A system may include two character figurines, each of which may be an action figure. Each character figurine may have a body with a humanoid shape. The character figurines may include a first character figurine with a wireless transmitter that transmits a wireless signal, and a second character figurine with a wireless receiver that receives the wireless signal. The second character figurine may have an action system that causes the second character figurine to undertake a visually perceptible action when the wireless signal is received. The action system may include a motor, and the visually perceptible action may include motion of the second character figurine, driven by the motor, that approximates receipt of a wound inflicted by the first character figurine.
WIRELESSLY CONTROLLED ACTION FIGURES

CROSS REFERENCE TO RELATED APPLICATIONS

TECHNICAL FIELD

[0003] The present invention relates to toys, and more particularly, to action figures with wireless transmission and/or reception capabilities that perform visually perceptible actions in response to such wireless transmissions.

BACKGROUND

[0004] Posable figurines, or “action figures,” have long been a source of entertainment, particularly for those wishing to simulate a situation involving characters the action figures are made to resemble. Many action figures have joints that enable the action figures to assume a variety of lifelike positions.

[0005] In some circumstances, the situation to be simulated may be a battle or other conflict. Users may move the action figures to simulate actions such as discharging a weapon, receiving a wound, or the like. Unfortunately, existing action figures are limited in their ability to simulate such events. The need for a user to manipulate the action figures to take such actions in the course of the conflict can suspend the user’s engagement. Thus, it would be advantageous to provide action figures with enhanced functionality that can help the user obtain a more engaging and imaginative experience.

SUMMARY

[0006] The present invention may remedy the shortcomings of prior art action figures by providing action figures that are able to simulate character interactions from the real world, books, and/or movies by reacting to each other. In one embodiment, a system according to the invention may include multiple character figurines. Each may optionally have joints that enable them to adopt a variety of poses, which may simulate motions of the characters to which they correspond. Thus, the character figurines may be “action figures.”

[0007] Each of the action figures may be equipped with a wireless transmitter and a wireless receiver. The wireless transmitter and the wireless receiver may optionally be based on infrared technology, but may alternatively use other wireless communication technologies. Additionally, each action figure may have an action system that performs a visually perceptible action when a wireless signal from a different action figure is received.

[0008] According to one example, the action figures may be designed to simulate combat, such as gunfights between police and robbers, commandos and terrorists, zombies and defenders, aliens and space explorers, or the like. In such an example, the wireless signal may be used to simulate use of a weapon such as a firearm, laser gun, or the like. The action figure receiving the signal may undergo a visually perceptible action that simulates a wound received from the weapon. For example, the action system may include a motor coupled to a joint of the action figure that causes it to bend over or otherwise fall when the wireless signal is received.

[0009] Each action figure may also have a battery that powers the associated wireless transmitter, the wireless receiver, and action system. The battery may be stored in a battery compartment, which may be in a backpack worn by or attached to the action figure. Each action figure may also have an on/off switch, which may be used to activate or deactivate the associated wireless transmitter, wireless receiver, and/or action system. Each action figure may also have a trigger mechanism that is used to initiate transmission of the wireless signal from the wireless transmitter. This may be a button, trigger other device the user can use to simulate discharge of a weapon. In alternative embodiments, the trigger functionality may be incorporated into the on/off switch.

[0010] In alternative embodiments, a wide variety of action systems, triggers, wireless technologies, and body shapes may be used for the character figurines. Computer instructions may be used to cause an action figure to use logic to decide between different actions that may be undertaken in response to receipt of the wireless signal. Thus, the present invention may enable a wide variety of games, simulations, and other play experiences.

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] FIG. 1 is a perspective view of a system according to one embodiment of the invention.

[0012] FIG. 2 is a front elevation, perspective view of one of the character figurines of the system of FIG. 1.

[0013] FIG. 3 is a rear elevation, perspective view of the character figurine of FIG. 2.

[0014] FIG. 4 is a side elevation view of the character figure of FIG. 2 prior to receipt of the wireless signal.

