A 00 A0 OO

WO 02/086738 Al

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

31 October 2002 (31.10.2002) PCT

(10) International Publication Number

WO 02/086738 Al

(51) International Patent Classification”: GO6F 15/00,
15/16, 17/30, HO4H 1/00

(21) International Application Number: PCT/US02/12909
(22) International Filing Date: 25 April 2002 (25.04.2002)
(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:
60/286,466 25 April 2001 (25.04.2001) US
10/021,855 13 December 2001 (13.12.2001) US

(71) Applicant: BEA SYSTEMS, INC. [US/US]; 2315 North
First Street, San Jose, CA 95131 (US).

(72) Inventors: BISSON, Michel; 4905 Noble Park Place,
Boulder, CO 80301 (US). BREEDEN, Timothy; 4945

()

(81)

West 128th Place, Broomfield, CO 80020 (US). PACLAT,
Charles; 114 Wolcott Street, Medford, MA 02155 (US).
STAMM, Tom; 894 West Willow Street, Louisville, CO
80027 (US). WILLCOX, Steven; 4604 Lee Hill Drive,
Boulder, CO 80302 (US).

Agents: MEYER, Sheldon, R. et al.; Fliesler Dubb Meyer
and Lovejoy LLP, Suite 400, Four Embarcadero Center,
San Francisco, CA 94111-4156 (US).

Designated States (national): AE, AG, AL, AM, AT, AU,
AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL,, IN, IS, JP, KE, KG, KP, KR, KZ, L.C,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,
SL, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VN,
YU, ZA, ZM, ZW.

[Continued on next page]

(54) Title: PERSONALIZATION SERVER UNIFIED USER PROFILE

100 \

102

Corporate
Database

Personalization
Database

110 — Personalization
Server

112

(57) Abstract: The present invention includes
systems utilizing, and methods for generating, a
unified user profile (112) to provide a transparent
interface to multiple data sources. A base
user java bean is obtained to work through
a personalization server (110) and access a
personalization database (104). The base user
java bean provides a transparent interface through
which implicit and explicit properties can be
retrieved and updated. An enterprise java bean
is then created to extend the base user java bean
such that the implicit and explicit properties can
further be retrieved and updated from an external
user database through the transparent interface.

w0 02/086738 A1 NI 00000 OO0 A R

(84) Designated States (regional): ARIPO patent (GH, GM, Published:
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), — with international search report
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR,
GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent For two-letter codes and other abbreviations, refer to the "Guid-
(BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, ance Notes on Codes and Abbreviations" appearing at the begin-
NE, SN, TD, TG). ning of each regular issue of the PCT Gazette.

WO 02/086738 PCT/US02/12909

10

15

20

25

1

PERSONALIZATION SERVER UNIFIED USER PROFILE

CLAIM OF PRIORITY
[0001] This application claims priority to U.S. Provisional patent
application No. 60/286,466, filed April 25, 2001, entitled
PERSONALIZATION SERVER UNIFIED USER PROFILE, incorporated
herein by reference.

COPYRIGHT NOTICE

[0002] A portion of the disclosure of this patent document contains

material which is subject to copyright protection. The copyright owner has
no objection to the facsimile reproduction by anyone of the patent
document or the patent disclosure, as it appears in the Patent and
Trademark Office patent file or records, but otherwise reserves all copyright

rights whatsoever.

Field of the Invention:

[0003] The present invention relates generally to the integration of

data from multiple sources.

Background of the Invention:

[0004] Corporations are continually looking for better ways to
integrate new information with their existing data, such as information
relating to current and prospective customers that may be acquired from '
third party sources. To make such integration effective, a company must
be able to streamline the integration process, eliminate unnecessary cost
or purchases, and eliminate the downtime that is typically necessary to

implement a new data system or modify existing data structures.

WO 02/086738

10

15

20

25

2

[0005] As an example, a corporation may wish to incorporate
additional user profile data into their established user data. This additional
profile data may be configured and maintained by a separate source, such
as a personalization server. The corporation often has pre-existing
corporate customer or user data that is outside the scope of the
personalization server. This data, which typically lives in an existing
corporate database, may include, for each customer, information such as
name, social security number, and/or company-particular information such
as frequent flyer miles for a particular airline. The corporation would like to
integrate this data seamlessly into their personalization solution, avoiding
data migration difficulties where possible.

[0006] It is therefore an object of the invention to develop a
seamless approach to the integration of data from an existing data source

with data from an external source.

Summary of the Invention:

[0007] The present invention includes a system for generating a
unified user profile. The system includes a first data source and a second
data source. A server is used to access the first and second data sources.
The server utilizes a user component adapted to aggregate data from the

first and second data sources into a unified user profile.

[0008] Also included in the present invention is an architecture for
generating a unified user profile. The architecture may be built on a base
user enterprise java bean, which is capable of being extended to
incorporate existing user data from a user data store. A user-specific

enterprise java bean may then be generated, which allows transparent

PCT/US02/12909

WO 02/086738

10

15

20

25

3

read and write access to the existing user data.

[0009] The present invention also includes a method for generating
a unified user profile. In one embodiment, a base user java bean is
obtained that is adapted to work through a personalization serverto access
a personalization database. The base user java bean provides a
transparent interface through which implicit and explicit properties can be
retrieved and updated. An enterprise java bean is then created to extend
the base user java bean such that the implicit and explicit properties can

further be retrieved and updated from an external user database.

