WO 2004/051481 A1 ||| 080 00 00 O Al

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
17 June 2004 (17.06.2004)

A 00O O

(10) International Publication Number

WO 2004/051481 A1l

(51) International Patent Classification’: GOGF 12/00

(21) International Application Number:
PCT/US2003/038246

(22) International Filing Date: 1 December 2003 (01.12.2003)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:
60/430,464 2 December 2002 (02.12.2002) US

(71) Applicant (for all designated States except US):
ARKIVIO INC. [US/US]; 2700 Garcia Avenue, Mountain
View, CA 94043 (US).

(72) Inventors; and
(75) Inventors/Applicants (for US only): FOLEY, Matthew,
J. [US/US]; 637 Frederick Avenue, Santa Clara, CA 95050

(US). KAWECKI, Lewis [US/US]; 8728 Lock Levon Av-
enue, Kings Beach, CA 96143 (US). LE, Nam [US/US];
2764 Glauser Drive, San Jose, CA 95133 (US). YAKIR,
Rony [US/US]; 148 Eunice Avenue, Mountain View, CA
94040 (US).

(74) Agents: KOTWAL, Sujit, B. et al.; TOWNSEND AND
TOWNSEND AND CREW LLP, Two Embarcadero Cen-
ter, Eighth Floor, San Francisco, CA 94111-3834 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR,BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE,
GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR,
K7, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK,
MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT,
RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (BW, GH,
GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),

[Continued on next page]

(54) Title: DATA RECOVERY TECHNIQUES IN STORAGE SYSTEMS

(57) Abstract: Techniques for

’/-100 maintaining data consistency in a

storage environment (100). In a HSM
controlled storage environment (100),

techniques (200) are provided for
PHYSICAL STORAGE UNITS 102 automatically detecting (212, 226) and
BACKUP correcting (214, 228) inconsistencies
Vi V2 v Va V5 104 after a file system or a portion thereof
S LOGICAL has been restored from backup (120).
120 STORAGE UNITS The file system may store data files, tag
files, and/or repository files that have

been restored from backup (120).

SERVER SERVER SERVER
112”@_ 1) 1065 c [15 83 12

=
106-1

COMMUNICATION NETWORK 108

STORAGE MANAGEMENT

SERVER/SYSTEM (SMS) 110

=
106-3

OTHER
114
CDs INFO MEMORY
]]
116 118

WO 2004/051481 A1 II}11I0 08000 0000 00000

Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), Published:

European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, — with international search report

ES, FLLFR, GB, GR, HU, IE, IT, LU, MC, NL,, PT, RO, SE, — before the expiration of the time limit for amending the
SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, claims and to be republished in the event of receipt of
GN, GQ, GW, ML, MR, NE, SN, TD, TG). amendments

For two-letter codes and other abbreviations, refer to the "Guid-
Declaration under Rule 4.17: ance Notes on Codes and Abbreviations” appearing at the begin-
— of inventorship (Rule 4.17(iv)) for US only ning of each regular issue of the PCT Gazette.

10

15

20

25

30

WO 2004/051481 PCT/US2003/038246

DATA RECOVERY TECHNIQUES IN STORAGE SYSTEMS

CROSS-REFERENCES TO RELATED APPLICATIONS
[0001] The present application claims priority from and is a non-provisional of U.S.
Provisional Application No. 60/430,464, filed December 2, 2002, the entire contents of which

are herein incorporated by reference for all purposes.

BACKGROUND OF THE INVENTION
[0002] The present relates generally to the field of data storage and management, and more
particularly to techniques for maintaining consistency of data in a file system after the file

system or portions of the file system have been restored from backup.

[0003] In a typical storage environment comprising multiple servers coupled to one or
more storage units, an administrator administering the environment has to perform several
tasks to ensure availability and efficient accessibility of data. Traditionally, these tasks were

performed manually by the storage administrator.

[0004] More recently, storage management applications are available that attempt to
automate some of the manual tasks. For example, Hierarchical Storage Management (HSM)
applications are used to migrate data among a hierarchy of storage devices. For example,
files may be migrated from online storage to near-online storage, from near-online storage to
offline storage, and the like, to manage storage utilization. When a file is migrated from its
originating storage location to another storage location (referred to as the "repository storage
location"), a stub file or tag file is left in place of the migrated file in the originating storage

location.

[0005] The tag file stores information that can be used to locate the migrated data. For
example, the tag file comprises information that allows a HSM application to locate the
migrated data in the repository storage location. The tag file may contain attributes or
metadata of the migrated file. For example, the tag file can contain a file name or file
identifier that allows the management system to find the necessary information (from a
database or from the tag file itself) to recall the file. In certain embodiments, the information
that 1s used to locate the migrated file may also be stored in a database rather than in the tag

file, or in addition to the tag file. The migrated file may be remigrated from the repository

10

15

20

25

30

WO 2004/051481 PCT/US2003/038246

storage location to another repository storage location. The tag file information is updated to

point to the location of the migrated or remigrated data.

[0006] The tag file serves as an entity in the file system through which a user or application
can access the original data file. By using a tag file, the migration of the data is made
transparent to the users of the data. Users and applications can access the migrated file as
though the file was still stored in the originating storage location. When a HSM application
receives a request to access a migrated file, the HSM application determines the repository
storage location of the migrated data using information stored in the tag file or some database
and recalls the requested data file from the repository storage location back to the originating

storage location.

[0007] Storage systems are also prone to crashes that may result in loss of data. In order to
minimize data loss, backups of the file system are usually taken and used for restoring data
after a crash. For example, if a data storage device such as a hard drive crashes on a
computer running HSM resulting in partial or complete loss of data on the drive, the data can
be restored from an archive such as backup tape. However, changes to the data that may
have occurred after the backup and prior to the crash. As a result, the data restored from
backup may be inconsistent with other data in the HSM file system. For example: tag files
included in the data restored from the backup medium may no longer be valid due to changes
that may have occurred in the HSM data; a data file represented by a tag file may have been
remigrated to another location after the backup and before the crash; the data file may have
been modified (e.g., changes to data content, size of data, and access dates) after the backup;
a data file may have been migrated at the time of the backup but may have been recalled
before the crash and as a result the tag file restored from backup may no longer have any
validity; etc. Several other types of changes may have altered the state of the files after the
backup was performed. As a result, the restored data may be inconsistent with other data in

the storage environment.