[0015] FIG. 5 is a side elevation view of the character figurine of FIG. 2 after receipt of the wireless signal and activation of the associated action system.

DETAILED DESCRIPTION

[0016] Various embodiments of the invention will now be described in greater detail in connection with FIGS. 1-5. The drawings and associated descriptions are merely exemplary; the scope of the invention is defined not by these, but by the appended claims.

[0017] Referring to FIG. 1, a perspective view illustrates a system 10 according to one embodiment of the invention. The system 10 may be designed as a toy for play, or may be used to provide simulations, combat visualizations, or the like. The system 10 may include two or more character figurines, which may be generally humanoid in shape. The character figurines may be designed to resemble characters known to the user(s) apart from the system 10; for example, the character figurines may resemble characters from a book, a television show, a movie, a video game, or the like. Alternatively, the character figurines may resemble characters that are exclusive to the system 10.

[0018] If desired, the character figurines may have movable joints that allow the character figurines to adopt various positions. Thus, the character figurines may be “action figures”
that can be put into various poses by the user. The character figurines may include a first action FIG. 12 and a second action FIG. 14.

[0019] The first action FIG. 12 and the second action FIG. 14 may both have humanoid shapes as shown. In alternative embodiments, action figures may have a variety of non-humanoid shapes within the scope of the present invention, including animal shapes, insect shapes, structural shapes, robotic shapes, and the like.

[0020] In the example of FIG. 1, the first action FIG. 12 may represent a commando and the second action FIG. 14 may represent a robber or terrorist. The two may be posed in some form of combat, such as a gunfight. The second action FIG. 14 may transmit a wireless signal to the first action FIG. 12, and the first action FIG. 12 may receive (i.e., detect) the wireless signal and undertake an action in response.

[0021] The system 10 may utilize any of a wide variety of wireless signal types, including but not limited to radio frequency (RF), infrared (IR), visible light, sound, and the like. Additionally, the system 10 may utilize any wireless communication protocol known in the art, including but not limited to Wi-Fi, Bluetooth, Bluetooth Smart, near-field communications (NFC), cellular, and the like.

[0022] According to some embodiments, the wireless signal may be an infrared signal 16. Thus, the infrared signal 16 may generally require line-of-sight between the first action FIG. 12 and the second action FIG. 14 in order to pass between the first action FIG. 12 and the second action FIG. 14. Thus, infrared technology may beneficially simulate line-of-sight by failing to reach an action figure that is positioned behind an obstruction. Additionally, infrared sensors and receivers may be relatively inexpensive and simple in operation.

[0023] The action taken by the action figure that receives the infrared signal 16 (i.e., the first action FIG. 12 in the example of FIG. 1) may be perceivable to the user. The action may also relate to the event that transmittal of the wireless signal is designed to simulate. Thus, if the infrared signal 16 was transmitted to simulate use of a weapon by the second action FIG. 14, the action may simulate a wound received by the first action FIG. 12 in response, an action taken by the first action FIG. 12 to avoid harm, an action taken by the first action FIG. 12 to attack the second action FIG. 14 (such as with its own weapon), or the like.

[0024] According to some examples, the action may be an audible action, such as emission of speech or sound effects by the first action FIG. 12. For example, the first action FIG. 12 may emit sound resembling a voice saying “I’ve been hit!” a ricochet, or the like.

[0025] In other embodiments, the action may be a visually perceptible action such as activating a light on the first action FIG. 12, moving a part of the first action FIG. 12, or causing the first action FIG. 12 to translate or rotate. For example, the first action FIG. 12 may fall down as though wounded, raise a weapon to return fire, duck or dodge, illuminate to indicate energy weapon damage or a ricochet, or the like.

