
US 200200266.15A1 

(19) United States 
(12) Patent Application Publication (10) Pub. No.: US 2002/0026615 A1 

Hewitt et al. (43) Pub. Date: Feb. 28, 2002 

(54) ENHANCEDTURBO PRODUCT CODE Publication Classification 
DECORDER SYSTEM 

(51) Int. Cl." .................................................... H03M 13/00 
(76) Inventors: Eric John Hewitt, Pullman, WA (US); (52) U.S. Cl. .............................................................. 714/752 

Alan Robert Danielson, Moscow, ID 
(US); Peter Sean Ladow, Redmond, (57) ABSTRACT 
WA (US); Tom Leroy Hansen, Pullman, WA (US) A method and apparatus for decoding a linear block encoded 

String of information bits comprising: converting the String 
Correspondence Address: into a plurality of codewords. Performing hard and soft 
HAVERSTOCK & OWENS LLP decisions on each codeword to generate a hard and Soft 
Suite 420 decision vector. Computing the Syndrome and finding the 
260 Sheridan Avenue location of the two minimum values by Galois Field Arith 
Palo Alto, CA 94.306 (US) metic. Designating these values LOW1 and LOW2 and 

Xoring with a Ncl, thus generating Nc2. Swapping Nc1 with 
(21) Appl. No.: 09/826,443 Nc2 and determining the lowest soft decision value, Min1 

and a next lowest value, Min2. The two bit locations creating 
(22) Filed: Apr. 4, 2001 Min1 are designated as MinA and MinB. MinA being 

replaced with Min2 minus the value MinA. MinB being 
Related U.S. Application Data replaced with Min2 minus the value at MinB. Generating an 

output codeword by subtracting Min1 from all other bit 
(63) Non-provisional of provisional application No. locations values and 2's complementing all Soft values with 

60/194.570, filed on Apr. 4, 2000. 0 in their location. Creating the new soft value vector. 

INPUT DATA 

70 

one clean 

703 

three clean 

  



US 2002/0026615 A1 

30 

- - - - - - - - - - - - m - - - - - - - 

| ! | | | | + | | | | | | L | |- | | ! | | 

- 

1. 

Iterations 

Fig. 1 

10 

Patent Application Publication Feb. 28, 2002 Sheet 1 of 16 

  







US 2002/0026615 A1 Feb. 28, 2002. Sheet 4 of 16 Patent Application Publication 

. 4a Fig 

    

  

  

  

  

  



US 2002/0026615 A1 Feb. 28, 2002. Sheet 5 of 16 Patent Application Publication 

. 4c Fig 

  



Patent Application Publication Feb. 28, 2002 Sheet 6 of 16 US 2002/0026615 A1 

\O 

\-dId LOld LnO 
  



Patent Application Publication Feb. 28, 2002 Sheet 7 of 16 US 2002/0026615 A1 

OUTPUT 
BLOCK 

410 

404 AND 
DECODE 
CONTROL 410 

SISO 
DECODE 
BLOCK 

    

  

    

  





Patent Application Publication Feb. 28, 2002 Sheet 9 of 16 US 2002/0026615 A1 

106 N 
502 

data 

Loader Correction 
Module data 

504 

Storage 
Registers 

and 
Nearest 
Neighbor 
Generator 
Module 

Un-Loader 
Module 

506 min 1 
min 2 

Fig. 8 

  

  

    

    

    

  



Patent Application Publication Feb. 28, 2002 Sheet 10 of 16 US 2002/0026615 A1 

Nearest Neighbor 
Generator 

OUTPUT 

minimum 
computation 

Fig. 9 

    

  

  

  

  

  

  



Patent Application Publication Feb. 28, 2002 Sheet 11 of 16 US 2002/0026615 A1 

INPUT DATA 

70 O 

702 

one clean 

C. 
Fig. 10a 

703 

  



Patent Application Publication Feb. 28, 2002 Sheet 12 of 16 

Has siso corr 
lag Been ASSerted 

Is a datao Zero 
Signal Asserted 

Are There 
2 Valid Axes? 

Stop Iterating 

Fig. 10b 

705 

No Clean 

US 2002/0026615 A1 

700 

State 

    

  

  

  

  

  

  

  

  

  



Patent Application Publication Feb. 28, 2002 Sheet 13 of 16 US 2002/0026615 A1 

Signs match assert? 

700 

datao Zero flag 
asserted? 

hyper axis valid? 

Current aXIS 
"O 1 Or "10"? 

702 

  

  

    

  

  

  

  



US 2002/0026615 A1 

?sexV p?IBA Kue W AAOH 

Patent Application Publication Feb. 28, 2002 Sheet 14 of 16 

  

  

  

  



Patent Application Publication Feb. 28, 2002 Sheet 15 of 16 US 2002/0026615 A1 

702 

datao Zero 
asserted? 

Stop iterating 

datao-Zero 
asserted? 

Fig. I0e 

  

  

  



Patent Application Publication Feb. 28, 2002 Sheet 16 of 16 US 2002/0026615 A1 

800 801 802 803 

Fig. 11 



US 2002/00266.15 A1 

ENHANCEDTURBO PRODUCT CODE 
DECORDER SYSTEM 

RELATED APPLICATION 

0001. This Patent Application claims priority under 35 
U.S.C. 119 (e) of the co-pending U.S. Provisional Patent 
Application, Serial No. 60/194,570 filed Apr. 4, 2000, and 
entitled “ENHANCED TURBO PRODUCT CODE 
DECODER SYSTEM". The Provisional Patent Application, 
Serial No. 60/194.570 filed Apr. 4, 2000, and entitled 
“ENHANCED TURBO PRODUCT CODE DECODER 
SYSTEM' is also hereby incorporated by reference. 

BACKGROUND OF THE INVENTION 

0002 The present invention relates to an apparatus and 
method thereof of decoding data, in general, and in particu 
lar, and method and apparatus for decoding Enhanced Turbo 
Product Codes in an efficient Turbo Product Code Decoder 
System. 
0003) When transmitting data using non-binary lower 
and higher order modulation, a binary turbo product code 
encoder and decoder is used, along with Gray code mapping 
and log-likelihood ratio (LLR) computation. This scheme is 
often called pragmatic coding because it avoids the complex 
task of constructing a forward error correction code that 
matches the given channel requirement. Some prior art 
coding techniques, Such as Ungerboeck Trellis Coded 
Modulation (TCM), require the construction of convolu 
tional codes that are built based on the desired constellation. 
Such a code could be built, for example, to match an 8-PSK, 
or phase shift key, modulation. However, the code must be 
redesigned if the modulation is changed from 8-PSK to 
16-PSK, or 16-QAM, known as Quadrature Amplitude 
Modulation. This makes practical use of Such a coding 
scheme difficult. Other schemes have been developed for 
block codes Such as Block Coded Modulation, but these also 
Suffer the Same code redesign issue. 
0004. A pragmatic TCM approach was discovered which 
alleviated these complex design issues by using a Standard 
binary convolutional code mapped to a higher order modu 
lation System. This approach has also been applied to block 
codes and to Turbo Product Codes (TPCs). A simple Gray 
code map is used to map the binary bits output from a TPC 
encoder to a signal constellation. For example, if 16-QAM 
is chosen as the modulation type, then bits output from the 
encoder are grouped into words having 4 bits each. 
0005. In order to get optimum performance from a TPC 
decoder, Soft decision information is generated from the 
channel. This is accomplished by computing the log-likeli 
hood ratio (LLR) which gives a confidence (Soft decision) 
value for each bit in each 4 bit word. The optimal LLR is 
very complex to compute, as it requires the computation of 
logarithms, Euclidean distance, and exponentials. The gen 
eral method used in prior art decoderS is to pre-compute the 
value of the LLR for each possible received channel value. 
The resulting data is then stored in a ROM or other storage 
medium, and the LLR is calculated using a table lookup 
from the storage medium. The problems with this method of 
computation is that it requires a different lookup table for 
each modulation format that is Supported. In addition, the 
Size of the lookup tables becomes very large for very high 
order modulations, thus requiring large Storage mediums. 

Feb. 28, 2002 

0006 What is needed is an LLR approximation method 
and apparatus which takes an expression with a natural 
logarithm and exponentials and reduces it to a set of linear 
equations. In addition, what is needed is that the LLR 
approximation method be simple enough to be implemented 
in hardware and also be able to determine Soft-input values 
without using a lookup table. 
0007 Previous methods of locating synchronization pat 
terns in data being input were to Scan the data Stream as it 
passed a point and then Start a counter when a Synchroni 
Zation mark was found to indicate when the next mark would 
be expected. The problems with this method is whenever a 
false Synchronization mark is found, all other Synchroniza 
tion marks are ignored until it is determined that the Syn 
chronization mark was in fact false. Whether the mark is 
false or not is determined by not finding another mark at the 
expected location. 
0008. This problem can be addressed by using larger 
Synchronization markS. However larger marks cause higher 
overhead for the Synchronization modules. In addition, these 
Solutions that increase the size of a Synchronization mark 
Suffer in a noisy environment. Another possibility is Scan 
ning the datastream at two or more locations So that two or 
more Synchronization marks can be expected at the same 
time. This is the same as multiplying the length of the 
Synchronization mark by the number of marks that are 
observed. This is undesirable because all data between the 
observed points is buffered in RAM and thus takes up space 
in the RAM. As the length of the synchronization mark 
increases, the probability that one or more bits in the 
Synchronization mark are incorrect increases. 
0009 Thus, what is needed is a method and apparatus 
that Scans the data Stream for Synchronization marks and 
uses only one observation point. What is also needed is that 
the method and apparatus that Scans input bit Stream by 
Searching for periodic Synchronization marks, and when 
Synchronized, the output data Stream is bit and block 
aligned. 