[0008] Conventionally, after data has been restored from backup, a person (e.g., a storage
system administrator) restoring the backed up data has to manually verify consistency of the
restored data. For example, the system administrator has to test each tag file manually to
verify if it points to a valid data file. The administrator also has to manually perform
operations to remove the detected inconsistencies. For example, some tag files may be

invalid and need to be deleted, while others may no longer point to the correct data location.

10

15

20

25

30

WO 2004/051481 PCT/US2003/038246

As a result, some data files may need to be moved manually from their remote locations to

the originating computer (replacing the incorrect tag file).

[0009] In addition to HSM tag files and data files, a computer server may also store the
data content (referred to as repository files) of files that have been migrated from other
servers. After a crash, the restored repository files also have to be manually verified to see if
they are still valid. If invalid repository files are not removed (cleaned up), they continue to
sit on the hard disk and waste storage space. Other corrections may also be required to
enforce consistency and minimize data loss. Conventionally, a storage administrator has to

manually perform these tasks.

[0010] In conventional systems, the only alternative to all the manual work described above
is to recall all the HSM managed files every time the data is backed up. This however would
put a tremendous strain on the network and limit the advantages of using HSM in the first
place. Furthermore, all the recalled HSM data files may not fit on the originating computer at
the same time, thereby making the procedure unfeasible and impractical in many storage

environments.

BRIEF SUMMARY OF THE INVENTION
[0011] Embodiments of the present invention provide techniques for maintaining data
consistency in a storage environment. In a HSM controlled storage environment, techniques
are provided for automatically detecting and resolving inconsistencies after a file system or a
portion thereof has been restored from backup. The file system may store data files, tag files,

and/or repository files that have been restored from backup.

[0012] According to an embodiment of the present invention, techniques are provided for
maintaining consistency for a server in a storage environment comprising a plurality of
servers, the plurality of servers including a first server having a file system storing a plurality
of files restored from a backup medium, the plurality of files including one or more data files
and one or more tag files corresponding to data files that have migrated from the file system.
First information is provided comprising information related to the plurality of files stored in
the file system of the first server, the first information comprising a plurality of entries, each
entry corresponding to a file and storing status information identifying whether the file is a
tag file or a data file, each entry storing attributes information identifying one or more

attributes of the file. The plurality of files are compared to information included in the first

10

15

20

25

30

WO 2004/051481 PCT/US2003/038246

information. Based upon the comparing, at least a first inconsistency is identified where
information associated with a first file from the plurality of files is inconsistent with
information in the first information. A first set of one or more operations are performed to

resolve the first inconsistency.

[0013] According to another embodiment of the present invention, techniques are provided
for maintaining consistency for a server in a storage environment comprising a plurality of
servers, the plurality of servers including a first server having a file system storing a plurality
of files restored from a backup medium, the plurality of files including one or more data files
and one or more tag files corresponding to data files that have migrated from the file system.
First information is provided including information related to files stored in the file system of
the first server. Second information is provided comprising a plurality of entries, each entry
storing information related a file stored by the plurality of servers that has been migrated. A
first tag file from the plurality of files is compared to information stored in the second
information. Based upon the comparison, at least a first inconsistency is identified where
information associated with the first tag file is inconsistent with the information included in
the second information. A first set of one or more actions are preformed to resolve the first

inconsistency.

[0014] According to yet another embodimént of the present invention, techniques are
provided for recovering information in a HSM environment comprising a plurality of servers,
the plurality of servers including a first server having a file system storing a plurality of files
including one or more data files and one or more tag files corresponding to data files that
have migrated from the file system. In this embodiment, first information is provided
including information related to one or more data files that have been migrated, wherein the
information related to each data file that has been migrated includes information identifying a
server and a volume from which the data file is migrated, and information identifying a server
and volume where the migrated data of the data file is stored, the first information comprising
information related to a first data file that has been migrated. Based upon the first
information, determination is made that the file system does not contain a tag file
corresponding to first data file. A tag file is created corresponding to the first data file based

upon information included in the first information.

10

15

20

25

WO 2004/051481 PCT/US2003/038246

[0015] The foregoing, together with other features, embodiments, and advantages of the
present invention, will become more apparent when referring to the following specification,

claims, and accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS
[0016] Fig. 1 is a simplified block diagram of a storage environment that may incorporate

an embodiment of the present invention;

[0017] Fig. 2 is a simplified high-level flowchart depicting a method of detecting and
correcting inconsistencies in a restored file system according to an embodiment of the present

invention;

[0018] Fig. 3 is a simplified high-level flowchart depicting a method of detecting and
correcting tag files and data files-related inconsistencies in a restored file system according to

an embodiment of the present invention;

[0019] Fig. 4 is a simplified high-level flowchart depicting a method of comparing SDb tag
file entries to files in the file system and taking appropriate actions to correct any detected

inconsistencies according to an embodiment of the present invention;

[0020] Fig. 5 is a simplified high-level flowchart depicting a method of detecting and
correcting tag files and data files related inconsistencies in a restored file system according to

an embodiment of the present invention;

[0021] Fig. 6 is a simplified high-level flowchart depicting a method of comparing CDb
entries to files in the restored file system and taking appropriate actions to correct the

detected inconsistencies according to an embodiment of the present invention,

[0022] Fig. 7 is a simplified high-level flowchart depicting a method of processing
repository files in the restored file system according to an embodiment of the present

invention; and

[0023] Fig. 8 is a simplified block diagram of a computer system capable of implementing

an embodiment of the present invention.

10

15

20

25

30

WO 2004/051481 PCT/US2003/038246

DETAILED DESCRIPTION OF THE INVENTION
[0024] In the following description, for the purposes of explanation, specific details are set
forth in order to provide a thorough understanding of the invention. However, it will be

apparent that the invention may be practiced without these specific details.

[0025) NOTATIONS

[0026] The following notations will be used in this application to facilitate discussion of
migration and remigration operations according to an embodiment of the present invention.
These notations are not intended to limit the scope of the present invention as recited in the

claims.

[0027] (1) "Date file" is any ordinary file that may contain data provided by a user or
application and which has not been migrated. When a data file is migrated from its
originating location by an application such as an HSM application, a tag (or stub) file is left

in place of the data file.

