are retrieved
in operation 710. Output is generated based on the received
media files in operation 720. Receiving and generating output
based on media files can be accomplished as described above.
[0149] If control input is detected in operation 730, the
client device can determine if the input indicates a stop in
operation 740. If the input is a stop, the process concludes and
playback stops. If the input indicates a rewind or forward
request in operation 750, the client device can generate output
based on previously played media files still stored in memory
in operation 760. If these files are no longer in a cache, then
processing reverts to operation 710 to retrieve the media files
and repeats the process. In an alternate embodiment, play-
back can support a pause feature that halts playback without
concluding playback as with a stop input.

[0150] Methods for transitioning from one stream to
another stream are further described with reference to FIGS.
9A-9D. One client device can perform each of these methods
or the operations of each of these methods can be distributed
across multiple client devices as described herein; for
example, in the distributed case, one client device can retrieve
the variant playlist and the two media playlists and provide
those to another client device which retrieves media files
specified by the two media playlists and switches between the
two streams provided by the retrieved media files. It will also
be understood that, in alternative embodiments, the order of
the operations shown may be modified or there can be more or

Jul. 1, 2010

fewer operations than shown in these figures. The methods
can use a variant playlist to select different streams. A variant
playlist can be retrieved and processed in operation 901 to
determine available streams for a program (e.g. a sporting
event). Operation 901 can be done by a client device. A first
stream can be selected from the variant playlist in operation
903, and a client device can then retrieve a media playlist for
the first stream. The client device can process the media
playlist for the first stream in operation 905 and also measure
or otherwise determine a bit rate of the network connection
for the first stream in operation 907. It will be appreciated that
the sequence of operations may be performed in an order
which is different than what is shown in FIG. 9A; for
example, operation 907 may he performed during operation
903, etc. In operation 911 the client device selects an alterna-
tive media playlist from the variant playlist based on the
measured bit rate from operation 907, this alternative media
playlist may be at a second bit rate that is higher than thc
existing bit rate of the first stream. This typically means that
alternative stream will have a higher resolution than the first
stream. The alternative media playlist can be selected if itis a
better match than the current playlist for the first stream based
on current conditions (e.g. the bit rate measured in operation
907). In operation 913, the alternative media playlist for an
alternate stream is retrieved and processed. This typically
means that the client device can be receiving and processing
both the first stream and the alternative stream so both are
available for presentation; one is presented while the other is
ready to be presented. The client device then selects a transi-
tion point to switch between the versions of the streams in
operation 915 and stops presenting the first stream and begins
presenting the alternative stream. Examples of how this
switch is accomplished are provided in conjunction with
FIGS. 9B-9D. In some embodiments, the client device can
stop receiving the first stream before making the switch.

[0151] FIG. 9B shows that the client device retrieves, stores
and presents content specified by the first media playlist (e.g.
the first stream) in operations 921 and 923, and while the
content specified by the first playlist is being presented the
client device in operation 925 also retrieves and stores content
specified by the second media playlist (e.g. the second
stream). The retrieval and storage (e.g. in a temporary buffer)
of the content specified by the second media playlist while
presenting the content obtained from the first media playlist
creates an overlap 955 in time of the program’s content
(shown in FIG. 9D) that allows the client device to switch
between the versions of the program without a substantial
interruption of the program. In this way, the switch between
the versions of the program can be achieved in many cases
without the user noticing that a switch has occurred (although
the user may notice a higher resolution image after the switch
in some cases) or without a substantial interruption in the
presentation of the program. In operation 927, the client
device determines a transition point at which to switch from
content specified by the first media playlist to content speci-
fied by the second media playlist; an example of a transition
point (transition point 959) is shown in FIG. 9D. The content
specified by the second media playlist is then presented in
operation 931 after the switch.

[0152] The method shown in FIGS. 9C and 9D represents
one embodiment for determining the transition point; this
embodiment relies upon a pattern matching on audio samples
from the two streams 951 and 953 to determine the transition
point. It will be appreciated that alternative embodiments can

US 2010/0169458 Al

use pattern matching on video samples or can use the times-
tamps in the two streams, etc. to determine the transition
point. The method can include, in operation 941, storing
content (e.g. stream 951) specified by the first media playlist
in a buffer; the buffer can be used for the presentation of the
content and also for the pattern matching operation. The
stream 951 includes both audio samples 951A and video
samples 95 1B. The video samples can use a compression
technique which relies on i-frames or key frames which have
all necessary content to display a single video frame. The
content in stream 951 can include timestamps specifying a
time (e.g. time elapsed since the beginning of the program),
and these timestamps can mark the beginning of each of the
samples (e.g. the beginning of each of the audio samples
951A and the beginning of each of the video samples 951B).
In some cases, a comparison of the timestamps between the
two streams may not be useful in determining a transition
point because they may not be precise enough or because of
the difference in the boundaries of the samples in the two
streams; however, a comparison of the timestamps ranges can
be used to verify there is an overlap 955 in time between the
two streams. In operation 943, the client device stores in a
buffer content specified by the second media playlist; this
content is for the same program as the content obtained from
the first media playlist and it can include timestamps also. In
one embodiment, timestamps, if not present in a stream, can
be added to a playlist for a stream; for example, in one
embodiment an ID3 tag which includes one or more times-
tamps can be added to an entry in a playlist, such as a variant
playlist or a media playlist. The entry may, for example, be in
a URI for a first sample of an audio stream. FIG. 9D shows an
example of content 953 obtained from the second media
playlist, and this includes audio samples 953A and video
samples 953B. In operation 945, the client device can perform
a pattern matching on the audio samples in the two streams
951 and 953 to select from the overlap 955 the transition point
959 which can be, in one embodiment, the next self contained
video frame (e.g. i-frame 961) after the matched audio seg-
ments (e.g. segments 957). Beginning with i-frame 961 (and
its associated audio sample). presentation of the program uses
the second stream obtained from the second media playlist.
The foregoing method can be used in one embodiment for
both a change from a slower to a faster bit rate and for a
change from a faster to a slower bit rate, but in another
embodiment the method can be used only for a change from
a slower to a faster bit rate and another method (e.g. do not
attempt to locate a transition point but attempt to store and
present content from the slower bit rate stream as soon as
possible) can be used for a change from a faster to a slower bit.