[0010] Also included in the present invention is a method for
transparently accessing multiple data sources. In the method, a base user
java bean is obtained that is adapted to work through a server to access
an internal data source. The base user java bean provides a transparent
interface through which implicit and explicit properties can be retrieved and
updated to the internal data source. The user java bean is then extended
such that said base user java bean further provides a transparent interface
through which implicit and explicit properties can be retrieved and updated

from at least one external data source.

[0011] The present invention further includes a system for
transparently accessing multiple data sources. The system uses a server
in communication with multiple data sources. An extended user java bean
is included in the system that is adapted to provide transparent access to

the data sources through the server.

Brief Description of the Figures:

[0012] Figure 1 is an illustration of a UUP configuration in

PCT/US02/12909

WO 02/086738

10

15

20

25

PCT/US02/12909
4
accordance with one embodiment of the invention.
[0013] Figure 2 is an llustration of a UUP configuration in
accordance with one embodiment of the invention.
[0014] Figure 3 is an llustration of a UUP configuration in
accordance with one embodiment of the invention.
[0015] Figure 4 is an llustration of a UUP configuration in
accordance with one embodiment of the invention.
[0016] Figures 5(a) and 5(b) are flowcharts showing steps for calling

a setUserPoints() method for implicit and explict cases, in accordance with
one embodiment of the present invention.

[0017] Figure 6 is a flowchart showing steps for operating an
ejbFind routine in accordance with one embodiment of the present

invention.

Detailed Description of the Invention

[0018] In accordance with the foregoing summary of the invention,
the following presents a detailed description of an embodiment of the

present invention, which is presently considered to be the best mode.

[0019] An architecture of the present invention defines the way in
which existing user data may be incorporated with more dynamically-
changing personalization data. In a server, such as a personalization
server that is used to personalize content or services for a particular use
or group of users, system users are typically represented by user profiles.
A user profile provides an ID for a user and access to the properties of a
user, such as age or email address. Property values can be single-valued

or multi-valued, and may be requested via a getProperty() function or

WO 02/086738 PCT/US02/12909

10

15

20

25

5

similar method which takes a property name as a key.

[0020] An advantage of a user profile of the present invention is that
it may be extended and customized to retrieve user information from an
existing data source. For example, a user profile that ships with a server
orsolution, such as a personalization server, may combine user properties,
such as properties from a personalization server database with user
properties from an LDAP server or legacy database as are known in the
art, into a single user profile for use within an application. Developers and
system users then need not worry about the different underlying data
sources. The user profile is the only place necessary to go for user

information.

[0021] A unified user profile (UUP) of the present invention includes
this aggregation of properties from an existing data source and the
personalization server database tables into a single, customized user
profile. More specifically, a UUP marries existing user/customer data by
extending a user component. By installing the personalization server
database tables into the existing database instance and extending a user
implementation, developers can quickly create a customized UUP that is
capable of retrieving properties from, and storing/updating properties to, an
existing database. This flexibility is desirable because it allows access to
existing data without any migration of data or disruption of existing
applications using that data. It should be understood, however, that
existing data may be migrated into a separate personalization server

database instance if desired.

[0022] One primary advantage of the UUP as compared to other
server solutions is that the UUP requires no database scheme updates or

data migration within a data management system, such as a customer

WO 02/086738 PCT/US02/12909

10

15

20

25

6

Relational Database Management System (RDBMS). The UUP is
preferably created by writing an extension EJB, rather than by updating
database tables, or running data migration scripts. Servers of the prior art
often require the updating of the user database table schema for additional

user properties.

[0023] Figures 1-4 show possible configurations for a UUP system
of the present invention. In a first configuration 100 of Figure 1, a
corporate, legacy, or other external database 102 and personalization
server database 104 provide property data to a personalization server 110.
The personalization server 110 also receives information from a user data
store 106, such as authentication information, user lists, group lists, and
group membership. The user data store may be any appropriate system,
such as an LDAP, Unix, or NT system as are known in the art. The user
data store 106 also includes a security realm 108 for authentication. The
personalization server database 104 and security realm 108 are kept
separate in this configuration, as such separation of authentication and
retrieval may be desirable, though not necessary to practice the invention.
This configuration may be used where users and groups already exist in
some type of data store, such as an LDAP directory. This existing user
property data is then taken by the personalization server 110 and merged

with the personalization data to generate the UUP 112.

[0024] A second configuration 200, as shown in Figure 2, may be
useful where users and groups already exist in a user data store 204, such
as an LDAP directory, and no existing user data must be incorporated into
the UUP 210. All user and group property data is then preferably stored

in the tables of the personalization server 202 database. The

WO 02/086738

10

15

20

25

7

personalization server 208 in this configuration still preferably utilizes a

security realm 206 of the user data store 204.

[0025] A third configuration 300, shown in Figure 3, may be useful
where there is no existing store of users and groups. The tables of the
personalization server database 302 contain all user and group data, as
well as preferably housing a separated security realm 304. The
personalization server 306 then only need to look to the personalization

server database 302 in generating the UUP 308.

[0026] A fourth configuration 400, shown in Figure 4, may be useful
where user, group, and property data are in an existing corporate, legacy,
or other external database 402 and must be incorporated into the UUP 410
by the personalization server 408. A custom security realm 404 must then
be created in order to use the existing users and groups with the
personalization server. The custom security realm need not necessarily be
stored with the external database 402, but may be incorporated into the
personalization database 406. Again, the retrieval and authentication

realms are preferably kept separate.

[0027] One embodiment of an architecture of the present invention
relies on three primary contributors for incorporating data in a UUP: (1) a
base user enterprise java bean (EJB), (2) an user data store, and (3) a

user-specific enterprise java bean (EJB).