0010 Prior art iterative decoders use a single micropro 
ceSSor to execute the Steps required to decode data entering 
the System. These decoderS are relatively slow, because the 
data is Stored in the System's memory. Hardware implemen 
tations of turbo decoders generally use a Serial concatenation 
of SISO decoders to achieve faster decoding speeds, with 
each SISO performing one iteration and passing the data to 
succeeding SISOs to do later iterations. Such decoders 
increase the latency of the System and also require more 
logic to implement. 
0011. Some prior art decoders utilize parallel processing 
to achieve higher data throughput rates. These types of 
decoders store data with four codeword bits per RAM 
location. The data is then accessed and Sent directly to four 
parallel SISO decoders, where each decoder can input only 
one codeword bit per clock cycle. These decoderS have a 
data throughput that is 4 times more than decoders using 
only one SISO. Thus, the processing power grows linearly 
with the parallel SISOs. For example, if a decoder uses 8 
SISOs instead of 4, it will operate at roughly twice the speed. 
If a decoder operating at 100 Mbit/sec or even 1 Gbit/sec is 
required, this method of decoding will become too complex 
to build. Further, prior art decoders cannot Support Enhanced 
TPCs (ETPCs), which are codes that include constituent 



US 2002/00266.15 A1 

coding, Such as extending Hamming Codes and/or parity 
codes along with hyper diagonal parity. Also, prior art SISO 
decoders input generally one codeword bit per clock cycle. 
So, the SISO executes the decoding Steps as the data is 
received and after the entire codeword is input into the 
SISO. The SISO then outputs the result one codeword bit per 
clock cycle. 
0012 Instead, what is needed is a SISO decoder that can 
proceSS multiple codeword bits per clock cycle. Therefore, 
what is needed is a decoding method and apparatus that can 
proceSS data in parallel and Scale to higher decoding 
throughput rates. What is also needed is that the method and 
apparatus Support Scalable decoding as well as able to 
decode ETPCs. What is also needed is a RAM organization 
method in the apparatus which results in low complexity, 
high data throughput RAM access. 
0013 Prior art decoders find codewords nearby the center 
codeword. The prior art decoders utilize a Search algorithm 
that requires a used bit location register, Syndrome calcula 
tions, and error lookup tables to find the nearby codewords. 
Using these algorithms and registers, the decoder requires a 
Significant amount of hardware. This hardware includes 
large Syndrome generating circuits that are slow due to the 
Significant amount of Syndrome calculations. In addition, 
used bit location registers and lookup tables are required 
which add to the amount of hardware. What is needed is a 
method and apparatus to calculate nearest neighbor code 
words in reduced search set. What is also needed is that the 
method and apparatus Simplify the nearest neighbor Search 
and reduce the codeword search by using much less logic 
than that of the prior art. 
0.014. The number of iterations required to correct a block 
of data varies from block to block. This phenomenon occurs 
even when the channel conditions have white Gaussian 
noise. The location and number of errors created by the 
channel can change the rate at which the decoder converges. 
FIG. 1 shows a probability density function of the iterations. 
The X-axis if FIG. 1 shows the number of iterations ranging 
from 1 to 30. The y-axis shows the probability of a given 
block requiring that number of iterations. AS can be seen, 
there is a long tail eXtending out to 20 iterations. In fact, for 
this Set of blocks, the maximum number of iterations 
required is 26. 
0.015 When an iterative decoder is required to run at a 
maximum number of iterations, all blocks of data that do not 
converge are output from the decoder with errors. This 
causes results in poor bit error rate performance, because the 
decoder is not allowed to iterate longer on the blocks of data 
to correct these errors. The prior art decoder has the ability 
to Stop iterating once it converges on the block of data. 
However, the decoder will have problems converging on a 
block of data which enters as a continuous Stream. In other 
words, it is very difficult to Stop the transmission of data 
when the decoder requires a larger number of iterations to 
converge. 

0016 What is needed is a decoder that is able to deter 
mine when it has converged on a codeword. What is also 
needed is a decoder which iterates more for more difficult 
blocks and iterates less for less difficult blocks. What is also 
needed is a decoder that can converge on blocks of data that 
are input into the decoder in a continuous Stream. It is also 
desired that the decoder utilize a design that allows it to run 
a variable number of iterations. 

Feb. 28, 2002 

SUMMARY OF THE INVENTION 

0017 Amethod and apparatus for decoding a linear block 
encoded String of information bits comprising: converting 
the String into a plurality of codewords. Performing hard and 
Soft decisions on each codeword to generate a hard and Soft 
decision vector. Computing the Syndrome and finding the 
location of the two minimum values by Galois Field Arith 
metic. Designating these values LOW1 and LOW2 and 
Xoring with a Ncl, thus generating Nc2. Swapping Nc1 with 
Nc2 and determining the lowest soft decision value, Min1 
and a next lowest value, Min2. The two bit locations creating 
Min1 are designated as MinA and MinB. MinA being 
replaced with Min2 minus the value MinA. MinB being 
replaced with Min2 minus the value at MinB. Generating an 
output codeword by subtracting Min1 from all other bit 
locations values and 2's complementing all Soft values with 
0 in their location. Creating the new soft value vector. 
0018. Other features and advantages of the present inven 
tion will become apparent after reviewing the detailed 
description of the preferred embodiments set forth below. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0019 FIG. 1 illustrates a plot of the probability that a 
decoder will need a certain number of iterations based on the 
number of iterations. 

0020 FIG. 2 illustrates a block diagram of encoder/ 
decoder System in accordance with the present invention. 
0021 FIG. 3 illustrates a block diagram of the channel 
interface module in accordance with the present invention. 
0022 FIG. 4a, 4b, and 4c illustrate three dimensional 
graphs of Log Likelihood Ratio Plots. 
0023 FIG. 5 illustrates a block diagram of the Log 
Likelihood Ratio module in accordance with the present 
invention. 

0024 FIG. 6 illustrates a block diagram of the RAM 
interface module in accordance with the present invention. 
0025 FIG. 7 illustrates a detailed block diagram of the 
RAM interface module in accordance with the present 
invention. 

0026 FIG. 8 illustrates a block diagram of the Soft 
In/Soft Out Decoder in accordance with the present inven 
tion. 

0027 FIG. 9 illustrates a block diagram of the nearest 
neighbor generator module in accordance with the present 
invention. 

0028 FIGS. 10a-e illustrate a flow charts of the stop 
iterations function in accordance with the present invention. 
0029 FIG. 11 illustrates a flow chart of the stop iterations 
process in accordance with the present invention. 

DETAILED DESCRIPTION OF THE 
PREFERRED EMBODIMENT 

0030 The present invention is to an enhanced Turbo 
Product Code (ETPC) Forward Error Correction (FEC) 
Encoder/Decoder System or Device. The system in accor 
dance with the present invention Supports Single or multi 
dimensional codes having both extended-Hamming and 



US 2002/00266.15 A1 

parity only constituent codes. This device may integrate both 
an ETPC encoder and decoder as well as modules for helical 
interleaving, Synchronization mark insertion and detection, 
CRC computation, Scrambling, and higher order modulation 
Symbol mapping. 
0.031 FIG. 2 shows a block diagram of the system in 
accordance with the present invention. The encoder path 101 
of the device includes an unencoded data interface 103, an 
encoder module 105, and an encoded data interface 107. The 
decoder path 102 of the device 100 includes a channel 
interface 104, a decoder module 106 and a decoded data 
interface 108. Each module in the decoding path 102 of the 
present system 100 preferably serves as a counterpart for 
each module in the encoding path 101. The encoder 101 and 
decoder 102 are isolated paths which preferably allows full 
duplex operation, where the encoder and decoder are oper 
ating with different frame Structures, code types, and data 
rateS. 

0.032 The system's 100 encoding path 101 accepts byte 
wide data, computes and inserts a Cyclic Redundancy Check 
(CRC) and scrambles the data before ETPC encoding. After 
the error correction code (ECC) bits are inserted by the 
encoding path 101 into the decoding path 102, the data is 
helically interleaved and block Synchronization marks are 
inserted to assist the decoder 106. Finally, the data is mapped 
according to the constellation and output from the device 
100. 

0.033 Helical interleaving transmits data in a helical 
fashion. When the channel introduces a burst of errors, the 
helical deinterleaver in the decoding path 102 will spread 
these errors acroSS all axes of the code. The use of helical 
interleaving greatly increases the burst error correcting 
capability of the code. Helical interleaving is applied along 
a diagonal path through the encoded block. Data is output 
along diagonal lines from the upper left to lower right corner 
(for a 2D code). For example, the first diagonal output starts 
with the bit row 1, column 1 followed by the diagonal 
Starting at row 1, column 2. For 3D codes, instead of reading 
diagonally through the 2D array, interleaving reads diago 
nally through a cube of data. 3D interleaving/deinterleaving 
is done by reading/writing cells diagonally through the X, y, 
and Z dimensions. 

0034. In general, the decoding path 102 accepts input 
Symbols via the demodulated in-phase (I) and quadrature 
(Q) components. An internal block Synchronizer (not 
shown) Searches for Synchronization marks, rotating the 
input Symbol phase as necessary. After Synchronization is 
achieved, the data is helically deinterleaved and decoded by 
the ETPC decoder 102. The output of the decoder 102 is 
descrambled by the decoded data interface 108, and the CRC 
is computed to verify data integrity. 
0035) In order for the decoder 102 in the present system 
to Synchronize the block of data, a programmable Synchro 
nization or "sync mark is inserted into the data Stream 
before transmission over the channel. Synchronization 
marks are preferably placed at the beginning of each ETPC 
block and placed throughout the block, with inverted Sync 
marks placed at the beginning of each ETPC block. This 
accelerates the Synchronization process when the decoder 
uses large ETPC block sizes or the decoder is in low signal 
to noise ratio environments. More detail of the Sync marks 
will be discussed later. 

Feb. 28, 2002 

0036 FIG. 3 shows a block diagram of the channel 
interface 104 in accordance with the present invention. The 
channel interface is broken up into four modules which 
perform the functions of channel input formatting 202, 
input symbol rotation 204, soft metric computation 206, and 
synchronization 208. The channel interface 104 in the 
present invention formats the channel data for the decoder. 
For best decoder performance, Soft (confidence) information 
from the channel is preferably included. When using BPSK/ 
QPSK, this information comes directly from the in-phase (I 
or quadrature (Q) component of the received symbol. How 
ever, when using higher-order modulations, the Soft metrics 
for each bit in the constellation is computed. This is accom 
plished using the Log-Likelihood Ratio (LLR) which is 
discussed below. In addition to Soft metric generation, the 
ETPC decoder 106 generally knows the location of the first 
bit of a ETPC block. This is accomplished in the channel 
interface 104 by searching through the input bit stream for 
the predefined Synchronization marks. The channel interface 
104 is designed to connect directly to the in-phase and 
quadrature (I & Q) outputs of a demodulator for internal Soft 
metric computation. These inputs can be digitized, either 
with the use of a digital demodulator, or by an external 
Analog to Digital (A/D) Convertor. Alternately, metric com 
putation can be done externally, in which case the internal 
computation is bypassed. 

