wo 2014/116527 A1 [N N0F OO0 0 0O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

31 July 2014 (31.07.2014)

WIPOIPCT

(10) International Publication Number

WO 2014/116527 Al

(51

eay)

(22)

(25)
(26)
(30)

1

(72

74

31

International Patent Classification:
GO6F 17/30 (2006.01) GO6F 15/16 (2006.01)

International Application Number:
PCT/US2014/012121

International Filing Date:
17 January 2014 (17.01.2014)

Filing Language: English
Publication Language: English
Priority Data:

13/748,173 23 January 2013 (23.01.2013) US

Applicant: FACEBOOK, INC. [US/US]; 1601 Willow
Road, Menlo Park, California 94025 (US).

Inventors: LIU, Phillip; 1601 Willow Road, Menlo Park,
California 94025 (US). KATHURIA, Vishal; 1601 Wil-
low Road, Menlo Park, California 94025 (US).

Agents: SARATHY, Rajiv P. et al.; Perkins Coie LLP,
P.O. Box 1208, Seattle, Washington 98111-1208 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,

(84)

AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Published:

with international search report (Art. 21(3))

(54) Title: METHOD AND SYSTEM FOR USING A RECURSIVE EVENT LISTENER ON A NODE IN HIERARCHICAL
DATA STRUCTURE

200

Event Listener

Recursive

f_ 2456

Racsiver
Module

230
r
218
/—
Server 220
old
G © © =
Hisrarchy
G e Q Determination
Moduie
250 240
Higrarchy Event
Processor
Module
FIGURE 2

(57) Abstract: Disclosed is a method and system for registering a recursive watch on a node in hierarchical data structure. Embodi-
ments of the disclosed technique may include (i) receiving a request to register an event listener on a source node, the source node
being one of a plurality of nodes that are related to each other in a hierarchy; (ii) registering the event listener on the source node, the
event listener configured to notity a client of an occurrence of a first event in the source node; and (iii) if the source node has a des -
cendant node in the hierarchy, setting the event listener to notify the client of an occurrence of a second event in the descendant node
without requiring registration of another event listener on the descendant node. Each of the nodes may represent, for example, a lo -
gical partition of a storage device.

10

15

20

25

30

WO 2014/116527 PCT/US2014/012121

METHOD AND SYSTEM FOR USING A RECURSIVE EVENT LISTENER
ON A NODE IN HIERARCHICAL DATA STRUCTURE

CROSS-REFERENCE TO RELATED APPLICATION
[0001] This application claims priority to U.S. Patent Application No. 13/748,173 filed 23

January 2013, which is hereby incorporated by reference in its entirety.

FIELD OF INVENTION
[0002] This invention generally relates to an event listener in computer applica-
tions. More specifically, the invention relates to using a recursive event listener

on a node in hierarchical data structure.

BACKGROUND

[0003] In computer-related technologies, an event listener is an element that de-
tects ("listens” for) an occurrence of an event of a specified type or types in a
software object (hereinafter referred to as "object") and notifies a subscriber of
the occurrence of the event. In a hierarchical data structure having objects at dif-
ferent levels of hierarchy, to detect an occurrence of an event in any of the ob-
jects (such as creation of an object, deletion of an object, or modification of an
object), current event listener techniques register an event listener on each of the
objects in the hierarchical data structure. These techniques typically consume a
significant amount of time and memory in registering event listeners.

[0004] Consider a scenario, for example, in which a social networking environ-
ment has 100,000 users (clients) and a server containing 100 million objects or-
ganized in a hierarchical data structure representing some user information. As-
sume that registering an event listener on an object consumes one bit of memory.
If there are 100,000 clients, and each of the 100,000 clients wants to place an
event listener on each of the 100 million objects on the server, 1.25 Terabytes of
memory may be consumed just for registration of the event listeners. Three types
of event listeners may be registered on an object — (a) creation of an object, (b)
modification an object and (c) a child of an object. Therefore, 3.75 Terabytes of
memory may be consumed just for registration of the event listeners. Further, if
the client sends a separate registration request for each of the objects in the hier-

1

10

15

20

25

30

WO 2014/116527 PCT/US2014/012121

archy, a significant amount network bandwidth and time may be consumed for
registration. The current event listener techniques are typically inefficient, at
least with respect to a consumption of time, memory and network bandwidth. Fur-
thermore, the inefficiencies associated with current techniques of registering the
event listeners may significantly scale up as the number of clients, the number of
objects in the hierarchy, or both increase. In distributed system architecture, new
distributed applications or services and new clients that want to consume the ser-
vices may increase continuously. In such a distributed environment, the current
techniques for registering event listeners would typically reduce significantly the
efficiency of the whole system by consuming a significant amount of resources

for registration of event listeners.

SUMMARY

[0005] What is described below is a technique for registering a recursive event
listener on a node in hierarchical data structure. A recursive event listener is an
event listener that listens for events that occur in a node on which the recursive
event listener is registered and also listens for events that occur in the descendant
nodes of the node without requiring a registration of the recursive event listener
or any other event listener on the descendant nodes. The technique uses memory
and processing resources more efficiently, especially in an environment having
hierarchical data structure, and is not significantly adversely impacted by the
number of objects being watched or the number of clients requesting for a watch.
[0006] An embodiment of the disclosed technique includes receiving a request
from a client to register an event listener on a source node. The source node is
one of a plurality of nodes that are related to cach other in a hierarchy and each
of the nodes represents a logical partition of a storage device. The server registers
the event listener on the source node and the event listener is configured to notify
the client of an occurrence of a first event in the source node. Further, the server
determines whether the source node has a descendant node in the hierarchy and
responsive to a determination that the source node has a descendant node in the
hierarchy, the server sets the event listener to notify the client of an occurrence
of a second event in the descendant node without requiring registration of another

event listener on the descendant node.

10

15

20

25

30

WO 2014/116527 PCT/US2014/012121

[0007] In at Ieast some embodiments of the disclosed technique, the client is no-
tified, on an occurrence of at least one of the first event in the node or the second
event in the descendant node, of an occurrence of at least one of the first event or
the second event.
[0008] In at Iecast some embodiments of the disclosed technique, the event listen-
er registered on the node is persisted even after notifying, the client, of the occur-
rence of the first event or the second event.
[0009] Some embodiments of the invention have other aspects, elements, fea-
tures, and steps in addition to or in place of what is described above. These po-
tential additions and replacements are described throughout the rest of the speci-
fication.
[0010] Embodiments according to the invention are in particular disclosed
in the attached claims directed to a method, a storage medium and a system,
wherein any feature mentioned in one claim category, e¢.g. method, can be
claimed in another claim category, e.g. system, as well.
[0011] In an embodiment according to the invention, a method comprises:

receiving, at a computer system in a computer network, a request to regis-
ter an event listener on a source node, from a client in the computer system, the
source node being one of a plurality of nodes that are related to cach other in a
hierarchy, each of the nodes representing a logical partition of a storage device in
the computer system;

registering, by a server in the computer system, the event listener on the
source node, wherein the event listener is configured to notify the client of an
occurrence of a first event in the source node;

determining, by the server, whether the source node has a descendant node
in the hierarchy; and

responsive to a determination that the source node has a descendant node
in the hierarchy, setting, by the server, the event listener to notify the client of an
occurrence of a second event in the descendant node without requiring registra-
tion of another event listener on the descend-ant node.