[0153] FIG. 8is a block diagram of one embodiment of an
electronic system. The electronic system illustrated in FIG. 8
is intended to represent a range of electronic systems (either
wired or wireless) including, for example, desktop computer
systems, laptop computer systems, cellular telephones, per-
sonal digital assistants (PDAs) including cellular-enabled
PDAs, set top boxes, entertainment systems or other con-
sumer electronic devices. Alternative electronic systems may
include more, fewer and/or different components. The elec-
tronic system of FIG. 8 may be used to provide the client
device and/or the server device.

[0154] Electronic system 800 includes bus 805 or other
communication device to communicate information, and pro-
cessor 810 coupled to bus 805 that may process information.
While electronic system 800 is illustrated with a single pro-

Jul. 1, 2010

cessor, electronic system 800 may include multiple proces-
sors and/or co-processors. Electronic system 800 further may
include random access memory (RAM) or other dynamic
storage device 820 (referred to as main memory), coupled to
bus 805 and may store information and instructions that may
be executed by processor 810. Main memory 820 may also be
used to store temporary variables or other intermediate infor-
mation during execution of instructions by processor 810.
[0155] Electronic system 800 may also include read only
memory (ROM) and/or other static storage device 830
coupled to bus 805 that may store static information and
instructions for processor 810. Data storage device 840 may
be coupled to bus 805 to store information and instructions.
Data storage device 840 such as flash memory or a magnetic
disk or optical disc and corresponding drive may he coupled
to electronic system 800.

[0156] Electronic system 800 may also be coupled via bus
805 to display device 850, such as a cathode ray tube (CRT)
or liquid crystal display (LCD), to display information to a
user. Electronic system 800 can also include an alphanumeric
input device 860, including alphanumeric and other keys,
which may be coupled to bus 805 to communicate informa-
tion and command selections to processor 810. Another type
of'user input device is cursor control 870, such as a touchpad,
amouse, a trackball, or cursor direction keys to communicate
direction information and command selections to processor
810 and to control cursor movement on display 850.

[0157] Electronic system 800 further may include one or
more network interface(s) 880 to provide access to a network,
such as a local area network. Network interface(s) 880 may
include, for example, a wireless network interface having
antenna 885, which may represent one or more antenna(e).
Electronic system 800 can include multiple wireless network
interfaces such as a combination of WiFi, Bluetooth and
cellular telephony interfaces. Network interface(s) 880 may
also include, for example, a wired network interface to com-
municate with remote devices via network cable 887, which
may be, for example, an Ethernet cable, a coaxial cable, a
fiber optic cable, a serial cable, or a parallel cable.

[0158] In one embodiment, network interface(s) 880 may
provide access to a local area network, for example, by con-
forming to IEEE 802.11b and/or IEEE 802.11g standards,
and/or the wireless network interface may provide access to a
personal area network, for example, by conforming to Blue-
tooth standards. Other wireless network interfaces and/or
protocols can also be supported.

[0159] In addition to, or instead of, communication via
wireless LAN standards, network interface(s) 880 may pro-
vide wireless communications using, for example, Time
Division, Multiple Access (TDMA) protocols, Global Sys-
tem for Mobile Communications (GSM) protocols, Code
Division, Multiple Access (CDMA) protocols, and/or any
other type of wireless communications protocol.

[0160] Reference in the specification to “one embodiment”
or “an embodiment” means that a particular feature, structure,
or characteristic described in connection with the embodi-
ment is included in at least one embodiment of the invention.
The appearances of the phrase “in one embodiment” in vari-
ous places in the specification are not necessarily all referring
to the same embodiment.

[0161] In the foregoing specification, the invention has
been described with reference to specific embodiments
thereof. It will, however, be evident that various modifica-
tions and changes can be made thereto without departing
from the broader spirit and scope of the invention. The speci-
fication and drawings are, accordingly, to be regarded in an
illustrative rather than a restrictive sense.

US 2010/0169458 Al Jul. 1, 2010
13

APPENDIX

The following Appendix is a draft specification of a protocol according to a particular
embodiment of the invention. It will be understood that the use of certain key words (e.g.
MUST, MUST NOT. SHALL, SHALL NOT, etc.) in this Appendix apply to this particular

embodiment and do not apply to other embodiments described in this disclosure.

Abstract

This document describes a protocol for transmitting unbounded streams of multimedia data over
HTTP. It specifies the data format of the files and the actions to be taken by the server (sender)

and the clients (receivers) of the streams. It describes version 1.0 of this protocol.

US 2010/0169458 A1
14

Table of Contents

1. Introduction
2. Summary
3. The Playlhist file
3.1. New Tags
3.1.1. EXT-X-TARGETDURATION
3.1.2. EXT-X-MEDIA-SEQUENCE
3.1.3. EXT-X-KEY
3.1.4. EXT-X-PROGRAM-DATE-TIME
3.1.5, EXT-X-ALLOW-CACHE
3.1.6. EXT-X-ENDLIST
3.1.7. EXT-X-STREAM-INF
4, Media files
5. Key files
5.1. IV for AES-128
6. Client/Server Actions
6.1. Server Process
6.1.1. Sliding Window Playlists
6.1.2. Encrypting media files
6.1.3. Providing variant streams
6.2. Client Process
6.2.1. Loading the Playlist file
6.2.2. Playing the Playlist file
6.2.3. Reloading the Playlist file
6.2.4. Determining the next file to load
6.2.5. Playing encrypted media files
7. Examples
7.1. Simple Playlist file
7.2. Shiding Window Playlist, using HTTPS
7.3. Playlist file with encrypted media files
7.4, Variant Playlist file
8. Security Considerations
9. References
Normative References
Informative References

Jul. 1, 2010

US 2010/0169458 Al Jul. 1, 2010
15

t. Introduction
This document describes a protocol for ransmitting unbounded streams
of multimedia data over HI'TP [RFC2616]. The protocol supports the
encryption of media data, and the provision of alternate versions
(e.g. bitrates) of a stream. Media data can be transmitted soon

after it is created, allowing it to be received in near real-time.

External references that describe related standards such as HTTP are

listed In Section 9.

2. Summary

A multimedia presentation is specified by a URI [RFC3986] to a
Playlist file, which is an ordered list of additional URIs. Each URI
in the Playlist file refers to a media file which is a segment of a

single contiguous stream,

To play the siream, the client first obtains the Playlist file and
then obtains and plays each media file in the Playlist. It reloads
the Playlist file as described in this document to discover

additional segments.