0037. The encoded data sent into the data input module 
202 may be received in a bursty fashion. Thus, the device 
100 of the present invention preferably contains internal 
buffering to allow continuous data input and output for both 
encoding and decoding. The relationship between the num 
ber of transfers input into the decoder 106 relative to the 
number of transfers output from the decoder 106 is depen 
dent on the user packet size, ETPC code rate, Sync mark Size, 
user packet size, CRC, pad bits, Symbol size as well as other 
factors. In order for the device 100 of the present invention 
to determine the rate at which data is to be input and/or 
output, the ratio of the overall input VS. output transfer rates 
may be programmed into the device 100. This ratio takes 
into account all data inserted and/or removed in the data 
Stream as well as the Symbol size of the data. 

0038. The Phase Rotation Module 202 in the present 
invention Solves the problem of a phase ambiguity by 
rotating the phase of the input Symbols. The input Symbols 
are rotated to the correct phase before being decoded. The 
system 100 uses the following algorithm to determine phase 
rotation: 1) Attempt Synchronization with 0 degree rotation. 
2) If Synchronization is detected with this phase rotation, 
immediately begin decoding. 3) Wait the amount of time in 
which the synchronizer 208 would achieve synchronization, 
and rotate the phase by one Step if there is no synchroniza 
tion detected. 4) Repeat Steps 2 & 3 until Synchronization is 
achieved. After Synchronization occurs, the current phase 
rotation of the incoming Stream can be read. The phase 
rotation can be done by external logic. In addition, the 
Synchronizer 208 can be configured to automatically Syn 
chronize the input data to an inverted bit Stream. 
0039 Log Likelihood Ratio Approximation 

0040. The Log Likelihood Ratio (LLR) approximation 
module 206 provides a linear approximation of the actual 
LLR of an 8-PSK, 16-Quadrature Amplitude Modulation 
(QAM), 64-QAM, 256-QAM and other higher order modu 



US 2002/00266.15 A1 

lations. AS the Signal to noise ratio increases, the approxi 
mation of the LLR comes closer to the actual value of the 
LLR. The actual LLR expressions do not appear linear, 
however plots of the LLR show regions of high linearity. 
The general shape or slope of each LLR is approximated by 
the use of linear equations of the form y=a(X-b) where a and 
b are constants and X is an independent variable. Accurate 
values of a and b are determined from the actual LLR 
equations. These values are determined by taking the deriva 
tive of the actual LLR and evaluating Specific points of 
interest within the linear regions the LLR shape. 
0041) Data out of the ETPC encoding path 101 is grouped 
into “m' bits, where “m” is the number of bits per symbol. 
This group of bits entering the encoded data interface 107 is 
mapped as a Symbol and transmitted over the channel. When 
bits are grouped before being mapped, the first bit of the 
block is preferably the least significant bit or LSB of the 
constellation Symbol, whereas the mth bit of the group is 
preferably the MSB of the constellation symbol. After the 
constellation is de-rotated, the device 100 converts the input 
symbol I & Q into a set of soft metric values. 
0.042 LLR approximation can be used to generate soft 
input values for Soft-decision decoding. In order to deter 
mine those values, the LLR is computed for a given con 
stellation. When computing the LLR of a block of data, the 
positions of each constellation point is input in terms of the 
input quantization range as well as the phase rotation. The 
LLR module of the present invention takes a (I.Q) symbol 
point in the I-Q plane with a given constellation and calcu 
lates the LLR for each bit of the symbol points. Data is 
accepted in (I.Q) pairs and the output is calculated in 
(b1, ..., bo) n-tuples where n is determined by the chosen 
constellation. The LLR output includes a SOFT BITS value 
of resolution for each bit of the symbol. 
0043. The LLR approximation method of the present 
invention utilizes constants which are derived from linear 
equations based on the SOFT BITS values. The linear 
equations are determined by examining the individual slopes 
of the actual LLR. Each slope is determined in the I and Q 
directions by taking the partial derivative with respect to the 
direction of the slope. In certain regions, the slope may be 
Zero in one direction, whereas in other regions, the Slope 
may have two slopes in two directions. By taking the partial 
derivative of the slope in a region and evaluating the 
derivative at points of interest within the region, the Slope 
may be determined. 
0044 FIGS. 4(a-c) illustrate the plots for each bit of an 
8 PSK constellation. FIG. 4a shows a LLR plot of bit 0, 
FIG. 4b shows the LLR plot of bit 1 an FIG. 4c shows the 
LLR plot of bit 2. In FIG. 4a, the slope is the same for all 
constellation points. The LLR graph for bit 1 has the same 
shape as that of bit 0 and both are images about the line I=Q. 
Thus, by using one Set of equations and Swapping the I and 
Q values, both LLRs can be determined. Also, the pointed 
regions of the LLR have the same shape. So, only two 
constants are used to evaluate the LLRs for bit 0 and bit 1. 

004.5 The first constant is determined by taking the 
derivative within the flat, down Sloped region of the graph, 
where the absolute value of I is less than the absolute value 
of Q. In this region, the slope in the Q direction is Zero. Thus, 
only the partial value with respect to I needs to be evaluated. 
Thus a constant may be determined if the LLR is evaluated 

Feb. 28, 2002 

taking the Slope at any point along the line I=Q which is 
Sufficiently far away from the origin. The Second constant is 
determined by taking the derivative within the pointed 
region. The value of the derivative in each direction is 
different only by their sign. Hence, using either slope will 
produce the constant, because the sign of the result can be 
ignored. 
0046) However, the constants are dependent on the signal 
to noise ratio (SNR) of the channel. The present invention 
quantizes the results of the LLR and saturates the LLR 
results to an independent value. Concerning quantization, 
there are a certain number of resolution bits or SOFT BITS 
available to express a large range of numbers. To quantize 
the result, the fist step is to multiply the LLR result with an 
equation which is not dependent on the SNR. In particular, 
the equation is shown below: 

SOFT BITS-1 (1) 
Quantize = (ur LIMIT SOFT BITS-1 

0047 where SOFT BITS is the number or value of 
resolution of bits and qLIMIT is the saturation limit which 
is a constant defined by the type of modulation. The above 
equation is still dependent on the SNR, because the resolu 
tion of bits is affected by the amount of noise over the 
channel. However, if qLIMIT is chosen appropriately to also 
be dependent on the SNR, each variable's dependence on the 
SNR will cancel each other variable's dependence out. Thus, 
the above equation will become independent of the SNR at 
high SNR values. 
0048. The qLIMIT value should be chosen to be the peak 
value of the smallest LLR value, qLIMIT will become 
dependent on the SNR. As the SNR increases, the quanti 
zation of the LLR becomes constant around the 8-10 dB 
range and continues to be constant above the 10 dB range. 
Further, if the actual channel SNR stays high enough, the 
LLR will remain accurate. 

0049 FIG. 5 shows a block diagram of the LLR module 
206 in accordance with the present invention. The LLR 
module 206 includes an input pipe 302, again module 304, 
a PSK module 306, two OAM modules 308 and 310, a 
multiplexer 312, a Floating to Unsigned (FTU) converter 
314 and an output pipe 316. The input pipe 302 receives the 
data as (I.Q) symbols and the gain module 304 scales the 
symbols my a multiplicative factor. The PSK module 306 
and the OAM modules 308 and 310 receive a modulation 
Signal which determines the modulation Scheme in calcu 
lating the LLR of the data. The PSK module 306 computes 
the LLR of an I-Q pair by implementing the LLR equations 
for the LLR approximation. As shown in FIG. 5, the LLR 
module has two OAM modules 308 and 310, each of which 
computes the LLR for all the bits in parallel. Preferably, the 
QAM modules 308 and 310 compute the LLR of half of the 
bits and feeds the LLR values into the multiplexer 312 as a 
LLR result. The FTU converter 314 takes the result of the 
LLR from the multiplexer 312 and converts it into an 
unsigned number. The FTU converter 314 preferably con 
verts the LLR result into the unsigned values, which are 
determined from the SOFT BITS value. 
0050. In addition, the quantization discussed above is 
preferably done in a quantization circuit which does not 



US 2002/00266.15 A1 

need to multiply any values, but only Saturates and rounds 
the values. In addition, use of the quantization method is 
advantageous, because the constants are already defined in 
the hardware and do not have to be programmed. 

0051 When using higher order modulation, such as 
mOAM and mPSK, the number of bits per symbol is 
b=log2(m). If the X axis length of the code, not helically 
interleaved, is a multiple of b, then the least Significant bits 
(LSB) of the constellation symbol will be mapped as the 
same columns of the ETPC block. Likewise, if the y axis, for 
2-D, is interleaved, or Z axis for, 3-D, is interleaved, and is 
a multiple of b, then the LSB of the constellation symbol will 
be mapped as the same columns of the ETPC block. In order 
to improve the performance of the code in these situations, 
the bits that form each symbol are rotated by the modulus 
equation, X mod b, where X is the row that contains the 
symbol. When using 2-D interleaved code, the bits that form 
each symbol are rotated by y mod b and when using 3-D, Z 
mod b. For example, the first row of a non-interleaved code 
contains no rotation. The second row is rotated by 1 bit, the 
third row by 2 bits, etc. The bith row does not get rotated. 

