新型局部加强绝缘型接位导线

摘要
本发明提供了一种新型局部加强绝缘型接位导线，其能在满足接位导线局部加强绝缘的要求的同时不影响接位导线的散热效果，保证了绕组线圈的抗突发短路的能力，从而使电力变压器的安全。其包括换位线芯，所述换位线芯外部绕包有纸绝缘层，所述纸绝缘层包括有外部绝缘层和内部绝缘层，其特征在于：在所述换位线芯高度方向的上部局部绝缘加强的部位，所述外部绝缘层和内部绝缘层之间绕包有中间绝缘层。
1. 新型局部加强绝缘型换位导线，其包括换位线芯，所述换位线芯外部绕包有纸绝缘层，所述纸绝缘层包括有外部绝缘层和内部绝缘层，其特征在于：在所述换位线芯高度方向的上部局部绝缘加强的部位，所述外部绝缘层和内部绝缘层之间绕包有中间绝缘层。

2. 根据权利要求1所述的新型局部加强绝缘型换位导线，其特征在于：所述中间绝缘层厚度为≤6mm。

3. 根据权利要求2所述的新型局部加强绝缘型换位导线，其特征在于：所述中间绝缘层为绝缘纸。
新型局部加强绝缘型换位导线

技术领域
[0001] 本发明涉及换位导线技术领域，具体为新型局部加强绝缘型换位导线。

背景技术
[0002] 目前大容量电力变压器绕组多数采用换位导线，其是变压器中的关键部件，要承受冲击电压的作用，在冲击电压的作用下，绕组线圈之间总会作用着较正常工作状况高的电位差，尤其是在线圈的端部和绕组的内侧紧靠成条，是容易发生沿面放电的部位，即为绝缘薄弱点，因此需做局部绝缘加强处理。目前采用的主要方式是增加换位导线的绝缘绕包层数，或者在线圈制作过程中进行手工绕包进行绝缘加强，造成了换位导线整体绝缘厚度偏大，影响了换位导线的散热效果，从而导致线圈的抗突发短路能力下降。

发明内容
[0003] 针对上述问题，本发明提供了新型局部加强绝缘型换位导线，其能在满足换位导线局部加强绝缘的要求的同时不影响换位导线的散热效果，保证了绕组线圈的抗突发短路的能力，从而保证电力变压器的安全。
[0004] 其技术方案是这样的，其包括换位线芯，所述换位线芯外部绕包有纸绝缘层，所述纸绝缘层包括有外层绝缘层和内层绝缘层，其特征在于：所述换位线芯高度方向的上部局部绝缘加强的部位，所述外层绝缘层和内层绝缘层之间绕包有中间绝缘层。
[0005] 其进一步特征在于：所述中间绝缘层厚度为≤ 6mm；所述中间绝缘层为绝缘纸。
[0006] 本发明的新型局部加强绝缘型换位导线，其在换位线芯高度方向的上部局部绝缘加强的部位的外层绝缘层和内层绝缘层之间绕包有中间绝缘层，其不需增加换位导线整体的绝缘厚度，在保证换位导线局部绝缘加强效果的同时也确保了换位导线的散热效果，也进一步保证了绕组线圈抗突发短路能力；此外，中间绝缘层的厚度可以根据换位导线实际绕组需要进行调节，进一步提高绕组线圈的抗冲击能力。

附图说明
[0007] 图 1 为本发明的局部加强绝缘型换位导线截面结构示意图。

具体实施方式
[0008] 见图1，本发明包括换位线芯1，换位线芯1外部绕包有纸绝缘层，纸绝缘层包括有外层绝缘层2和内层绝缘层4，在换位线芯1高度方向的上部局部绝缘加强的部位，外层绝缘层2和内层绝缘层4之间绕包有中间绝缘层3。中间绝缘层3采用的绝缘层厚度为≤ 6mm；中间绝缘层3包括至少一层绝缘纸，中间绝缘层3厚度可以根据实际需要在换位导线的不同位置进行调节。当中间绝缘层3的厚度为 0mm，即表示换位导线此处不需要局部加强绝缘，从而不需要绕包中间绝缘层3。图1中，换位线芯1由多根漆包扁线构成，漆包扁线包括导体5，导体外部有漆层，本实施例中，漆层包括导体外部缩醛漆层6和自粘漆层7。