[0012] In a further embodiment, the method comprises:

10

15

20

25

30

WO 2014/116527 PCT/US2014/012121

notifying, the client and on an occurrence of at least one of the first event
in the source node or the second event in the descendant node, of the occurrence
of at least one of the first event or the second event.
[0013] Registering the event listener on the source node can include

persisting the event listener even after notifying the client of the occur-
rence of the first event or the second event, and

persisting the event listener until removed by the client.
[0014] Notifying the client of the occurrence of the first event or the second
event can include

listening for an occurrence of the first event, wherein listening for the oc-
currence of the first event includes determining, by the server, whether a field, in
a memory of the server corresponding to the source node, is set to a predeter-
mined value indicative of a registration of the event listener on the source node,

listening to an occurrence of the second event without requiring a de-
termination of whether a field, in a memory of the server corresponding to the
source node, is set to the predetermined value indicative of a registration of the
event listener on the descendant node, and

notifying the client of the occurrence of the first event in the source node
or the occurrence of the second event in the descendant node.
[0015] Registering the event listener on the source node can include con-
figuring the event listener to notify the client of an occurrence of a predetermined
type of the first event or the second event.
[0016] The predetermined type of the first event or the second event can
include at Ieast one of (i) creation of a new node, (ii) deletion of an existing
node, or (iii) modification of the existing node.
[0017] The first event and the second event can be of a same predetermined
type of event.
[0018] The first event and the second event can be of different predeter-
mined types of event.
[0019] The storage device can include a plurality of logical partitions, each
of the logical partitions containing a separate non-overlapping subset of data con-

tained in the storage device.

10

15

20

25

30

WO 2014/116527 PCT/US2014/012121

[0020] Setting the event listener to notify the client of the occurrence of the
second event in the descendant node can includes configuring the event listener to
notify the client of an occurrence of an event in descendant nodes along a select-
ed path starting from the source node in the hierarchy.
[0021] Registering the event listener on the source node can include re-
stricting, by configuring access control, registration of the event listener on the
source node to a predetermined set of user roles in the computer system.
[0022] In a further embodiment according to the invention, a method com-
prises:
determining, by a computer system in a computer network, if an event has oc-
curred on a source node in a server of the computer system, the source node being
one of a plurality of nodes that are related to each other in a hierarchy, each of
the nodes representing a logical partition of a storage device in the computer sys-
tem; and

responsive to a determination that the event has occurred in the source
node,

determining, by the server, if an event listener is registered on the source
node by a client in the computer system,

responsive to a determination that the event listener is registered on the
source node, notifying, the client, of an occurrence of the event in the source
node, and

responsive to a determination that the event listener is not registered on the
source node,

determining, by the server, if the source node has an ascendant node in the
hierarchy,

responsive to a determination that the source node has an ascendant node
in the hierarchy,

determining, by the server, if the event listener is registered on the ascend-
ant node, and

responsive to a determination that the event listener is registered on the
ascendant node, notifying, the client, of the occurrence of the event in the source

node.

10

15

20

25

30

WO 2014/116527 PCT/US2014/012121

[0023] The event listener registered on the source node can be persisted
even after the act of notifying the client of the occurrence of the event to the cli-
ent.

[0024] The event can include at least one of (i) creation of a new node, (ii)
deletion of an existing node, or (iii) modification of the existing node.

[0025] In a further embodiment the method comprises:

receiving, in response to a communication failure between the server and
the client, a request from the client to register a new event listener on the source
node in a new server, the new server having a copy of at least a portion of the
nodes in the hierarchy, and the request including a transaction number of a latest
event received from the server;

obtaining, by the new server and using the transaction number, a list of
events that occurred on the source node and descendants of the source node from
the time the latest event was received; and

sending, by the new server to the client, the list of events.

[0026] In an embodiment of the invention, which can be claimed as well, an
apparatus comprises:

a server;

a receiver module configured to cooperate with the server device to receive
a request, from a client, to register an event listener on a source node, the source
node being one of a plurality of nodes that are connected to cach other in a hier-
archy, each of the nodes representing a logical partition of a storage unit;

a registration module configured to cooperate with receiver module to reg-
ister the event listener on the source node, the event listener configured to notify,
the client, of an occurrence of a first event in the source node;

a hierarchy determination module configured to cooperate with the regis-
tration module for determining whether the source node has a descendant node in
the hierarchy; and

a hierarchy event processor module configured to cooperate with the hier-
archy determination module to set, responsive to a determination that the source
node has a descendant node in the hierarchy, the event listener to notify the cli-
ent of an occurrence of a second event in the descendant node without requiring a
registration of another event listener on the descendant node.

6

10

15

20

25

30

WO 2014/116527 PCT/US2014/012121

[0027] The event listener can be further configured to cooperate with the
registration module to notify, the client and on an occurrence of at least one of
the first event in the source node or the second event in the descendant node, of
the occurrence of at least one of the first event or the second event to the client.
[0028] The event listener module can be further configured to

listen to an occurrence of the first event, wherein listening to the occur-
rence of the first event includes determining, by the server, whether a bit, in a
memory of the server corresponding to the source node, is set to a predetermined
value that indicates a registration of the event listener on the source node,

listen to an occurrence of the second event without requiring a determina-
tion of whether a bit, in a memory of the server corresponding to the source node,
is set to a predetermined value that indicates a registration of the event listener
on the descendant node, and

notify the client of the occurrence of the first event in the source node or
the occurrence of the second event in the descendant node.
[0029] The event listener can further be configured to notify an occurrence
of a predetermined type of an event, the predetermined type of the event includ-
ing at least one of (i) creation of a new node, (ii) deletion of an existing node, or
(ii1) modification of the existing node.
[0030] The storage unit can include a plurality of logical partitions, each of
the logical partitions containing a separate non-overlapping subset of data con-
tained in the storage unit.
[0031] In a further embodiment of the invention, one or more computer-
readable non-transitory storage media embody software that is operable when ex-
ecuted to perform a method according to the invention or any of the above men-
tioned embodiments.
[0032] In a further embodiment of the invention, a system comprises: one
or more processors; and a memory coupled to the processors comprising instruc-
tions executable by the processors, the processors operable when executing the
instructions to perform a method according to the invention or any of the above

mentioned embodiments.