The key words "MUST", "MUST NOT”, "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [RFC2119].

3. The Plaviist file
Playlists MUST be Extended M3U Playlist files [IM3U]. This document

extends the M3U file format by defining additional tags.

US 2010/0169458 Al Jul. 1, 2010
16

An M3U Playlist is a text file that consists of individual lines.
Lines are terminated by either a single LF character or a CR
character fbliowad by an LF character. Each line is a URI a blank,
or starts with the comment character '#. URIs identify media files

to be played. Blank lines are ignored.

Lines that start with the comment character '# are either commenis
or tags. Tags begin with #EXT. All other lines that begin with '#

are comments and SHOULD be ignored.

Implementations SHOULD produce Playlist files encoded in UTF-8
[RFC3629]. URIs to such Playlist files SHOULD end in .m3u8 and/or
have the MIME type [RFC2046] application/x-mpegURL.

The Extended M3U file format defines two tags: EXTM3U and EXTINF. An
Extended M3U file is distinguished from a basic M3U file by its first
line, which MUST be #EXTM3U.

EXTINF is a record marker that describes the media file identified by
the URI that follows it. Each media file URI MUST be preceded by an
EXTINF tag. Its format is:

#EXTINF:<duration>,<title>

"duration” is an integer that specifics the duration of the media
file in seconds. Durations SHOULD be rounded o the nearest integer,
The remainder of the line following the commas is the title of the

media file.

3.1. New Tags
This document defines seven new tags: EXT-X-TARGETDURATION, EXT-X-

US 2010/0169458 Al Jul. 1, 2010
17
MEDIA-SEQUENCE., EXT-X-KEY, EXT-X-PROGRAM-DATE-TIME, EXT-X-ALLOW-
CACHE, EXT-X-STREAM-INF, and EXT-X-ENDLIST.

3.1.1. EXT-X-TARGETDURATION
The EXT-X-TARGETDURATION 1ag mdicates the approximate duration of
the next media file that will be added to the main presentation. It

MUST appear in the Playlist file. Its format is:
#EXT-X-TARGETDURATION: <seconds>

The actual duration of the media file MAY differ slightly from the

target duration.

3.1.2. EXT-X-MEDIA-SEQUENCE
Each media file URI in a Playlist has a unique sequence number. The
sequence number of a URI is equal w the sequence number of the URI
that preceded it plus one. The EXT-X-MEDIA-SEQUENCE tag indicates
the sequence number of the first URI that appears in a Playlist file.

Its format is:
#EXT-X-MEDIA-SEQUENCE: <number>

If the Playlist file does not contain an EXT-X-MEDIA-SEQUENCE tag
then the sequence number of the first URT in the playlist SHALL be

considered to be 1.

See Section £.2.1 and Section 6.2.4 for information on handling the

EXT-X-MEDIA-SEQUENCE tag.

3.13. EXT-X-KEY

US 2010/0169458 Al Jul. 1, 2010
18

Media files MAY be encrypted. The EXT-X-KEY tag provides information

necessary to decrypt media files that follow it. lts format is:
#EXT-X-KEY . METHOD=<method>] URI="<URI>"}

The METHOD parameter specifies the encryption method. The URI

parameter, if present, specifies how to obtain the key.

Version 1.0 of the protocol defines two encryption methods: NONE and

AFES-128. An encryption method of NONE means that media files are not

encrypted.

An encryption method of AES-128 means that media files are encrypted
using the Advanced Encryption Standard [ALES_128] with a 128-bit key
and PKCS7 padding [RFC3852].

A new EXT-X-KEY supersedes any prior EXT-X-KEY.
If no EXT-X-KEY tag is present then media files are not encrypted.

Sce Scction 5 for the format of the key file, and Section 5.1,

Section 6.1.2 and Section 6.2.5 for additional information on media

file encryption.

3.1.4. EXT-X-PROGRAM-DATE-TIME
The EXT-X-PROGRAM-DATE-TIME tag associates the beginning of the next
media file with an absolute date and/or time. The date/time

representation is ISO/IEC 8601:2004 [ISO_8601] and SHOULD indicate a

time zone. For example:

#EXT-X-PROGRAM-DATE-TIME:<YYYY-MM-DIDThh:mm:ssZ>

US 2010/0169458 Al Jul. 1, 2010
19

3.1.5. EXT-X-ALLOW-CACHE
The EXT-X-ALLOW-CACHE tag indicates whether the client MAY cache
downloaded media files for later replay. Its format is:
#EXT-X-ALLOW-CACHE:<YES|NO>
3.1.6. EXT-X-ENDLIST
The EXT-X-ENDLIST tag indicates that no more media files will be
added to the Playlist file. Its format is:
#EXT-X-ENDLIST
3.1.7. EXT-X-STREAM-INF
The EXT-X-STREAM-INF tag indicates that the next URI in the Playlist

file identifies another Playlist file. Its format is:

H#EXT-X-STREAM-INF:{attribute=value][attribute=value|*
<URI>

The following attributes are defined for the EXT-X-STREAM-INF tag:

BANDWIDTH=<n>

where n is an approximate upper bound of the stream bitrate,

expressed as a number of bits per second.

PROGRAM-ID=<i>

where 1 is a number that uniquely identities a particular

US 2010/0169458 Al Jul. 1, 2010
20

presentation within the scope of the Playlist file.

A Playlist file MAY contain multiple EXT-X-STREAM-INF URIs with the

same PROGRAM-ID to describe variant streams of the same presentation.

CODECS="[format][,formatj*"

where each format specifies a media sample type that is present in a

media file in the Playlist file.

Valid format identifiers are those in the ISO File Format Name Space

defined by RFC 4281 [RFC4281].

4. Media files
Each media file URI in a Playlist file MUST identify a media file
which is a segment of the overall presentation. Each media file MUST
be formatted as an MPEG-2 Transport Stream, an MPEG-2 Program Stream,
or an MPEG-2 audio elementary stream {ISO_13818]. All media files in

a presentation MUST have the same format.

Transport Stream files MUST contain a single MPEG-2 Program. There
SHOULD be a Program Association Table and a Program Map Table at the
start of each file. A file that contains video SHOULD have at least

one key frame and enough information to completely initialize a video

decoder.