[0026] In yet other embodiments, the first action FIG. 12 may transmit another signal to a different part of the system 10, such as the second action FIG. 14, a different action figure (not shown), and/or an object. For example, upon receiving the infrared signal 16, the first action FIG. 12 may transmit another wireless signal to a different action figure (not shown), which may take action to announce the attack on the first action FIG. 12, simulate an attack on the second action FIG. 14, or the like. In another example, upon receiving the infrared signal 16, the first action FIG. 12 may transmit another wireless signal to an object such as a barricade close to the first action FIG. 12, which may take action to simulate damage to the barricade, a ricochet, or the like.

[0027] The present invention is not limited to simulation of combat. In other embodiments, action figures may simulate sports, dance, construction, exploration, and a host of other activities. In such situations, the action initiated by the recipient of the associated wireless signal may suit the activity being simulated.

[0028] Referring to FIG. 2, a front elevation perspective view illustrates the first action FIG. 12 of the system 10 of FIG. 1 in greater detail. As shown, the first action FIG. 12 may have a body 20, which may have a humanoid shape. A “humanoid shape” may include not only action figures made to resemble humans, but also action figures that simulate other human-like characters such as primates, zombies, humanoid aliens, and the like.

[0029] The first action FIG. 12 may be made to resemble a character. The character may fall within any known archetype, including but not limited to soldiers, terrorists, robbers, police, space explorers, aliens, monsters, archeologists, animals, and the like. Accordingly, the first action FIG. 12 may have various decorative features, coloring, accessories, and the like. The first action FIG. 12 of FIG. 2 may be of the “commando” archetype.

[0030] The body 20 may have a torso 22, arms 24, legs 26, and a head 28. As mentioned previously, the first action FIG. 12 may have a plurality of joint 30 that can be manipulated by the user to simulate various poses of the character represented by the first action FIG. 12. Each of the joints 30 may have a frictional action that generally keeps the joint 30 in position until moved by the user. Thus, the joints 30 may be moved to position the body 20 in a desired pose, and then the body 20 may remain in that pose until the user takes actions to move the joints 30 again.

[0031] The joints 30 may include shoulders 32, elbows 34, wrists 36, hips 38, knees 40, and/or ankles 42. The joints 30 may also include the neck 44 and the waist 46 of the first action FIG. 12. However, those of skill in the art will recognize that all of these are optional; the first action FIG. 12 need not have any specific combination of joints.

[0032] Specifically, the first action FIG. 12 need not have the full range of joints, or the full range of motion, provided by the human body; rather, having some of the parts listed above be immovable may not impede the type of simulation or play for which the first action FIG. 12 will be used. Many known action figures have joints only at the hips and shoulders. A greater number of joints may provide for more realistic poses and more flexible use. However, a greater number of joints may also lead to greater complexity and expense of the first action FIG. 12, so it may be desirable to use fewer joints in some embodiments. Further, in some embodiments, the present invention may use character figurines with no joints.

[0033] Returning to the example of FIG. 2, the joints 30 may be of any of a variety of types. For example, the joints 30 may include ball-and-socket joints, monoauxiliary joints, assemblies of multiple revolute joints to provide polyaxial rotation, four-bar linkages, and the like. Each of the joints 30 may optionally be of a type that resembles that of the corresponding joint of the human body. For example, the shoulders 32 and the hips 38 may be made with ball-and-
The joints 30 of the first action FIG. 12 may be positioned such that the body 20 of the first action FIG. 12 is in a first configuration, prior to receipt of the infrared signal 16. Thus, for example, the first action FIG. 12 may be in an upright position.

The first action FIG. 12 may include a weapon 48, which may be gripped in one or both hands of the body 20. The weapon 48 may be a ranged weapon such as a rifle. In alternative embodiments, an action figure may have a different ranged weapon such as a laser gun, rocket launcher, pistol, Gatling gun, sniper rifle, fully-automatic assault weapon, or the like. In other alternative embodiments, an action figure may have a non-ranged weapon such as a club, a sword, an axe, a knife, a polearm, or the like. Further, in alternative embodiments, an action figure may have a weapon that is not held in the hand, but is instead attached to a different body part on the action figure or incorporated into an accessory such as a vehicle to be used by the action figure.