10

15

20

25

30

WO 2014/116527 PCT/US2014/012121

BRIEF DESCRIPTION OF THE DRAWINGS
[0033] Figure 1 illustrates an environment in which an embodiment of the
invention can operate.

Figure 2 is a block diagram illustrating a recursive event listener on a
node in a hierarchical data structure.

Figure 3 is a flow diagram for registering a recursive event listener on
a node in a hierarchical data structure.

Figure 4 is a flow diagram for notifying an occurrence if event in a
node in hierarchical data structure.

Figure 5 provides an example illustrating registering a recursive event
listener in a Coordination Service of Figure 1.

Figure 6 is a flow diagram illustrating a process of re-registering a re-
cursive event listener by a client in response to a communi-
cation failure between the client and a server.

Figure 7 is a block diagram of an apparatus that may perform various
operations, and store various information generated and/or

used by such operations.

DETAILED DESCRIPTION

[0034] References in this description to “an embodiment”, “one embodiment”, or
the like, mean that the particular feature, function, or characteristic being de-
scribed is included in at least one embodiment of the present invention. Occur-
rences of such phrases in this specification do not necessarily all refer to the
same embodiment, nor are they necessarily mutually exclusive.

[0035] Disclosed is a method and system for registering a recursive event listener
on a node in hierarchical data structure. An embodiment of the disclosed tech-
nique includes receiving a request from a client to register an event listener on a
source node. The source node is one of a plurality of nodes that are related to
each other in a hierarchy and each of the nodes represents, for example, a logical
partition of a storage device. The server registers the event listener on the source
node and the event listener is configured to notify the client of an occurrence of a
first event in the source node. Further, the server determines whether the source

node has a descendant node in the hierarchy and responsive to a determination

8

10

15

20

25

30

WO 2014/116527 PCT/US2014/012121

that the source node has a descendant node in the hierarchy, the server sets the
event listener to notify the client of an occurrence of a second event in the de-
scendant node without requiring registration of another event listener on the de-
scendant node.

[0036] Unless otherwise noted, henceforth, the term "event listener” also means
"recursive event listener." A non-recursive event listener is referred to as "non-

recursive event listener."

ENVIRONMENT

[0037] Figure 1 illustrates an environment 100 in which an embodiment of the
disclosed technique may operate. As shown, the environment 100 includes a co-
ordination service 125 which can be, for example, an implementation of the
ZooKeeper™ service available from Apache Software Foundation of Forest Hill,
Maryland. In another embodiment, the environment 100 may include other similar
services that provide coordination services for distributed systems or distributed
applications. The coordination service 125 provides coordination services such
as, for example, synchronization, configuration maintenance, groups, and naming
for distributed applications. The coordination service 125 is replicated over a
group of servers 105 called an ensemble. (The group 105 of servers 120 may also
be referred to as "group" or "ensemble" hereafter.) As long as a majority of the
servers in the group 105 are available, the coordination service 125 is available.
Each server in the group 105 may have information such as, for example, a state
of each other server.

[0038] In the ensemble 105, one server may act as a leader 115, whose role is to
accept and coordinate transactions such as, for example, writes, via a consensus.
Servers other than leader 115 in the ensemble, may act as followers which may be
direct, read-only replicas of the leader 115. In the coordination service 125, some
write requests from clients are forwarded to the leader 115. The followers receive
proposals from the leader 115 and may agree or disagree upon serving the request
from the client. Further, in the coordination service 125, if the leader 115 fails or
otherwise becomes unavailable, any other follower may become a new leader, via
a consensus, and may continue serving requests. The rest of the followers may be

synchronized with the new leader.

10

15

20

25

30

WO 2014/116527 PCT/US2014/012121

[0039] The environment 100 includes a storage medium such as a database (not
shown) which contains data used by the applications (not shown) using the coor-
dination service 125. In an application such as, for example, social networking
environment, the database may contain, for example, user profile data. The data-
base is divided into a number of logical partitions, also called as "shards," each
of which may contain a subset of the data in the database. For example, in a so-
cial networking application, if a database contains user profile data for 100,000
users, a first shard may contain user profile data for users 1-10,000, a second
shard may contain user profile data for user 10001-20,000 and so on. Each of the
shards in the database contains a separate non-overlapping subset of data in the
database.

[0040] The shards in the database can be represented as a set of nodes in a hier-
archical data structure such as a tree structure 130. The tree structure 130 is cre-
ated in, for example, a memory of a server 120. A client 110 accesses the data in
a shard of the database by accessing a corresponding node in the tree structure
130 on the server 120. A root node "A" in the tree structure 130 may represent a
user database, node "B" may represent a shard having user data of users 1-10,000,
node "C" may represent a shard having user data of users 10001-20K and may
node "D" may represent a shard having user data of users 20001-30K.

[0041] A client 110 may subscribe to notification of an occurrence of an event in
any of the nodes in the tree structure 130. In order for a client 110 to subscribe to
notification of occurrence of an event in a node, the client 110 can request the
server 120 to register an event listener on the particular node. For example, a cli-
ent 110 requests the server 120 to register an event listener on node A in the tree
structure 130. The event listener may be cither a recursive event listener or a
non-recursive event listener.

[0042] A non-recursive event listener watches for events occurring only in the
node on which the event listener is registered. For example, if the client 110 has
registered a non-recursive event listener on node A, the client 110 will be notified
of the occurrence of the event only when the event occurs only in node A. The
client 110 is not notified of an event occurring in descendant nodes of node A. (In
some embodiments, the client may be notified if a child of a node has changed,
but may be notified one time only, for example, for the first time.) On the other

10

10

15

20

25

30

WO 2014/116527 PCT/US2014/012121

hand, if the client 110 has registered a recursive event listener on node A, the
client 110 will be notified of the occurrence of the event that occurs either in,
node A or descendant nodes of node A in the tree structure 130. For example, if
the client 110 has registered a recursive event listener on node A, the client 110
will be notified of an occurrence of the event that occurs in node A and/or any of
the descendant nodes of node A, namely, nodes B-F. Similarly, if a recursive
event listener is registered on node B, the client 110 will be notified of the occur-
rence of the event that occurs in either node B or either of its descendant nodes E
and F.

[0043] Since registering a recursive event listener on a node notifies subscribers
of an occurrence of an event in either the node or its descendant nodes, this tech-
nique eliminates the need for a client to register an event listener on descendant
nodes of the node. This reduces the time and network bandwidth consumed for
registering a non-recursive event listener on all descendant nodes. Further, the
memory consumed for storing the recursive event listener registrations may also
be reduced, since a single registration can be stored for watching a node and its
descendant nodes. On the other hand, in non-recursive registrations there typical-
ly are as many registrations as the number of nodes the client 110 wants to watch.
Accordingly, a recursive event listener allows a significant improvement in over-
all system performance, at least in terms of consumption of time, memory and
network bandwidth, over current non-recursive event listeners in applications
having hierarchical data structures.