Clients SHOULD be prepared to handle multiple tracks of a particular
type (e.g. audio or video) by choosing a reasonable subset. Clients
MUST ignore private streams inside Transport Streams that they do not

recognize.

US 2010/0169458 Al Jul. 1, 2010
21

The encoding parameters for samples within a stream inside a media

file and between corresponding streams across multiple media files
SHOULD remain consistent. However clients SHOULD deal with encoding
changes as they are encountered. for example by scaling video content

to accommodate a resolution change.

5. Key files
An EXT-X-KEY tag with the URI parameter identifies a Key file. A Key
file contains the cipher key that MUST be used to decrypt subsequent

media files in the Playlist.

The AES-128 encryption method uses 16-octet keys. The format of the
Key file is simply a packed array of these 16 octets in binary

format.

5.1. IV for AES-128
128-bit AES requires the same 16-octet Initialization Vector (IV) to
be supplied when encrypting and decrypting. Varying this IV

increases the strength of the cipher.

When using the encryption METHOD AES-128, implementations SHALL use
the sequence number of the media file as the I'V when encrypting or
decrypting media files. The big-endian binary representation of the

sequence number SHALL be placed in a 16-octet buffer and padded (on

the lefty with zeros.

6. Client/Server Actions

This section describes how the server generates the Playlist and

US 2010/0169458 Al Jul. 1, 2010
22

maedia files and how the client should download and play them.

6.1. Server Process
The production of the MPEG-2 stream is outside the scope of this
document, which simply presumes a source of a continuous stream

containing the main presentation.

The server MUST divide the stream into individual media files whose
duration is approximately equal. The server SHOULD attempt to divide
the stream at points that support effective decode of individual

media files, e.g. on packet and key frame boundaries.

The server MUST create a URI for each media file that will allow its

clients to obtain the file.

The server MUST create a Playlist file. The Playlist file MUST
conform to the format described in Section 3. A URI for each media
file that the server wishes to make available MUST appear in the
Playlist in the order in which it is to be played. The entire media

file MUST be available to clients if its URT is in the Playlist file.

The Playlist file MUST contain an EXT-X-TARGETDURATION tag. It MUST
indicate the approximate duration of the next media file to be added
to the main presentation. This value MUST remain constant for the

entire presentation. A typical target duration is 10 seconds.

The server MUST create a URI for the Playlist file that will allow

its clients to obtain the file.

Changes to the Playlist file MUST be made atomically from the point

of view of the clients.

US 2010/0169458 Al Jul. 1, 2010
23
Every media file URI in a Playlist MUST be prefixed with an EXTINF

tag indicating the approximate duration of the media file.

The server MAY associate an absolute date and time with a media file
by prefixing its URI with an EXT-X-PROGRAM-DATE-TIME tag. The value

of the date and time is arbitrary.

If the Playlist contains the final media file of the presentation

then the Playlist file MUST contain the EXT-X-ENDLIST tag.

If the server wishes to remove an entire presentation, it MUST make
the Playlist file unavailable to clients. It SHOULD ensure that all
media files in the Playlist file remain available to clients for at

least the duration of the Playlist file at the time of removal.

6.1.1. Shding Window Playlists
The server MAY limit the availability of media files to those which
have been most recently added to the Playlist. To do so the Playlist
file MUST ALWAYS contain exactly one EXT-X-MEDIA-SEQUENCE tag. Iis
value MUST be incremented by 1 for every media file URI that is

removed from the Playlist file.

Media file URIs MUST be removed from the Playlist file in the order

in which they were added.

When the server removes a media file URI from the Playlist, the media
file MUST remain available to clients for a period of time equal to

the duration of the media file plus the duration of the longest

Plavlist file in which the media file has appeared. The duration of

a Plavlist file is the sum of the durations of the media files within it,

US 2010/0169458 Al Jul. 1, 2010
24

If a server plans to remove a media file, it SHOULD ensure that an
HTTP Expires header reflects the planned time-to-live when it is

deliverad to clients.

The server MUST maintain at [east three main presentation media files

in the Playlist at all times unless the EXT-X-ENDLIST tag is present.

6.1.2. Encrypting media files
If media files are to be encrypted the server MUST define a URI which
will allow authorized clients to obtain a Key file containing a

decryption key. The Key file MUST conform to the format described in

Section 5.

The server MAY set the Expires header in the key response to indicate

that the key may be cached.

If the encryption METHOD is AES-128, AES-128 CBC encryption SHALL be
applied to individual media files. The entire file MUST be

encrypted. Cipher Block Chaining MUST NOT be applied across media

files. The sequence number of the media file MUST be used as the IV

as described in Section 5.1,

The server MUST encrypt every media file in a Playlist using the

method specified by the EXT-X-KEY tag that most immediately precedes

its URT in the Playlist file. Media files preceded by an EXT-X-KEY

tag whose METHOD is NONE, or not preceded by any EXT-X-KEY tag, MUST
NOT be encrypted.

The URT of every EXT-X-KEY tag must be distinct from the URI of every
other EXT-X-KEY tag that appears or has appeared in the Playlist

US 2010/0169458 Al Jul. 1, 2010
25

file. unless its METHOD is NONE. An EXT-X-KEY tag with a METHOD of
NONE MUST NOT contain a URI parameter.

‘The server MUST NOT remove an EXT-X-KEY tag from the Playlist file if
the Playlist file contains a URI to a media file encrypted with that

key.

6.1.3. Providing variant streams
A server MAY offer multiple Plavlist files to provide different
encodings of the same presentation. If it does so it SHOULD provide
a variant Playlist file that lists each variant stream to allow

clients to switch between encodings dynamically.

Variant Playlists MUST contain an EXT-X-STREAM-INF tag for each
variant stream. Each EXT-X-STREAM-INF tag for the same presentation
MUST have the same PROGRAM-ID attribute value. The PROGRAM-ID value

for each presentation MUST be unique within the variant Playlist.

If an EXT-X-STREAM-INF tag contains the CODECS attribute, the
attribute value MUST include every format defined by [RFC4281] that
is present in any media file that appears or will appear in the

Playlist file.

The server MUST meet the following constraints when producing variant

streams.