[0028] A base user EJB is a Java class which is preferably extended
by a personalization customer to incorporate existing user data into the

personalization solution.

[0029] The base user EJB preferably provides a single, transparent

interface through which both implicit properties and explicit properties can

PCT/US02/12909

WO 02/086738

10

15

20

25

8

be retrieved or updated. The base user EJB utilizes a property set, which
may be used to give namespace qualifications to properties, as well as to
define property types, allowable values, etc. A property set acts like a data
schema for user properties. As used herein, transparency generally refers
to the fact that a user or application can make a call or request without care
as to where the data is stored or what naming convention the data may
use. If the data is in a legacy database instead of a personalization
database, the UUP will automatically process the request without the user

or application ever needing to know about the location or name.

[0030] In one embodiment of the invention, subclasses of the base
User EJB use two methods to retrieve or update: getProperty and
setProperty. These methods may retrieve and/or update both implicit and

explicit properties. The methods may be set as follows:

public Object getProperty(String propertySetName, String propertyName);
public void setProperty(String propertySetName, String propertyName,

Object propertyValue);

These methods preferably use two primary attributes: propertySetName
and propertyName. The propertySetName attribute specifies the data
schema to which the invocation applies. In this way, the propertySetName
acts as a namespace for the property that is to be retrieved or updated.
The propertyName attribute specifies the name of the property to be
updated or retrieved. One advantage of the using the propertySetName-
propertyName pair is that a single propertyName may be used across

multiple applications, or sub-application scopes. The multiple instances of

PCT/US02/12909

WO 02/086738 PCT/US02/12909

10

15

20

9

the property names may also correspond to differing definitions. Properties
retrieved from the base User bean shall be referred to as implicit
properties.

[0031] The user data store, which may be in existence prior to the
incorporation, is typically a database or table where data is held that may
relate to current users or customer data. This table may be colocated in
a database instance of the personalization server. The existing user data
store may hold user data which exists independent of the personalization
server database tables. The personalization server may require the existing
user data store to live in the same RDBMS instance as the personalization

server tables.

[0032] An example "AcmeCustomer" RDBMS table is shown in
Table 1. This table defines three values for each customer: (1)
Customer_Name, (2) Acme_Points, and (3) Acme_Discount.
Customer_Name is used as a unique identifier for each customer. This
unique identifier, once integration is complete, is preferably used to
uniquely identify a user throughout the Personalization server.
Acme_Points is a sample customer value. An Acme customer might collect
points as he or she makes purchases of Acme products. Acme_Discount

is the discount the customer receives on each Acme product purchase.

WO 02/086738 PCT/US02/12909

10

15

20

25

10

Table 1 - AcmeCustomer RDBMS table

Customer_Name Acme_Points Acme_Discount
bsmith 50000 0.2
jpatadia 100000 0.1
ughandi 85000 0.15
mbisson 65000 0.3
kdickson 32000 0.05
tstamm 200000 0.2
tcook 100000 0.1

Once the existing data store is fully understood, an EJB that extends the
base user EJB can be written, which takes advantage of the transparent
value retrieval and update services. Methods of extending Java beans

should be well known to persons skilled in the computer arts.

[0033] Tointegrate the existing user data with personalization tables
provided with a personalization server, an EJB may be written to extend
the user bean, which may be provided with the personalization server.
Once this bean is completed, the personalization server client has
transparent read and write access to properties previously stored in the
user-specific database table (explicit properties), and to properties stored
in the set of property tables of the Personalization server (implicit

propetrties).

[0034] Continuing with the example "Acme Customer" data store, an
AcmeUser EJB may be written that provides data update and retrieval

mechanisms for the existing table. To operate within constraints of the

WO 02/086738 PCT/US02/12909

11

present invention, the AcmeUser EJB may define the following methods:

. public Long getAcmePoints() - Returns the number of Acme points

collected to date by the customer.

5 . public void setAcmePoints(Long newAcmePointsValue) - Updates the

10

15

20

number of Acme points for the customer.

. public Double getAcmeDiscount() - Returns the current discount for

the customer.

. public void setAcmeDiscount() - Updates the customer's Acme

discount.

Properties retrieved from the extended user bean are called explicit

properties.

[0035] Once the methods of the extended bean are implemented,
both the Acme points and the Acme discount may be retrieved with the
inherited getProperty() and setProperty() methods implemented by the
base User EJB.

[0036] Therefore, for example user bsmith, the following two

methods would both return a Long containing the value 50000:

public Long getAcmePoints();

public Object getProperty (anyPropertySetName, "acmePoints");

Likewise, each of the following methods would update the Acme points

WO 02/086738

10

15

20

12

value for bsmith to 60,000:

public void setAcmePoints (new Double(60000));

public void setProperty (anyPropertySetName, "acmePoints", new
Double(60000));

[0037] In its implementation of transparent property update and
retrieval, the UUP preferably uses the notion of Java reflection to
determine whether a property is explicit before treating the property as
implicit and employing the notion of Property Sets. Reflection is a feature
of the Java programming language that allows an executing Java program
to examine or introspect upon itself in order to manipulate internal
properties of the program. An explicit property is preferably updated or
retrieved before an implicit property, if the propertyName corresponds to
an explicit property. Because of this search order, the actual property set
name is of no consequence if an explicit property is being updated or

retrieved.

[0038] The following example demonstrates a fictitious company's
use of the UUP to take advantage of existing customer data. The example
extends the User bean and retrieves data from a preexisting database.
This example shows how, with relative ease, a customized UUP can be
created that meets an application's persistence needs. The following table,

Table 2, explains what may be extended in order to create a custom UUP.