[0028] (2) A "tag file" or "stub file" is a physical file that represents a migrated file. When
a data file is migrated from the data file's originating storage location, the tag file is stored in
the originating storage location to represent the migrated data file. The tag file may store
information that enables a migrated data file to be recalled. In one embodiment, the
information stored in the physical tag file identifies the location of the migrated data. In
another embodiment, information (e.g., a file identifier or file name) stored in the tag file may
be used to find additional information, which may be stored in one or more databases, that is
used to locate the migrated data and facilitate the recall operation. A tag file may also
contain selected attributes and/or metadata related to the corresponding migrated data file. A
portion of the data may also be stored in the tag file in one embodiment. The tag file serves
as an entity in the file system through which the original migrated file can be accessed by

users or applications.

[0029] (3) An "originating volume" is a volume where a data file is stored before it is
migrated and where a tag file corresponding to the data file resides after the data file has been

migrated.

[0030] (4) An "originating server" is a server configured to manage access to an originating

volume. For example, an originating server is a server providing access to a volume where a

10

15

20

25

30

WO 2004/051481 PCT/US2003/038246

data file is stored before it is migrated and where a substitute tag file corresponding to the
data file resides when the data file is migrated. The data file or tag file may be considered as

stored on the originating server.

[0031] (5) A "repository volume" is a volume that stores the migrated (or remigrated) data
for a migrated data file. The migrated data is stored in a repository file on the repository

volume.

[0032] (6) A "repository server” is a server which is configured to manage access to a
repository volume. For example, a repository server is a server providing access to a volume
where a repository file is stored. The repository file may be considered as stored on the

repository server.

{0033] SYSTEM DESCRIPTION

[0034] Fig. 1 is a simplified block diagram of a storage environment 100 that may

incorporate an embodiment of the present invention. Storage environment 100 depicted in
Fig. 1 is merely illustrative of an embodiment incorporating the present invention and does
not limit the scope of the invention as recited in the claims. One of ordinary skill in the art

would recognize other variations, modifications, and alternatives.

[0035] As depicted in Fig. 1, storage environment 100 comprises a plurality of physical
storage devices 102 for storing data. Physical storage devices 102 may include disk drives,
tapes, hard drives, optical disks, RAID storage structures, solid state storage devices, SAN
storage devices, NAS storage devices, and other types of devices and storage media capable
of storing data. The term "physical storage unit" is intended to refer to any physical device,

system, etc. that is capable of storing information or data.

[0036] Physical storage units 102 may be organized into one or more logical storage
units/devices 104 that provide a logical view of underlying disks provided by physical
storage units 102. Each logical storage unit (e.g., a volume) is generally identifiable by a
unique identifier (e.g., a number, name, etc.) that may be specified by the administrator. A
single physical storage unit may be divided into several separately identifiable logical storage
units. A single logical storage unit may span storage space provided by multiple physical
storage units 102. A logical storage unit may reside on non-contiguous physical partitions.

By using logical storage units, the physical storage units and the distribution of data across

10

15

20

25

30

WO 2004/051481 PCT/US2003/038246

the physical storage units becomes transparent to servers and applications. For purposes of
description and as depicted in Fig. 1, logical storage units 104 are considered to be in the
form of volumes. However, other types of logical storage units are also within the scope of

the present invention.

[0037] The term "storage unit" is intended to refer to a physical storage unit (e.g., a disk) or

a logical storage unit (e.g., a volume).

[0038] Storage environment 100 comprises several servers 106 and 110. Servers 106 may
be any data processing systems. One or more volumes from logical storage units 104 may be
assigned or allocated to servers 106. For example, as depicted in Fig. 1, volumes V1 and V2
are assigned to server (S1) 106-1, volume V3 is assigned to server (S2) 106-2, and volumes
V4 and V5 are assigned to server (S3) 106-3. A server 106 provides an access point for the

one or more volumes allocated to that server.

[0039] The files stored on volumes assigned to a server are considered to be part of the file
system of the server. A file system for a server may be spread across one or more volumes.
The file system for a server may store data files (i.e., files that have not been migrated), tag
files corresponding to data files that have been migrated from the server file system, and
repository files corresponding to data migrated from other server file systems and stored on
the server's file system. Accordingly, a particular server may function as an originating
server for data files that have been migrated from the server's file system and a repository

server for data migrated to the server's file system from other server file systems.

[0040] According to an embodiment of the present invention, as depicted in Fig. 1,
information related to data files and tag files stored in the file system for the server may be
stored in a database such as source database ("SDb") 112 (also referred to as "file status
database") accessible to the server. SDb 112 may store an entry or record for each file in the
file system. According to an embodiment of the present invention, an SDb entry for a file in
the file system for a server may include: (1) a unique file identifier for the file (the unique
identifier may be generated by the storage management software for newly created files or for
preexisting files that do not already have a unique file identifier); (2) information identifying
the directory in which the file is stored in the file system; (3) file status information indicating
if the file is a data file or a tag file corresponding to a migrated data file; (4) file attributes
information such as read/write permissions associated with the file, information identifying

the creator or modifier of the file, dates and times (e.g., creation date and time, last

10

15

20

25

30

WO 2004/051481 PCT/US2003/038246

modification date and time, date and time of access, etc.) associated with the file, file size
information, filename, etc.; (5) if the file is a repository file, then information identifying the
location where the file was migrated; and (6) other information. The information stored in
the SDb for a server is updated as changes (files are created, modified, deleted, migrated,
recalled, etc.) are made to the file system of the server. The SDb for a server may be stored

on a volume coupled to the server or in some other remote location accessible to the server.

[0041] Servers 106 may be coupled to storage management server (SMS) either directly or
via a communication network 108 as depicted in Fig. 1. Communication network 108
provides a mechanism for allowing communication between SMS 110 and servers 106.
Communication network 108 may be a local area network (LAN), a wide area network
(WAN), a wireless network, an Intranet, the Internet, a private network, a public network, a
switched network, or any other suitable communication network. Communication network
108 may comprise many interconnected computer systems and communication links. The
communication links may be hardwire links, optical links, satellite or other wireless
communications links, wave propagation links, or any other mechanisms for communication
of information. Various communication protocols may be used to facilitate communication
of information via the communication links, including TCP/IP, HTTP protocols, extensible
markup language (XML), wireless application protocol (WAP), Fiber Channel protocols,
protocols under development by industry standard organizations, vendor-specific protocols,

customized protocols, and others.

[0042] SMS 110 is configured to provide centralized storage management services for
storage environment 100. According to an embodiment of the present invention, SMS 110 is
configured to store data and provide services to enable HSM-related processing. For
example, SMS 110 stores information that tracks locations of files that are migrated (or
remigrated) and recalled. The information may be stored in memory and/or disk 114
accessible to SMS 110. For example, as shown in Fig. 1, memory and/or disk 114 may store
a central database 116 ("CDb") (also referred to as "Migrated Data Database"), and other

information 118.