Each variant stream MUST consist of the same content, including

content which 1s not part of the main presentation.

The server MUST make the same period of content availabie for all

variant streams, within an accuracy of the smallest target

US 2010/0169458 Al Jul. 1, 2010
26

duration of the streams.

Matching content in variant streams MUST have matching timestamps.

This allows clients to synchronize the streams.

Elementary Audic Stream files MUST signal the timestamp of the
first sample in the file by prepending an ID3 PRIV tag [ID3] with
an owner identifier of
"com.apple.streaming.transportStreamTimestamp”. The binary data
MUST be a 33-bit MPEG-2 Program Elementary Stream timestamp

expressed as a big-endian eight-octet number.

In addition, all variant streams SHOULD contain the same encoded

audio bitstream. This allows clients to switch between streams

without audible glitching.

6.2. Client Process
How the client obtains the URI to the Playlist file is outside the

scope of this document; it is presumed to have done so.

The client MUST obtain the Playlist file from the URL If the
Playlist file so obtained is a variant Playlist, the client MUST

obtain the Playlist file from the variant Playlist.

This document does not specify the treatment of variant streams by

clients.

6.2.1. Loading the Playlist file

Every time a Playlist file is loaded or reloaded from the Playlist

URL

US 2010/0169458 Al Jul. 1, 2010
27

The client SHOULD check that the Playlist file begins with #EXTM3U
and refuse to continue if it does not. The client SHOULD ignore

any tags it does not recognize.

The client MUST determine the next media file to load as described

in Section 6.2.4.

If the Playlist contains the EXT-X-MEDIA-SEQUENCE tag, the client
SHOULD assume that each media file in it will become unavailable at
the time that the Plavlist file was loaded plus the duration of the
Playlist file. The duration of a Playlist file is the sum of the

durations of the media files within it.

6.2.2. Playing the Playlist file
‘The client SHALL choose which media file to play first from the
Playlist when playback starts. [If the Playlist file contains the
EXT-X-ENDLIST tag, any file in the Playlist MAY be played first. If
the EXT-X-ENDLIST tag is not present, any file except for the last
and second-to-last files in the Playlist MAY be played first.

Once the first media file to play has been chosen, subsequent media
files in the Playlist MUST be loaded in the order that they appear

and played in the order that they are loaded.

The client SHOULD attempt to load media files in advance of when they
will be required for uninterrupted playback to compensate for

temporary variations in latency and throughput.

It the Playlist file contains the EXT-X-ALLOW-CACHE tag and its value
is NO, the client MUST NOT cache downloaded media files after they

have been plaved. Otherwise the client MAY cache downloaded media

US 2010/0169458 Al Jul. 1, 2010
28

files indefinitely for later replay.

The client MAY use the value of the EXT-X-PROGRAM-DATE-TIME tag to
display the program origination time to the user. If the value

includes time zone information the client SHALL take it into account,

but if it does not the client MUST NOT infer an originating time

zone,

The client MUST NOT depend upon the correctness or the consistency of
the value of the EXT-X-PROGRAM-DATE-TIME tag.

6.2.3. Reloading the Playlist file
The client MUST periodically reload the Playlist file unless it
contains the EXT-X-ENDLIST tag.

However the client MUST NOT attempt to reload the Playlist file more

frequently than specified by this section.

When a client loads a Playlist file for the first time or reloads a
Playlist file and finds that it has changed since the last time it

was loaded, the client MUST wait for a period of time before
attempting to reload the Playlist file again. This period is called
the initial minimum reload delay. Tt is measured from the time that

the client began loading the Playlist file.

The initial minimum reload delay is the duration of the last media
file in the Playlist or 3 times the target duration, whichever is

less. Media file duration is specified by the EXTINF tag.

1f the chent reloads a Playlist file and finds that it has not

changed then it MUST wait for a period of time before retrving. The

US 2010/0169458 Al Jul. 1, 2010
29

minimum delay is three times the target duration or a multiple of the
initial minimum reload delay, whichever is less. This muitiple is

0.5 for the first attempt, 1.5 for the second, and 3.0 thereafter.

6.2.4. Determining the next file to load
The client MUST examine the Playlist file every time it is loaded or

reloaded to determine the next media file to load.

The first file to load MUST be the file that the client has chosen to

play first, as described in Section 6.2.2.

If the first file to be played has been loaded and the Playlist file

does not contain the EXT-X-MEDIA-SEQUENCE tag then the client MUST
verify that the current Playlist file contains the URI of the last

loaded media file at the offset it was originally found at, halting

playback if it does not. The next media file to load MUST be the

first media file URI following the last-loaded URI in the Playlist.

If the first file to be played has been loaded and the Playlist file
contains the EXT-X-MEDIA-SEQUENCE tag then the next media file to
load SHALL be the one with the lowest sequence number that is greater

than the sequence number of the last media file loaded.

6.2.5. Playing encrypted media files
If a Playlist file contains an EXT-X-KEY tag that specifies a Key
file URI the client MUST obtain that key file and use the key inside
it to decrypt all media files following the EXT-X-KEY tag until

another EXT-X-KEY tag is encountered.

If the encryption METHOD 1s AES-128, AES-128 CBC decryption SHALL be
applied to individual media files. The entire file MUST be

US 2010/0169458 Al Jul. 1, 2010
30

decrypted. Cipher Block Chaining MUST NOT be applied across media
fites. The sequence number of the media file MUST be used as the IV

as described i Section 5.1.

If the encryption METHOD 1s NONE, the client MUST treat all media
files following the EXT-X-KEY tag as cleartext {not encrypted) until

another EXT-X-KEY tag is encountered.

7. Examples

This section contains several example Playlist files.

