7133818 A1 I 0O 00RO A

.

=
=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization f ; A
International Bureau

(43) International Publication Date
6 November 2008 (06.11.2008)

) IO O OO0 OO

(10) International Publication Number

WO 2008/133818 Al

(51) International Patent Classification:
GOG6F 15/16 (2006.01)

(21) International Application Number:
PCT/US2008/004866

(22) International Filing Date: 15 April 2008 (15.04.2008)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:
11/740,556 26 April 2007 (26.04.2007) US
(71) Applicant (for all designated States except US): INTER-
NATIONAL BUSINESS MACHINES CORPORA-
TION [US/US]; New Orchard Road, Armonk, New York

10504 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): DORAI, Chitra
[IN/US]; 50 Paulding Drive, Chappaqua, New York 10514
(US). STROM, Robert E. [US/US]; 6 Rochambeau
Avenue, Ridgefield, Connecticut 06877 (US).

(74) Agent: GROLZ, Edward W.; Scully, Scott, Murphy &
Presser, PC, 400 Garden City Plaza, Garden City, New
York 11530, (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AOQ, AT, AU, AZ,BA, BB, BG, BH, BR, BW, BY, BZ, CA,
CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE,
EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID,
1L, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC,
LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN,
MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH,
PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV,
SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN,
ZA, 7M, 7ZW.
(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB,GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL,
NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG,
CIL, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant’s entitlement to apply for and be granted a
patent (Rule 4.17(ii))

as to the applicant’s entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

Published:
with international search report

(54) Title: DISTRIBUTED, FAULT-TOLERANT AND HIGHLY AVAILABLE COMPUTING SYSTEM

10 154 = s
AN S ¢
Scheduler Scheduler | ... Scheduler |—_~15n

20

a\ | N\ 1s

Component | | Component| - Component

o

20n FIG. 1

(57) Abstract: A method and system for achieving highly available, fault-tolerant execution of components in a distributed comput-
ing system, without requiring the writer of these components to explicitly write code (such as entity beans or database transactions) to
make component state persistent. It is achieved by converting the intrinsically non-deterministic behavior of the distributed system to
a deterministic behavior, thus enabling state recovery to be achieved by advantageously efficient checkpoint-replay techniques. The
method comprises: adapting the execution environment for enabling message communication amongst and between the components;
& automatically associating a deterministic timestamp in conjunction with a message to be communicated from a sender component
& 1o a receiver component during program execution, the timestamp representative of estimated time of arrival of the message at a
receiver component. At a component, tracking state of that component during program execution, and periodically checkpointing
the state in a local storage device. Upon failure of a component, the component state is restored by recovering a recent stored check-
point and re-executing the events occurring since the last checkpoint. The system is deterministic by repeating the execution of the
receiving component by processing the messages in the same order as their associated timestamps.

WO 2008/133818 PCT/US2008/004866

DISTRIBUTED, FAULT-TOLERANT AND
HIGHLY AVAILABLE COMPUTING SYSTEM

Field of the Invention

[0001] The present invention relates generally to application development tools, methods and
systems for developing and executing distributed systems, and more particularly, an
improved environment for developing and executing distributed, transparently fault-tolerant,

and highly available systems for executing component oriented applications.
Background of the Invention

[0002] SCA Service Component Architecture provides an open, technology-neutral model
for implementing IT services that define a business function. The SCA also provides a model
for the assembly of business solutions from collections of individual services, with control
over aspects of the solution such as access methods and security. With a SCA, customers are
able to more easily create new, and transform existing, IT assets into reusable services that
may be rapidly adapted to changing business requirements. The specifications that enable the
building of SCA (middleware) components take advantage of a Service-Oriented
Architecture (SOA), which structures IT assets as a series of reusable services that perform
business functions. The Service Oriented Architecture combines the ability to invoke remote
objects and functions (called "services") with tools for dynamic service discovery, placing an
emphasis on interoperability. Currently, a goal of the industry is to provide application

developers with simpler and more powerful ways of constructing applications based on SOA.

[0003] Moreover, in the development of distributed systems implementing SCA components,
it is a goal to provide for transparent and fault-tolerant availability of ‘non-volatile’ data that
may either represent persistent ‘settings’ (to be stored on mass-media throughout the
distributed system) or ‘state’ preserved in a fault-tolerant manner. Presently, the
development of distributed fault-tolerant and highly available systems is ad-hoc, error-prone,
and time-consuming. Current solutions are analogous to an example currency exchange

system where the fluctuation of currency price and exchange operations may be out of order

WO 2008/133818 PCT/US2008/004866

or non-atomic. Execution is usually non-deterministic due to the network or threading:
Existing mechanisms for persistence (entity beans, JDBC, etc) are heavyweight, and they
necessitate extra knowledge and extra code.

[0005] For example, a current solution implements entity beans, e.g., "Enterprise Java Bean"
(EJB) that include the server-side component architecture for the J2EE platform. EJBs
purportedly support rapid and simplified development of distributed, transactional, secure and
portable Java applications. EJBs support a container architecture that allows concurrent
consumption of messages and provide support for distributed transactions, so that database
updates, message processing, and connections to enterprise systems using the J2EE

architecture can participate in the same transaction context.

[0006] It would be highly desirable to eliminate the need to require programmers to learn
specialized methodologies and structures such as transactions, JDBC, or entity beans that
separate out component state into separate objects and to persist that state, and, instead, to
automatically provide persistence and fault-tolerance for ordinary code (also called

transparent fault-tolerance).

[0007] There do exist techniques for transparent fault-tolerance in distributed systems,
including a technique described in U.S. Patent No. 4,665,520 commonly owned by the
assignee of the present invention. The performance of such techniques is limited by the non-
determinism of the behavior of communicating components in distributed systems, as each

communication from one distributed component to another needs to be logged.

[0008] Moreover, it would be highly desirable to provide an execution server that
transparently supports deterministic execution, fault tolerance and high availability, to avoid

the performance problems of recovering non-deterministic distributed systems.

[0009] Furthermore, it would be highly desirable to provide a simple component-based
model for programmers and, particularly, to provide a system and method for making

middleware functions more accessible to the application developer.

WO 2008/133818 PCT/US2008/004866

Summary of the Invention

[0010] Thus, it is a broad object of the invention to remedy the shortcomings of the prior art

as described here above.

[0011] It is another object of the invention to provide an execution environment that
transparently supports deterministic execution, fault tolerance and high availability for

component-oriented applications.