[0043] CDb 116 may store information related to files that have been migrated (or
remigrated) in storage environment 100. For example, in one embodiment, for each migrated
file, CDb 116 may store an entry or record comprising: (1) a machine identifier of the

originating server for the file; (2) the file's unique identifier; (3) information identifying the

10

15

20

25

30

WO 2004/051481 PCT/US2003/038246

originating (or source) volume for the file (e.g., a source volume identifier); (4) information
identifying the repository volume where the repository file corresponding to the migrated file
resides (e.g., a target volume identifier); (5) information identifying the repository server; (6)
file status information; (7) file size information; and (8) other information. The information
i CDb 116 is updated as files are migrated, remigrated, and recalled in the storage
environment. Other information 118 may include: information related to storage policies and
rules configured for the storage environment, information related to the various monitored

storage units, etc.

[0044] SDb 112 and CDb 116 may be embodied in various forms including as a relational
database, directory services, various data structure, etc. The information may be stored in

various formats.

[0045] Information in SDb 112 and CDb 116 is updated when a migration operation is
performed. In a migration operation, a data file (or a portion thereof) is moved from the
originating volume allocated to an originating server to a repository storage location on a
repository volume allocated to a repository server. A stub or tag file is left in place of the
migrated data file on the originating volume. The tag file stores information that can be used
to determine the identity and location of the repository volume and repository server. The tag
file may comprise the meta-data portion of the migrated file and a file identifier for the
migrated file. The tag file may also store a cache comprising a small portion of the data
portion of the migrated data file. The tag file may also store information about the repository
server. According to an embodiment of the present invention, a unique repository identifier
(referred to as the URI) is generated and saved in the tag file. The URI may be a combination
of the originating server identifier (e.g., machine ID for the originating server) and a unique
file identifier for the migrated file. The URI facilitates identification of the repository server
and volume for a migrated file. The URI and other information stored in a tag file may also
be stored in SDb 112 and/or CDb 116.

[0046] During a remigration operation, repository data from a repository volume allocated
to a repository server is moved to another volume allocated to another server. Information in

SDb 112 and CDb 116 is updated to reflect the remigration operation.

[0047] A recall operation may be performed when a request is received to access a
migrated data file. According to an embodiment of the present invention, in a recall

operation, information in the tag file is used to access an entry in CDb 116 corresponding to

10

10

15

20

25

30

WO 2004/051481 PCT/US2003/038246

the migrated file. The entry in the CDb 116 is used to identify the repository server and
repository volume where the migrated data is stored. This information is then used to recall
the migrated data from the repository volume back to the originating volume. The tag file
corresponding to the recalled data file is deleted and replaced with the recalled data file.

Information in SDb 112 and CDb 116 is updated to reflect the recall operation.

[0048] An unsynchronized recall occurs when a migrated file is recalled using information
in the SDb rather than the CDb possibly because CDb 116 is not accessible. In this scenario,
the file data is recalled using information stored in the SDb 112 of the originating server of

the file. The information in the CDb 116 is updated (or synchronized) at a later time when it

1s accessible.

[0049] In most storage environments, backups are performed at regular intervals to
minimize the possibility and extent of data loss. Typically, in a backup operation,
information from file systems of the servers are backed up or archived to backup storage
media 120 such as tapes. In the case of a sever crash or data storage device failure (e.g., a
hard drive crash) resulting in partial or complete loss of data on the drive, the data for the
server or device can be restored from backup media 120. However, changes may have
occurred to the file systems after a backup and prior to the crash. For example: tag files
included in the data restored from the backup medium may no longer be valid due to changes
that may have occurred in the HSM data; a data file represented by a tag file may have been
remigrated to another location after the backup and before the crash; the data file may have
been modified (e.g., changes to data content, size of data, and access dates) after the backup;
a data file may have been migrated at the time of the backup but may have been recalled
before the crash and as a result the tag file restored from backup may no longer have any
validity; etc. These changes that occur after data backup are not reflected in the backed up
data and are thus not reflected in the restored data. As a result, inconsistencies may arise in
information stored in the SDb 112 and CDb 116 and the files stored on the restored file
system. Unless corrected, these inconsistencies can cause errors and severely hamper the

performance of the storage environment.

[0050] Fig. 2 is a simplified high-level flowchart 200 depicting a method of detecting and
correcting or resolving inconsistencies in a restored file system according to an embodiment
of the present invention. The method depicted in Fig. 2 may be performed by software

modules executed by a processor, hardware modules, or combinations thereof. The

11

10

15

20

25

30

WO 2004/051481 PCT/US2003/038246

processing may be performed by a server affected by the crash and whose file system has
been restored. The processing may also be performed by SMS 110, or by SMS 110 in
cooperation with other servers, or by a server 106. Flowchart 200 depicted in Fig. 2 is merely
illustrative of an embodiment of the present invention and is not intended to limit the scope of
the present invention. Other variations, modifications, and alternatives are also within the
scope of the present invention. The method depicted in Fig. 2 may be adapted to work with
different implementation constraints such as security constraints, operating system

constraints, and the like.

[0051] As depicted in Fig. 2, processing is initiated upon receiving a signal to check data
consistency (or data verification) for a server whose file system (or portion of the file system)
has been restored (step 202). The signal may be received from various sources. In one
embodiment, the process that restores the file system from backup may itself generate the
signal to perform verification of data. A user such as an administrator of the storage system

may also manually trigger generation of the signal to perform data verification.

[0052] The volumes of the server file system that were restored from backup are then

determined (step 204). One or more volumes may be identified in step 204.

[0053] A check is then made to determine whether the SDb for the server is located on a
non-affected volume (i.e., a volume that did not crash and was not restored from backup)
(step 206). Ifit is determined that the SDb for the server is located on a non-affected volume,
then the data stored in the SDb is assumed to be reliable and processing continues with step
208. Ifit is determined that the SDb for the server was partially or fully located on a non-
affected volume, then the data stored in the SDb is assumed to be non-reliable and processing

continues with step 222.

[0054] If the SDb data is determined to be reliable, each data file and tag file stored on the
volumes determined in step 204 is compared with information in the SDb to identify and
correct/resolve inconsistencies. As part of the processing, a previously unprocessed file (i.e.,
a data file or tag file that has not been processed according to steps 208, 212, 214, and 216) is
selected from the one or more restored volumes identified in step 204 (step 208). The file is
then compared with information stored in the SDb to identify any inconsistencies (step 212).
An inconsistency occurs when the file information is inconsistent with the information stored

in the SDb or the information stored in the SDb is not consistent with the file information.