The first action FIG. 12 may also have a wireless transmitter and a wireless receiver attached to the body 20. As mentioned previously, infrared technologies may be used by the system 10 for wireless communication. Thus, the first action FIG. 12 may include an infrared transmitter 50 and an infrared receiver 52. The infrared transmitter 50 and the infrared receiver 52 may be attached to the torso 22 of the first action FIG. 12. The first action FIG. 12 may also have an action system 54, which may be, for example, positioned in the lower part of the torso 22. The action system 54 may, in response to receipt of the infrared signal 16 by the infrared receiver 52, perform an action perceivable by the user, as described above. The action system 54 will be described in greater detail subsequently.

Attachment of the infrared transmitter 50 and/or the infrared receiver 52 to the torso 22 may beneficially allow the first action FIG. 12 to transmit the infrared signal 16 to and/or receive the infrared signal 16 from any other action figure toward which the torso 22 is oriented. Thus, the weapon 48 may not need to be oriented toward the target action figure in order for the infrared signal 16 to be transmitted to the target action figure. In alternative embodiments, the infrared transmitter 50 and/or the infrared receiver 52 may be oriented elsewhere on the first action FIG. 12. For example, the infrared transmitter 50 may be secured to the weapon 48 so that the orientation of the weapon 48 determines which target action figures are within the “line of fire” of the infrared signal 16.

The infrared transmitter 50 may be designed to broadcast the infrared signal 16 in a wide arc, a narrow arc, or any size arc in between. Transmission in a wide arc may enable the infrared signal 16 to reach several action figures simultaneously. This may or may not be desirable depending on the nature of the play or simulation. A narrow arc may effectively limit reception of the infrared signal 16 to only a single target action figure.

Furthermore, the infrared transmitter 50 may be designed to transmit a high-power signal with relatively long range (i.e., across a large room). Alternatively, the infrared transmitter 50 may be designed to transmit a lower power signal with a shorter range (for example, a few feet or even a few inches). Long range may be desirable for some situations, while short range may be a better choice for other situations.
ing gears as shown. The mechanical transmission 58 may convert the output motion provided by the motor 56 to the type of motion needed to move the hips 38 to the second configuration. In some embodiments, the motor 56 may have high-speed output, and the mechanical transmission 58 may convert this output into a slower speed with greater torque. A variety of mechanical transmission types may be used in alternative embodiments, including but not limited to gears, linkages, magnetic couplings, and the like.

[0047] As mentioned above, an action figure may take and/or initiate a wide variety of actions in accordance with the present invention. In alternative embodiments, an action system may include other components besides the motor 56 and/or the mechanical transmission 58 in order to accomplish such functions. For example, an action system may include a speaker capable of producing sounds, a gyroscope that can cause motion of the action figure without manipulating any of the joints of the action figure, a light, a display screen, or the like.

[0048] In some embodiments, the action system may have the capability to undertake any of a variety of actions based on certain criteria. Such an action system may include a computing apparatus (not shown) including a collection of logic gates and/or a microprocessor that executes software-based or hardware-based instructions. The computing apparatus may also include a memory, which may, if desired, record historical data regarding one or more wireless signals received by the infrared receiver 52. The decisions made may be based on such historical data, on user-selected preferences, and/or on random factors. Such a computing apparatus may, either on its own or via a separate controller, control one or more component such as motors, transmitters, speakers, gyroscopes, and the like, to undertake the desired action(s).

[0049] For example, returning to the example of combat simulation, an action figure may, in response to receipt of a wireless signal, make a random determination as to whether the action figure will simulate receipt of a wound, or initiate an attack on its attacker. If the computing apparatus determines that the action figure should simulate receipt of a wound, an action system like the action system 54 of FIG. 3 may be signaled to perform this action. If, however, the computing apparatus determines that the action figure is to return fire, the infrared transmitter 50 may be signaled to initiate this action. If the computing apparatus determines that the action figure is to-exclaim "that was a close one," a sound module such as a speaker may be signaled to initiate this action.