[0012] The accomplishment of these and other related objects is achieved by a computing
oysfem éno methodology. Tho deterministic coolputiné system comprises:

a plurality of software components each implementing logic to perform a task, the
components executing in an execution environment comprising on one or more machines
connected in a network and adapted for communicating messages between the components;

means for automatically associating a deterministic timestamp in conjunction with a
message to be communicated from a sender component to a receiver component during
program execution, said timestamp representative of estimated time of arrival of said
message at a receiver component;

means for deterministically executing said component by using said timestamps to
generate a unique arrival order of input messages; and,

means for tracking state of a component during program execution, and periodically
checkpointing the state to a local storage device;

wherein upon failure of a machine, the component state is restored by recovering a

recent stored checkpoint and re-executing the events occurring since the last checkpoint.

[0013] The computing system is deterministic by repeating the execution of a receiving

component by processing the messages in the same order as their associated timestamps.

[0014] Further to this aspect of the invention, the component state may be checkpointed to a

backup processor device.

WO 2008/133818 PCT/US2008/004866

[0015] According to a further embodiment of the invention, there is provided a method for
deterministic execution of components in a computing system adapted for enabling message
communication amongst and between said components, each component implementing logic
to perform a task, the method comprising:

automatically associating a timestamp in conjunction with a message to be
communicated from a sender component to a receiver component during program execution,
the timestamp representative of estimated time of arrival of the message at a receiver
component;

deterministically executing said component by using said timestamps to generate a
unique arrival order of input messages; and,

trécking state of that componeﬁf during program eXeé:ution, and periodically
checkpointing the state to a local storage device;

wherein upon failure of a component, the component state is restored by recovering a

recent stored checkpoint and re-executing the events occurring since the last checkpoint.

[0016] Yet according to a further embodiment of the invention, there is provided an
environment for executing component-oriented applications, the environment adapted for
communicating messages amongst and between components. The environment comprises:

a sub-system enabling high-level design of the components including
specification of ports representing message inputs to and outputs from the components, each
component implementing logic to perform a task;

a placement service for mapping a high-level design onto a lower level
implementation in which components are assigned to particular processing engines of said
execution environment;

a code enhancing means for:

automatically augmenting an input or output message of an associated
component with a timestamp in conjunction with a message to be communicated
from a sender component to a receiver component during program execution, the
timestamp representative of estimated time of arrival of the message at a receiver
component; and,

augmenting a component with code for tracking incremental changes

to its state;

WO 2008/133818 PCT/US2008/004866

wherein, a state of a component is tracked during program execution, and the
component state checkpointed in a local storage device; and,

wherein upon failure of a component, the component state is restored by
recovering a recent checkpoint and re-executing the events occurring since the last

checkpoint.

[0017] In accordance with this aspect of the invention, the high-level design is neutral with

respect to where components execute in said execution environment.

[0018] It would be further highly desirable to provide a distributed system according to each
of the embodiments described that eﬁables two types of components to cd-éxist: non-tirﬁe-
aware components, in which time estimation is automatic; and, time-aware components,
where programmers may specify real-time constraints.

[0019] Further advantages of the present invention will become apparent to the ones skilled
in the art upon examination of the drawings and detailed description. It is intended that any

additional advantages be incorporated herein.

Brief Description of the Drawings

[0020] The objects, features and advantages of the present invention will become apparent to
one skilled in the art, in view of the following detailed description taken in combination with

the attached drawings, in which:

[0021] Figure 1 depicts an execution server architecture 10 in which a middleware
application is run for executing components and component oriented applications in

accordance with the present invention;

[0022] Figure 2 depicts example messaging and communication between components in a
single execution engine — in this example a Java Virtual Machine(JVM), and, between and
among multiple execution engines according to the execution server architecture of the

present invention;

WO 2008/133818 PCT/US2008/004866

[0023] Figures 3A-3D depict an example application enabled by the server middleware
components of the present invention, including the placement of components from an
example user-design (Figs. 3A, 3B), virtual time estimation (Fig. 3C), and, silence and

curiosity message generation (Fig. 3D);

[0024] Figure 4 demonstrates an overview of checkpointing to a memory storage device and

checkpoint recovering from a hard disk according to the principles of the invention;

[0025] Figures 5A-5C demonstrates an overview of using passive remote backups and
spawning scheduler replicas for providing the high availability afforded by the present

invention.
Detailed Description of the Preferred Embodiments

[0026] As mentioned above, the proposed invention aims to address the problems in the art,
namely the continued need to provide programmers with specialized methodologies and
structures such as transactions, JDBC, or entity beans that separate out component state into
separate objects in order to persist that state, and the need to log messages between
components in non-deterministic implementations. This is addressed by providing a
deterministic and highly available execution server that automatically provides persistence

and fault-tolerance for executing component oriented applications.

[0027] Figure 1 depicts an execution server architecture 10 in which the present middleware
application is run for executing components and component oriented applications,
represented generally as components 20a, . . ., 20n. As shown in Fig. 1, each server includes
one or more Java Virtual Machines, represented generally as JVM’s 12a,. . . 12n, such as
shown in Fig. 1. It is understood that there may be multiple servers, and within each server,
there may be multiple instances of Java Virtual Machine (JVMs), running, for example, as
different processes within a single machine. It is understood that the use of Java and JVMs is
purely exemplary; instead of a JVM one may use the execution environment of other
languages in which application components are written. Within each JVM a scheduler layer

is provided, containing at least one scheduler, represented generally as schedulers 15a,. . .

WO 2008/133818 PCT/US2008/004866

15n, as a layer between JVMs and components in the hierarchy that are transparent to
developers. A scheduler 15a, 15b . .. 15n is a grouping of one or more tightly related
components in a JVM, together with logic deciding when to execute these components.
There may be multiple schedulers in the JVM, each managing the execution of its own
respective component(s). For example, as shown in Fig. 2, JVM 12 implements a scheduler
15 for managing execution of components 21 and 22 and implements a scheduler 16 for
executing components 26, 27. A second JVM 13 includes scheduler 17 for managing
components 28 and 29. In particular, as shown in Fig. 2, the scheduler layer between JVMs
and components in the hierarchy manages the execution of components in a JVM. It is
understood that, within a JVM, the communication between components and that between
échedulers are efficiently imﬁlélhénted by reference passing. There may be mult.i.p.le
schedulers in the JVM, each managing the execution of its own components. When a
component has an input message pending, the scheduler will choose an appropriate time to
assign an available thread to execute it. This decision is made based on a number of factors,
such as system load, user-required throughput, memory consumption caused by queuing, etc.
Concurrency is obtained when the scheduler decides to execute multiple components at the

same time.