12

10

15

20

25

30

WO 2004/051481 PCT/US2003/038246

[0055] Several different types of inconsistencies may be determined based upon the
comparison performed in step 212. For example, an inconsistency may be identified in step
212 if the SDb does not comprise an entry corresponding to the selected file. Even if the SDb
comprises an entry corresponding to the selected, an inconsistency may be identified if the
SDb entry data is not consistent with the selected file data. For example, the selected file
may be a tag file and the SDb entry may identify it as a data file, the selected file may be a
data file and the SDb entry may identify it as a tag file, the file attributes information stored
in the SDb entry for the file may not match the file attributes of the corresponding file, etc.
Further details related to the types of inconsistencies that can be determined according to an

embodiment of the present invention are provided below.

[0056] One or more actions are then automatically performed to correct/resolve
inconsistencies, if any, identified in step 212 (step 214). Several different types of actions
may be taken depending on the type of inconsistency including adding and/or modifying
information stored in the SDb or CDb, deleting information from the SDb or CDb, deleting or
modifying the selected file, etc. Further details related to the actions that may be performed

according to an embodiment of the present invention are described below.

[0057] After the requisite actions to correct the inconsistency have been performed, a check
is made to determine if there are any more unprocessed data or tag files (i.e., data or tag files
that have not yet been compared to information in the SDb) stored on the restored volumes
identified in step 204 (step 216). If more unprocessed data or tag files are detected, then
processing continues with step 208 wherein another unprocessed file is selected for
processing and steps 212, 214, and 216 are repeated. Ifit is determined in step 216 that there
are no more unprocessed files (i.e., all the data and tag files stored on the restored volumes
have been compared to the information stored in the SDb), then processing continues with

step 218.

[0058] After all the tag and data files on the restored volumes have been compared with
information stored in the SDb, tag file entries in the SDb that do not have corresponding files
in the restored file system are determined (step 218). If such entries exist then they represent
inconsistencies where there is no corresponding tag file for a tag entry in the SDb. One or
more actions are then automatically performed to correct the inconsistencies determined in
step 218 (step 220). Further details related to the processing performed in step 218 and 220

are provided below. Processing then continues with step 236.

13

10

15

20

25

30

WO 2004/051481 PCT/US2003/038246

[0059] Referring back to step 206, if it is determined that the SDb was partially or fully
stored on an affected volume, then the data in the SDb is deemed to be unreliable. As a
result, the existing SDb is replaced with a new empty baseline SDb (step 222). The new SDb

1s then populated and actions performed to correct any inconsistencies.

[0060] As part of the processing, a previously unprocessed file (i.e., a data file or tag file
that has not been processed according to steps 224, 226, 228, and 230) is selected from the
one or more restored volumes identified in step 204 (step 224). If the file selected in step 224
is a tag file, then the tag file is compared with corresponding information stored in the CDb to
identify any inconsistencies (step 226). An inconsistency may occur if there is no record or
entry of the tag file in the CDb. An inci)nsistency may also occur if a CDb entry exists for

the tag file but CDb entry information is not consistent with the tag file information.

[0061] Information is then added to the SDb for the file selected in step 224 (step 228). If
the selected file is a tag file, the information stored in the CDb for the tag file may be used to
construct a new entry for the tag file in the SDb. One or more actions may also be performed
to correct any inconsistencies determined in step 226. If the selected file is a data file, a new
entry for the data file is created in the SDb. Further details related to the processing
performed in steps 226 and 228 are provided below.

[0062] A check is then made to determine if there are more unprocessed data or tag files
(step 230). If there are more unprocessed files, then processing continues with step 224
wherein another file is selected for processing. If all the tag and data files have been

processed; then processing continues with step 232.

[0063] After all the tag and data files on the restored volumes have been processed
according to steps 224, 226, 228, and 230, all entries in the CDb that do not have a
corresponding tag file in the restored file system are determined (step 232). Inconsistencies
are identified in step 232 where there is information stored in the CDb for a tag file but no
corresponding tag file exists on the restored volumes. One or more actions are then
automatically performed to correct the inconsistencies determined in step 232 (step 234).

Processing then continues with step 236.

[0064] As described above, actions are performed in various steps (e.g., steps 214, 220,
228, and 234) to correct inconsistencies. As result of the actions, the information in the SDb

and CDb is made consistent with the files in the restored file system.

14

10

15

20

25

30

WO 2004/051481 PCT/US2003/038246

[0065] The restored file system may also store repository files that have been restored from
backup. These repository files represent data that has been migrated (or remigrated) from
other servers. In one embodiment, the repository files are stored in a specific directory in the
file system. These restored repository files that have been restored from backup may be
inconsistent as they may not reflect migrations and remigrations that may have occurred after
the backup was performed and before the file system crashed. Accordingly, after the data
files and tag files have been processed as described above, the repository files stored on the
restored volumes are compared with information in the CDb to identify any inconsistencies
(step 236). One or more actions are then performed to correct any inconsistencies determined
in step 236 (step 238). In this manner, inconsistencies associated with repository files are

automatically detected and corrected.

[0066] In one embodiment, as depicted in Fi g 2, the repository files are processed after the
tag and data files have been processed. In alternative embodiments, repository files

processing may be done in parallel with or before processing of tag and data files.

[0067] Fig. 3 is a simplified high-level flowchart 300 depicting a method of detecting and
correcting tag files and data files-related inconsistencies in a restored file system according to
an embodiment of the present invention. According to an embodiment of the present
invention, the processing depicted in Fig. 3 is performed in steps 212, 214, and 216 of
flowchart 200 depicted in Fig. 2. The method depicted in Fig. 3 may be performed by
software modules executed by a processor, hardware modules, or combinations thereof. The
processing may also be performed by SMS 110, or by SMS 110 in cooperation with other
servers, or by a sever 106. Flowchart 300 depicted in F ig. 3 is merely illustrative of an
embodiment of the present invention and is not intended to limit the scope of the present
invention. Other variations, modifications, and alternatives are also within the scope of the
present invention. The method depicted in Fi g. 3 may be adapted to work with different
implementation constraints such as security constraints, operating system constraints, and the

like.

[0068] As depicted in Fig. 3, after an unprocessed file has been selected in step 208 of Fig.
2, acheck is made to determine if the selected file is a tag file (step 302). If the fileis a tag
file then processing continues with step 304, else (file is a data file) processing continues with

step 316.