0.052 The rotate function is used to shuffle bits from 
modulation Symbols to make Sure that all low confidence 
bits in the symbol do not end up in the same ETPC block 
column or plane. In the present invention, a Simplified 
version based on a nibble wide rotate is executed on Suc 
ceeding rows to spread these low confidence bits acroSS the 
columns. When the data bits enter the rotating module, the 
first row input to the decoder 106 preferably has no rotation. 
Preferably, the second row has all nibbles rotated left by 1. 
The third row has all nibbles is preferably rotated left by 2, 
etc. In 3-D codes, the first row of the second plane is 
preferably rotated left by 1. Then the next row is preferably 
rotated left by 2, etc. Since a row is not guaranteed to be a 
multiple of 4 bits, the last nibble of the row will contain data 
from the next row. This last nibble is rotated the same as the 
rest in the first row, and the following nibble is rotated 
according to the rotation of the next row. This rotation is 
reset at the beginning of every ETPC block. 
0053 Synchronization 

0054) The device 100 of the present invention utilizes bit 
and block level Synchronization that tracks multiple Syn 
chronization possibilities at once. The device 100 also uses 
a synchronization first in-first out (FIFO) RAM or queue for 
Scanning a data Stream of Synchronization marks that uses 
any one observation point. The device 100 preferably stores 
the information for each Synchronization possibility, called 
a Synchronization thread, and does not Store the data 
between Synchronization marks. When a Synchronization 
mark is located, a Synchronization thread is created and 
Stored in the queue. The thread includes a thread time, which 
is an n bit unsigned number that refers to the time on a bit 
counter, and a thread count Value that indicates the number 
of Synchronization marks found on this thread. The Synchro 
nization module 208 synchronizes the input data by search 
ing for periodic Synchronization marks. When Synchronized, 
the output data Stream is aligned with the input data. A lock 
threshold value may be programmed which Signals the 
synchronizer 208 to lock when the lock threshold value is 
reached. In addition, a good Sync threshold may be pro 
grammed which informs the synchronizer 208 how many 
bits are needed for a Sync mark to be a good Sync mark. The 

Feb. 28, 2002 

first thread with a thread count greater than a threshold is 
used for synchronization. When the good sync threshold 
value has been reached, the synchronization module 208 
Signals the first transfer of each Synchronized block of data. 
The synchronizer 208 continues to look for synchronization 
marks as the data is input into the Synchronization module 
and adds a new thread for each mark found until the thread 
count value equals the thread time on top of the queue. The 
thread is popped off the queue when the thread count value 
equals the thread time. If a Synchronization mark is found at 
the thread time, the thread count is incremented and the 
thread is pushed back on the queue. 
0055 All synchronization is preferably done in the syn 
chronizer 208 at the bit level after mapping from symbols to 
Soft metrics. Inverted Synchronization marks are placed at 
the start of an ETPC block, and non-inverted marks may be 
distributed throughout the block of data to decrease the 
synchronization time. The synchronizer 208 preferably 
looks at multiple points in the data Stream, Separated by the 
period between the Synchronization marks. The Synchro 
nizer 208 preferably uses a frame synchronization mark to 
determine where Sync marks are expected. The Synchronizer 
module 208 determines how many bits in a sync mark can 
be incorrect but still render the sync mark as valid. The 
Synchronizer 208 can also attempt to Synchronize the data 
Stream into an inverted bit stream. If Synchronization is 
acquired on an inverted Stream, the Synchronizer inverts all 
the data bits. 

0056. When synchronized, the device 100 preferably 
detects loSS of Synchronization two ways. One way is by an 
up/down counter monitors the Synchronization marks com 
ing over the channel, which is incremented for each invalid 
mark and decremented for each valid mark. If a loss of 
Synchronization is assumed, a resynchronization is 
executed. 

0057. In addition, the synchronizer detect loss of syn 
chronization by keeping a count of consecutive failed 
blocks. If this count equals the Synchronization loSS thresh 
old, a loSS of Synchronization is assumed, and a resynchro 
nization is executed. When a resynchronization occurs, 
preferably all the data in the decoding path 102 is discarded 
and the internal frame Synchronizer is disabled. Further, any 
bits inserted beyond the end of the ETPC block and the 
beginning of the next frame are discarded by the device 100. 
The beginning of each frame is preferably aligned with the 
transfer of data bits. To align the frame with the transfer, 
padding may be added if the frame is not a multiple of the 
bits per symbol. In addition, if no further data is input into 
the device 100, it is preferred that 8 additional bits be input 
into the device to allow the previous block to be decoded and 
output. These bits may automatically be discarded by the 
device 100. 

0058. The synchronizer 208 maintains a system bit time 
or bit time which is used to time all expected events. The 
bit time is simply a counter that increments once for each bit 
input into the synchronizer 208 and is reset when it reaches 
a programmable Sync period. The Sync period is the number 
of bits between the start of consecutive sync marks. Each bit 
position in the input Stream receives a Score that represents 
the number of bits at that position and the proceeding 
number of bits that were in error. The synchronizer 208 may 
give a certain Score if no errors were found or a different 



US 2002/00266.15 A1 

Score if an inverted mark is found. If the Score is less than 
or equal to the bit lock threshold, a Synchronization thread 
is created. The synchronizer sets the bit time to the current 
bit time plus the expected distance between the valid or 
good Sync marks. The new bit time represents when the next 
Synchronization mark in the thread is expected. If the mark 
is normal, the normal count is Set to one and inverted to Zero, 
and the corresponding thread is pushed into the FIFO 
Structure. 

0059) The bit time of the thread on top of the FIFO is 
then compared to the System bit time. If these two values 
are equal, the thread is popped off the FIFO. If a mark is 
found at this bit time, the normal or inverted count is 
incremented, depending on the mark found. If no mark is 
found, the greater of the normal or inverted count is decre 
mented. If either of these counts are greater than 0, the 
thread is pushed back to the FIFO, otherwise the thread is 
dropped. It is also preferred that the thread inversion is 
checked after the Synchronization lock threshold is met. 
0060. The synchronization queue may be limited to one 
pull and one push per clock to allow more than 1 bit of input 
data per clock. Preferably, if the synchronization block 208 
is receiving N bits per clock, the synchronizer 208 will push 
the best possible Synchronization marks that are N bits apart 
into the queue. Otherwise, it is possible for two threads 
pushed into the queue on consecutive clocks to require 
processing on the same clock. 
0061. In bypass mode, all input data passed through the 
Synchronization module 208 is unchanged. A signal may be 
used to mark the Start of each block, whereby the Signal is 
registered along with the data through the block. When 
Synchronization is achieved, a Synchronization Signal is 
preferably asserted and the data is output from the Synchro 
nizer 208. 

0062) The thread search algorithm will now be discussed. 
When a Synchronization mark is found, a thread is created 
that tracks the time the next mark is expected, the type and 
number of each mark that has been found and whether the 
thread is an inverted bit stream. The inverted bit is set to 0 
for a new thread which is stored in the thread queue. If a 
mark is found, the appropriate mark counter is incremented, 
either as inverted or not. The thread time is set again and the 
thread is Stored. If a mark is not found, the non-inverted 
mark counter is decremented if it is greater than 0. 
0.063 Preferably, as the thread is stored, it is examined for 
inversion. The thread is considered inverted if the inverted 
count is greater than the non inverted count and the Sum of 
the two counts is greater than 2. If the inversion input is high, 
the normal/inverted counts are Swapped and the inverted bit 
is set. If the inversion input is low, the thread is removed. If 
the normal mark count plus inverted mark count is greater or 
equal to the number of Sync marks that accumulate in the 
thread counter before the thread is accepted, the thread is 
considered the Synchronized Stream. 
0064. To achieve the constant throughput of data through 
the system 100, a register based FIFO and a RAM based 
FIFO may be used. The system 100 preferably decides if a 
push goes into the RAM or the FIFO registers. After reset, 
the push will fill the register block and then start filling the 
RAM. All pops are preferably from the register FIFO, and if 
the register FIFO is empty, the empty output will be high. 

Feb. 28, 2002 

The system 100 preferably monitors the state of the register 
FIFO and issues reads to the RAM in order to keep some 
data in the register FIFO as long as the RAM is not empty. 
Because of the delay in RAM reads, this system 100 can 
issue many RAM reads before the first data is available. 
Thus, it is preferred that the system 100 monitor the queue 
pops to know how many RAM read can safely fit within the 
register FIFO. 

0065 RAM Organization Method 

0066. The RAM organization method utilized by the 
system 100 is designed to offer high bandwidth access to the 
ETPC block stored in the RAM with the ability to access the 
data on multiple axes. The ETPC may constructed of 
extended hamming codes and/or other codes and the order of 
the data should be maintained. Each soft in/soft out (SISO) 
decoder 410 of the present device may require more than 1 
bit of data per clock. The ETPC decoder system 100 may 
have more than one SISO 410 in parallel, whereby each 
SISO 410 is capable of receiving multiple data points on 
each clock. The data points sent to the SISOs trace a code 
vector through the product code block, and the code vectors 
are iterated across multiple axis through the ETPC block. 
The RAM organization method preferably supports transfer 
per clock read and writes of “s' code word Segments, where 
each word Segment is d data bits in length along multiple 
XCS. 

0067. The decoder 106 preferably processes a total of sxd 
codeword bits per clock cycle. Each SISO 410 can prefer 
ably receive and consecutively output d bits of a codeword 
where there are a total of sparallel SISOs 410. Increasing the 
value of S increases the data rate by Simply using parallel 
processing. For instance, doubling the value of S doubles the 
number of parallel SISOs 410. Also, increasing the value of 
d increases the rate that each SISO 410 can process data. For 
instance, doubling the number of d bits doubles the number 
of bits each SISO 410 can process per clock. Both s and d 
values are variable which results in flexibility to achieve a 
desired decoding rate. In addition, increasing both S and d 
results in a Squaring of the decoding data rate, allowing the 
decoder 106 to achieve very high data decoding rates. 

0068. The ETPC block is preferably distributed among 
multiple physical RAMS. A unique address is generated for 
each RAM, where a RAM word is read from all RAMs and 
assembled to present the logical word required by the 
decoder 106. Preferably, each RAM can only be accessed 
once to complete a read or write cycle. The number of 
physical RAMS required varies dependent on the values of 
S and d as well as the number of axis that should be 
Supported, and the Size of each RAM may vary. Each 
combination of S and d as well as the axis Support may have 
a unique Solution. 

0069. For example, a 3D code having 4x4x2, where S=2. 
d=2, is shown below: 

plane O plane 1 

O 1. 2 3 16 17 18 19 
4 5 6 7 2O 21 22 23 



US 2002/00266.15 A1 

-continued 

plane O plane 1 

8 9 1O 11 24 25 26 27 
12 13 14 15 28 29 3O 31 

0070 The physical RAM in accordance with the present 
invention would preferably hold 2 codeword bits per word. 
Plane 0 above would therefore may be sent into the RAM as: 

AO A1 
BO B1 
A2 A3 
B2 B3 

0071 where A or B represents the RAM name and the 
number is the physical RAM address. The present invention 
in this example would thus have AO contain the codeword 
bits: 

0072) 
0073 For all axes of the above example, the system 100 
preferably requires 2 physical RAMS, each holding one data 
point. Data from plane 0 and plane 1 are mapped into the 
RAMs shown below. 

where both data points are kept within A0. 