[0044] Figure 2 is a block diagram illustrating a recursive event listener on a
node in a hierarchical data structure, according to an embodiment of the disclosed
technique. The system 200 can be the environment 100 of Figure 1 or a similar
environment. The system 200 includes a server 215 and client 205 communicating
with the server 215 over a communication network 210. The client 205 and the
server 215 may run on the same physical machine or different machines. The cli-
ent 205 can request registration of a recursive event listener 245 on a tree struc-
ture 220 in the server 215. For example, the client 205 requests registration of the
recursive event listener 245 on node B of the tree structure 220. A receiver mod-

ule 225 configured to communicate with the server 215 receives the request to

11

10

15

20

25

30

WO 2014/116527 PCT/US2014/012121

register a recursive event listener 245 on node B in the tree structure 220 from
the client 205.

[0045] A registration module 230 registers the recursive event listener 245 on
node B in the tree structure 220. Further, the registration module 230 sets a field
(for example, a bit or a set of bits) corresponding to the node B, in the memory of
the server, to a predetermined value, to indicate that a recursive event listener
245 is registered on the node B. The recursive event listener 245 registered on
node B notifies the client 205 of occurrence of an event in node B. After register-
ing the recursive event listener 245 on node B, a hierarchy determination module
235 determines whether the node B has any descendant nodes in the tree structure
220. Responsive to the determination that node B has descendant nodes E and F, a
hierarchy event processor module 240 sets the recursive event listener 245 regis-
tered on node B to listen to and notify an occurrence of events in nodes E or F in
addition to node B. The recursive event listener 245 notifies the client 205 of an
occurrence of an event in at lecast one of nodes B, E or F in the tree structure 220.
Accordingly, the recursive event listener 245 provides an advantage of obtaining
notifications of events occurring in multiple nodes while being registered on only
a single node.

[0046] The types of events that can occur on a node in the tree structure 220 in-
clude creation of new node, modification of an existing node, or deletion of an
existing node. The events that occur in nodes B, E, or F may be of the same type
or of different types. Further, the event listener 245 is configured to notify the
client of occurrence of any of the above mentioned event types.

[0047] In an embodiment, each of the nodes in the tree structure 220 represents a
different logical partition of the storage unit such as a database 250. In another
embodiment, at least some of the nodes in the tree structure 220 represent data
contained in different logical partitions of the database 245. For example, the tree
structure 220 may represent a user database having user profile data of various
users in a number of shards of the database. In yet another embodiment, the nodes
may represent other entities of the system 200. The tree structure 220 may be
contained in a memory of the server 215.

[0048] Each of the modules, namely, receiver module 225, registration module
230, hierarchy determination module 235, and hierarchy event processor module

12

10

15

20

25

30

WO 2014/116527 PCT/US2014/012121

240, and recursive event listener 245 can run on the same machine as the server
215, or on different machines, can be integrated with the server 215, or can run in
cooperation with the server 215.

[0049] The client 205 may also register a non-recursive event listener on any of
the nodes A — G. In an embodiment, if an event in a node is being listened to by
both a recursive event listener and a non-recursive event listener, only one notifi-
cation of the occurrence of the event is sent to the client 205. For example, if the
client 205 has registered a recursive event listener 245 on node B and a non-
recursive event listener (not shown) on node B or its descendant nodes E and F,
then, on an occurrence of the event in nodes B, E, or F, the client 205 would re-
ceive only notification regarding the occurrence of the event in any of the nodes
B, E or F. The client may not receive separate notifications for the recursive
event listener and the non-recursive event listener from the server.

[0050] A recursive event listener 245 registered on a node, for example, node B,
is persisted even after the client 205 is notified of the occurrence of an event in
the nodes B, E or F. On the other hand, a non-recursive event listener registered
on a node is removed after the client 205 is notified of the occurrence of the
event in the node. A non-recursive event listener has to be registered again to
continue to obtain notifications of occurrences of the event from the node. A re-
cursive event listener 245, unlike a non-recursive event listener, does not have to
be registered again on the node to continue to obtain notifications of occurrences
of an event on the node. Accordingly, a recursive event listener 245 is efficient,
at least in terms of time and network bandwidth consumed for registration of the
recursive event listener on the node, compared to the non-recursive event listen-

Crs.

METHOD FOR REGISTERING A RECURSIVE EVENT LISTENER ON A
NODE IN HIERARCHICAL DATA STRUCTURE

[0051] Figure 3 is a flow diagram of a process 300 for registering a recursive
event listener on a node in a hierarchical data structure, according to an embodi-
ment of the disclosed technique. The process 300 may be implemented in a sys-
tem such as system 200 of Figure 2. At step 305, a server (or a receiver module
working in cooperation with the server) receives a request from a client for regis-

13

10

15

20

25

30

WO 2014/116527 PCT/US2014/012121

tering an event listener on a source node. The source node is one of a plurality of
nodes that are related to each other in a hierarchy. Each of the nodes in the hier-
archy represents a different logical partition of a database. At step 310, the server
(or a registration module working in cooperation with the server) registers the
event listener on the source node and configures the event listener to notify the
client of an occurrence of a first event in the source node.

[0052] At determination step 315, the server (or a hierarchy determination mod-
ule working in cooperation with the server) determines whether the source node
has descendant nodes in the hierarchy. Responsive to a determination that the
source node has no descendant nodes in the hierarchy, the process 300 returns at
330. On the other hand, responsive to a determination that the source node has
descendant nodes in the hierarchy, at step 320, the server (or a hierarchy event
processor module working in cooperation with the server) sets the event listener
to notify the client of an occurrence of a second event in the descendant node,
without requiring registration of another event listener on the descendant node.
[0053] On an occurrence of the first event in the source node or the second event
in the descendant node, the event listener notifies the client of the occurrence of
at least one of the first event or the second event as indicated by step 325.

[0054] Figure 4 is a flow diagram of a process 400 for notifying an occurrence
of an event in a node in hierarchical data structure, according to an embodiment
of the disclosed technique. The process 400 may be implemented in a system such
as system 200 of Figure 2. At step 405, a server determines if an event has oc-
curred on a node in the server. The node is one of a plurality of nodes that are
related to each other in a hierarchy. Responsive to a determination that an event
has not occurred on the node, the process returns at 435.