15

10

15

20

25

30

WO 2004/051481 PCT/US2003/038246

[0069] If the file is determined to be a tag file in step 302, then a check is made to
determine if an entry exists in the SDb for the tag file (step 304). If an entry corresponding to
the tag file does not exist in the SDb, then the selected tag file is deleted (step 306). After

deletion, processing continues with step 216 of Fig. 2.

[0070] Ifitis determined in step 304 that an entry corresponding to the tag file does exist in
the SDb, then the SDb entry information is checked to see if the selected tag file is marked as
a tag file (step 308). If the SDb entry information identifies the selected tag file as a data file
rather than a tag file, this indicates an inconsistency and the SDb entry is deleted and the
selected tag file is also deleted (step 310). After the deletion, processing continues with step
216 of Fig. 2.

[0071] If the SDb entry information correctly marks the selected tag file as a tag file, then
the attributes of the selected tag file are compared with the attribute information in the SDb
entry to see if it matches (step 312). If the tag file attributes information does not match the
corresponding SDb entry attributes information, then the tag file is updated such that its
attributes match the SDb entry attributes information (step 314). Attributes that may be
compared and updated include size of the file, dates associated with the file, special tag file
data (unique file identifier may be stored in the special tag file data), etc. Processing then
continues with step 216 of Fig. 2. If the selected tag file attributes information matches the
attributes information of the SDb entry, then no action is performed and processing continues

with step 216 of Fig. 2.

[0072] Referring back to step 302, if the file is determined not to be a tag file (i.e., is
determined to be a data file), then a check is made to determine if an entry exists in the SDb
for the data file (step 316). If an entry corresponding to the data file does not exist in the
SDb, then a new entry for the data file is created and added to the SDb (step 318). After the

new entry is added, processing continues with step 216 of Fig. 2.

[0073] Ifitis determined in step 316 that an entry corresponding to the data file does exist
in the SDb, then a check is made to determine if the SDb entry information marks the
selected data file as a tag file (step 320). If the SDb entry information identifies the selected
data file as a tag file rather than a data file, this indicates an inconsistency and a new entry is
added to the SDb identifying the data file as a data file (step 322). Please note that the initial
entry identifying the data file as a tag file is not deleted; it is used later in step 218 to create

16

10

15

20

25

30

WO 2004/051481 PCT/US2003/038246

the missing tag file in the file system. After adding the new entry in step 322, processing
continues with step 216 of Fig. 2.

[0074] If the SDb entry information correctly marks the selected data file as a data file,
then the attributes of the selected data file are compared with the attribute information in the
corresponding SDb entry to see if it matches (step 324). If the data file attributes information
does not match the corresponding SDb entry attributes information, then the SDb entry
information is updated to match the data file attributes information (step 326) and processing
then continues with step 216 of Fig. 2. If the selected data file attributes information matches
the attributes information of the SDb entry, then no action is performed and processing

continues with step 216 of Fig. 2.

[0075] As previously described, in step 216 of fig. 2, a check is made to determine if there
are any more unprocessed data or tag files stored on the restored volumes. If more
unprocessed data or tag files are detected then processing continues with step 208 in Fig. 2
and the processing depicted in Fig. 3 is repeated, else processing continues with step 218 in

Fig. 2.

[0076] Fig. 4 is a simplified high-level flowchart 400 depicting a method of comparing
SDb tag file entries to files in the file system and taking appropriate actions to correct any
detected inconsistencies according to an embodiment of the present invention. According to
an embodiment of the present invention, the processing depicted in Fig. 4 is performed in
steps 218 and 220 of flowchart 200 depicted in Fig. 2. The method depicted in Fig. 4 may be
performed by software modules executed by a processor, hardware modules, or combinations
thereof. The processing may also be performed by SMS 110, or by SMS 110 in cooperation
with other servers, or by a server 106. Flowchart 400 depicted in Fig. 4 is merely illustrative
of an embodiment of the present invention and is not intended to limit the scope of the
present invention. Other variations, modifications, and alternatives are also within the scope
of the present invention. The method depicted in Fig. 4 may be adapted to work with
different implementation constraints such as security constraints, operating system

constraints, and the like.

[0077] As depicted in Fig. 4, an unprocessed tag file entry (i.e., an entry in the SDb
marking a file as a tag file and that has not been processed according to flowchart 400
depicted in Fig. 4) is selected for processing (step 402). The selected tag file entry is then

compared to tag files in the restored file system to determine if a tag file exists in the file

17

10

15

20

25

30

WO 2004/051481 PCT/US2003/038246

system corresponding to the selected tag file entry (step 404). If a corresponding tag file is
found in the restored file system corresponding to the selected SDb tag file entry (step 406),

then processing continues with step 414.

[0078] If a corresponding tag file is not located in the file system for the selected tag file
entry in step 406, then a check is made to determine if a repository file exists for the selected
tag file entry (step 408). Information from the selected SDb tag file entry is used to
determine if a repository file exists. If it is determined in step 408 that a corresponding
repository file exists, then a new tag file is created using information from the selected tag
file entry in the SDb (step 410). Processing then continues with step 414 after creating the
tag file.

[0079] Ifitis determined in step 408 that a corresponding repository file does not exist,
then the selected tag file entry is deleted from the SDb (step 412). If a corresponding entry
exists in the CDb, then that CDb entry is also deleted in step 412. Processing then continues
with step 414.

[0080] In st'ep 414, a check is made to see if there are more unprocessed tag file entries in
the SDb. If more entries exist, then the next unprocessed tag file entry is selected for
processing (step 416). Processing from step 404 is then repeated for the selected tag file
entry. Ifit is determined in step 414 that all tag file entries have been processed, then

processing continues with step 236 depicted in Fig. 2.

[0081] Fig. 5 is a simplified high-level flowchart 500 depicting a method of detecting and
correcting tag files and data files related inconsistencies in a restored file system according to
an embodiment of the present invention. According to an embodiment of the present
invention, the processing depicted in Fig. 5 is performed in steps 226 and 228 of flowchart
200 depicted in Fig. 2. The method depicted in Fig. 5 may be performed by software
modules executed by a processor, hardware modules, or combinations thereof. The
processing may also be performed by SMS 110, or by SMS 110 in cooperation with other
servers, or by a sever 106. Flowchart 500 depicted in Fig. 5 is merely illustrative of an
embodiment of the present invention and is not intended to limit the scope of the present
invention. Other variations, modifications, and alternatives are also within the scope of the
present invention. The method depicted in Fig. 5 may be adapted to work with different
implementation constraints such as security constraints, operating system constraints, and the

like.