Plane O Plane 1 

AO AO A1 A1 B4 B4 B5 B5 
BO BO B1 B1 A4 A4 A5 A5 
A2 A2 A3 A3 B6 B6 B7 B7 
B2 B2 B3 B3 A6 A6 A7 A7 

0.074 This RAM organization method allows data to be 
accessed equally on all. This will allow the system 100 to 
utilize the same SISO decoders 410 to decode any axis of the 
code, and it will enable maximum decoder efficiency by 
keeping all SISOs 410 busy independent of the axis being 
decoded. To illustrate this, the decoding of each of the three 
code axes will be described below. 

0075) The decoder in this example uses S=2SISOs, where 
each SISO can accept d=2 codeword bits per clock cycle. 
Therefore, the RAM organization method preferably is such 
that on a given clock cycle, each RAM can be read only 
once, reading all data required by the SISOs 410 on that 
clock cycle. The RAM organization described above for a 
3-D code will also accomplish this result. 
0.076. In order to decode the x-axis, the first two rows of 
the codewords in plane 0 will be input consecutively into the 
2 SISOs 410 by inputting 2 codeword bits per clock into 
each SISO 410. Once these two rows are completed, the last 
two rows of plane 0 are input. Then, the first two rows of 
plane 1 and finally the last two rows of plane 1 are input to 

Feb. 28, 2002 

the SISOs. In order to accomplish this, the following RAM 
acceSS occurs, as shown in Table 1. 

TABLE 1. 

Clock Cycle Number RAM Access Rows Input 

Read AO and BO 
Read A1 and B1 
Read A2 and B2 
Read A3 and B3 
Read A4 and B4 
Read A5 and B5 
Read A6 and B6 
Read A7 and B7 

Rows 0 and 1 of plane O 

Rows 2 and 3 of plane O 

Rows 1 and 2 of plane 1 

Rows 3 and 4 of plane 1 

0077. The RAM access in the above table reads all the 
data from the code block at two rows at a time and four total 
codeword bits per clock cycle. As the RAM is being read, 
the data is then input into the two SISO decoders 106. When 
RAM location A0 is read, the two codeword bits from that 
RAM location are input into a single SISO 410. Similarly, 
when location B0 is read, the two codeword bits from the BO 
location are input into the other SISO 410. 
0078. To decode the y-axis, the first two columns of the 
codeword in plane 0 will be input consecutively into the 2 
SISOs 410 by inputting 2 codeword bits per clock into each 
SISO 410. Once these two columns are completed, the last 
two rows of plane 0 are input. Then, the first two columns 
of plane 1 and finally the two last columns of plane1 are 
input to the SISOs 410. In order to accomplish this, the 
following RAM access occurs, as shown in Table 2. 

TABLE 2 

Clock Cycle Number RAM Access Colunms Input 

Read AO and BO Columns 0 and 1 of plane O 
Read A2 and B2 
Read A1 and B1 Columns 2 and 3 of plane O 
Read A3 and B3 
Read B4 and A4 Columns 1 and 2 of plane 1 
Read B6 and A6 
Read B5 and A5 Columns 3 and 4 of plane 1 
Read B7 and A7 

007.9 The RAM access reads all data from the code block 
at two columns at a time and four total codeword bits per 
clock cycle. The RAM access then inputs the data into the 
two SISO decoders 106. This case differs from that in Table 
1, because the data sent to the first SISO 410 on the first 
clock is composed of one of the codeword bits read from 
location AO and one codeword bit read from location B0. 
Similarly, the data sent to the second SISO 410 on the first 
clock is the other codeword bit read from location AO and 
the other codeword read from location B0. Using this 
method, the SISOs 410 are ecoding the columns of the code 
block instead of the rows. 

0080 Finally, in order to decode planes or the Z-axis in a 
3-D block, the first two z-column codewords of the array 
will be input consecutively into the 2SISOs 410 on the first 
clock cycle. Since the array contains only 2 planes, only one 
clock cycle is required to input each Z-column into the 
SISOs. This process continues for all Z-columns in the array. 
In order to accomplish this, the RAM access in Table 3 
OCCS. 



US 2002/00266.15 A1 

TABLE 3 

Clock Cycle Number RAM Access Z-columns Input 

Read AO and B4 z-columns 0 and 1 
Read A1 and B5 z-columns 2 and 3 
Read BO and A4 z-columns 4 and 5 
Read B1 and A5 z-columns 6 and 7 
Read A2 and B6 Z-columns 8 and 9 
Read A3 and B7 z-columns 10 and 11 
Read B2 and A6 Z-columns 12 and 13 
Read B3 and A7 z-columns 14 and 15 

0081. This RAM access reads all the data from the code 
block at two Z-columns at a time and four total codeword 
bits per clock cycle. The RAM access then inputs the data 
into the two SISO decoders 106. This case differs from the 
row and column cases discussed above, because the data 
sent to the first SISO on the first clock is includes of one of 
the codeword bits read from location AO and codeword bit 
read from location B4. Similarly, the data sent to the second 
SISO on the first clock is the other codeword bit read from 
location AO and the other codeword bit read from location 
B4. Using this method, the SISOs 410 are decoding the 
Z-axis of the code block instead of the X or y axes. This RAM 
organization method allows each axis to be decoded in the 
Same number of clocks as any other axis and is very efficient 
in terms of SISO 410 input capacity. 
0082 FIG. 6 illustrates a block diagram containing a 
RAM Interface Module 408 in accordance with the present 
invention. The RAM interface module 408 interfaces with 
the original array (OA) RAM 402, hard decision array 
(HDA) RAM 404 and difference array (DA) RAM 406. The 
RAM interface module 408 also interfaces with an input 
module 412, an output module 414 and a SISO decode 
control module 410. The RAM interface module 408 per 
forms the logical to physical mapping of the RAM addresses 
by converting X, y, and Z coordinates into physical RAM 
addresses. The RAM module 408 also maps the data coming 
from the RAM bank to the vector block format. All address 
variations and data mapping changes for different axes are 
preferably completed transparently to the output module 
414. The OA and HDA are preferably set up in a back forth 
fashion with the OA RAM 402 and HDA RAM 406, 
respectively. This allows the decoder 106 to process one 
bank of RAMs while the next code block is input and the 
previous code block is output. All OA, HDA, and DARAM 
banks are logically constructed from one or more RAMS, 
where each logical RAM bank has a RAM word size data 
bus. The RAM interface uses a library set to control address 
generation and data mapping. 

0083) The RAM interface module 408 accepts write 
requests from the OA RAM block 402 on any clock that is 
enabled. Vector Signals in the X, y, and Z directions indicate 
the positions of the values in the OARAM 402 that are being 
written. These positions are translated into the physical 
RAM addresses required for RAM access. The RAM inter 
face module 408 reads the vector positions of the values, 
modifies the vector block with the input data and then writes 
the modified vector block back to the RAM bank. 

0084. This method can cause a potential “read before 
write' error event. The “read before write' event is detected 
by the device 100 when the read address is issued. The RAM 

Feb. 28, 2002 

read then is cancelled and the forwarding event is placed into 
a queue that holds it until the replacing data is ready to write. 
The write data is then queued until it replaces the cancelled 
read data. This operation functions on the RAM address that 
is issued. 

0085. An output controller 420 takes read requests from 
the output module 414 and reads data from the HDARAM 
banks 406. The output controller also handles all address 
resolution and data bus mapping in the RAM interface. The 
components and operation can be preferably the same as in 
the input controller interface 408, however the output con 
troller has access to the HDARAM select mux 424 and 
outputS 1 vector word to the output block as opposed to a 
complete vector block. Preferably, a full vector block is read 
from the RAM bank, and the offset values are used to select 
the vector that is sent to the output. 
0.086 A decode controller interface 416, shown in FIG. 
7, handles all address resolution and data bus mapping for 
the decode controller interface. The decoder interface 416 
uses read port and write port components to build the two 
read ports and write port required. The read port of the 
decode interface 416 handles address generation and data 
translation for the two read ports of the decoder interface 
416. The address generation is done by a RAM address 
generator (not shown). The RAM address generator returns 
the RAM block offset values, X. Sub, y Sub and Z. Sub until 
the corresponding read data return from the RAM. The offset 
values are used to map the RAM data into a vector block 
format. This is done by Stepping a function call through 
every position in the vector block. The offset values are 
delayed using an offset delay pipe component (not shown) 
which delays the input value for the read pipe delay clockS. 
The write port handles the writes from the decode controller 
416. The write port preferably uses the same method of 
address generation as the read ports. 
0087 Scalable Soft Input/Soft Output Decoder 
0088. The system 100 in accordance with the present 
invention contains at least one variable data rate SISO 410. 
FIG. 8 illustrates a schematic of the SISO 410 in accordance 
with the present invention. The SISO 410 is designed to 
handle multiple Soft input bits per clock and also be variable 
depending on the required speed for the core. The SISOs 410 
Support variable code range implemented in hardware as 
well as variable code types and feedback inputs via config 
urable inputs. The code range is defined by the maximum 
vector Supported by a given core, and the Storage Space 
required for that Size vector is implemented in the hardware. 
The SISO 410 is scalable or configured to decode any code 
type of Size up to the maximum vector size. In addition, the 
SISO 410 can be configured to multiply the output by a 
feedback constant having a ratio of 1/32 to 31/32. The rate 
multiplier, which is denoted as d number of data bits, is 
implemented in most of the SISO 410 as parallel paths, 
where each path operates on a part of the vector. However, 
in the loader module 502, a comparison is performed to find 
the minimum two values in the data vector. 