Components

[0028] As known, a component may be service-oriented or event-oriented and may be any
collection of “objects” that are consistent with an SCA-like component model. Typically, the
Java Language or C++ Language or like object-oriented language, or other languages such as
Python or Perl, are used for implementing SCA service components, and the data sent
between components. That is, interaction between components occurs only by passing data
messages across ports, or by a service call from a service consumer to a service provider, in
which data values can be passed and returned. Receivers of sent messages or service calls
appear as objects with synchronized methods. One thread of control exists within a
component at any one time. No object is ever shared between components. Objects are
either: (a) the component object itself, a “monitor” with synchronized methods, (b) “value”
objects, that can be passed from component to component, but never shared, or (c)

“implementation” objects, that can be shared, but only within either the component object

WO 2008/133818 PCT/US2008/004866

itself or within the same value object. This discipline, which assures, among other things,
that no data is concurrently owned by more than one executing component, is formalized and
described in a reference authored by David Bacon, Robert Strom, Ashis Tarafdar entitled
“Guava: a dialect of Java without data races,” Proceedings of the 15th ACM SIGPLAN
conference on Object-oriented programming, systems, languages, and applications, 2000 the
contents and disclosure of which is incorporated by reference as if fully set forth herein.
According to the Guava techniques, it is possible to statically check that a particular
component obeys this discipline. The Guava dialect of Java, running on a JVM is just one
example of the kind of component implementation language suitable for use in the

environment of this invention.

[0029] To make components “wireable”, the input methods for service calls serviced by a
component, or the message queues for asynchronous messages received by a component, are
made externally available as input “ports”. Sites making calls or sending messages to other
components are made externally available as output “ports™ as shown in Fig. 2. It is assumed
that a separate deployment-time decision is made that determines (a) how output ports are
“wired” to input ports, and (b) where to place components. As a result of these decisions,
some port connections may be local, and others remote. It is understood that messages and
service calls may be communicated more efficiently (e.g., “by reference”) when the port
connection connects components within the same JVM (e.g. connection 40 in Figure 2), and
less efficiently (e.g., by copying, or by sending network messages), when these components

are in different JVMs (e.g. connection 42 in Figure 2).

[0030] As mentioned, the execution server of the invention is designed to support distributed
execution across machines. Multiple instances of Java Virtual Machine (JVMs) may run on
those machines or run as different processes within a single machine, depending on the
deployment. As shown in Fig. 2, a example protocol for message communication between
JVMs is User Datagram Protocol (UDP) 30. Thus, in the example embodiment depicted in
Fig. 2, the JVM 12 communicates via UDP messaging protocol with the JVM 13. As known,
the use of UDP does not provide guaranteed delivery but features better performance over

Transmission Control Protocol (TCP). Instead, loss-free and order-preserving messaging is

WO 2008/133818 PCT/US2008/004866

built in the middleware component of the invention as will be described in greater detail

herein below.
Development

[0031] The Execution Server of the invention is distinguished from other approaches
because: (1) the development environment is radically simplified: Components can be written
in plain Java, and can be wired, as in SCA component models, to build a distributed flow
network; (2) Components store state in plain Java primitive variables and collection classes;
(3) Programmers need not use specialized methodologies and structures, such as transactions,
{ J bBC, or entity beans to separate out component state into separate objects and to persist that
state. Instead, persistence and fault-tolerance are provided automatically by the execution
server(s) of the invention, despite machine failures, and faulty networks that may drop,

reorder, or duplicate messages.
Deterministic Execution

[0032] In accordance with the methodology of the invention, the technology for fault-
tolerance is based upon assuring deterministic, replayable execution of the system. This is an
improvement over other approaches based upon transactions, or based on replication, or
based on persistently logging all inter-component messages. Deterministic execution means
that if the system is given the same state and the same input messages, it will generate the
same output messages. Determinism implies that upon a failure of a component, its state can
be restored by recovering a recent checkpoint, and replaying the events occurring since that
checkpoint. Because of determinism, the state after the replay is guaranteed to be the same as
the lost state. This means that state does not need to be saved persistently each time it is

updated, but only intermittently.

[0033] The achievement of deterministic execution is based upon generalizing techniques
from discrete event simulation and applying them to the run-time environment of the
execution server. As in event simulators, each message communicated between components

is tagged with a virtual time (VT). Unlike event simulators, the virtual time is chosen to be a

WO 2008/133818 PCT/US2008/004866

deterministic estimate of the real time at which the message will arrive at the receiving
component. The execution server of the invention guarantees that the system will behave as
if the messages had arrived in virtual time order. The better the correspondence between
virtual time and real time, the better the system will perform; however, deterministic
execution is guaranteed regardless of how good this correspondence is. In a variant of this
approach, the virtual time is a real-time deadline, and the system will adjust the scheduling to
guarantee to meet these real-time deadlines. This is also unlike the case of event simulators,

wherein simulated virtual time may have no obvious correlation with real time.

[0034] Deterministic execution is achieved by augmenting all communications with
timestamps containing virtual times (VTs). At the systérh boundary, external events are
received, which did not contain timestamps when they were generated. According to the
invention, the system, without manual intervention, automatically assigns VTs to those
events. The VTs conform to causal order, i.e., if an output is caused by an input, it must not
occur at an earlier virtual time, and is an approximation to the real time. A log records all the
assigned VTs, because their generation is non-deterministic, and the log will be essential
when replay is required later. Once events are augmented with VTs on the boundary, they
travel via the connections between components, and are processed in a deterministic order.
No future logging is necessary. This is in contrast to the approach used by Optimistic
Recovery and other prior art techniques of transparent fault-tolerance, where logging of
messages between components is required so that the non-deterministic arrival order can be

replayed. It is understood that no two messages will ever have the identical VT.

[0035] When a component is chosen to execute, it may produce outputs as a result of
processing the input message. The outputs are associated with VTs strictly greater than the
input message’s VT, reflecting the non-zero computation delay. The increment in VT, as
well as the output messages, is fully determined by the input message. A component may
receive inputs, for example, sent messages, or service call messages, etc. from multiple
predecessor components. In this case, a deterministic merge is utilized based on VTs of the
messages. VTs are generated independently by the predecessors, but they are compared
locally at the merge. The message with the smallest VT can be safely processed once it is

known that no predecessor can send any message in the future with an earlier VT. Itis

10

WO 2008/133818 PCT/US2008/004866

understood that, in an alternative embodiment, messages can be processed aggressively and
rolled back if a message with earlier VT arrives, as in the discrete event simulation
environment described in the reference to Jefferson, D. entitled “Virtual time”, ACM
Transactions on Programming Languages and Systems, July 1985. Because of deterministic
VT generation and deterministic merging (both of which are local to the components), the

order of message processing is deterministic.
Deployment Time Mechanisms

[0036] As a main difference between deterministic execution mechanisms for persistent
distributed compﬁtation, very little user intervention is required in the approach of the present
invention. In particular, developers are not required to be aware of VTs or how to compute
them. A set of tools is provided to dramatically simplify the application developer’s work,

while the benefits described herein are not compromised at all.