7.1. Simple Playlist file
#EXTM3U
#EXT-X-TARGETDURATION:10
#EXTINF:5220,
http://media.example.com/entire.ts

#EXT-X-ENDLIST

7.2. Shding Window Playlist, using HTTPS
#EXTM3U
#EXT-X-TARGETDURATION:8
#EXT-X-MEDIA-SEQUENCE:2680

#EXTINES8,
https://priv.example.com/fileSequence2680.ts
#EXTINF&,
https://priv.example.com/fileSequence2681.ts
#EXTINF:S,
https://priv.example.com/fileSequence2682.ts

7.3. Playlist file with encrypted media files

US 2010/0169458 Al Jul. 1, 2010
31

#FEXTM3U
#EXT-X-MEDIA-SEQUENCE: 7794
#EXT-X-TARGETDURATION: 15

#EXT-X-KEY METHOD=AES- 128, URI="https:/priv.example.com/key.phplr=52"

#EXTINF:15,
htip://media.example.com/fileSequence7794.15

#EXTINF: 13,
http://media.example.com/fileSequence7795.ts
#EXTINF:15,
http:/fmedia.example.com/fileSequence7796.1s

H#EXT-X-KEY:METHOD=AES-128 URI="https://priv.example.convkey phplr=53"

H#EXTINF:15,

http://media.example.com/fileSequence’797.ts

7.4. Variant Playlist file
H#EXTM3U
#EXT-X-STREAM-INF:PROGRAM-ID=1, BANDWIDTH=1280000
hitp:#/example.convlow m3u8
H#EXT-X-STREAM-INF:PROGRAM-ID=1,BANDWIDTH=2560000
http://example.com/mid. m3u8
#EXT-X-STREAM-INF:PROGRAM-ID=[,BANDWIDTH=7680000
http://example.com/hiam3u8
#EXT-X-STREAM-INF.PROGRAM-ID=1,BANDWIDTH=65000.CODECS="mp44.40.5"

http:/fexample.com/audio-only.m3u8

& Security Considerations

US 2010/0169458 Al Jul. 1, 2010
32

Since the protocol relies primarily on HTTP for transport, most of

the same security considerations apply. See section 15 of RFC 2616

RFC2616].

Media file parsers are typically subject to "fuzzing” attacks.
Clients should take care when parsing files received from a server so

that non-compliant files are rejected.

9. References

Normative References

[AES_128] U.S. Department of Commerce/National Institute of
Standards and Technology, "Advanced Encryption Standard
(AES), FIPS PUB 197", November 2001, <http:/
csre.nist.gov/publications/fips/fips197/fips-197 .pdf>.

[1SO_13818]
Iiternational Organization for Standardization, "ISO/IEC

International Standard 13818; Generic coding of moving
pictures and associated audio information”, November 1994,

<http://iwww.iso.org/iso/catalogue_detail?csnumber=44169>.

[ISO_8601]
International Organization for Standardization, "ISO/IEC

International Standard 8601:2004; Data elements and
interchange formats -- Information interchange --
Representation of dates and times", December 2004,

<http:/fwww.iso.org/iso/catalogue, detail7csnumber=40874>.

[RFC2046] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
Extensions {MIME) Part Two: Media Types", RFC 2046,

US 2010/0169458 Al Jul. 1, 2010
33

November 1996.

{RFC2119] Bradner, S.. "Key words for use in RFCs to Indicate
Requirement Levels”, BCP 14, RFC 2119, March 1997,

IRFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
Transfer Protocol - HTTP/1.1", RFEC 2616, June 1999,

[RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
10646", STD 63, RFC 3629, November 2003,

[RFC3852} Housley, R., "Cryptographic Message Syntax (CMS)",
RFC 3832, July 2004.

[RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
Resource Identifier (URI): Generic Syntax”, STD 66,
RFC 3986, January 2003.

[RFC4281] Gellens, R., Singer, D., and P. Frojdh, "The Codecs
Parameter for "Bucket” Media Types", RFC 4281,
November 2005.

Informative References
{ID3} ID3.org, "The ID3 audio file data tagging format",

<http://www.id3.org/Developer_Information>.

IM3U] Nullsoft, Inc., "The M3U Playlist format, originally
invented for the Winamp media player”,

<http://wikipedia.org/wiki/M3U>.

US 2010/0169458 Al

What is claimed is:

1. A method comprising:

dividing a stream of data into multiple media files each

containing a portion of the stream of data on the server
device, the multiple media files to be stored as individual
files in a memory on the server device in a non-streaming
transfer protocol compliant format; and

generating a playlist file having a plurality of tags and a

plurality of Universal Resource Indicators (URIs), the
plurality of URIs indicating an ordering of the multiple
media files to recreate the stream of data.

2. The method of claim 1 wherein the non-streaming trans-
fer protocol comprises a hypertext transter protocol (HTTP)-
compliant protocol and wherein the method further com-
prises:

transmitting the playlist file to a client device using the

non-streaming transfer protocol; and

transferring one or more of the multiple media files to the

client device using the non-streaming transfer protocol
in response to requests from the client device utilizing
one or more of the plurality of URIs.

3. The method of claim 1 further comprising:

generating an updated playlist file corresponding to

changes to the multiple media files, the updated playlist
file comprising a plurality of updated URIs indicating an
ordering of the updated multiple media files to recreate
the stream of data.

4. The method of claim 3 wherein the changes to the mul-
tiple media files comprises at least one of: (a) additions of one
ormore media files and the updated playlist file includes URIs
to the multiple media files and the added one or more media
files; (b) modifications to the one or more media files and the
updated playlist file comprises URIs to the multiple media
files, and one or more of the tags in the plurality of tags is
updated to reflect the modifications to the one or more media
files: or (c) removal of one or more selected media files from
the multiple media files and the addition of further media files
to result in one or more remaining media files and the updated
playlist file comprises URIs to the remaining media files.

5. The method of claim 4 wherein the updated playlist is
generated at the expiration of a selected period of time based
on an attribute of one of the tags in the playlist file.

6. The method of claim 1 further comprising:

determining an approximate duration of a next media file to

be added to the playlist file:

causing the playlist file to include a tag indicating the

approximate duration.

7. The method of claim 1 further comprising:

determining an encryption method to be applied to the

multiple media files;

causing the playlist file to include a tag to indicate the

encryption method to be applied to the multiple media
files and wherein the tag comprises a URI to a security
key.

8. The method of claim 1 further comprising:

determining a time and/or data associated with a beginning

of a next media file; and

causing the playlist to include a tag indicating the time

and/or date associated with the beginning of the next
media file.

9. The method of claim 1 further comprising:

determining whether a client device to receive the media

files is authorized to store the media files after playback;

34

Jul. 1, 2010

causing the playlist to include a tag that indicates whether
the client device is authorized to store the media files
after playback.
10. The method of claim 1 further comprising:
determining whether additional URIs corresponding to
additional media files will be added to the playlist file;

causing the playlist to include a tag that indicates whether
additional URIs corresponding to additional media files
will be added to the playlist file wherein the tag com-
prises an EXT-X-ENDLIST tag.