PCT/US02/12909

WO 02/086738

10

15

20

25

PCT/US02/12909

13

Table 2 - Sample Extensions to create a custom UUP

Object Must Extend

UUP Primary Key |UserPk--with no key fields added.

UUP EJB Interface |User

UUP EJB Userlmpl

Implementation

[0039] The fact that a UUP is a ConfigurableEntity means that user
profiles have the notion of setting and getting a property explicitly or
implicitly. Explicitly setting a property as used herein means calling a setter
method for a property directly. Implicitly setting a property means setting
a property via the setProperty() method where no explicit setter method is
available. For example, if a UUP contains a "userPoints" property, calling
setUserPoints() directly would explicitly set the userPoints property. Calling
setProperty() with the "userPoints" key would implicitly set the userPoints
property. When called, setProperty() first looks for a setUserPoints() setter
method to call in the user profile. If such a setter method exists, the
method is called to set the property and do whatever is necessary
regarding the change in value. Ultimately, it is the responsibility of the UUP
implementation to persist explicitly-set property values, even if they are
implicitly called via setProperty(). ConfigurableEntity preferably handles
persisting implicitly set properties only where no explicit setter method

exists.

[0040] Figures 5(a) and 5(b) diagram both an explicit 550 and
implicit 500 call to setUserPoints(), respectively. In both cases, it is the

responsibility of the UUP bean to store the userPoints value. If no

WO 02/086738

10

15

20

25

14

setUserPoints() method had existed in the UUP bean, the
ConfigurableEntity implementation would have handled storing the
userPoints value. In the Implicit case of Figure 5a, a call is made to
setProperty() 502. The system checks to see if a setUserPoints() methc.)d
exists 506. If so, setUserPoints() is called 506. If not, the system
continues executing setProperty 510. For the explicit case of Figure 5b,

a call made to setUserPoints() 552 will simply call setUserPoints() 554.

[0041] This notion of implicitly and explicitly setting properties allows
for additional flexibility in UUP implementation. If any special logic needs
to happen during the setting or getting of a property, such as the
calculation of another value, it may be done using a setter or getter method
for that property. Functionality external to the UUP may count on having a
setProperty() method and getProperty() method for property access,
eliminating any need to know whether a property has its own setter or
getter. For example, a <um:getproperty> JSP tag may retrieve a userPoints
property value even if a getUserPoints() method is the only way provided
by the UUP to retrieve userPoints. This is because a getProperty() method
of the UUP may first check to see if it has a getUserPoints() method before
checking elsewhere. Properties that have an explicit set PropertyName()
and get PropertyName() method are referred to as "explicit properties”,
while properties that can only be set through a call to setProperty() are

referred to as "implicit properties".

[0042] When implementing a custom UUP EJB, it may only be
necessary to implement explicit getter and setter methods for the explicit
properties forthe UUP. Implementations of these setters and getters would

then set and retrieve the property values in the existing data store.

PCT/US02/12909

WO 02/086738 PCT/US02/12909

10

15

20

25

15

[0043] In one embodiment, a get PropertyName() / set
PropertyName() approach is followed for all explicit property setting and
getting in a UUP. If a UUP has an explicit userPoints property, an explicit
getUserPoints() method is provided, as retrieveUserPoints() would not
work. Similarly, setting userPoints is done with a setUserPoints() method.
In this embodiment, the getProperty() and setProperty() methods look for
getters and setters that follow this convention when getting and setting
properties via implicit calls. Overriding setProperty() or getProperty() is not
permitted. The getting and setting of explicit properties is done through
getter and setter methods. Explicit getters and setters take and return
objects. Primitives such as long and float are wrapped, such as in
java.lang.Long and java.lang.Float objects, to be compatible with
ConfigurableEntity's getProperty() and setProperty() methods.

[0044] If a getter method is provided, it may be a good idea to
provide a setter method, and vice versa, as it cannot be predicted when a
user or application will try to set or get a property. For example, if a getter
is provided that retrieves a property from a database table without a
corresponding setter, a call to setProperty() will store that property in a
Personalization Server table. This is undesirable, as the value is retrieved
from one place and set in another. The next time the property is retrieved,
it would have its original value - not the value that was set. If a read-only

property is to be provided, an empty setter method may be implemented.

[0045] A preferred definition of ConfigurableEntity's getProperty()

method is as follows:

public Object getProperty(String propertySet,
String propertyName,

WO 02/086738 PCT/US02/12909

10

15

20

25

16

ConfigurableEntity explicitSuccessor,
Object defaultValue),

The getProperty() method preferably searches for properties in a specific
order. For example, if a property is not found for a User, a Group may be
queried for the value. In this case the User would inherit the property value
from a Group. In ConfigurableEntity terms, the Group would be the User's
"successor"; If a property is not found in a ConfigurableEntity, then the
successor to ConfigurableEntity may be queried. This way,

ConfigurableEntities can inherit and override values from a parent entity.

[0046] Successors can be either implicit or explicit. An implicit
successor is a default successor to a ConfigurableEntity, or a successor
that is set for a specific Property Set. An explicit successor is preferably a
ConfigurableEntity that may be passed as a parameter to the getProperty()
method. Following is the order of the getProperty() property search as it
exists in a preferred ConfigurableEntity:

* Look in the entity for the property for the specified Property Set.
* Look in the entity for the property in the default (null) Property Set.

* Look in the entity for the property in the Reserved Property Set (for
properties from LDAP if using the LDAPRealm).