Placement Service

[0037] As shown in Fig. 3A, at design time, the components’ computation logic may be
written in plain Java, C++ or like objected-oriented code, or in other languages such as
Python or Perl. Ports are defined, for example, with Java interfaces. Logical connections are
created by the designers by wiring two or more ports. This high-level design completely
abstracts away the distributed nature of the resulting system. It also takes such properties as
deterministic execution and fault tolerance for granted. As shown in Fig. 3B, a middleware
placement service component 50 is used to map this high-level design such as the design
shown in Fig. 3A, onto lower-level implementation, where the most inter-related components
are grouped into schedulers, and schedulers are assigned in JVMs, possibly on different
machines. The placement before execution is semi-automatic, with user-supplied parameters
such as metrics of machines’ computation power, network capability, and placement
preferences. To maximize performance, work load is balanced on different machines. At
execution time, the initial placement may be fine-tuned by moving schedulers from their

original machines to other machines for even better overall performance. Depending on the

11

WO 2008/133818 PCT/US2008/004866

placement, logical connections in the developers’ view may also be mapped to physical

connections.

[0038] This placement service 50 simplifies the deployment task, but still provides enough

flexibility by accepting user-specified configurations.

[0039] Thus, in one non-limiting example of placement, now presented for exemplary
purposes, as shown in Fig. 3A, there is depicted a high-level approach of an example
designer’s view of a ticketing (ticket selling) system 30 that a may used to model the receipt
of messages from two different requesting paths, i.e., requestors 32, 34 for reserving seats at
an event, for example. These ticket requests are first received and.proc‘essed to determine an |
amount of tickets being requested by each requestor (e.g., S tickets or 10 tickets) and then,
finally assigned a process for printing the tickets at a printer device. The following example
code portion depicts the components’ logic (e.g., primitive variables, collection classes, etc.)
that may be written in plain Java according to the high-level design of the example system

described in Fig. 3A.

class Requester extends Component {
Requester(Scheduler s, String ID) { ... }
public RequestPort requestOut = ...

class TopOfN extends Component {
TopOfN(int n, Scheduler s, String ID){ ... }
public RequestPort requestin = ...
public RequestPort requestOut = ...

class Assigner extends Component {
Assigner(Scheduler s, String ID) { ... }
public RequestPort requestin = ...
public PrintPort assignmentOut = ...

class Printer extends Component {
Printer(Scheduler s, String ID) { ... }
public PrintPort printin = ...

}

[0040] The placement service S0 will generate code for the low-level implementation as
shown in Fig. 3B. In the resulting low level implementation shown in Fig. 3B, the requestors
are modeled by defining ports for a first JVM 62 which receives the messages; and, further
modeled are the respective ports defined at a second JVM 64 which processes the respective

12

WO 2008/133818 PCT/US2008/004866

requests and merges the requests at an assigner component 65 that assigns the printer function
component which is modeled by defining a single port for a third JVM 66 which includes a
printer component 67 for performing the scheduled ticket printing process. The following
example code portion depict the placement logic that may be written in plain Java according
to the lower-level design of the example system shown in Fig. 3B. This following example
code depicts the configuration of the first JVM 62, which as shown in Fig. 3B is designed to

include a first scheduler 72 for managing requestor components 32, 34.

class JVM1_Placement {
public static void main(String[] args) {
Scheduler s1 = new Scheduler(0, 1000);
Requester r1 = new Requesier(s1, "r1");
Requester r2 = new Requester(s1, "r2");
RequestPort t5in = (RequestPort)
s1.createRemoteQutputPort(
RequestPort.class,
"localhost:1001/t5/requestin”, 0);
s1.connect(r1.requestOut, t5In);
RequestPort t10In = (RequestPort)
s1.createRemoteOutputPort(
RequestPort.class,
"localhost:1001/t10/requestin®, 1);
s1.connect(r2.requestOut, t10In);

s1.start();

}
}
[0041] This following example code depicts the configuration of the second JVM 64, which

as shown in Fig. 3B is designed to include a scheduler 74 for managing processing

components corresponding requestor components 32, 34.

class JVM2_Placement {
public static void main(String[] args) {
Scheduler s2 = new Scheduler(2, 1001);
TopOfN t5 = new TopOfN(5, s2, "t&");
TopOfN t10 = new TopOfN(10, s2, "t10");
Assigner a = new Assigner(s2, "a");
s2.register(0, t5.requestin);
s2.register(1, t10.requestin);
s2.connect(t5.requestOut, a.requestin);
s2.connect(t10.requestOut, a.requestin);
PrintPort pln = (PrintPort)
s2.createRemoteOutputPort(
PrintPort.class,
"localhost:1002/p/printin”, 0);
s2.connect(a.requestOut, pin);
s2.start();

}

13

WO 2008/133818 PCT/US2008/004866

[0042] This following example code depicts the configuration of the third JVM 66, which as
shown in Fig. 3B is designed to include a scheduler 76 for managing printing processing

component from a single input.

class JVM3_Placement {
public static void main(String{] args) {
Scheduler s3 = new Scheduler(1, 1002);
Requester p = new Printer(s3, "p");
s3.register(0, p.printin);
s3.start();

}
)

Automatic Code Enhancer

[0043] In the invention, a program transformer augments the user-written component to
produce a component compatible with the run-time execution environment. In particular, the
program transformer supplies the following enhancements: 1) All interfaces of input and
output messages or method calls are augmented with a field that holds the VT; 2) Each
method that processes a message arriving at an input port is augmented with an estimator that
computes the “delta-VT” for each output message it generates, and for the return from that
method. The delta-VT represents a deterministic estimate of the amount of real-time that
would elapse from the start of the method to either the generated output message or to the
return; and, 3) Each component is augmented with code that tracks incremental changes to its
state since the last soft-checkpoint, and which upon request from the scheduler, serializes an

incremental soft-checkpoint record.

[0044] Soft checkpoints are so called, because any single checkpoint can be lost without
compromising the system’s ability to recover — a lost checkpoint merely means that recovery
must proceed from the previous checkpoint, which may lengthen the time to recover after a
failure, but will not affect the eventual ability to recover. Conversely, the component is
augmented with code that reconstructs a state from a collection of incremental soft-
checkpoint records. Optionally, a component may be augmented with code that generates

“eager silences”. That is, given that it is now known that no input messages are arriving on

14

WO 2008/133818 PCT/US2008/004866

its input ports through a given time ¢, it computes the earliest delta-VT beyond time ¢ for
which it is possible for a message to appear on given output ports. Such a computation can
be used for the purpose of sending silences to components connected to these input ports.
Since a range of silent timestamps promises that no messages will ever be sent from that
component with those timestamps, such information may possibly enable receiving
components to proceed to process a waiting message because it is now known to be the

earliest possible message.