11. The method of claim 1 further comprising:

determining whether a next URI in the playlist file indi-

cates another playlist file;

causing the playlist to include a tag to indicate that the next

URIin the playlist indicates another playlist wherein the
tag indicates a bandwidth associated with the another
playlist.

12. An article comprising a computer-readable medium
having stored thereon executable instructions that, when
executed, cause one or more processors to:

divide a stream of data into multiple media files each con-

taining a portion of the stream of data on the server
device, the multiple media files to be stored as individual
files in amemory on the server device in a non-streaming
transfer protocol compliant format; and

generate a playlist file having a plurality of tags and a

plurality of Universal Resource Indicators (URIs), the
plurality of URIs indicating an ordering of the multiple
media files to recreate the stream of data.

13. The article of claim 12 wherein the non-streaming
transfer protocol comprises a hypertext transfer protocol
(HTTP)-compliant protocol and wherein further instructions
cause the one or more processors to:

transmit the playlist file to a client device using the non-

streaming transfer protocol;

transfer one or more of the multiple media files to the client

device using the non-streaming transfer protocol in
response to requests from the client device utilizing one
or more of the plurality of URIs.

14. The article of claim 12 further comprising instructions
that, when executed, cause the one or more processors to:

generate an updated playlist corresponding to chances to

the multiple media files, the updated playlist comprising
aplurality of updated URIs indicating an ordering of the
updated multiple media files to recreate the stream of
data.

15. The article of claim 14 wherein the changes to the
multiple media files comprises at least one of: (a) additions of
one or more media files and the updated playlist file includes
URIs to the multiple media files and the added one or more
media files; (b) modifications to the one or more media files
and the updated playlist file comprises URIs to the multiple
media files, and one or more of the tags in the plurality of tags
is updated to reflect the modifications to the one or more
media files; or (¢) removal of one or more selected media files
from the multiple media files and the addition of further
media files to result in one or more remaining media files and
the updated playlist file comprises URIs to the remaining
media files.

16. The article of claim 14 wherein the updated playlist is
generated at the expiration of a selected period of time based
on an attribute of one of the tags in the playlist file.

17. The article of claim 12 further comprising instructions
that, when executed, cause the one or more processors to:

US 2010/0169458 Al

determine an approximate duration of a next media file to
be added to the playlist file;
cause the playlist file to include a tag indicating the
approximate duration.
18. The article of claim 12 further comprising instructions
that, when executed, cause the one or more processors to:
determine an encryption method to be applied to the mul-
tiple media files;
cause the playlist file to include a tag to indicate the encryp-
tion method to be applied to the multiple media files, and
wherein the tag comprises a URI to a security key.
19. The article of claim 12 further comprising instructions
that, when executed, cause the one or more processors to:
determine a time and/or data associated with a beginning of
a next media file; and
cause the playlistto include a tag indicating the time and/or
date associated with the beginning of the next media file.
20. The article of claim 12 further comprising instructions
that, when executed, cause the one or more processors to:
determine whether a client device to receive the media files
is authorized to store the media files after playback;
cause the playlist to include a tag that indicates whether the
client device is authorized to store the media files after
playback.
21. The article of claim 12 further comprising instructions
that, when executed, cause the one or more processors to:
determine whether additional URIs corresponding to addi-
tional media files will be added to the playlist file;
cause the playlist to include a tag that indicates whether
additional URIs corresponding to additional media files
will be added to the playlist file wherein the tag com-
prises an EXT-X-ENDLIST tag.
22. The article of claim 12 further comprising instructions
that, when executed, cause the one or more processors to:
determine whether a next URI in the playlist file indicates
another playlist file;
cause the playlist to include a tag to indicate that the next
URIin the playlist indicates another playlist wherein the
tag indicates a bandwidth associated with the another
playlist.
23. A method comprising:
requesting, with a client device, a playlist file over a net-
work using a non-streaming transfer protocol;
receiving, in response to the request and with the client
device, the playlist file from a server device, the playlist
file having Universal Resource Indicators (URIs) indi-
cating a plurality of media files and a plurality of tags
having parameters related to playback of the plurality of
media files;
requesting one or more of the media files in an order indi-
cated by the playlist file;
receiving the one or more requested media files over the
network using the non-streaming transfer protocol.
24. The method of claim 23 further comprising:
generating an audio and/or video output representing the
stream of content by playing the media files with the
client device in the order indicated by the playlist file,
and wherein the non-streaming transfer protocol com-
prises a hypertext transfer protocol (HTTP)-compliant
protocol.
25. The method of claim 23 further comprising:
sending repeatedly a subsequent request for the playlist file
to the server device;

Jul. 1, 2010

receiving an updated playlist file in response to the subse-

quent request;

using the updated playlist file received in response to the

subsequent request.

26. The method of claim 25 further comprising:

comparing the playlist file, received in response to the

request, and the updated playlist file;

determining whether the updated playlist file received in

response to the subsequent request includes a URI of a
last loaded media file;

halting playback if the URI of the last loaded media file is

not included in the updated playlist file;

utilizing a tag in the updated playlist file received in

response to the subsequent request to access a next
media file.

27. The method of claim 26 wherein the tag comprises an
EXT-X-MEDIA-SEQUENCE tag.

28. The method of claim 26 further comprising:

sending a second subsequent request for the playlist file to

the server device after a first period of time if the play-
lists differ; and

sending the second subsequent request for the playlist file

to the server device after a second period of time if the
playlists do not differ, wherein the first period of time is
based on a first multiple of attribute of one of the tags in
the playlist file and the second period of time is based on
a second multiple of the attribute.

29. The method of claim 23 further comprising:

determining, with the client device, whether the playlist file

includes a tag indicating whether additional URIs cor-
responding to media files may be added to the playlist
file;
selecting, with the client device, any one of the URIs from
the playback file if the tag indicates that additional URIs
may not be added to the playlist file or selecting any one
of the URIs from the playlist file except for the second-
to-last URI and the last URI if the tag indicates that
additional URIs may be added to the playlist file;

accessing the media files in an order indicated by the URIs
in the playlist file starting with the selected URI and
wherein the tag indicates the end of a program presented
through the media files.