[0050] Returning to the example of FIG. 2, the infrared transmitter 50, the infrared receiver 52, and the action system 54 may all require electrical power in order to operate. Thus, the first action FIG. 12 may have a power source such as a battery. A battery may be embedded into any part of the body 20. Batteries of a wide variety may be used, including but not limited to conventional AA or AAA batteries, rechargeable batteries, watch batteries, and the like.

[0051] It may be desirable to position the battery or batteries outside the body 20 to facilitate the construction of the body 20 and avoid interference with the operation of the joints 30 of the body 20. Thus, as shown, the first action FIG. 12 may have a backpack 70 that contains various components that power, control, and/or otherwise cooperate with the infrared transmitter 50, the infrared receiver 52, and/or the action system 54.

[0052] More precisely, the backpack 70 may have a battery compartment 72, which may contain a battery. In the configuration of FIG. 3, the battery compartment 72 may have a size suitable for an AA or AAA battery. The battery compartment 72 may be covered by a battery door 74, which may keep the battery in place and prevent interference with its operation. The backpack 70 may also have a switch 76, which may be an on/off switch that can be used to selectively activate or deactivate the infrared transmitter 50, the infrared receiver 52, and/or the action system 54. The backpack 70 may also have a trigger that may be used to initiate transmission of the infrared signal 16 by the infrared transmitter 50.

[0053] If desired, the trigger may take the form of an actual trigger, as on a firearm. Alternatively, the trigger may be a different type of device that can be pressed, pulled, or otherwise manipulated by the user to cause the infrared transmitter 50 to transmit the infrared signal 16. In the embodiment of FIG. 3, the trigger may be a button 78, which may be positioned on the top of the backpack 70. In some embodiments, the button 78 may, exclusively, control the operation of the infrared transmitter 50, while the switch 76 may control the operation of the infrared receiver 52 and/or the action system 54.

[0054] The backpack 70 may be formed as a single piece with the body 20, the infrared transmitter 50, and/or the infrared receiver 52, or may be a separate piece. If separate, the backpack 70 may be a part of a retrofit system that can be attached to an existing action figure to provide the functionality of the invention. In alternative embodiments (not shown), a backpack may be a part of an assembly that includes a wireless transmitter, a wireless receiver, and an action system. In such a case, it may be most convenient to utilize an action system that does not require interconnection with the joints of the action figure. For example, such an action system may include a speaker, gyroscope, light, display screen, or the like. If desired, such an action system may be incorporated into the backpack. If desired, the backpack may be a part of an assembly that includes the wireless transmitter and the wireless receiver, which may be on a harness or other member that holds the backpack on the torso of the action figure.

[0055] Referring to FIG. 4, a side elevation view illustrates the first action FIG. 12 of FIG. 2 prior to receipt of the infrared signal 16. The first action FIG. 12 may be in an upright configuration as described previously. The first action FIG. 12 may be positioned on a surface 90. If desired, the first action FIG. 12 may be posed such that the center of gravity of the first action FIG. 12 is generally centered over the feet of the body 20. Thus, the first action FIG. 12 may be relatively stable.

[0056] Referring to FIG. 5, a side elevation view illustrates the first action FIG. 12 of FIG. 2 after receipt of the infrared signal 16 and activation of the associated action system 54. The action system 54 may be used to simulate receipt by the first action FIG. 12 of a wound inflicted by the second action FIG. 14. Thus, the motor 56 may be activated to exert torque on the hips 38 via the mechanical transmission 58, thereby causing the body 20 to bend forward at the hips 38 as shown by the arrow 92. This may position the body 20 in a second configuration different from the first configuration of FIG. 2, FIG. 3, and FIG. 4.

[0057] In the second configuration, the center of gravity of the first action FIG. 12 may be pushed forward. This may disrupt the balance of the first action FIG. 12, causing the first action FIG. 12 to fall forward as shown.