[0045] Fig. 3C depicts in more detail the determinism of VT used for augmenting the
message structures required for implementing the invention as depicted by the low-level
design in the example ticketing system déscﬁbed ih the example of Fig. 3B. Itis understoéd
that messages or events (“e”) are associated with VTs on the system boundary. Currently
VTs are generated in an arbitrary way, consistent with causality. However, they may be an

estimation of the real time. Thus, as shown in Fig. 3C, during run time, for the received

message structure 42 including example associated data string (¢) received at the first

requestor component 32 of the first JVM 62 there is associated a first VT value (v¢]) that is
added to the message structure 42, while the message structure 44 including example

associated data string (e}) received at the second requestor 34 is associated with a VT value

(vt}) that is added to the message structure 44. Fig. 3C additionally depicts the tracking of
incremental changes to its state since the last soft-checkpoint, which upon request from the
scheduler, causes generating an incremental soft-checkpoint record depicted by entry into a
log 99 in a data storage device. This log 99 records all the assigned VTs, because their
generation is non-deterministic, and the log will be essential when replay is required as will
be described in greater detail herein below. These augmented event or request messages 42
(el ; vt}) and 44 (¢} ; vt}) are each input to the second JVM 64 at their scheduled VTs (virtual
times) where they are processed by respective request message processing components in
JVM 64. That is, as shown in Fig. 3C, after processing a received input augmented request
message 42 in the second JVM 64, there is generated a further message 52 augmented to
contain a computed VT value (ej ; vz,) that is output from the first component of the second
JVM 64; and, likewise, there is generated a further message 54 augmented to contain a

computed VT value (e2 ; v¢?) that is output from the second component of the second JVM

15

WO 2008/133818 PCT/US2008/004866

64. At a merge point, depicted by the assigner component 65, events from multiple streams
are compared using their VTs. Thus, as shown in Fig. 3C, output from the assigner
component of the second JVM is a deterministically merged message sequence 55
comprising temporally sequenced messages 52 and 54, i.e., [e;; vti] and [eZ; v¢2]. The
deterministic merger implemented in the third JVM 66 will then sequence operations in a
deterministic order for the printing component 67 based on the merged VT values in received

message 5S.

Tolerance of Message Loss and Reordering

[0046] As mentioned, within a JVM, the communication between components is efficiently
implemented by reference passing. Intra-JVM communication is also lossless and order-
preserving. Between JVMs, UDP communication may be used even though this may cause
message loss or reordering, because such loss or reordering is tolerated by the middleware
component of the invention that implements concept of silence and curiosity messages that

are sent between schedulers but not within schedulers.

[0047] Continuing to Fig. 3D, there is shown the incorporation of silence and curiosity
messages to ensure detection of missing messages in the inventive system. As mentioned
herein in an example application of the present invention as depicted in Figs. 3A-3C, and
now shown in Fig. 3D, it is assumed that a time gap exists in VT, that is, unless the two
messages are exactly next to each other in the time line. The existence of the time gap is
detected by the server’s middleware component, e.g., scheduler. For example, after the first
JVM 62 sends the first augmented message 42, and prior to sending the second augmented
message, the JVM 62 generates and sends one or more silences, i.e., silence message 81, to
fill the gap so that the receiver, e.g., JVM 64, gets continuous knowledge of either messages
or silences. A silence message defines a pair of numbers designating a range of time ticks of

VT that are known not to contain messages. For example, the message 80 in Figure 3D sent

just before the message 42 may contain the data [Silence; 100 : vz, -1], meaning that all ticks

of VT in the range from 100 to vt -1 are known not to contain messages. Because of silence

messages, receivers can account for every tick as either definitely containing a message or a
silence. If a data or silence message is lost, the receiver will notice a gap. Gap detection is

performed on the receiver side. If a gap exists for a certain period (defined as a user-

16

WO 2008/133818 PCT/US2008/004866

configurable or programmable parameter), the receiver, e.g., JVM 64 may decide that some
messages or silences have been lost, and then issue a curiosity message 83 for receipt back to
the sender, e.g., JVM 62. A curiosity message defines a pair of numbers designating a range
of time “ticks” of VT for which the receiver has no knowledge of data or silence, and is
therefore “curious” about. For example, if this silence message was somehow lost, the
curiosity message will read [Curiosity; 100: vt -1]. A curiosity message will trigger the
resending of the previous messages or silences by the sender for the range of ticks being

queried. Senders must be prepared to resend these messages or silences until the receiver has

successfully taken a soft checkpoint and hence promises never to request a resend again.

[0048] If curiosity messages are lost, or the resent messages are lost, the curiosity messages
will be resent. As long as the same message is not infinitely often lost, eventually, lost
messages will be retrieved. It should be understood that, a message may arrive late, and may
duplicate a resent message, but this does not cause any problems since it is safe for a receiver
to discard any message whose VT matches a time for a message it has already processed.
(No two messages will ever have the identical VT). Reordering is also tolerated because the
receiver simply refuses to process a message if there is still a gap before it. Thus, as shown
in Fig. 3D, queuing, silence and curiosity altogether guarantee message processing in the
correct order. ’

Virtual Time Estimator

[0049] So far, the VT generation is allowed to be arbitrary provided that it is fully
deterministic and it preserves the message causality. Any such VT assignment guarantees
deterministic execution. However, if VTs are too far out-of-sync with real time, then a
performance penalty is seen, because at a merge, the receiver would refuse to process the
next message until it is sure that it will not receive any message earlier in VT. This may
cause the messages generated earlier in real time to be processed later because they acquire
larger VTs due to inaccuracy of the estimation. An automatic VT estimator is provided to
attempt to maintain VTs and real time in approximate synchronization so that this pessimism
does not cause unacceptable performance loss. There is both a static (i.e., pre-execution) and
a dynamic (i.e., during execution) component to this VT estimation. Statically, the automatic

VT estimator estimates the computation delay on individual components, based on the known

17

WO 2008/133818 PCT/US2008/004866

complexity of the code. At deployment time, the estimator may also take into account known
properties of the environment on which the component was deployed. This will adjust the
computation delay estimate to reflect things such as network latency, average CPU load,
garbage collector performance, expected memory consumption, threading, etc. However, it
should be emphasized that the computation delay estimate must be a deterministic, repeatable
function of the component state. It may not take into account non-deterministic factors, such
as the actual current CPU load. If, unfortunately, a scheduler notices that the disparity
between VT and real time becomes too large, it can take one of two possible actions:

1. The scheduler may change its priority relative to other schedulers in the machine so
that it slows down or speeds up, and reduces the disparity.