» Look for the property in the entity's explicit successor (if specified).

* Look for the property in the entity's successor for the specified
Property Set.

* Look for the property in the entity's default successor.

+ Look for a default value as defined in the Property Set if the

Property Set is specified (not null).

WO 02/086738

10

15

20

25

17

* Return the defaultValue passed into the getProperty() method.

A preferred definition of ConfigurableEntity's setProperty() method is as
follows:

public Object setProperty(String propertySet,
String propertyName,
Object value);

[0047] If, in this preferred method, setProperty() is used to set a
property for a Property Set that is inconsistent with the Property Set
definition, an exception may be thrown. For example, suppose a
"UnifiedUserExample" Property Set is defined that has a userPoints
property of type Integer. If someone tries to set the userPoints property for
the "UnifiedUserExample" Property Set to be "abc™ an exception would be
thrown because userPoints is defined as being of type Integer and "abc"
is text. Similarly, setting a Boolean property value to "bar" would result in

an exception because Boolean values are restricted to Boolean objects.

[0048] If setProperty() is called and null is passed for the Property
Set, the property value may be set in the null Property Set, referred to as
the default Property Set. As described previously in the search order of
getProperty(), the default property set is preferably searched before looking

for the property value in the "Reserved" Property Set and successor.

[0049] The "Reserved" Property Set is preferably a read-only
Property Set that may be used to hold property values from an external

datastore. The "Reserved" Property Set may be used in the

PCT/US02/12909

WO 02/086738 PCT/US02/12909

10

15

20

25

18

Personalization Server, such as when properties are retrieved from an
LDAP directory. Attempting to set a property in the "Reserved" Property
Set may result in an exception being thrown. Properties in the "Reserved"
Property Set and the Reserved Property Set itself may not be editable via
User Management tools. Preferred User Management tools allow the
specification of attributes to be retrieved from an LDAP or other server for
users and groups. These attributes may then be the only ones retrieved

at runtime.

[0050] Properties may be set via setProperty() with a Property Set
specified that does not exist. This may be undesirable. When done, a
Property Set is not created "on-the-fly" for the specified Property Set name.
Rather, the specified Property Set name serves only as a namespace for
the property. Similarly, it may be undesirable to set a property via
setProperty() for an existing Property Set, specifying a property that does
not exist for that Property Set. Properties set in either of these ways may
not be editable through the User Management tools, while properties in the

"null" or "default" property set may be editable.

[0051] A call to getProperty() preferably returns a java.lang.Long
object if setProperty() is called passing a java.lang.Integer object value.

Code retrieving such a property may be written as follows:

Objectvalue =myUser.getProperty("my_property_set",
"my_integer_property",
null,
null);
Number tempNumber = (Number) value;

int realValue =

WO 02/086738 PCT/US02/12909

5

10

15

20

25

19

tempNumber.intValue();

[0052] A call to getProperty() preferably returns a java.lang.Double
object if setProperty() is called with a java.lang.Float object. Code retrieving
such a property may be written as follows:

Object value = myUser.getProperty("my_property_set",
"my_float_property",
- null,
null);
Number tempNumber = (Number) value;
float realValue =tempNumber.floatValue();

[0053] A User object preferably offers functionality for EJB find
operations that makes integrating a UUP with the Personalization Server
easy. Figure 6 shows a flowchart for an ejbFind() operation. An extended
UUP ejbFind() searches for records in the existing data store 602. If
successful, a call will be made to super.ejbFind() 604, the User object
ejbFind(). If successful, the User object ejbFind() will create the necessary
records for the UUP in the Personalization Server database tables if they
do not yet exist 610 and return the appropriate primary key. If the User
object ejbFind() fails, it may check the underlying security reaim 608 to
determine whether the username corresponds to a valid user. If so, the
User object ejbFind() creates the necessary records 610, thereby
eliminating finder errors and the time needed initially to migrate user data
into the Personalization Server User database tables. If either ejbFind()

fails or the user does not exist in the realm, a Finder Error is encountered

WO 02/086738

10

15

20

PCT/US02/12909

20

606. If no Finder Error is encountered, the appropriate primary key is

returned 612.

[0054] If the configuration is one such that the realm cannot verify

the existence of the user, but the user must be created, it may be the

responsibility of the EJB to create superclass records that are not found

initially.

[0055] Thé last step in one embodiment of creating a custom UUP

requires the UUP to be registered with a personalization or other server,

such as through user management tools. In order to register the UUP,

preferred user management tools utilize the following, in Table 3:

Table 3 - Registering

the UUP (example)

Profile Type Name

Arbitrary name that is later used to refer to the
profile type through the User Management

system's <um:getprofile> JSP extension tag

Profile Home Class

The home class of the new profile type

Profile Remote

Interface

The remote interface of the new profile type

Profile Primary Key
Class

The primary key class of the new profile type

Profile JNDI Name

The JNDI lookup name of the new profile type

By registering the UUP with the Personalization Server, it becomes

possible to ask for the new profile type with the <um:getprofile> JSP tag:

<um:getprofile profileType="UnifiedUserExample”

WO 02/086738

10

15

20

25

21

profileKey="<%=username%>"/>

[0056] It is then possible to use the <um:getproperty> and
<um:setproperty> JSP tags with the UUP.