[0055] On the other hand, responsive to a determination that an event has oc-
curred on the node, at determination step 410, the server determines if an event
listener is registered on the node by a client. Responsive to a determination that
the event listener is registered on the node, at step 430, the event listener notifies
the client of the occurrence of the event on the node. On the other hand, respon-
sive to a determination that the event listener is not registered on the node, at de-

termination step 415, the server determines whether the node has an ascendant

14

10

15

20

25

30

WO 2014/116527 PCT/US2014/012121

node in the hierarchy. Responsive to a determination that the node does not have
an ascendant node in the hierarchy, the process 400 returns at 435.

[0056] On the other hand, responsive to a determination that the node does have
an ascendant node in the hierarchy, at determination step 420, the server deter-
mines whether an event listener is registered on the ascendant node. Responsive
to a determination that the event listener is registered on the ascendant node, at
step 430, the event listener notifies the client of the occurrence of the event in the
node. On the other hand, responsive to a determination that the event listener is
not registered on the ascendant node, at determination step 425, the server deter-
mines whether the ascendant node is a root node of the hierarchy. Responsive to a
determination that the ascendant node is not a root node of the hierarchy, the con-
trol of the process is transferred to step 415. On the other hand, responsive to a
determination that the ascendant node is a root node of the hierarchy, the server
realizes that no recursive event listeners are registered on the node or the ascend-
ant node and the process 400 returns at 435.

[0057] As can be seen, a recursive event listener while registered on only one
node provides the benefit of notifying of the occurrences of events in multiple
nodes, namely, a node on which the recursive event listener is registered and the

descendant nodes of the node.

EXAMPLES OF OPERATION

[0058] Figure 5 provides an example illustrating the use of a recursive event lis-
tener in a Coordination Service such as that shown in Figure 1, according to an
embodiment of the disclosed technique. The Coordination Service 500 includes a
server 505 that represents user profile data, obtained from a user database 510, as
a hierarchical data structure 515. The database 510 may contain data of a number
of users, for example, data of users in a social networking application. The data-
base 510 includes a number of logical partitions, namely, LP1, LP2 and so on,
until LPn. Each of the logical partitions contains data of a configurable number of
users from the user database 510. In the hierarchical data structure 515, the user
database 510 may be considered as a root node and the logical partitions of the

user database 510 may be considered as the descendant nodes of the root node.

15

10

15

20

25

30

WO 2014/116527 PCT/US2014/012121

[0059] A client may request to register a recursive event listener, a non-recursive
event listener, or both, on any of the nodes in the hierarchical data structure 515.
For example, consider a scenario where the client 525 has a recursive event lis-
tener registered on the root node, user database 510, the client 530 has a recursive
event listener and a non-recursive event listener registered on descendant node
LP2, and the client 535 has a non-recursive event listener registered on the root
node, user database 510. All of the event listeners, that is, recursive and non-
recursive event listeners, are capable of notifying the clients of an occurrence of
any of various event types, such as create, delete, or modify that occurs in the
hierarchical data structure 515.

[0060] Assume, for example, that the creation of a new logical partition such as
LPn+1 520 occurs in the hierarchical data structure 515. The client 525 would be
notified of the creation of the new descendant node LP,:+; 520, since the recursive
event listener of the client 525 listens for occurrence of events on the root node,
user database 510 and the descendant nodes. With respect to the client 530, re-
gardless of whether the event listener registered on the descendant node LP2 by
the client 530 is recursive or non-recursive, the client 530 would not be notified
of the creation of the descendant node 520, since the creation of the descendant
node 520 is not an event that occurred in either node LP2 or a descendant node of
node LP2. With respect to client 535, the non-recursive event listener registered
on the root node 510 listens for events occurring only on node 510 and therefore,
does not know of the creation of the new descendant node 520. Accordingly, the
client 535 would not be notified of the occurrence of the creation of the new de-
scendant node 520 in the hierarchical data structure.

[0061] The server 505 can provide access control features for registering recur-
sive event listeners. For example, registration of recursive event listeners on root
nodes may be restricted to a set of users or user roles, for example, administrator
role or supervisor role etc. The access control features may also specify a set of
users or user roles that may be allowed to (i) register recursive event listeners on
any node, (ii) register recursive event listeners for a particular event type, (iii)
register recursive event listeners along a particular path in a hierarchy, etc.
[0062] Further, the server may also provide filters for recursive event listeners.
A filter may specify a path in hierarchical data structure along which the event

16

10

15

20

25

30

WO 2014/116527 PCT/US2014/012121

listeners may be set to listen, type of events to listen to, etc. For example, in the
tree structure 220 of Figure 2, a filter may be applied to a recursive event listener
registered on root node A to listen to events that occur only in the nodes along
the path A-B-F. As another example, a filter can specify that only an occurrence
of deletion type events is to be notified.

[0063] In some embodiments, failures such as network partition, client or server
failure can cause the client to disconnect from the server. The server automatical-
ly unregisters the recursive event listener associated with that client, and the cli-
ent will stop receiving the event notifications from the server. The client can try
to re-register a recursive event listener on a new server and continue to receive
event notifications, including the ones that occurred during the disconnection.
This way the client can assume that it receives all the events occurring under a
hierarchy of a given node, and that the node structure maintained by the applica-
tion on the client-side match the server-side.

[0064] Without this mechanism, the client may have to retrieve the entire hierar-
chy after reconnection, and before registering a recursive event listener since the
node structure may have changed during the failure. In at least some embodi-
ments, each modification (for example, create, modify, delete) to the node hierar-
chy made in the underlying database is given a transaction number. Whenever the
client reads a node from the server, it also receives a latest transaction number
that modified the node. When the client tries to reconnect, it can register a recur-
sive event listener on the node by providing a transaction number. The server
tries to deliver notifications of all the events that occurred since the event corre-
sponding to the provided transaction number occurred.

[0065] The server traverses through the node hierarchy to determine the events
that need to be delivered to the client. Additionally, the server refers to history of
events (for example, stored in a database as a log) in order to determine the list of
deleted nodes since the deleted nodes cannot be determined from traversing the
current hierarchy of the given node. In at least some embodiments, the list of
events sent to the client are sorted according to associated transaction numbers.
[0066] Figure 6 is a flow diagram illustrating a process 600 of re-registering a
recursive event listener by a client in response to a communication failure be-
tween the client and a server, according to an embodiment of the disclosed tech-

17

10

15

20

25

30

WO 2014/116527 PCT/US2014/012121

nique. The process 600 can be executed in a system such as system 200. At de-
termination step 605, the server determines whether a given transaction number is
older than a predefined threshold time. In at least some embodiments, the server
stores a history of events for certain predefined duration. If the server determines
that the transaction is older than the predefined threshold time, at step 610, the
server rejects the request to register a recursive event listener. In at least some
embodiments, the client can retry registering by omitting the transaction number
from the request.