2. The scheduler may make a non-deterministic decmon a so-called “determinism
fault” — to adjust the parameters to the estimators used within the scheduler. This adjustment,
being non-deterministic, is allowed, unlike the normal computation delay estimate, to take
into account non-deterministic factors. Because such a decision violates determinism, this
action must be logged in stable storage in order to guarantee proper replay. In effect, any
replay of VTs prior to the decision must use the old estimator, and any replay of VTs
subsequent to the decision must use the new estimator. A determinism fault may result in the
change to particular time estimates for particular messages. The goal of the system is to
make the static estimators good enough so that drift between VT and real time is minimized
and can be controlled by adjusting scheduling priorities, so that determinism faults are

extremely rare events.

Real-time Analysis

[0050] For non-time-aware components, the introduction of timestamps is automated with
the VT estimator of the inventive middleware. However, some applications may need to be
time-aware; or, in an even more complex scenario, certain applications may contain a mixture
of non-time-aware components and time-aware components. To satisfy the need for timing
control, the middleware component of the present invention allows timing constraints to be
specified by the designers, which are automatically compiled into extra time controlling code.
At run time, this code enables the schedulers to satisfy the time constraints by prioritizing the

components, or moving components. That is, real-time schedulers may be programmed to

18

WO 2008/133818 PCT/US2008/004866

work together with the placement service to guarantee real-time deadlines. It is likely that the
placement service will need to do some admission control before deploying such schedulers,
to assure that there is enough reserve capacity to meet deadlines. Additionally, a new kind of
determinism fault may arise: if it appears that due to an unusual condition, a real-time
deadline will not be met for a given computation, a non-deterministic decision to use an
alternative computation (with presumably less overhead) may be taken. As with any

determinism fault, the decision to make such a change will need to be logged.

Tolerance of Machine Failure with High Availability

[0051] In a distributed system, machines may be shut down or disconnected from the
network unexpectedly, or may fail. Many contemporary applications take advantage of the
collaboration among machines. The use of multiple machines enables high availability.
With this property, the failure of some machines does not interfere with the application’s
overall functionality. In the execution server of the present invention, fault tolerance is
transparent. The middleware component intermittently creates soft checkpoints for
individual schedulers. A soft checkpoint is a compact image of the scheduler’s state,
including the components in it, the established connections, the queued messages, waiting
service calls, etc. Soft checkpoints may either contain full state, or may contain incremental
changes since the previous soft checkpoint. The state of user-defined components (including,
for example, language-level entities such as Java primitive values and objects with cross
references) is also recorded in the checkpoint, so that when the machine fails and recovers,

the computation can be resumed.

[0052] Thus, for the example application of the present invention as depicted in Figs. 3A-3D,
and now shown in Fig. 4, checkpoint information 84, 86 for each of the schedulers in JVM’s
64, 66 are stored and intermittently or incrementally updated on a local memory storage
device, e.g., hard disk drive 94, 96, respectively. However, it is understood that these

checkpoints may be stored at or on remote machines.

[0053] During execution, a JVM machine may crash, and due to this event, the schedulers

running on it stop and completely lose their state since their last checkpoints. When the

19

WO 2008/133818 PCT/US2008/004866

machine restarts, it recreates the schedulers with their last checkpoints. Thus, for the
example application of the present invention as depicted in Figs. 3A-3D, and shown in Fig. 4,
assuming a crash event at JVM 64, stored checkpoint information 84' for the example
scheduler in JVM 64 will be communicated from the local memory storage device, e.g., hard
disk drive 94, back to the restarted scheduler component executing at JVM 64. These
checkpoints are in the schedulers’ past because some messages may have been received and
even processed after the checkpoints were taken. The schedulers will thus independently
send curiosity messages 85 to their predecessors, causing the predecessors to resend the
missing messages. According to the invention, the missing messages will then be
reprocessed, and due to the deterministic execution afforded by the present invention, the
same results will be generated. Wﬁen a scheduler catches up with the time at which it failed,
its state becomes identical to its state right before it failed. From then on, it continues to

Process ncw messages.

[0055] As mentioned, checkpoint information for each of the schedulers in JVM’s may be
stored and intermittently or incrementally on a remote machine (e.g., JVM). Thus, in an
alternate embodiment, a remotely located scheduler may perform a “passive backup” by
storing checkpoints from another scheduler. If passive backups are used to store the
checkpoints, then when a failure is detected, the passive backup creates instances of the
backed up components, i.e., spawns a replica, and becomes active, resuming the failing
scheduler’s work until it restarts and catches up with the missing computation. Passive
backups, unlike active replicas of some other fault-tolerant systems, do not perform
redundant computations. They merely hold checkpointed state, so that if the active machine

fails, the backup is able to rapidly take over the computation with minimal delay.

[0056] Thus, for the illustrative example application of the present invention as depicted in
Figs. 3A-3D, and now shown in Fig. 5A, soft checkpoint information 84 for the example
scheduler in JVM 64 will be communicated to a memory associated with a back-up scheduler
component 74 for the second JVM 64 that is remotely stored in the third JVM 66 for storage
thereat; likewise, as shown in Fig. SA, soft checkpoint information 86 for the example third
scheduler in JVM 66 will be communicated to a memory associated with a back-up scheduler

component 76 for the third JVM 66 that is remotely stored in the second JVM 64 for storage

20

WO 2008/133818 PCT/US2008/004866

thereat. Thus, for example, when JVM 64 that includes scheduler2 and back-up scheduler
component 76 becomes disabled or otherwise crashes, a replica of the scheduler2 that was
executing in JVM 64 may be generated as shown in Fig. SB. That is, in JVM 66, a replica of
the scheduler2 that was executing in JVM 64 may be spawned based on the remote passive
back-ups. That is, a new scheduler scheduler2' is spawned that includes the components of
the second JVM 64 for execution. Based on a maximum failure detection delay and the time
for replica creation, the maximum downtime can be estimated in case of one failure which

provides high availability assurance.

[0057] Finally, for the illustrative example application of the present invention as depicted in
Figs. 3A-3D, and now shown in Fig. 5C, upon recovery of the crashed second J VM 64, the
revived scheduler2 will fetch the checkpointing information that had been stored at the
spawned replica, i.e., scheduler2', in the third JVM 66. Consequently, it may be indicated to
predecessor components on other machines (e.g., JVM1) that the second JVM 64 is up and
running via a notify message 91; and, further, indicated to the third JVM 66 that the spawned

remote back-up of the scheduler2 (i.e., scheduler2') may be terminated.

[0058] While the invention has been particularly shown and described with respect to
illustrative and preformed embodiments thereof, it will be understood by those skilled in the
art that the foregoing and other changes in form and details may be made therein without
departing from the spirit and scope of the invention which should be limited only by the
scope of the appended claims.