LDAP Property Retrieval Support

[0057] In addition to the transparent retrieval/update of impiicit and
explicit properties, one embodiment of a unified user profile mechanism
facilitates the retrieval of user information from an LDAP server, with no
Java code required from the personalization server customer. A set of
administration tools allows specification of user and group properties to be
retrieved from the LDAP server at a property request during application run
time. Preferably, the only requirement of the Personalization Server
customer for LDAP property retrieval is that the customer employ an LDAP
security realm. At runtime, the UUP queries certain configuration
information to detect whether the LDAP security realm is currently in use.
If so, the names of the user and group properties to be retrieved may be
obtained from an LDAPConfiguration session EJB, and the appropriate
properties for the current user retrieved. The customer may not be
required to use the LDAP security realm to receive the benefit of other
UUP capabilities.

[0058] Other features, aspects and objects of the invention can be
obtained from a review of the figures and the claims. Itis to be understood
that other embodiments of the invention can be developed and fall within

the spirit and scope of the invention and claims.

[0059] The foregoing description of preferred embodiments of the

PCT/US02/12909

WO 02/086738 PCT/US02/12909

10

22

present invention has been provided for the purposes of illustration and”

description. It is not intended to be exhaustive or to limit the invention to

. the precise forms disclosed. Obviously, many modifications and variations

will be apparent to the practitioner skilled in the art. The embodiments
were chosen and described in order to best explain the principles of the
invention and its practical application, thereby enabling others skilled in the
art to understand the invention for various embodiments and with various
modifications that are suited to the particular use contemplated. It is
intended that the scope of the invention be defined by the following claims

and their equivalence.

WO 02/086738

o N OO O AW N =

PCT/US02/12909
23
CLAIMS
What is claimed is:
1. A system for generating a unified user profile to allow transparent

access to multiple data sources, the system comprising:
(a) afirst data source;
(b) asecond data source; and

(c) a server adapted to access said first and second data
source, said server comprising a component adapted
to aggregate data from said first and second data

sources into a unified user profile.

2. A system according to claim 1, wherein said first data source is
selected from the group consisting of legacy databases, corporate
databases, and user data stores.

3. A system according to claim 1, wherein said first data source
contains data selected from the group consisting of authentication

information, user lists, group lists, and group membership.

4. A system according to claim 1, further comprising a security realm
adapted to allow authentication of data in at least one of said first and

second data sources.

WO 02/086738 PCT/US02/12909

—-—

H W N -

24

5. A system according to claim 1, wherein said server is a

personalization server.

6. A system according to claim 1, wherein said component comprises

an enterprise java bean.

7. A system according to claim 6, wherein said enterprise java bean
retrieves and updates data in at least one of said first and second data
sources using methods selected from the group consisting of getProperty()
and setProperty().

8. A system according to claim 1, wherein said component comprises

an extended java bean.

9. A system according to claim 1, wherein said component provides a
transparent interface through which implicit and explicit properties can be
retrieved and updated.

10. A system according to claim 9, wherein said component comprises
a property set, said property set adapted to give namespace qualifications

to said implicit and explicit properties.

11. A system according to claim 1, wherein said component comprises
getter and setter properties.

WO 02/086738 PCT/US02/12909

o N OO O AW N -

25

12. A system according to claim 1, wherein said component provides a
transparent interface adapted to store and retrieve data from said first data

store and said second data store.

13. A system according to claim 1, wherein said second data source is

a personalization database.

14. An architecture for generating a unified user profile for transparent

access to existing user data, the architecture comprising:

(a) a base user enterprise Java bean, said base user enterprise
Java bean capable of being extended to incorporate said

existing user data;
(b) a user data store adapted to contain said existing user data; and

(c) a user-specific enterprise java bean, adapted to provide

transparent read and write access to said existing user data.

15. An architecture according to claim 14, further comprising a data

source containing data external to said existing user data.

16. An architecture according to claim 15, wherein said user-specific
enterprise Java bean further allows transparent read and write access to

said data in said data source.

WO 02/086738

I O R S

PCT/US02/12909

26

17. An architecture according to claim 14, further comprising a server
adapted to provide said read and write access to a user of said unified user

profile.

18. An architecture according to claim 17, wherein said server is a

personalization server.

19. An architecture according to claim 14, wherein said user data store
is a table in an internal data source selected from the group consisting of

legacy databases, corporate databases, and customer databases.

20. Anarchitecture according to claim 14, wherein said user data store
contains data selected from the group consisting of authentication
information, user lists, group lists, and group membership.

21. Anarchitecture according to claim 14, further comprising a security

realm adapted to allow authentication of data in said user data store.

22. An architecture according to claim 14, wherein said user-specific
enterprise Java bean utilizes a property set, said property set adapted to
give namespace qualifications to implicit and explicit properties of said

existing user data.

23. An architecture according to claim 14, wherein said user-specific

WO 02/086738

© 00 N OO 0o~ WN -

- a
N =~ O

27

enterprise Java bean utilizes getter and setter properties.

24. A method for generating a unified user profile for providing
transparent access to a personalization database and external user

database, said method comprising the steps of:

(a) obtaining a base user java bean adapted to work through a
personalization server to access said personalization
database, said base user java bean adapted to provide a
transparent interface through which implicit and explicit
properties can be retrieved and updated from the

personalization database; and

(b) creating an enterprise java bean to extend the base user java
bean such that said implicit and explicit properties can further

be retrieved and updated from an external user database.

25. A method according to claim 24, further comprising the step of
generating transparent read and write access to said external database

through the extended said base user java bean.

26. A method according to claim 24, further comprising the step of

configuring a server to provide said read and write access.

27. A method according to claim 26, wherein said server is a

personalization server.

PCT/US02/12909

WO 02/086738

HON -

PCT/US02/12909

28

28. A method according to claim 24, wherein said external user
database is selected from the group consisting of legacy databases,

corporate databases, and customer databases.