[0058] The claims are not limited to the specific implementations described above. Various modifications, changes and
variations may be made in the arrangement, operation and details of the implementations described herein without departing from the scope of the claims.

What is claimed is:
1. A system comprising:
 a first character figurine comprising:
 a first body that resembles a first character; and
 a first wireless transmitter coupled to the first body, wherein the first wireless transmitter transmits a first wireless signal; and
 a second character figurine comprising:
 a second body that resembles a second character;
 a second wireless receiver coupled to the second body, wherein the second wireless receiver receives the first wireless signal; and
 a second action system coupled to the second body and the second wireless receiver such that, in response to receipt of the first wireless signal, the second action system causes the second character figurine to perform a second visually perceptible action.

2. The system of claim 1, wherein the first body comprises a first humanoid shape and the second body comprises a second humanoid shape.

3. The system of claim 2, wherein the first character figurine further comprises a first backpack configured to be coupled to a first back of the first humanoid shape, wherein the backpack comprises a first battery compartment that receives a first battery, wherein the first battery compartment is electrically connected to the first wireless transmitter to permit transmission of electricity from the first battery to the first wireless transmitter, wherein the second character figurine further comprises a second backpack configured to be coupled to a second back of the second humanoid shape, wherein the second backpack comprises a second battery compartment that receives a second battery, wherein the second battery compartment is electrically connected to the second wireless receiver and to the second action system to permit transmission of electricity from the second battery to the second wireless receiver and the second action system.

4. The system of claim 1, wherein the first body comprises a plurality of joints that enables the first body to be posed in any of a plurality of configurations, wherein the second body comprises a second plurality of joints that enables the second body to be posed in any of a second plurality of configurations.

5. The system of claim 4, wherein the second action system comprises a motor coupled to at least one joint of the second plurality of joints, wherein the second visually perceptible action comprises motion of the second body, driven by the motor, from a first configuration of the second plurality of configurations to a second configuration of the second plurality of configurations.

6. The system of claim 5, wherein motion of the second body from the first configuration to the second configuration approximates receipt by the second character of a wound inflicted by the first character.

7. The system of claim 1, wherein the first wireless transmitter comprises an infrared transmitter, wherein the second wireless receiver comprises an infrared receiver, wherein the first wireless signal comprises an infrared signal.

8. The system of claim 1, wherein the first character figurine further comprises a weapon, wherein the first character figurine is poseable to hold the weapon such that transmission of the first wireless signal by the first wireless transmitter approximates use of the weapon by the first character against the second character.

9. The system of claim 1, wherein the second character figurine further comprises a second wireless transmitter that transmits a second wireless signal, wherein the first character figurine further comprises:
 a first wireless receiver that receives the second wireless signal; and
 a first action system that, in response to receipt of the second wireless signal, causes the first character figurine to perform a first visually perceptible action.

10. The system of claim 9, wherein the first body comprises a torso, wherein the first wireless transmitter and the first wireless receiver are both positioned on the torso.

11. A method for manufacturing a system, the method comprising:
 providing a first body that resembles a first character to define a first character figurine;
 providing a first wireless transmitter capable of transmitting a first wireless signal;
 coupling the first wireless transmitter to the first body;
 providing a second character to define a second character figurine;
 providing a second wireless receiver capable of receiving the first wireless signal;
 providing a second action system;
 and
 coupling the second action system to the second body and the second wireless receiver such that, in response to receipt of the first wireless signal, the second action system causes the second character figurine to perform a second visually perceptible action.

12. The method of claim 11, wherein providing the first body comprises providing a first humanoid shape comprising a plurality of joints that enables the first humanoid shape to be posed in any of a plurality of configurations, wherein providing the second body comprises providing a second humanoid shape comprising a second plurality of joints that enables the second humanoid shape to be posed in any of a second plurality of configurations.