[0067] On the other hand, if the server determines that the transaction is not old-
er than a predefined threshold time, at determination step 615 the server deter-
mines whether the hierarchy of the given node has any unvisited nodes, that is,
deleted nodes. If there are any unvisited nodes, at step 645, the server adds a de-
lete event for each of the unvisited nodes to a list of events. In at least some em-
bodiments, the server may determine the deleted nodes by reading the log of
events (history of transactions) stored in the database. On the other hand, if the
server determines that there are no deleted nodes, at determination step 620, the
server determines if the current node is created after the transaction (correspond-
ing to the given transaction number) occurred.

[0068] If the server determines that the current node is added after the transac-
tion, at step 625, the server adds a create node event to the list, and transfers the
control to step 640. On the other hand, if the server determines that the current
node is not added after the transaction, at determination step 630, the server de-
termines if the current node is modified after the transaction. If the server deter-
mines that the current node is modified after the transaction, at step 635, the
server adds a modify node event to the list, and the control is transferred to step
640. At step 640, the server traverses to the next descendant node in the hierar-
chy. In at least some embodiments, the server traverses the hierarchy in a
breadth-first search order. After the server traverses the entire hierarchy of the
given node, at step 650, the server sorts the list of events according to the associ-
ated transaction numbers of the events, and, at step 655, delivers the list of events

to the client.

APPARATUS FOR IMPLEMENTATION
18

10

15

20

25

30

WO 2014/116527 PCT/US2014/012121

[0069] Figure 7 is a block diagram of an apparatus that can perform various op-
erations, and store various information generated and/or used by such operations,
according to the disclosed technique. The apparatus can represent any computer
described herein. The computer 700 is intended to illustrate a hardware device on
which any of the entities, components or services depicted in the examples of
Figures 1-6 (and any other components described in this specification) can be
implemented, such as a Coordination Service, a server, client, databases, tree
structure etc. The computer 700 includes one or more processors 701 and
memory 702 coupled to an interconnect 703. The interconnect 703 is shown in
Figure 7 as an abstraction that represents any one or more separate physical bus-
¢s, point to point connections, or both connected by appropriate bridges, adapters,
or controllers. The interconnect 703, therefore, may include, for example, a sys-
tem bus, a Peripheral Component Interconnect (PCI) bus or PCI-Express bus, a
HyperTransport or industry standard architecture (ISA) bus, a small computer
system interface (SCSI) bus, a universal serial bus (USB), TIC (12C) bus, or an
Institute of Electrical and Electronics Engineers (IEEE) standard 1394 bus, also
called “Firewire”.

[0070] The processor(s) 701 is/are the central processing unit (CPU) of the com-
puter 700 and, thus, control the overall operation of the computer 700. In certain
embodiments, the processor(s) 701 accomplish this by executing software or
firmware stored in memory 702. The processor(s) 701 may be, or may include,
one or more programmable general-purpose or special-purpose microprocessors,
digital signal processors (DSPs), programmable controllers, application specific
integrated circuits (ASICs), programmable logic devices (PLDs), trusted platform
modules (TPMs), or the like, or a combination of such devices.

[0071] The memory 702 is or includes the main memory of the computer 700.
The memory 702 represents any form of random access memory (RAM), read-
only memory (ROM), flash memory, or the like, or a combination of such devic-
es. In use, the memory 702 may contain a code. In one embodiment, the code
includes a general programming module configured to recognize the general-
purpose program received via the computer bus interface, and prepare the gen-

eral-purpose program for execution at the processor. In another embodiment, the

19

10

15

20

25

30

WO 2014/116527 PCT/US2014/012121

general programming module may be implemented using hardware circuitry such
as ASICs, PLDs, or field-programmable gate arrays (FPGAs).
[0072] Also connected to the processor(s) 701 through the interconnect 703 are a
network adapter 707, a storage device(s) 705 and I/O device(s) 706. The network
adapter 707 provides the computer 700 with the ability to communicate with re-
mote devices, over a network and may be, for example, an Ethernet adapter or
Fibre Channel adapter. The network adapter 707 may also provide the computer
700 with the ability to communicate with other computers within the cluster. In
some embodiments, the computer 700 may use more than one network adapter to
deal with the communications within and outside of the cluster separately.
[0073] The [/O device(s) 706 can include, for example, a keyboard, a mouse or
other pointing device, disk drives, printers, a scanner, and other input and/or out-
put devices, including a display device. The display device can include, for ex-
ample, a cathode ray tube (CRT), liquid crystal display (LCD), or some other ap-
plicable known or convenient display device.
[0074] The code stored in memory 702 can be implemented as software and/or
firmware to program the processor(s) 701 to carry out actions described above.
In certain embodiments, such software or firmware may be initially provided to
the computer 700 by downloading it from a remote system through the computer
700 (e.g., via network adapter 707).
[0075] The techniques introduced herein can be implemented by, for example,
programmable circuitry (e.g., one or more microprocessors) programmed with
software and/or firmware, or entirely in special-purpose hardwired (non-
programmable) circuitry, or in a combination of such forms. Special-purpose
hardwired circuitry may be in the form of, for example, one or more ASICs,
PLDs, FPGAsSs, etc.
[0076] Software or firmware for use in implementing the techniques introduced
here may be stored on a machine-readable storage medium and may be executed
by one or more general-purpose or special-purpose programmable microproces-
sors. A "machine-readable storage medium", as the term is used herein, includes
any mechanism that can store information in a form accessible by a machine.
[0077] A machine can also be a server computer, a client computer, a personal
computer (PC), a tablet PC, a laptop computer, a set-top box (STB), a personal
20

10

15

WO 2014/116527 PCT/US2014/012121

digital assistant (PDA), a cellular telephone, an iPhone, a Blackberry, a proces-
sor, a telephone, a web appliance, a network router, switch or bridge, or any ma-
chine capable of executing a set of instructions (sequential or otherwise) that
specify actions to be taken by that machine.

[0078] A machine-accessible storage medium or a storage device(s) 705 includes,
for example, recordable/non-recordable media (e.g., ROM; RAM; magnetic disk
storage media; optical storage media; flash memory devices; etc.), etc., or any
combination thereof. The storage medium typically may be non-transitory or in-
clude a non-transitory device. In this context, a non-transitory storage medium
may include a device that is tangible, meaning that the device has a concrete
physical form, although the device may change its physical state. Thus, for ex-
ample, non-transitory refers to a device remaining tangible despite this change in
state

[0079] The term "logic", as used herein, can include, for example, programma-
ble circuitry programmed with specific software and/or firmware, special-purpose

hardwired circuitry, or a combination thereof.