29. A method according to claim 24, wherein said external user
database contains data selected from the group consisting of

authentication information, user lists, group lists, and group membership.

30. A method according to claim 24, further comprising the step of
obtaining a security realm adapted to allow authentication of data in said

personalization database and said external user database.

31. A method according to claim 24, wherein the extended base user
java bean utilizes a property set, said property set adapted to give
namespace qualifications to implicit and explicit properties of said data in

said personalization database.

32. A method according to claim 31, wherein said implicit and explicit
properties comprise getter and setter properties.

33. A method for transparently accessing multiple data sources, said

method comprising the steps of:

(a) obtaining a base user java bean adapted to work through a

WO 02/086738

© 00 N O O bH

10
11

PCT/US02/12909

29

server to access an internal data source, said base user java
bean adapted to provide a transparent interface through
which implicit and explicit properties can be retrieved and

updated; and

(b) extending the user java bean such that said base user java bean
is further adapted to provide a transparent interface through
which implicit and explicit properties can be retrieved and

updated from at least one external data source.

34. A method according to claim 33, further comprising the step of

configuring a server to operate said transparent interface.

35. A method according to claim 33, further comprising the step of
obtaining a security realm adapted to allow authentication of data in said

internal data source and said external data source.

36. An method according to claim 33, further comprising the step of
configuring a property set for the extended user java bean.

37. A method according to claim 35, wherein said property set is
adapted to give namespace qualifications to implicit and explicit properties

of said data in said internal and external data sources.

38. A method according to claim 37, wherein said implicit and explicit

(o> N & ;I N O B S

WO 02/086738

30

properties comprise getter and setter properties.

39. Amethod according to claim 37, further comprising the step of using
reflection to determine whether a property of said data in said internal and

external data sources is explicit.

40. A system for transparently accessing multiple data sources, said

system comprising:
(a) a plurality of data sources;
(b) a server in communication with each said data source; and

(c) an extended user java bean adapted to provide transparent

access to said plurality of data sources through said server.

41. Asystem according to claim 40, wherein atleast one of said plurality
of data sources is selected from the group consisting of legacy databases,

corporate databases, and user data stores.

42. A system according to claim 40, further comprising a security realm
adapted to allow authentication of data in at least one of said plurality of

data sources.

43. A system according to claim 40, wherein said server is a

personalization server.

PCT/US02/12909

WO 02/086738

HWN -

—

W N O O hsx W N

31

44. A system according to claim 40, wherein said extended user java
bean retrieves and updates data in at least one of said plurality of data
sources using methods selected from the group consisting of getProperty()
and setProperty().

45. A system according to claim 40, wherein said extended user java
bean is adapted to allow implicit and explicit properties of data in said
plurality of data sources to be retrieved and updated.

46. A system according to claim 45, wherein said extended user java
bean utilizes a property set, said property set adapted to give namespace

qualifications to said implicit and explicit properties.

47. A system according to claim 45, wherein said implicit and explicit

properties comprise getter and setter properties.

48. Asystemforunifying multiple data sources, said system comprising:

(a) a naming convention to be followed in storing and accessing

data in the data sources;

(b) a plurality of data sources, at least one data source containing

a data entry not following said naming convention;

(c) a set of identifier pairs, each identifier pair corresponding to a
data entry that does not follow said naming convention, the

identifier pair including the name of the entry and a

PCT/US02/12909

WO 02/086738

10
11
12

0 N OO OB WwNN -

32
corresponding name that follows the naming convention; and

(d) a server in communication with each data source and the set of
identifier pairs, the server adapted to allow access to the

data sources by a request following said naming convention.

49. Asystem according to claim 48, wherein at least one of said plurality
of data sources is selected from the group consisting of legacy databases,

corporate databases, and user data stores.

50. A system according to claim 48, further comprising a security realm
adapted to allow authentication of data in at least one of said plurality of

data sources.

51. A system for generating a unified user profile adapted to allow
transparent access to multiple data sources, the system comprising a

server including:
(a) a first component adapted to access a first data source;

(b) a second component adapted to access a second data source;
and

(c) a user component adapted to aggregate data from the first and

second data sources into a unified user profile.

52. A system according to claim 51, further comprising component

adapted to access a security realm for authentication of data in at least one

PCT/US02/12909

WO 02/086738

W N -

33

of said first and second data sources.

53. A system according to claim 51, wherein the user component

comprises an enterprise java bean.

54. A system according to claim 51, wherein the user component
retrieves and updates data in at least one of the first and second data
sources using methods selected from the group consisting of getProperty()
and setProperty(). ‘

55. A system according to claim 51, wherein the user component
provides a transparent interface through which implicit and explicit
properties can be retrieved and updated.

56. A system according to claim 55, wherein the user component
comprises a property set, said property set adapted to give namespace
qualifications to said implicit and explicit properties.

57. A system according to claim 51, wherein the user component

comprises getter and setter properties.

58. An architecture for generating a profile adapted to provide access

to user data, the architecture comprising:

(a) a base user enterprise Java bean, said base user enterprise

PCT/US02/12909

WO 02/086738

(&)}

HWN -

g W N -

34
Java bean capable of incorporating the user data; and

(b) a user-specific enterprise java bean, adapted to provide

transparent read and write access to the user data.

59. An architecture according to claim 58, further comprising a server

adapted to provide the read and write access to the user data.

60. An architecture according to claim 58, wherein said user data store
contains data selected from the group consisting of authentication

information, user lists, group lists, and group membership.