0089. The storage and nearest neighbor generator module 
504 in the SISO uses a swapping circuit that is given two 
addresses in the vector and Swaps the Soft values at these 
addresses before outputting the data vector. In addition, the 
two Soft values are Summed and the minimum Sum over the 
vector is determined. Since higher data rate decoders use 



US 2002/00266.15 A1 

multiple Swaps to occur in parallel, a pipe-lined flip/flop 
approach may be implemented in the device of the present 
invention. The first stage of flops is loaded from the input 
data bus by Steps of data rate. Data rate is the natural value 
representing the number of Vector values per clock. This 
value give the number of bit values that are processed in 
parallel by the SISO 410. After the data bus is full, the first 
Stage is clocked into a Second Stage of flops. At this point, 
preferably no Swapping has yet occurred. The data is 
clocked into the Second Stage So that the first Stage can 
immediately begin loading a following vector without modi 
fying the data from the current vector. 
0090 The output of the second pipe stage is preferably 
connected to a muxing Structure within the Storage and 
generator 504 that executes the actual Swapping process. 
The muxing structure pulls data rate values from the Second 
pipe Stage at computed locations and loads the data into a 
third flop stage Starting at location 0 and moving in Steps of 
data rate. For example, if the data rate is 2, the nearest 
neighbor computation engine (described below) determines 
what locations are to be Swapped with locations 0 and 1. 
These two locations are read from the Second flop Stage and 
written into location 0 and 1 of the third flop stage. Next, the 
computation engine determine what locations to Swap with 
2 and 3. These locations are read from the Second pipe Stage 
and loaded into locations 2 and 3 of the third pipe Stage. This 
continues for the entire data vector. The third pipe Stage is 
unloaded Starting with location 0 and moving in multiples of 
data rate. Immediately after a location is unloaded, the 
location is filled with data from the following vector by the 
Swapping circuit described previously. 

0091 Nearest Neighbor Calculations 
0092. The system 100 utilizes nearest neighbor calcula 
tions to reduce the Search on a set of codewords defined by 
finding the nearest neighbor. In addition, within the nearest 
neighbor function, it is desired to stay in a Galois field to 
calculate the Syndrome and then map that Syndrome back to 
a physical location. This allows a large reduction in hard 
ware over using a Standard cyclic Syndrome generating 
circuit and mapping that result back to the H matrix column 
location, as in the prior art. In addition, the nearest neighbor 
method of the present invention would utilize a Syndrome 
generating circuit that is many times Smaller than the size of 
Similar circuits in the prior art, which thus also consumes 
less power. Further, Since the calculations are reduced to 
approximately 2 levels of XOR gates, the Syndrome gener 
ating circuit of the present invention is significantly faster 
than similar circuits in the prior art. The method of the 
present invention also removes any “used bit logic that was 
necessary when finding nearest neighbors in parallel. 

0093. The SISOs 410 in the present invention use a 
nearest neighbor generator which is built with Galois Field 
Arithmetic to greatly decrease the extended hamming 
decode logic. The nearest neighbor computation logic is 
input LOWi1 and LOWi2 in Galois field representation. The 
generator XORs the LOWi1 and LOWi2 values with a Nc1 
location, which starts from Zero and increments through the 
vector. The result of this XOR is Nc2, which is the location 
which Swaps with Nc1. Since Nc2 is in Galois Field Rep 
resentation, it is preferably converted into integer represen 
tation by taking the Galois field log, as discussed above for 
the LLR method of the present invention. 

Feb. 28, 2002 

0094. The nearest neighbor generator 504 computes the 
set of Hamming weight 4 codewords with 1s in the 2 lowest 
confidence bit locations. In the present invention, the code 
words are aligned to Galois Field GF(2) where 2-1 is the 
length of the Hamming code. The 2 lowest confidence 
locations, LOWi1 and LOWi2 are calculated and given to 
the nearest neighbor function in a GF (2*) location where 
Nc1 and Nc2 along with Lowi1 and Lowi2 define the nearest 
neighbor vectors. The nearest neighbor function uses GF 
(2*) arithmetic to sum the LOWi1 and LOWi2 locations 
with a third GF(2) location to find the Galois Field location 
of Nc2. The symbols at locations Nc1 and Nc2 are swapped 
So that the Galois Field representations of the locations are 
converted to a physical address location by taking the Galois 
log. The Galois Field can be used to find code syndromes 
rather than using a Sum of the H matrix columns. This is 
because the Galois Field elements and the H matrix elements 
are equivalent. 

0.095 The preferred method of how the SISO 410 of the 
present invention operates in the present system 100 will 
now be discussed. The SISO 410 first receives the input data 
vector and converts the vector into hard decision and Soft 
confidence values. Once this is performed, a Syndrome for 
the codeword is generated by utilizing the Galois Field math, 
hereinafter referred to as alpha, for each bit in the codeword. 
Preferably, a 1 bit parity for each bit of the codeword is also 
generated at the same time. Next, the SISO 410 corrects all 
locations that the Syndrome indicates as having an error. In 
addition, the SISO 410 corrects the parity bits for each of 
these locations. Since all values in the codeword are 
addressed as alphas, there is no mapping necessary. Follow 
ing, the SISO 410 finds the two minimum values, LOWi1 
and LOWi2, which are designated by their respective alpha 
values. Next, the SISO generates the nearest neighbors by 
marching Nc1 through all the alpha powers to determine 
Nc2. The SISO will generally generate all Nc1 and Nc2 pairs 
twice, except for the parity containing the parity bit, which 
is generated only once. After Nc2 for all the alpha powers 
are generated, the SISO Swaps all locations, except for the 
locations that are duplicated. The values of LOWi1 and 
LOWi2 are Swapped and their values are 2's complemented. 
0096. After all locations have been swapped, all the 
Swapped values are Summed, except for those values that are 
negative. Once the Swapped values are Summed, the mini 
mum Sum (min1) and the Second minimum Sum (min2) are 
determined along with the two locations that generated 
min1, which are minA and minB. The two locations for 
min1, minA and minB, are then addressed in alphas. The 
min1 and min2 values are then converted to linear 2's 
complement representation, and the locations of minA and 
minB are replaced. Preferably, minA is replaced by (min2 
minA) and minB is replaced by (min2-minB). The value of 
LOWi1 is thus equal to minA, so the output is the center 
codeword, and no hard decision bits needs to be inverted as 
a result. Following, the value of LOWi1 is multiplied by the 
feedback constant discussed above and converted to 2's 
complement signed output values. After the values are 
converted, they are Sent to Storage registers and muX logic 
modules which send the hard and Soft vectors to the unloader 
block. 

0097. The generator module 504 contains the logic that 
finds nearest neighbor codewords, corrects LOWi1 and 
LOWi2, Swaps the confidence values between all neighbor 



US 2002/00266.15 A1 

Nc1/Nc2 pairs and generates the min1, min2, minA and 
minB locations. Since the data from the loader is transferred 
to the generator module 504 as alpha, the data is stored in 
alpha order. Each group contains data rate storage locations, 
where each location is a certain number of bits wide. 

0.098 FIG. 9 illustrates a block diagram of the generator 
module 504 in the SISO 410 of the present invention. The 
hard data vectors enter the data reg input registers 602 and 
the soft values enter the nearest neighbor generator 606. A 
load complete signal from the loader block 502 (FIG. 8) 
indicates the last data transfer for a vector. After the last 
group of input data is loaded, the entire vector is transferred 
to a transfer register 604 to allow the generator module 504 
to calculate the Sums, corrections and minimums while the 
next vector is being loaded into the data reg register 602. 
0099 For an Extended Hamming code, the generator 
module 504 receives LOWi1 and LOWi2 from the loader 
502 and Starts generating nearest neighbor codewords loca 
tions after the load complete signal is received. The gen 
erator module 504 generates each Nc2 neighbor using 
Galois Field math by XORing LOWi1, LOWi2 and the alpha 
counter input. Each Nc1/Nc2 Set is generated twice because 
the alpha counter counts through every address location, and 
for the set where Nc1 generates Nc2, the Nc2 location 
generates Nc1. Likewise, when Nc1 is equal to LOWi1, Nc2 
should be equal to LOWi2. 

0100. The Nc2 values are then mapped from the alpha set 
to the physical address Set using a direct mapping function. 
The mapped Nc2 values are registered for use as the mux 
608 selects to load the Swap register 610 from the transfer 
register 604. The data in the transfer register 604 is stored in 
alpha order, which is preferably the same alpha order as in 
the load address module. Also, the load address module is 
used as Nc1 to generate Nc2. Nc1 is received for every 
Storage location which generates double Nc1/Nc2 pairs. All 
of this information is used to load the Swap register 610 
because for every Nc1 there is a Nc2. The mapped Nc2 
address selects the data from the transfer register 604 that is 
paired with the load address module and Stores it as a group 
at the load address module. The action of storing of the Nc2 
value in the alpha location Swaps the value of Nc1 and Nc2. 

0101 Confidence data from the transfer register 604 is 
pulled out of the data register 602 and is used to calculate 
corrections on the data at locations Lowi1 and Lowi2 as well 
as find the minimum Sums min1 and min2. The confidence 
values are selected out of the transfer register 604 in the 
Same groups as they were loaded. The correction logic 
incorporates the Summing logic to reduce the critical path 
timing. Preferably, the correction is done if the load address 
register is equal to LOWi1 or LOWi2. Registering the input 
into the loader 502 is done due to the data path delay from 
the transfer register 604. When the correction is equal to 
two, two positive confidence values are Summed. Since the 
confidence values represent (confidence/2)0.5, the Sum 
adds an extra 1 to the confidence value. When the correction 
is equal to one, 1 positive and 1 negative confidence value 
are Summed. Here, the Sum is just the 2's complement Sum 
of the confidence values of Nc1 and Nc2, because the 
(confidence/2)*0.5 of each value cancel the other out. When 
the number of corrections is Zero, two negative confidence 
values are Summed So the Sum is the (Sum-1). The Sum is 
registered with the load address register. 

Feb. 28, 2002 

0102) The registered confidence values are summed and 
the data rate Sums are compared with the min1 and min2 
Sums. The lowest Sum of the data rate Sums and the two 
min1 and min2 Sums are Stored as min1 with the locations 
that generate min1 Stored as minA and minB. The Second 
lowest Sum is Stored as min2. The locations that generate 
min2 are stored as minA2 and minB2. MinA2 and minB2 
are Stored to invalidate the Second time a given Sum is used 
in the comparison. Each Sum is generated twice because fo 
the double Nc1/Nc2 pairs. The lowest sum comparison is 
done where the greater value of the two values becomes a 1. 
This allows one of the sums to finish the process with a 
confidence Score equal to 0 and the other Sum to finish with 
a confidence Score equal to 1. The Sum with the confidence 
score of 0 is the min1 value and the Sum with the confidence 
Score of 1 is the min2 value. The minA and minB registers 
hold the data register address, Nc1 address and Nc2 address 
that Selected the min1 and min2 Sum. 