18

10

15

20

25

30

WO 2004/051481 PCT/US2003/038246

[0082] As depicted in Fig. 5, after an unprocessed file has been selected in step 224 of Fig.
2, a check is made to determine if the selected file is a tag file (step 502). If the file is a tag
file then processing continues with step 504, else (file is a data file) processing continues with

step 516.

[0083] If the file is determined to be a tag file in step 502, then a check is made to
determine if an entry exists in the CDb for the tag file (step 504). If an entry corresponding
to the tag file does not exist in the CDb, then the selected tag file is deleted (step 506). After

deletion, processing continues with step 230 of Fig. 2.

[0084] Ifit is determined in step 504 that an entry corresponding to the tag file does exist in
the CDb, then a check is made to determine if a repository file exists for the selected tag file
(step 508). Ifit is determined in step 508 that a corresponding repository file does not exist
for the tag file, then the CDb entry is deleted and the selected tag file is also deleted (step
510). After the deletion, processing continues with step 230 of Fig. 2.

[0085] Ifitis determined in step 508 that a repository file exists for the tag file, then the tag
file attributes are compared with the attributes information in the CDb entry to see if there is
a match (step 512). If the tag file attributes do not match the corresponding CDb entry tag
attributes information, then the tag file is updated such that its attributes match the attributes
information in the CDb entry (step 514). Attributes may be compared and corrected include
file size, dates associated with the file, special tag file data (unique file identifier may be
stored in the special tag file data), etc. Processing then continues with step 515. If the
attributes of the selected tag file match the attributes information in the CDb entry, then

processing continues with step 515.

[0086] Instep 515, a new entry is created for the tag file in the SDb (step 515). Processing
then continues with step 230 of Fig. 2.

[0087] Referring back to step 502, if the file is determined not to be a tag file (i.e., is
determined to be a data file), then a new entry for the data file is created and added to the

SDb (step 516). After the new entry is added, processing continues with step 230 of Fig. 2.

[0088] As previously described, in step 230 of Fig. 2, a check is made to determine if there
are more unprocessed data or tag files. If there are more unprocessed files, then processing

continues with step 224 wherein another file is selected for processing and the processing

19

10

15

20

25

30

WO 2004/051481 PCT/US2003/038246

depicted in Fig. 5 is repeated. After all the tag and data files have been processed, then

processing continues with step 232 in Fig. 2.

[0089] Fig. 6 is a simplified high-level flowchart 600 depicting a method of comparing
CDb entries to files in the restored file system and taking appropriate actions to correct the
detected inconsistencies according to an embodiment of the present invention. According to
an embodiment of the present invention, the processing depicted in Fig. 6 is performed in
steps 232 and 234 of flowchart 200 depicted in Fig. 2. The method depicted in Fig. 6 may be
performed by software modules executed by a processor, hardware modules, or combinations
thereof. The processing may also be performed by SMS 110, or by SMS 110 in cooperation
with other servers, or by a server 106. Flowchart 600 depicted in Fig. 6 is merely illustrative
of an embodiment of the present invention and is not intended to limit the scope of the
present invention. Other variations, modifications, and alternatives are also within the scope
of the present invention. The method depicted in Fig. 6 may be adapted to work with
different implementation constraints such as security constraints, operating system

constraints, and the like.

[0090] As depicted in Fig. 6, an unprocessed tag file entry from the CDb is selected for
processing (step 602). The selected CDb tag file entry is then compared to tag files in the
restored file system to determine if a tag file exists in the file system corresponding to the
selected tag file entry (step 604). If a corresponding tag file is found in the restored file
system corresponding to the selected CDb tag file entry (in step 606), then processing
continues with step 614.

[0091] If a corresponding tag file is not located in the file system for the selected CDb tag
file entry in step 606, then a check is made to determine if a repository file exists for the
selected tag file entry (step 608). Information from the selected CDb tag file entry is used to
determine if a repository file exists. If it is determined in step 608 that a corresponding
repository file exists, then a new tag file is created using information from the selected CDb

tag file entry (step 610). Processing then continues with step 614.

[0092] Ifitis determined in step 608 that a corresponding repository file does not exist,
then the selected CDb tag file entry is deleted (step 612). Processing then continues with step
614.

[0093] Instep 614, a check is made to see if there are more unprocessed tag file entries in

the CDb (step 614). If more entries exist, then the next unprocessed tag file entry is selected

20

10

15

20

25

30

WO 2004/051481 PCT/US2003/038246

for processing (step 616). Processing starting from step 604 is then repeated for the selected
tag file entry. If it is determined in step 614 that all CDb tag file entries have been processed,
then processing continues with step 236 depicted in Fig. 2.

[0094] As described above, embodiments of the present invention are able to automatically
detect and correct various inconsistencies that may be present after restoration of data in a file
system controlled by a storage application such as HSM. As a result of the processing
performed according to an embodiment of the present invention, an originating server is
restored to a consistent point-in-time image that is consistent with the backup image. The tag
files on the originating server are rendered usable and loss of data is minimized. Information

in the SDb and CDb is also updated to reflect the files in the restored file system.

[0095] According to an embodiment of the present invention, missing repository file can be
identified by searching the CDb. The CDb stores a list of repository volumes, the originating
servers, and the repository servers. In one embodiment, the repository files are stored in
specific directories on the file systems of the various servers. The directory names identify
the machine (machine id) the file came from and the name of the repository file (unique file
identifier). In such an embodiment, missing repository files can be determined by comparing
the repository information in the CDb to the repository directories of the servers. A
repository entry in the CDb that does not have a matching entry a repository directory
indicates either a missing repository file or an unsynchronized alternate recall condition.
Some of the actions that may be performed to correct the inconsistencies are described below
(see Table A).

[0096] Fig. 7 is a simplified high-level flowchart 700 depicting a method of processing |
repository files in the restored file system according to an embodiment of the present
invention. According to an embodiment of the present invention, the processing depicted in
Fig. 7 is performed in steps 236 and 238 of flowchart 200 depicted in Fig. 2. The method
depicted in Fig. 7 may be performed by software modules executed by a processor, hardware
modules, or combinations thereof. The processing may also be performed by SMS 110, or by
SMS 110 in cooperation with other servers, or by a server 106. Flowchart 700 depicted in
Fig. 7 is merely illustrative of an embodiment of the present invention and is not intended to
limit the scope of the present invention. Other variations, modifications, and alternatives are

also within the scope of the present invention. The method depicted in Fig. 7 may be adapted

21

10

15

20

25

30

WO 2004/051481 PCT/US2003/038246

to work with different implementation constraints such as security constraints, operating

system constraints, and the like.