21

10

15

20

25

30

WO 2014/116527 PCT/US2014/012121

WHAT IS CLAIMED IS:

1. A method comprising:

receiving, at a computer system in a computer network, a request to register an event
listener on a source node, from a client in the computer system, the source node being one of
a plurality of nodes that are related to each other in a hierarchy, each of the nodes represent-
ing a logical partition of a storage device in the computer system;

registering, by a server in the computer system, the event listener on the source node,
wherein the event listener is configured to notify the client of an occurrence of a first event in
the source node;

determining, by the server, whether the source node has a descendant node in the hi-
erarchy; and

responsive to a determination that the source node has a descendant node in the hier-
archy, setting, by the server, the event listener to notify the client of an occurrence of a sec-
ond event in the descendant node without requiring registration of another event listener on

the descendant node.

2. The method of claim 1 further comprising:
notifying, the client and on an occurrence of at least one of the first event in the
source node or the second event in the descendant node, of the occurrence of at least one of

the first event or the second event.

3. The method of claim 2, wherein registering the event listener on the source node in-
cludes

persisting the event listener even after notifying the client of the occurrence of the
first event or the second event, and

persisting the event listener until removed by the client.

4. The method of claim 2, wherein notifying the client of the occurrence of the first
event or the second event includes

listening for an occurrence of the first event, wherein listening for the occurrence of
the first event includes determining, by the server, whether a field, in a memory of the server
corresponding to the source node, is set to a predetermined value indicative of a registration
of the event listener on the source node,

22

10

15

20

25

30

WO 2014/116527 PCT/US2014/012121

listening to an occurrence of the second event without requiring a determination of
whether a field, in a memory of the server corresponding to the source node, is set to the pre-
determined value indicative of a registration of the event listener on the descendant node, and

notifying the client of the occurrence of the first event in the source node or the occur-

rence of the second event in the descendant node.

5. The method of claim 1, wherein registering the event listener on the source node in-
cludes configuring the event listener to notify the client of an occurrence of a predetermined

type of the first event or the second event.

6. The method of claim 5, wherein the predetermined type of the first event or the sec-
ond event includes at least one of (i) creation of a new node, (ii) deletion of an existing node,

or (ii1) modification of the existing node.

7. The method of claim 1, wherein the first event and the second event are of a same

predetermined type of event.

8. The method of claim 1, wherein the first event and the second event are of different

predetermined types of event.

9. The method of claim 1, wherein the storage device includes a plurality of logical par-
titions, each of the logical partitions containing a separate non-overlapping subset of data

contained in the storage device.

10. The method of claim 1, wherein setting the event listener to notify the client of the
occurrence of the second event in the descendant node includes configuring the event listener
to notify the client of an occurrence of an event in descendant nodes along a selected path

starting from the source node in the hierarchy.
11. The method of claim 1, wherein registering the event listener on the source node in-

cludes restricting, by configuring access control, registration of the event listener on the

source node to a predetermined set of user roles in the computer system.

23

10

15

20

25

30

WO 2014/116527 PCT/US2014/012121

12. A method comprising:
determining, by a computer system in a computer network, if an event has occurred
on a source node in a server of the computer system, the source node being one of a plurality
of nodes that are related to each other in a hierarchy, each of the nodes representing a logical
partition of a storage device in the computer system; and
responsive to a determination that the event has occurred in the source node,
determining, by the server, if an event listener is registered on the source node
by a client in the computer system,
responsive to a determination that the event listener is registered on the source
node, notifying, the client, of an occurrence of the event in the source node, and
responsive to a determination that the event listener is not registered on the
source node,
determining, by the server, if the source node has an ascendant node in
the hierarchy,
responsive to a determination that the source node has an ascendant
node in the hierarchy,
determining, by the server, if the event listener is registered on
the ascendant node, and
responsive to a determination that the event listener is regis-
tered on the ascendant node, notifying, the client, of the occurrence of

the event in the source node.

13. The method of claim 12, wherein the event listener registered on the source node is

persisted even after the act of notifying the client of the occurrence of the event to the client.

14. The method of claim 12, wherein the event includes at least one of (i) creation of a

new node, (ii) deletion of an existing node, or (iii) modification of the existing node.

15. The method of claim 12 further comprising:

receiving, in response to a communication failure between the server and the client, a
request from the client to register a new event listener on the source node in a new server, the
new server having a copy of at least a portion of the nodes in the hierarchy, and the request
including a transaction number of a latest event received from the server;

24

10

15

20

25

30

WO 2014/116527 PCT/US2014/012121

obtaining, by the new server and using the transaction number, a list of events that
occurred on the source node and descendants of the source node from the time the latest
event was received; and

sending, by the new server to the client, the list of events.

16. An apparatus comprising:

a server;

a receiver module configured to cooperate with the server device to receive a request,
from a client, to register an event listener on a source node, the source node being one of a
plurality of nodes that are connected to each other in a hierarchy, each of the nodes represent-
ing a logical partition of a storage unit;

a registration module configured to cooperate with receiver module to register the
event listener on the source node, the event listener configured to notify, the client, of an oc-
currence of a first event in the source node;

a hierarchy determination module configured to cooperate with the registration mod-
ule for determining whether the source node has a descendant node in the hierarchy; and

a hierarchy event processor module configured to cooperate with the hierarchy deter-
mination module to set, responsive to a determination that the source node has a descendant
node in the hierarchy, the event listener to notify the client of an occurrence of a second
event in the descendant node without requiring a registration of another event listener on the

descendant node.

17. The apparatus of claim 16, wherein the event listener is further configured to cooper-
ate with the registration module to notify, the client and on an occurrence of at least one of
the first event in the source node or the second event in the descendant node, of the occur-

rence of at least one of the first event or the second event to the client.

18. The apparatus of claim 17, wherein the event listener module is further configured to
listen to an occurrence of the first event, wherein listening to the occurrence of the
first event includes determining, by the server, whether a bit, in a memory of the server corre-
sponding to the source node, is set to a predetermined value that indicates a registration of the
event listener on the source node,
listen to an occurrence of the second event without requiring a determination of

25

10

WO 2014/116527 PCT/US2014/012121

whether a bit, in a memory of the server corresponding to the source node, is set to a prede-
termined value that indicates a registration of the event listener on the descendant node, and
notify the client of the occurrence of the first event in the source node or the occur-

rence of the second event in the descendant node.

19. The apparatus of claim 16, wherein the event listener is further configured to notify an
occurrence of a predetermined type of an event, the predetermined type of the event including
at least one of (i) creation of a new node, (ii) deletion of an existing node, or (iii) modifica-

tion of the existing node.
20. The apparatus of claim 16, wherein the storage unit includes a plurality of logical par-

titions, each of the logical partitions containing a separate non-overlapping subset of data

contained in the storage unit.

26

PCT/US2014/012121

WO 2014/116527

L FHNOld

juBlo

0

JUBHD

o]
—
.

Ui

(o1 /A L\zl/ / V\

BAIBS anleg srlag BAIDG

IBA Jan Mmmgmﬁ JBA @ @ @

GLi k @ @ @
~ O
ol JORISS
SHAISS UBHBULIRIONT) 0éi .\

\.