0103) In the unload module 506, the Nc1 address is used 
to select data rate sets of output data from the data registers 
602. Since the stored confidence data represents an (confi 
dence/2)0.5 value and all confidences in the Swap register 
are positive, the Selected data is preferably multiplied by 2 
and incremented by 1 to restore the actual confidence value 
before the correction. The output correction function is 
Similar to the Sum datapath correction discussed above. 
Since the data from 1 vector is unloaded while another 
vector is loaded, the correction, LOWi1 and LOWi2 values 
are registered for the output corrections. For instance, when 
the correction input is “01, the data location at address 
LOWi1 is corrected. However, if the correction input is 
“10”, the data locations at addresses LOWi1 and LOWI2 are 
corrected. The data correction includes inverting the hard 
decision bit and 2's complementing the confidence value. 
Thus, the confidence values can become negative in this 
block. 

0104 For parity codes, the generator module 504 
receives LOWi1 and LOWi2 from the loader 502 after the 
load complete Signal is received. No neighbors are gener 
ated and no Sums are calculated. Min1 is the confidence 
value at location LOWi1 and min2 is the confidence value 
at location LOWi2. MinA and minB are not used in the 
parity codes. Even though it is not necessary to calculate 
Sums and minimum for the parity codes, the timing of the 
output signals is the same as with the extended Hamming 
codes, which avoids logic in the block. The correction input 
is valid for the parity codes. The min1 and min2 values are 
corrected during the output from the generator module 504 
when parity codes are Selected. 
0105 Stop Iterations and Iteration Buffer 
0106 Stop iterations are used to allow the decoder 106 to 
Stop decoding when the axis iterations have converged on an 
answer that all axes agree on. The value of Stop iterations is 
to increase the average throughput of the ETPC decoder 106 
or otherwise increase decoder 106 performance. Stop itera 
tions used with an iteration buffer allows a data rate to be set 
based on an average number of iterations. Stop iterations 
allow blocks with higher Signal to noise ratioS to finish early 
on blocks with lower Signal to noise ratioS to iterate longer 
for an overall better decoder performance when compared to 
Setting the maximum iterations at the average. 
0107 One way the decoder 106 can detect convergence 
is for each axis to be decoded with no corrections being done 



US 2002/00266.15 A1 

to it. When each axis has been decoded with corrections, one 
additional axis is decoded as a last pass to determine the sign 
of the data for the HDA. Another way the decoder 106 can 
detect convergence is to check the Sign of the previous DA 
data when the first axis is decoded with corrections. If the 
previous axis iteration had made corrections but those 
corrections all agree with the result of the current iterations, 
the previous axis iteration is used. In this case, after the first 
iterations are completed with no corrections, the Stop itera 
tions function counts 2 good axis iterations toward conver 
gence. The remaining axes of the code are then decoded with 
no corrections to allow the decoder 106 to stop early. Thus, 
the decoder 106 of the present invention has a 2 axis 
improvement over prior art decoder 106S using Stop iteration 
functions. 

0108). The sign of the SISO output is used to load the 
HDARAM for every axis iteration when the stop iterations 
function is used. When each axis has been decoded with no 
corrections, the decoder 106 may be able to use the data in 
the HDA as the final decoded output rather than going 
through 1 additional axis iteration to fill the HDA. Other 
wise, the decoder 106 is forced to do the additional axis 
iteration to fill the HDA when any SISO output data is 0. A 
0 value out of the SISO indicates that there is no change to 
the confidence for that Specific bit. A negative value out of 
the SISO adds confidence to the 0 hard decision bits, a 
positive value adds confidence to the I hard decision bits. 
The 0 value gives no information about the Sign of the input 
data, and no corrections to the data indicates that the decoder 
106 did not change the bit. If none of the SISO output data 
is 0, the decoder 106 will not run the additional axis 
iteration, and the decoding is complete. 

0109 The savings of 1 axis iteration at the start of 
detecting convergence and 1 axis iteration at the end of the 
decoding gives the possible 2 axis iteration Savings over 
prior art decoder's 106 stop iteration functions. The addition 
of hyper codes adds Some Specific conditions to validating 
the previous DA as a good axis iteration. In a 2 dimensional 
block of data with a hyper code, the preferred order of 
decoding the axes is columns, then rows and then the 
diagonals where the row may be unencoded. Since the hyper 
axis concatenates to the block Such that the block has one 
more row than column, the column or y-axis can not validate 
the action of the hyper axis. In other words, the previous DA 
can not be counted toward convergence, because the y-axis 
doe not decode the last row of data in the hyper axis. 
0110 For a 3 dimensional block of code, the preferred 
order in which the axes are decoded are columns first, then 
rows which are followed by the planes. Following, the hyper 
axis is decoded. The X-axis and/or y-axis may possibly be 
encoded. In 3 dimensional codes with a hyper axis, the 
Z-axis is one plane shorter than all other axes. Thus, the axis 
previous to the Z-axis cannot be validated by the Z-axis. 

0111 FIG. 10a illustrates a flow chart of the stop itera 
tion function method in a state machine of the system 100. 
As shown in FIG. 10b, the encoded data enters the no clean 
state 700 of the stop iterations finite state machine. A 
Siso corr flag may be asserted if any corrections are made by 
the SISO during axis iteration. If a siso corr flag is present, 
the encoded data will be forced to the no clean state 700 
when entering the decoder 106. After the data passes through 
the no clean State 700, a control signal, Signs match, may 

Feb. 28, 2002 

be added as a flag to assert whether the Sign of the input to 
the SISO matches the sign of the previous DA data. If the 
Signs match, then the previous axis iteration has added 
confidence to 1s and OS which indicates that the block is 
converging. This flag allows the Stop iterations function to 
Stop 1 axis earlier than having to wait for each axis to finish 
with no corrections. In addition, a datao Zero Signal may be 
asserted to the encoded data if the output of the SISO is 0. 
A0 output from the SISO does not indicate if the sign of the 
input is a 1 or 0, so the HDA input cannot be determined. 
The decoder 106 is forced to run another axis iteration 
whenever a datao Zero Signal is present. Thus, if a datao Z 
ero Signal is present when the data enters the State machine, 
the data passes to the no clean state 700. 
0112 FIG. 10c illustrates a flow chart of the stop itera 
tion function in the no clean state 700. After the data passes 
through the no clean state 700, the data may be sent to either 
the one clean state 701 or two clean state 702, depending 
on whether the Signs match signal is asserted. If the Signs 
match Signal is asserted, the data is passed onto the two 
clean State 702. However, if no signs match Signal is 

asserted, the system 100 determines whether a datao Zero 
Signal is present. If a datao Zero Signal is asserted after the 
data passes through the no clean State 700, the data is sent 
to the one clean state 701. Then, either the stop iteration 
function may be complete 705 or the data may be sent to the 
two clean State, depending on the current axis being 
decoded and the hyper axis. The declaxis signal represents 
the current axis being decoded, whereas the hyp valid signal 
represents a valid hyper axis. If the decoder 106 sees that the 
hyper axis is not valid and the current axis being decoded is 
not either “01” or “10”, then the stop iteration function is 
complete 705. Otherwise, the data is sent to the two clean 
State 702. 

0113. After the encoded data is sent to the one clean state 
701, it undergoes another iteration. As shown in FIG. 10d, 
the decoder 106 will stop iterating 705 after the data has 
entered the one clean State 701, if there is no datao Zero 
Signal asserted. However, if a datao Zero Signal is present 
after the data undergoes the iteration through the one clean 
state 701, the data will be passed either to the two clean 
state 702 or the last pass state 704, depending on the 
number of coded axes. If the number of coded axes is greater 
than 2, the encoded data is sent to the two clean State 702, 
whereas the data will be sent to the last pass state 704 if the 
number of valid axes is equal to 2. 
0114. After the encoded data is sent to the two clean 
state, it undergoes another iteration. As shown in FIG. 10e, 
the decoder 106 will stop iterating after the data has entered 
the two clean State 702 if there is no datao Zero asserted. 
However, if a datao Zero signal is present after the data 
undergoes the iteration through the two clean State 70, the 
data will be passed either to the three clean state 703 or the 
last pass state 704, depending on the number of coded axes. 
The data will be sent to the last pass state 704 if the number 
of coded axes is 3. In contrast, if the number of coded axes 
is 4, then the data is sent to the three clean state 703. 
0115) If the encoded data is sent to the three clean state 
703, it undergoes another iteration. As shown in FIG. 10e, 
the decoder 106 will stop iterating after the data has entered 
the three clean State 703 if there is no datao Zero signal 
asserted. Otherwise, the data is iterated again and Sent to the 
last pass State 704 if a datao Zero Signal is asserted. 



US 2002/00266.15 A1 

0116. The decoder 106 of the present invention can be 
configured to run a variable number of iterations. The device 
100 preferably contains an internal buffering module to 
allow a variable number of iterations per block with a 
constant data flow through the device 100. When the 
decoder 106 requires more iterations on certain blocks, the 
buffer stores incoming data bits until the decoder 106 
completes the block. It is preferred that a Second logical 
buffer is placed on the output of the decoder 106 to give a 
fixed latency to the decoder 106. The logical size of this 
buffer may be set by a buffer register. Setting the buffer size 
to a larger value allows the decoder 106 to iterate more times 
on difficult blocks. Setting this size to a smaller value 
decreases the latency through the device 100. The buffer 
may be set such that the decoder 106 stops iterating when the 
input buffer fills. Thus, when the input buffer becomes 
nearly full, the device will automatically Stop iterating on the 
current block and send the block to the output buffer. After 
the block is sent to the output buffer, the device 100 will 
begin loading the next block. 
0117 The iteration buffer allows the decoder 106 of the 
present invention to operate at an average iteration level Set 
by the required signal to noise level performance and data 
rate. The performance of the decoder 106 is a function of the 
number of iterations that the decoder 106 performs on a code 
block. The iteration buffer takes advantage of the decoder 
106's stop iteration function described above to allow easily 
decoded blocks to finish before the average iteration number 
while allowing difficult blocks to iterate longer. The buffer 
prevents underflow and regulates overflow by controlling a 
dump block input. When a Signal is asserted on the dump 
block, the decoder 106 will finish the current axis iteration 
and then perform a last axis iteration. When this occurs, it is 
likely that the output data will contain decoding errors since 
the decoder 106 is forced to stop iterating. The iteration 
buffer also gives the decoder 106 added flexibility to per 
form at a better Signal to noise level at any given iteration 
number in comparison to the prior art decoder 106s, which 
have a fixed number of iterations it must run to reach a 
certain Signal to noise level. In addition, the iteration buffer 
can allow fewer bits of internal resolution for a size 
improvement or a lower average iteration level for a faster 
data rate. 