61. An architecture according to claim 58, wherein said user-specific
enterprise Java bean utilizes a property set, said property set adapted to
give namespace qualifications to implicit and explicit properties of the user
data.

62. An architecture according to claim 59, wherein the user-specific

enterprise Java bean utilizes getter and setter properties.

63. A computer readable medium containing instructions which, when

executed by a server, cause the server to perform the steps of:

(a) obtaining a base user java bean adapted to work through the
server to access a first database, said base user java bean

adapted to provide a transparent interface through which

PCT/US02/12909

© 0O ~N O

10

HWODN -

-_—

A WO N -

WO 02/086738

35

implicit and explicit properties can be retrieved and updated
from the first database; and

(b) éreating an enterprise java bean to extend the base user java
bean such that said implicit and explicit properties can further

be retrieved and updated from a second database.

64. A computer readable medium according to claim 63, wherein the
medium further causes the server to generate transparent read and write
access to the second database through the extended said base user java

bean.

65. A computer readable medium according to claim 63, wherein the
medium further causes the server to obtain a security realm adapted to
allow authentication of data in the first database and the second database.

66. A computer readable medium according to claim 63, wherein the
extended base user java bean utilizes a property set, said property set
adapted to give namespace qualifications to implicit and explicit properties

of said data in the first database.

67. A computer readable medium according to claim 63, wherein the

extended base user java bean utilizes getter and setter properties.

PCT/US02/12909

WO 02/086738 PCT/US02/12909

1/6
102 104 106
108
Corporate Personalization Security User
Database Database Realm Data
' Store

110 — Personalization
Server

112

FIG. -1

WO 02/086738

200 \

2/6

202

N~

Personalization
Database

N

206

| Security

Realm

208 —__] Personalization

Server

210

FIG. - 2

PCT/US02/12909

User
Data
Store

7/

WO 02/086738 PCT/US02/12909

3/6

300
\ 302
304 \\

Personalization
Security Server
Realm Database
K/_{/

306 — | Personalization
Server

308

FIG. -3

WO 02/086738 PCT/US02/12909

4/6
400 \
404 402 - 406
CUStO_m Corporate ~ Personalization
Security Database . Database
Realm

L ~

408 - | Personalization
Server

410

FIG. - 4

WO 02/086738 PCT/US02/12909

5/6
500 \

502
4

Implicit case>» call to setProperty()

l / 504
Check to see if a setUserPoints()
method exists

Yes No

N s

Call setUserPoints() Continue executing setProperty()

FIG. -5a

550 \

552

4

Explicit case—> call to setUserPoints()

l >

Call setUserPoints()

FIG. - 5b

WO 02/086738 PCT/US02/12909

6/6
600 \\
602

Extended
UUP ejbFind()
succeeds ?

604

N

Super. ejbFind()

succeeds ? Finder Error

User
exists in
realm ?

Yes
Create necessary 610
records in Personalization —
Server Database tables
e Return Primary Key L 612

FIG. - 6

INTERNATIONAL SEARCH REPORT International application No.
PCT/USO2/ 12909

A. CLASSIFICATION OF SUBJECT MATTER
IPC(7) :GOGF 15/00, 153/16, 17/30; HOtH 1/00
US CL :707/2, 10; 155/3.04; TO9/203, 298
According to International Patent Classitication (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

US. 70772, 10; +55/3.04; T09/203, 228

Documentation searched other than minimum documentation to the extent that such documents are included in the fields

senhet

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

WEST

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

Y US 5,812,865 A (THEIMER et al.) 22 September 1998, 1-67
the entire paper is relevant

Y US 6,199,099 B1 (GERSHMAN et al.) 06 March 2001, 1-67
the entire paper is relevant

Y US 5,754,939 A (HERZ et al.) 19 May 1998, | 1-67
the entire paper is relevant

Y US 6,195,651 B1 (HANDEL et al.) 27 February 2001, 1-67
the entire paper is relevant

Y US 5,813,006 A (POLNEROW et al.) 22 September 1998, 1-67
the entire paper is relevant

[:] Further documents are listed in the continuation of Box C. E] See patent family annex.

. Special categories of cited documents: " tater document published after the international filing date or priority
date and not in conflict with the application but cited to understand

nan - i - Ter ' o yres 1 -
A LI(ILlI'I“t‘Hl dehmny‘: 1he' general state of the art which is not the principle or theory underlying the invention
considered to be of particular relevance
.) - "\ locume daimed invention c
i o earlier document published on or atter the international filing date document of particular 'e]'"\‘”“eﬁlhc <l um.ul imvention cannot be
. considered novel or cannot be considered to involve an inventive step
"L document which may throw doubts on priority claim(s) or which is when the document is taken alone
cited to establish the publication date of another citation or other wyrn
special reason (as specified)) document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
" document referring to an oral disclosure. use, exhibition or other combined with one or more other such documents, such combination
means being obvious o a person skilled in the art
wyyn N Do .3 e tianal 10 Ate Ater wen . -
i document p'ul)'h.\lu d prior to the international filing date hut later & document member of the same patent tamily
than the priority date claimed)
Date of the actual completion of the international search Date of mailing of the international search report
1 JUNE 2002 1 1 JUL 2002
Name and mailing address of the ISA/US Authorized ofticer

Commissioner of Patents and Trademarks 74"| p //‘/' —/‘L{‘—"
Box PCT THUY PARD fo:’p&@a I (I D]
Washington, D.C. 20231 ‘ W

Facsimile No. (703) 305-3230 Telephone No. (703) 305-1091

Form PCT/ISA/210 (second sheet) (July 1998)%

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