21

WO 2008/133818 PCT/US2008/004866

CLAIMS:

Having thus described our invention, what we claim as new, and desire to secure by Letters

Patent is:

1. A computing system comprising:

a plurality of software components each implementing logic to perform a task, the
components executing in an execution environment comprising one or more machines
connected in a network and adapted for communicating messages between the components;

means for automatically associating a deterministic timestamp in conjunction with a
message to be communicated from a sendef component to a receiver component during
program execution, said timestamp representative of estimated time of arrival of said
message at a receiver component;

means for deterministically executing said component by using said timestamps to
generate a unique arrival order of input messages; _

means for tracking state of a component during program execution, and checkpointing
said state to a local storage device;

wherein upon failure of a machine, said component state is restored by recovering a

recent stored checkpoint and re-executing the events occurring since said last checkpoint.

2. The deterministic computing system as claimed in Claim 1, wherein said component state

is checkpointed to backup processor device.

3. The deterministic computing system as claimed in Claim 1, wherein said execution
environment comprises a single Java virtual machine, each said components stored in said

single Java virtual machine.
4. The deterministic computing system as claimed in Claim 1, wherein said execution

environment comprises a plurality of Java virtual machines, said components executing in a

distributed manner across said plurality of Java virtual machines.

22

WO 2008/133818 PCT/US2008/004866

5. The deterministic computing system as claimed in Claim 4, wherein said execution
environment includes a scheduler component for managing execution of one or more
components, said scheduling including allocating an execution thread for a component in said

execution environment.

6. The deterministic computing system as claimed in Claim 4, wherein a component
receives input messages from multiple predecessor components, said system further
comprising a merger means for performing a deterministic merge based on the input

message’s timestamp.

7. The deterministic computing system as claimed in Claim 1, wherein a state of said

component is updated intermittently

8. The deterministic computing system as claimed in Claim 1, wherein said timestamp is
computed as an estimate of a real time at which a message arrives at said receiving

component.

9. The deterministic computing system as claimed in Claim 1, further comprising:

means for detecting a time gap between successive message transmissions from a component;
and,

means enabling transmission of a silence message for ensuring correct temporal flow of

messages from said component in said execution environment.

10. The deterministic computing system as claimed in Claim 9, further comprising:

means for issuing a curiosity message back to a sender component to trigger a resending
of any previous messages or silence message when a component receiver determines that
some messages or silence messages have been lost due to failures in a network connection

between machines.

11. A method for deterministic execution of components in a computing system providing an

execution environment adapted for enabling message communication amongst and between

23

WO 2008/133818 PCT/US2008/004866

said components, each said component implementing logic to perform a task, said method
comprising:

automatically associating a deterministic timestamp in conjunction with a message to
be communicated from a sender component to a receiver component during program
execution, said deterministic timestamp representative of estimated time of arrival of said
message at a receiver component;

deterministically executing said component, by using said timestamps to generate a
unique arrival order of input messages;

at a component, tracking state of said component during program execution, and
checkpointing said state in a local storage device;

wherein upon failure of a component, said component state is restored by recovering a

recent stored checkpoint and re-executing the events occurring since said last checkpoint.

12. The method as claimed in Claim 11, further comprising: repeating the execution of said
receiving component by processing said messages in the same order as messages associated

with said timestamps recorded in said stored state.

13. The method as claimed in Claim 11, further comprising managing execution of said one
or more components in said execution environment according to said timestamps associated
with received messages, said managing including assigning an execution thread to a

component in said execution environment.
14. The method as claimed in Claim 13, wherein a component receives input messages from
multiple predecessor components, said method further comprising performing a deterministic

merge based on the input message’s timestamp.

15. The method as claimed in Claim 13, further comprising intermittently updating a soft

checkpoint of said component.

16. The method as claimed in Claim 11, wherein said timestamp is computed as an estimate

of a real time at which a message arrives at said receiving component.

24

WO 2008/133818 PCT/US2008/004866

17. The method as claimed in Claim 11, further comprising:

detecting at a component a time gap between successive message transmissions from said
component; and,

enabling transmission of a silence message for ensuring correct temporal flow of messages

from said component in said execution environment.

18. The method as claimed in Claim 17, further comprising:
issuing a curiosity message back to a sender component to trigger a resending of any
previous messages or silence message when a component receiver determines that some

messages or silences have been lost.

19. A system for enabling deterministic execution of component-oriented applications
comprising:

a sub-system enabling communication of messages amongst and between components
in an execution environment, said components comprising one or more ports for which
message inputs are received or are output from said components, and each said component
implementing logic to perform a task;

a means for mapping high-level design onto a lower level implementation in which
components are assigned to particular processing engines of said execution environment;

a code enhancing means for: |

automatically augmenting an input or output message of an associated
component with a timestamp in conjunction with a message to be communicated from a
sender component to a receiver component during program execution, said timestamp
representative of estimated time of arrival of said message at a receiver component; and,

augmenting a component with code for tracking incremental changes
to its state;

wherein, a state of a component is tracked during program execution, and said
component state checkpointed in a local storage device, and,

wherein upon failure of a component, the component state is restored by recovering a

recent checkpoint and re-executing the events occurring since the last checkpoint.

25

WO 2008/133818 PCT/US2008/004866

20. The system as claimed in Claim 19, wherein said execution environment is a distributed

computing system.

21. A program storage device readable by a machine, tangibly embodying a program of
instructions executable by the machine to perform method steps for deterministic execution
of components in a computing system adapted for enabling message communication amongst
and between said components, each said component implementing logic to perform a task,
said method steps comprising:

automatically associating a deterministic timestamp in conjunction with a message to
be communicated from a sender component to a receiver component during program
execution, said deterministic timestamp representative of estimated time of arrival of said
message at a receiver component;

deterministically executing said component, by using said timestamps to generate a
unique arrival order of input messages;

at a component, tracking state of sajd component during program execution, and
checkpointing said state in a local storage device;

wherein upon failure of a component, said component state is restored by recovering a

recent stored checkpoint and re-executing the events occurring since said last checkpoint.

22. The program storage device readable by a machine as claimed in Claim 21, wherein said
system is deterministic by repeating the execution of said receiving component by processing
said messages in the same order as messages associated with said timestamps recorded in said

stored state.