13. The method of claim 12, further comprising:
 providing a first backpack comprising a first battery compartment that receives a first battery, wherein the first backpack is configured to be coupled to a first back of the first humanoid shape such that the first battery compartment is electrically connected to the first wireless transmitter to permit transmission of electricity from the first battery to the first wireless transmitter; and
 providing a second backpack comprising a second battery compartment that receives a second battery, wherein the second backpack is configured to be coupled to a second back of the second humanoid such that the second battery compartment is electrically connected to the second wireless receiver and to the second action system to permit transmission of electricity from the second battery to the second wireless receiver and the second action system.

14. The method of claim 12, wherein providing the first body comprises providing a weapon such that the first character figurine is poseable to hold the weapon such that transmission of the first wireless signal by the first wireless transmitter approximates use of the weapon by the first character.
against the second character, wherein the second action system comprises a motor, wherein coupling the second action system to the second body and the second wireless receiver comprises coupling the motor to at least one joint of the second plurality of joints such that the second visually perceptible action comprises motion of the second body, driven by the motor, from a first configuration to a second configuration to approximate receipt by the second character of a wound inflicted by the first character.

15. The method of claim 11, wherein providing the first wireless transmitter comprises providing an infrared transmitter, wherein providing the second wireless receiver comprises providing an infrared receiver.

16. The method of claim 11, further comprising:
providing a second wireless transmitter capable of transmitting a second wireless signal;
coupling the second wireless transmitter to the second body;
providing a first wireless receiver that receives the second wireless signal;
providing first action system;
coupling the first wireless receiver to the first body; and
cooperating the first wireless transmitter to the second body and the first wireless receiver such that, in response to receipt of the second wireless signal, the first action system causes the first character figurine to perform a first visually perceptible action.

17. A system comprising:
a first character figurine comprising:
a first body comprising a first humanoid shape that resembles a first character, the first body comprising a first plurality of joints that enables the first body to be posed in any of a first plurality of configurations; and
a first infrared transmitter coupled to the first body, wherein the first infrared transmitter transmits a first infrared signal; and

a second character figurine comprising:
a second body comprising a second humanoid shape that resembles a second character, the second body comprising a second plurality of joints that enables the second body to be posed in any of a second plurality of configurations;
a second infrared receiver coupled to the second body, wherein the second infrared receiver receives the first infrared signal; and

a second action system coupled to the second body and the second infrared receiver such that, in response to receipt of the first infrared signal, the second action system causes the second character figurine to perform a second visually perceptible action.

18. The system of claim 17, wherein the first character figurine further comprises a first backpack configured to be coupled to a first back of the first humanoid shape, wherein the backpack comprises a first battery compartment that receives a first battery, wherein the first battery compartment is electrically connected to the first infrared transmitter to permit transmission of electricity from the first battery to the first infrared transmitter, wherein the second character figurine further comprises a second backpack configured to be coupled to a second back of the second humanoid shape, wherein the second backpack comprises a second battery compartment that receives a second battery, wherein the second battery compartment is electrically connected to the second infrared receiver and to the second action system to permit transmission of electricity from the second battery to the second infrared receiver and the second action system.

19. The system of claim 17, wherein the first character figurine further comprises a weapon, wherein the first character figurine is capable of holding the weapon such that transmission of the first infrared signal by the first infrared transmitter approximates use of the weapon by the first character against the second character, wherein the second action system comprises a motor coupled to at least one joint of the second plurality of joints, wherein the second visually perceptible action comprises motion of the second body, driven by the motor, from a first configuration of the second plurality of configurations to a second configuration of the second plurality of configurations to approximate receipt by the second character of a wound inflicted by the first character.

20. The system of claim 17, wherein the second character figurine further comprises a second infrared transmitter that transmits a second infrared signal, wherein the first character figurine further comprises:
a first infrared receiver that receives the second infrared signal; and
a first action system that, in response to receipt of the second infrared signal, causes the first character figurine to perform a first visually perceptible action.