0118. In the preferred embodiment, the iteration buffer 
can be configured for bypass mode, Streaming mode or FIFO 
mode. In bypass mode, data fed into the iteration buffer is 
passed directly to the decoder 106, and the data out of the 
decoder 106 is passed directly out to the iteration buffer. In 
streaming mode, the iteration buffer allows the decoder 106 
to run at an average iteration level. The performance of the 
decoder 106 is a function of the number of iterations that the 
decoder 106 is configured to run. The iteration buffer allows 
the decoder 106 to use the stop iterations function to allow 
easily decoded blocks to finish before the average iteration 
number and difficult blocks to iterate longer. The iteration 
buffer controls the dump block to force the average iteration 
level necessary to keep a constant output data flow. In the 
FIFO mode, the iteration buffer operates as 2 independent 
FIFOs. One FIFO is used to buffer the input data and output 
the data to the decoder 106. The other FIFO buffers the 
output data from the decoder 106. 
0119) The iteration buffer has several configuration input 
signals which are registered with the iteration buffer for 

Feb. 28, 2002 

every clock. Abuffer enable signal asserts whether the input 
data is to be routed through the iteration buffer to the 
decoder 106 or directly to the decoder 106. A buffer mode 
signal tells the iteration buffer whether to run in buffer or 
FIFO mode. When the buffer mode is cleared, the RAM of 
the iteration buffer is set to FIFO mode and is split into two 
sections. When the buffer mode is set, the buffer RAM is set 
in buffer mode. A buffer size signal determines the size of 
both the input and output FIFOs in steps of 128 symbols 
when the buffer mode is cleared. When the buffer mode 
Signal is Set, it is used to prime the iteration buffer at Startup. 
The iteration buffer does not output data until a predeter 
mined number of bits are written to the iteration buffer. In 
other words, the buffer does not output data until the 
difference between the pointers is equal to the buffer size. 
The buffer size is preferably set to (n-k)+64 bits smaller 
than the number of symbols in the physical RAM where n 
is equal to the total number of input frame bits and k is the 
Smallest number of output bits per frame. The (n-k) extra 
bits allow the output of the iteration buffer to read slower 
than the input writes. The added 64bits are used to allow for 
variances in the input/output clock ratio. In addition, it is 
preferred that the buffer-size be smaller than the space 
required to hold 8 data packets. 
0120 AS stated above, the iteration buffer determines the 
minimum difference in 128 bit steps between the number of 
symbols stored in the input FIFO and the buffer size. This 
ensures that the input will not overfill the iteration buffer in 
FIFO mode. When buffer mode is set, the lock threshold 
Signal determines the minimum difference in 128 bit steps 
between the number of bits written to the iteration buffer 
from the decoder 106 and the number of bits output from the 
iteration buffer. This ensures that there will always be data 
available for output. The lock threshold signal is set to allow 
time for 2 axis iterations plus latency through the output 
before the iteration buffer input overflows. 
0121 The iteration buffer is connected to the decoder 106 
module whereby Several Signals are Sent back and forth 
between the two. Of these signals, gal rsync is an input 
synchronize signal received by the decoder 106 which 
indicates that the input data value is the first value in a new 
block. This is also held active for each transfer into the 
decoder 106 between the gal rsync being received and the 
Start of a new block. The gal osync signal represents the 
output Synchronization Status of the received data in the 
decoder 106. This signal is asserted after the transfer of the 
last nibble of a block is received, whereby the signal is held 
for one clock. The gal ordy Signal indicates that the buffer 
has filled to the lock threshold when the buffer mode is 
active. The gal ordy signal also indicates that data is avail 
able in the output FIFO when the buffer mode is not active. 
This signal is asserted until the buffer is empty. 
0122) In FIFO mode, the iteration buffer preferably acts 
like 2 separate FIFOs. The size of each of the FIFOs is set 
by a buffer size configuration bus. There are no offsets 
required when the buffer is set to FIFO mode. The input 
FIFO stores input data and outputs data to the decoder 106. 
Both of these sets of data are in blocks of n bits. The output 
FIFO stores data written from the decoder 106 in blocks of 
kbits. Both of these FIFOs are preferably independent from 
each other. The output FIFO will accept data when it has 
Space available and be ready to output data when it has valid 
data to output. 



US 2002/00266.15 A1 

0123. In FIFO mode, the lock threshold is defined as the 
minimum difference, in steps of 128 symbols, between the 
number of symbols written to the iteration buffer and the 
number of bits output. This ensures that the input will not 
overfill in FIFO mode. The full threshold is configured to 
allow time for the decoder 106 to finish decoding and unload 
the decoded data before the input overflows. The output 
FIFO has no connection with the input FIFO and does not 
know if a dump block is issued. 
0.124. In the buffer mode, the iteration buffer is preferably 
implemented using a Single 2 port RAM with 4 address 
pointers and 1 threshold level. ETPC blocks of data are input 
to the decoder 106 without going through the iteration buffer 
RAM. Preferably, the time to decode the block of data is 
equivalent to the time to load and unload the block. The 
iteration buffer allows the decoder 106 vary its loading and 
unloading as well as allows the decode to decode for Some 
blocks that are longer than average. The buffer is filled to the 
full threshold discussed above before any data is output from 
the buffer. 

0125 The write pointer in the decoder 106, gal wr, 
jumps to the start of the next block after the last decoded 
ETPC nibble is written to the decoder 106. The last decoded 
ETPC nibble is known, because the decoder 106 signals the 
last output nibble. The jump location is stored in a FIFO 
when the first data of a ETPC block is written to the address 
pointed to by the pluto wr. The first data of a ETPC block 
is signaled by the frame synch module. Since the first block 
out of the decoder 106 is stored in the same location as the 
first block in, the address on the top of the FIFO is the 
address for the gal Wr pointer to jump to at the end of the 
block. 

0126 There are preferably three FIFOs used to stored 8 
ETPC start addresses. One of the FIFOs is used as described 
above for the gal pointer offset. The Second pointer is 
used to store the pluto rd pointer offset and the third is used 
to control the decoder 106 resynchronization function dis 
cussed above. The FIFOs preferably operate independently 
of each other. 

0127 FIG. 11 illustrates a flow chart of the stop iteration 
process. The iteration buffer initially waits for the block 
start and buffer enable signals to be asserted. If the buffer is 
in buffer mode and receives these two signals, the buffer 
enters the one bs state 801. However, if the buffer is not in 
the buffer mode, the buffer enters directly into the run ib 
state 803. If the buffer is in buffer mode and enters the 
one bs state 801, if the buffer receives a load buffer signal, 
the buffer enters the two bs state 802 and continues to the 
run ib state 803. 
0128. The iteration buffer starts to unload data after the 
block is loaded. Since the data is loaded faster than it is 
unloaded, the pointers continue to diverge until the upload is 
finished. This allows the buffer size to be (n-k) bits plus 16 
locations smaller than the physical RAM size. The added 16 
locations are used to allow for variances in the pluto 
input/output clock ration. At the end of the unloaded block, 
the pluto rd point jumps to the location of the start of the 
next block which sets the pointer difference back to the 
buffer size. 
0129. Preferably, the gal rd pointer should be ahead of 
the gal Wr pointer, otherwise the input data to the decoder 

Feb. 28, 2002 

106 may become corrupted. The pluto a pointer should be 
ahead of the pluto wrpointer, otherwise the output data may 
become corrupted. The gal Wr pointer should be ahead of 
the pluto rd pointer, otherwise the output data is useless, 
because it will not be written to the decoder 106. Also, the 
pluto Wr pointer should be ahead of the gal rd pointer. 
Otherwise, the decoder 106 output data is useless, because 
it will not be written to the buffer output. 
0.130. The present invention has been described in terms 
of Specific embodiments incorporating details to facilitate 
the understanding of the principles of construction and 
operation of the invention. Such reference herein to specific 
embodiments and details thereof is not intended to limit the 
Scope of the claims appended hereto. It will be apparent to 
those skilled in the art that modification S may be made in 
the embodiment chosen for illustration without departing 
from the Spirit and Scope of the invention. 

What is claimed is: 
1. A method for decoding a linear block encoded String of 

information bits comprising the Steps of: 
a. converting the String of information bits into a plurality 

of codewords, wherein each codewords has a length N, 
b. performing hard and Soft decisions on each codeword 

in order to generate a hard decision vector h of length 
N and a soft decision vector c of length N; 

c. computing the Syndrome of the hard decision vector h 
by using Galois Field Arithmetic; 

d. finding the location of the two minimum values in the 
Soft decision vector by the Galois Field Arithmetic and 
designating these locations as LOW1 and LOW2, 

e. Xoring the LOW1 and LOW2 with a Nc1 bit locations, 
wherein a Nc2 bit location is generated 

f. Swapping the Soft decision value at location Nc1 with 
the soft decision value at location Nc2 for each nearby 
valid codewords computed; 

g. determining which Soft decision value Sum is the lowest 
and designate this as Min1; 

h. designating two bit locations which created Min1 as 
MinA and MinB; 

i. designating the next lowest Soft value Sum as Min2, 
j. replacing the value at bit location MinA with the value 

of min2 minus the current value at bit location MinA, 

k. replacing the value at bit location MinB in the soft 
decision vector with the value of min2 minus the 
current value at bit location MinB; 

1. Subtracting the value of mini from the values in all other 
bit locations in the Soft decision vector in order to 
generate an output codeword; and 

m. 2's complementing all Soft values in the output code 
word at bit locations which correspond with bit loca 
tions in the hard decision vector having a 0 in their 
location and creating the new signed Soft value Vector. 

k k k k k 