26

¢ 9l

PCT/US2008/004866

118

WO 2008/133818

glusuoduwog plusuodwo) Z)usuodwon
/\/ $89UB1}0Y oY /,/
gjuauodwon| 6¢ Aﬂ /)NN wmoco_i 27
A usuodwo uauodwo
¢ 18INPaYdS” gz & J 7 1} 9
_ N \ N
Ll ¢ 18|npaydg Gl | Ja|npayos he
CINATP 9l LNAP
m_‘u\ /@d\ N_‘K
l "OId
jusuodwoy | jusuodwo) | | jusuodwon
qsl /
ugl ///// B0¢
—~——1 J8|npayog | - 18|Npayas 18|Npayag
UWZl—~—o WAF reeee WAP egl or

PCT/US2008/004866

2/8

WO 2008/133818

g¢ "oid
7

/

7 Ve
\.II
0110d0] [Tt ZJ81sanbay -
_ L
19}Ul) d ({1 t—- 18UDISSY | | A
cj0do] eI L18)sanbay f«—
1 leool) (100}) aco://ﬁm
I £48Inpaydg Z19|npayos 113|NPaYIS
SNAP CWAT LNAP
99— g —" 29— 09
V¢ 9ld
149
0110d0] «—— zi3])SaNbaYy [«
I8julidj« Jaubissy Z¢
| G40do] «— |I9)sanbay <
81--6 ‘#1eds EdIYY
87 eSS QoY [z '<¢ ‘0} ‘eauD>]
[0, ‘<6 ‘S ‘q0y>]
malp s Jaubisag A A A A 0%

1A

ld #Y1 3weN

PCT/US2008/004866

WO 2008/133818

3/8

J¢ 'Old

\\\Nm

(2001) glainpayog

19Ul d 1]

G

EWAP

Z
No_ P

s

66
60|
be A%
O\
2 /_
[Gn:el R =
0L0do] A_ FHHJ. X Z19)sanbay (-
¢ | o
[Z3n:28] 78] Mm
postss() ,
APEARPY n;;o_ nuim_
|° el sbied Gjodo) re— I \ | Ja)sanbay (-}
o N .N
,_Z>;m_ T
¥ (1001) Z43Inpayog (0001) 148INPAYOS
\ ZINAP _ v LINAP
\ /

PCT/US2008/004866

WO 2008/133818

4/8

66
bo|
as 'oid >
0Lj0do] ULy - zi9jsanbay -t
[0l A hiate) £
1aubiss i O R AN ¢
! <A|H bl [1- ;#2001 “Ausoung]
el [1ncte]
gjodo| (eI — > L19158nbaY -}
[1a:ba] [L-Ha2001 “e0uB)g] s
(1001) gsaInpayasg % iy) (000L) L18INpaYoS
NAT | 2 08 LNAP

vm\ |

-

PCT/US2008/004866

WO 2008/133818

¥ "Old
6
96
v8 SIp |20
owl/qu% |eo0| A3P B0
— (LA ur syon
/3 001 Alana “b°8) -
Ju10dX28Y2 }j0S Ju10dx28Y2 Jjos o
T T IS
| |l 0Lj0do| [T 19 cq 219)sanbay =t
10)Ull]I+ —Hioubissyle] | g
M c10do] (eI | 19)sanbay g}
oo | (zoon) ||i (oo) || (0001)
m m_m_:cmcomH m m ﬂ Zis|npayas ! L48|Npayos
| SWAT \\ WA | LNAP
99 \ 8 vm\\ N@\

PCT/US2008/004866

WO 2008/133818

6/8

VG "9Old
\ 17 \ 9.
T 8 B g
zdnyoeg ednyoeg <e—{I17
Zi8|npayagdnyoeg 1984 | ¢ 1anpayogdnyoeg
dnyoeq
01i0do] I |- Z19)1senbay (=
19}ulld =1\ 1uBissy
Gjodo] |1 | 18)}sanbay e
LT (zool) (1001) (0001)
€18|npayds B Z1a|npayos | 18|npayas
ENAC \ . CNAT LNAP

0

8

vm\

Nm\

PCT/US2008/004866

718

08~

ds "Old

- vl
h— vg
zdnyoegl<«—{11T]
¢
zisnpayogdnyoegq \\\%Q
Ay
m 0130doy (< I15< lmw Ziejsenbay [«C--
19)Ull d|«—TT<— |Jaubissy ', _
: Gjodol AIEUA | 18)sanbay r--
) (zoos) m | 2001
¢48|Npayds | .243INpayag ! _LmA_:vmrwom
| SINAP LINAP

WO 2008/133818

@@q\\\\ vw.l\\

6

PCT/US2008/004866

8/8

WO 2008/133818

J¢ "'Old

|6

Z48)sanbay (-} ;

| 18)sanbay -}

(0004)
118|npayog

@@\ﬂ,

8

i) |)
zdnyoegle—IT1 ednyoeg 1]
%
z1a|npayogdnyoeg /,WY/ gia|npayosdnyoeg
(6
/ dnyoe _Eso | n AN
<.oToEa UMOR IS 0130do] [<—TT14
19)Ul J {11 loubissy
glodo| (eI
1 (zoow) (1004)
galnpayog] Z12Inpayos
ewnr| || ZWAP

v@\

LNAP
5

INTERNATIONAL SEARCH REPORT International application No.

PCT/US 08/04866

A. CLASSIFICATION OF SUBJECT MATTER
IPC(8) - GOBF 15/16 (2008.04)

USPC - 709/201
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
USPC: 709/201

Documentation scarched other than minimum documentation to the extent that such documents are included in the fields searched
USPC: 370/230; 700/9, 19, 20; 709/223; 711/163; 712/28; 714/4

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
PubWEST(PGPB, USPT, USOC, EPAB, JPAB); GOOGLE
Search Terms: fault tolerance, deterministic execution, time or timestamp, components, received meassage, recovery, rollback, etc.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y US 4,665,520 A (Strom et al.) 12 May 1987 (12.05.1987), 1-22
entire document, especially, abstract, Col. 13 L. 56 - Col. 14 L. 18.
Y US 6,078,930 A (Lee et al.) 20 June 2000 (20.06.2000), 1-22
entire document.
A US 2007/0050582 A1 (Mangione-Smith) 01 March 2007 (01.03.2007), 1-22
entire document, especially, abstract, para. [0139).
A US 2003/0005102 A1 (Russell) 02 January 2003 (02.01.2003), 1-22

entire document, especially, abstract, para. [0028).

D Further documents are listed in the continuation of Box C.

[]

*
wA”

Special categories of cited documents:

document defining the general state of the art which is not considered
to be of particular relevance

carlier application or patent but published on or after the intemational
filing date

document which may throw doubts on priority claim(s) or which is
cited to cstablish the publication date of another citation or other
special reason (as specified)

document referring to an oral disclosure, use, exhibition or other
means

document published prior to the international filing date but later than
the priority date claimed

«gn

aLn

w“or

apn

“T” later document published after the intemational filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

“X” document of particular relevance; the claimed invention cannot be

considered novel or cannot be considered to involve an inventive

step when the document is taken alone

“Y” document of particular relevance; the claimed invention cannot be

considered to involve an inventive step when the document is

combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“&” document member of the same patent family

Date of the actual completion of the international search

05 July 2008 (05.07.2008)

Date of mailing of the international search report

18 JUL 2008

Name and mailing address of the ISA/US

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450

Facsimile No. 571-273-3201

Authorized officer:
Lee W. Young

PCT Helpdesk: 571-272-4300
PCT OSP: 571-272-7774

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - claims
	Page 27 - claims
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - wo-search-report