Gel .k

G0}

1/7

PCT/US2014/012121

WO 2014/116527

BINPOK
JOSSO00I
IUSAT AUDIRIBI

0ye L

BINPOKY
LORLHUWLRIB3

AUDIRIBI
gee .K

BNPOW
uonensiBayy

0ed .\

SINPOR
JOAIB0EN

géc k

0ac

¢ J€Noid

g¢ec

~

@ @
@ @
O

IBAIBG

[

Gie .\

JBUSISIT UBAT
BAISINDSY

G¥e .\

1174

HICMIBN

1UBHD

[~

™

UBHO

1074 .k

002

WO 2014/116527 PCT/US2014/012121

Registering A Recursive Event 300
(Listener) /\J

(‘ 305

Receive, at a computer system in a computer network, a request to
register an event listener on a source node, from a client in the computer
systemn, the source node being one of a plurality of nodes that are related

to each other in a hierarchy, each of the nodes representing a logical
partition of a storage device in the compuiter system

l (—31(}

Register, by the server, the event listener on the source node, wherein
the event listener is configurad to notify the client of an occurrence of a
first event in the source node

315

Does the node have a No
descendant node in the
hierarchy ?
(— 320

Set the event listener to nolify the client of an cccurrence of
a second event in the descendant node without requiring
registration of another event listener on the descendant
node

| Notify, the client and on an occurrence of at least one of the |
| first event in the source node or the second event in the |
| descendant node, of the occurrence of at least one of the |

first event or the second event |

T————————— -
l (— 330
(Return)
FIGURE 3

WO 2014/116527 PCT/US2014/012121

(E\Eatifying An Occurrence OF An Event in A Node

)

405
Has an event oocurred No
on a node in a server 7
Yes
410
Is an event lisiener Yes
registered on the node
by a client ?
No
415
Does the node have an No -
ascendant node in the
higrarchy ?
Yes
420
No Is an event listener registered
on the ascendant node 2
425 Yas
is the ascendant
N node a root node of
QWramhy ?
430
Yes \ 4 C
Notify the client of the occurrence of the
gvent in the node
- 435
C Return) FEGHRE 4

4/7

PCT/US2014/012121

WO 2014/116527

008

ANEND .k

G JHNOld

ANZNO

ANZMD

—_——

[+ g1
==y

-
~

L

—
m —— —— -

WO 2014/116527 PCT/US2014/012121

(Start) 600
610 [\)
~

Reject the request to
register recursive event
listener

is transaction oldar than a
pradefined threshold timea?

815
Doesthe ghven node have
uniraversed descandant
redas inthe helrarchy ?

Yes

(620 (55

Add creats nods event to
a list of evenis

is the curent descandant node
created after the given transaction
miamber ?

630 (‘ 635

Add modify node event
o the list of events

is the current descendant
node modified after the given
transaction number ?

(— 640

-t

Move to the next descendant node in
breadth-first-search order

4
r“65

For each deleted node, add a node delele
avent o the list

* r‘ 650

Sort the list of events according o
corresponding fransaction numbers

¢ (655

Send the list of svents to the client

Y
C Retum) FEGURE 6

Oy
~—
~J1

PCT/US2014/012121

WO 2014/116527

L04
3

Jsaydepy oM

L FHNOld

904
J

G04

{(s}eomned O/

{s)eoineg
abeicig

204

AJOLISIN

4373

{SHOSSB044

104

l/

INTERNATIONAL SEARCH REPORT International application No.
PCT/US2014/012121

A. CLASSIFICATION OF SUBJECT MATTER
GOGF 17/30(2006.01)i, GO6F 15/16(2006.01)i

According to International Patent Classification (IPC) or to both national classification and [PC
B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
GOG6F 17/30; GOGF 3/048; GOGF 17/00; GO6F 9/44; GO6F 7/00; GO6F 9/46; GOGF 15/177, GO6F 15/16

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
cKOMPASS(KIPO internal) & keywords: hierarchy, node, event listener, register, descendant, server, client, and similar terms.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

A US 2010-0306786 Al (AARON J. PASSEY et al.) 02 December 2010 1-20
See paragraphs 47-53; and figures 3A-3C.

A US 7908550 B1 (JEYAPRAKASH K. CHITTU et al.) 15 March 2011 1-20
See column 9, line 25 — column 13, line 45; figures 5A-5C; and claims 1, 4-5

A US 2011-0137963 Al (THUVAN HOANG et al.) 09 June 2011 1-20
See paragraphs 41-42, 57-67, 78-92; and figures 1, HA-5C.

A US 2010-0205220 A1l (CHRISTOPHER HART et al.) 12 August 2010 1-20
See paragraphs 43-53, 70; and figure 3.

A US 2010-0332968 Al (MICHAEL A. SQUILLACE) 30 December 2010 1-20
See paragraphs 4, 47-63; and figures 1, 4-5.

|:| Further documents are listed in the continuation of Box C. See patent family annex.
* Special categories of cited documents: "T" later document published after the international filing date or priority
"A" document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand
to be of particular relevance the principle or theory underlying the invention
"E" carlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive
"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of another citation or other "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is
"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents,such combination
means being obvious to a person skilled in the art
"P" document published prior to the international filing date but later "&" document member of the same patent family
than the priority date claimed
Date of the actual completion of the international search Date of mailing of the international search report
08 May 2014 (08.05.2014) 08 May 2014 (08.05.2014)
Name and mailing address of the [ISA/KR Authorized officer

International Application Division

+ Korean Intellectual Property Office YU

g

X 189 Cheongsa-to, Seo-gu, Daejeon Metropolitan City, 302-701, B N, Sung Cheal
Republic of Korea

Facsimile No. +82-42-472-7140 Telephone No. +82-42-481-8262
Form PCT/ISA/210 (second sheet) (July 2009

INTERNATIONAL SEARCH REPORT International application No.

Information on patent family members PCT/US2014/012121
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2010-0306786 Al 02/12/2010 US 2007-0233710 Al 04/10/2007
US 7756898 B2 13/07/2010
US 8005865 B2 23/08/2011
US 7908550 Bl 15/03/2011 US 2002-0107892 Al 08/08/2002
US 7181684 B2 20/02/2007
US 2011-0137963 Al 09/06/2011 US 2006-0129584 Al 15/06/2006
US 7921076 B2 05/04/2011
US 8176007 B2 08/05/2012
US 2010-0205220 Al 12/08/2010 US 8407179 B2 26/03/2013
US 2010-0332968 Al 30/12/2010 None

Form PCT/ISA/210 (patent family annex) (July 2009)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - claims
	Page 27 - claims
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - wo-search-report
	Page 36 - wo-search-report