30. The method of claim 23 further comprising:

determining, with the client device, whether a tag in the

playlist file indicates whether the client device is autho-
rized to store media files after playback;

storing the media files on the client device after playback if

the tag indicates that the client is authorized to store the
media files after playback;

preventing access to the media files after playback if the tag

indicates that the client is not authorized to store the
media files after playback.

31. An article comprising a computer-readable medium
having stored thereon instructions that, when executed, cause
one or more processors to:

request, with a client device, a playlist file from a server

device over a network using a non-streaming transfer
protocol;

receive, in response to the request and with the client

device, the playlist file from the server device, the play-
list file having Universal Resource Indicators (URIs)
indicating a plurality of media files and a plurality of tags
having parameters related to playback of the plurality of
media files;

US 2010/0169458 Al

request one or more of the media files in an order indicated
by the playlist file;
receive the one or more requested media files over the
network using the non-streaming transfer protocol.
32. The article of claim 31 further comprising instructions
that, when executed, cause the one or more processors to:
generate an audio and/or video output representing the
stream of content by playing the media files with the
client device in the order indicated by the playlist fileand
wherein the non-streaming transfer protocol comprises a
hypertext transter protocol (HTTP)-compliant protocol.
33. The article of claim 31 further comprising instructions
that, when executed, cause the one or more processors to:
send repeatedly a subsequent request for the playlist file to
the server device;
receive an updated playlist file in response to the subse-
quent request;
use the updated playlist file received in response to the
subsequent request.
34. The article of claim 33 further comprising instructions
that, when executed, cause the one or more processors to:
compare the playlist file, received in response to the
request, and the updated playlist file;
determine whether the updated playlist file received in
response to the subsequent request includes a URI of a
last loaded media file;
halt playback if the URI of the last loaded media file is not
included in the updated playlist file;
utilize a tag in the updated playlist file received in response
to the subsequent request to access a next media file.
35. The article of claim 33 further comprising instructions
that when executed, cause the one or more processors to:
send a second subsequent request for the playlist file to the
server device after a first period of time if the playlists
differ; and
send the second subsequent request for the playlist file to
the server device after a second period of time if the
playlists do not differ, wherein the first period of time is
based on a first multiple of attribute of one of the tags in
the playlist file and the second period of time is based on
a second multiple of the attribute.
36. The article of claim 33 further comprising instructions
that, when executed, cause the one or more processors to:
determine, with the client device, whether the playlist file
includes a tag indicating whether additional URIs cor-
responding to media files may be added to the playlist
file;
select, with the client device, any one of the URIs from the
playback file if the tag indicates that additional URIs
may not be added to the playlist file or selecting any one
of'the URIs from the playlist file except for the second-
to-last URI and the last URI if the tag indicates that
additional URIs may be added to the playlist file;
access the media files in an order indicated by the URIs in
the playlist file starting with the selected URI and
wherein the tag indicates the end of a program presented
through the media files.
37. A server device comprising:
a network interface;
a memory, the memory to store a playlist file and multiple
media file;
a processing system coupled with the network interface
and the memory, the processing system configured to
divide a stream of data to generate the multiple media

Jul. 1, 2010

files where each media file stores a portion of the stream
of data on the server device, the processing system con-
figured to store the media files in the memory, the pro-
cessing system configured to generate the playlist file
having a plurality of tags and a plurality of Universal
Resource Indicators (URIs) indicating an ordering of the
multiple media files to recreate the stream of data.

38. The server device of claim 37 wherein the non-stream-
ing transfer protocol comprises a hypertext transfer protocol
(HTTP)-compliant protocol and wherein the processing sys-
tem is configured to cause to be transmitted the playlist file to
aclient device using a non-streaming transtfer protocol, and to
cause to be transferred one or more ofthe multiple media files
to the client device using the non-streaming transfer protocol
in response to requests from the client device utilizing one or
more of the plurality of URIs.

39. The server device of claim 37 wherein the processing
system further generates an updated playlist file correspond-
ing to changes to the multiple media files, the updated playlist
file comprising a plurality of updated URIs indicating an
ordering of the updated multiple media files to recreate the
stream of data and causes to be transmitted the updated play-
list file to the client device.

40. A client device comprising:
a network interface;

a memory coupled with the processor, the memory to store
a playlist file and media files received via the network
interface,

aprocessor coupled with the network interface, the proces-
sor to request the playlist file via the network interface
using a non-streaming transfer protocol, to receive the
playlist file from a server device, the playlist file having
Universal Resource Indicators (URIs) indicating a plu-
rality of media files and a plurality of tags having param-
eters related to playback of the plurality of media files, to
request one or more of the media files in an order indi-
cated by the playlist file, to receive the one or more
requested media files over the network using the non-
streaming transfer protocol, and to generate an audio
and/or video output representing the stream of content
by playing the media files in the order indicated by the
playlist file.

41. The client device of claim 40 wherein the non-stream-
ing transfer protocol comprises a hypertext transfer protocol
(HTTP)-compliant protocol.

42. The client device of claim 40, the processor further to
send a subsequent request for the playlist file to the server
device, to receive the playlist file from server in response to
the subsequent request, to compare the playlist file received in
response to the request and the playlist file received in
response to the subsequent request, to use the playlist file
received in response to the subsequent request if the playlist
files differ.

43. A machine readable storage medium storing executable
instructions which when executed by a data processing sys-
tem cause the data processing system to perform a method
comprising:

transmitting a playlist file to a client device using a non-

streaming transfer protocol, the playlist file having a
plurality of tags and a plurality of Universal Resource
Indicators (URIs), the plurality of URIs indicating an
ordering of multiple media files which have been

US 2010/0169458 Al Jul. 1, 2010
37

divided out of a stream of data to recreate the stream of (HTTP)-compliant protocol and wherein the method further

data by sequential presentation of the multiple media comprises:

files; and transmitting an updated playlist file corresponding to
transferring one or more of the multiple media files to the changes to the multiple media files, the updated playlist

client device using the non-streaming transfer protocol file comprising a plurality of updated URTs indicating an

in response to requests from the client device utilizing ordering of the updated multiple media files to recreate

one or more of the plurality of URIs. the stream of data.

44. The medium of claim 43 wherein the non-streaming
transfer protocol comprises a hypertext transfer protocol