[0097] As depicted in Fig. 7, an unprocessed repository file (i.e., a repository file from the
server's file system that has not been processed according to flowchart 700) is selected for
processing (step 702). The selected repository file is then compared to information in the
CDb to find a corresponding CDb entry for the repository file (step 704). According to an
embodiment of the present invention, the unique file identifier of the selected repository file
is used to determine if there is a corresponding entry in the CDb. A check is then made to

determine if a corresponding CDb entry was found for the repository file (step 706).

[0098] If a corresponding CDb entry is not found, then the selected repository file is moved
to a recovery area (step 708). According to an embodiment of the present invention, the
repository file is moved to an ;'orphan" directory that stores repository files which do not
have corresponding entries in the CDb. The file may subsequently be deleted or relocated

from the orphan directory. Processing then continues with step 714.

[0099] If a corresponding CDb entry is found for the repository file, then a check is made
to determine if the file attributes in the corresponding CDb entry differ from the attributes of
the selected repository file (step 710). If the CDb entry file attributes differ, then the
attributes information in the CDb entry is updated to match the repository file attributes (step
712). Processing then continues with step 714. If it is determined in step 710 that the

attributes do not differ, then processing continues with step 714.

[0100] Instep 714, a check is made to see if there are more unprocessed repository files
(step 714). If more unprocessed repository files exist, then the next unprocessed repository
file is selected (step 716) and processing starting from step 704 is then repeated for the
selected repository file. If it is determined in step 714 that all repository files have been

processed, then processing continues with step 718.

[0101] After all the repository files from the restored volumes have been compared to the
CDb information, the CDb entries for the server are checked against the repository files
stored on the server to determine if there exist any entries for which there are no
corresponding repository files. According to an embodiment of the present invention, for
each CDb entry for a destination server, a determination is made if there is a matching file in
the repository directory of the server (step 718). If it is determined that a matching file is

found (sep 720) then processing continues with step 724. If a matching file is not found, then

22

10

WO 2004/051481

PCT/US2003/038246

the selected CDb entry for which there is no matching repository file is deleted (step 722).

An error condition is also logged. Processing then continues with step 724.

[0102]

In step 724, a check is made to determine if there are more CDb entries to be

processed (step 714). If more unprocessed CDb entries exist, then processing continues with

step 718, else the processing ends.

[0103]

Table A shown below lists examples of inconsistencies that are detected by an

embodiment of the present invention. The first column titled "Inconsistency" identifies the

inconsistency. The column titled "Potential Cause" identifies potential conditions that may

have caused the inconsistency. The column titled "Action Performed" identifies the actions

that are taken to correct the inconsistency. Table A is not intended to be an exhaustive list of

inconsistencies, potential causes, and actions performed. Embodiments of the present

invention can also detect other types of inconsistencies and perform actions to correct the

inconsistencies.

[0104] TABLE A

Inconsistency

Potential Causes

Action Performed

Inconsistencies related to data files.

Specific cases related to data files:

(1) File system comprises a data
file after restoration from backup.
No entry for the data file in the
SDb.

The data file was either renamed,

moved, or deleted after the backup.

An entry is created in the SDb for
the data file.

(2) File system comprises a data
file after restoration from backup.
SDb contains an entry for the file
but the entry marks the file as a tag

file (i.e., as migrated).

The data file was migrated after the
backup. After restoration, the tag
file was replaced with the data file
included in the backup.

An entry is created in the SDb for
the data file. The missing tag file
is created corresponding to the SDb
entry information that marks the

file as a tag file.

(3) File system comprises a data
file after restoration from backup.
SDb contains an entry for the file
that marks the file as a data file.
The SDb entry file attributes do not
match the file attributes of the

The data file was modified after
backup. After restoration, an
"older" data file included in the
backup replaced the "newer"
modified data file.

The SDb entry attributes
information is updated to match the
file attributes. If the entry is
marked as an unsynchronized
alternate recall, then the CDb entry

corresponding to the file is deleted.

23

WO 2004/051481

PCT/US2003/038246

restored data file.

(4) File system comprises a data

file after restoration from backup.
SDb contains an entry for the file
that marks the status of the file as

unsynchronized alternate recall.

The originating server was unable
to communicate with the CDb
when it recalled the file after

backup.

CDb entry corresponding to the
data file is deleted.

Inconsistencies related to tag files

Specific cases related to tag files:

(1) File system comprises a tag file
after restoration from backup. No
entry for the tag file in the SDb or
CDb.

The migrated file corresponding to
the tag file was either deleted, or
recalled and deleted after the
backup.

The tag file is deleted and error

condition reported.

(2a) File system comprises a tag
file after restoration from backup.
The SDb information is lost. CDb
contains a matching entry for the
tag file. Repository file exists for
the tag file.

The SDb is lost. If the tag file
attributes don’t match, the tag file
may have been recalled, modified
and migrated again since the
backup.

A new entry for the tag file is
added to the SDb. A check is made
to determine if the tag file
attributes match the attributes
stored in the corresponding CDb
entry. If the attributes do not
match, the tag file is modified to
make its attributes match the
attributes in the CDb entry.

(2b) File system comprises a tag
file after restoration from backup.
SDb information is lost. CDb
contains a matching entry for the
tag file. Repository file does not
exist for the tag file.

An alternate recall occurred after
the backup. After restoration from
backup, the data file was replaced
by the tag file from the backup.

(If the volume is lost, the data file
is gone and the backup contains the

old tag file.)

The restored tag file is deleted.
The corresponding entry in the
CDb is deleted. Error condition is
reported that the data file has been
lost. Data may be retrieved from
an earlier backup before the file

was migrated.

(3) File system comprises a tag file
after restoration from backup. SDb
contains an entry for the file but the
file is marked as a data file rather

than as a tag file.

The file was recalled after the
backup. The tag file was restored
from backup overwriting the data
file.

The SDb entry and the tag file are
deleted. An error is reported

indicating loss of data file.

(4) File system comprises a tag file

after restoration from backup. SDb

The file was recalled, modified,

and migrated again after the

The tag file attributes are updated
to match the SDb database.

24

WO 2004/051481

PCT/US2003/038246

contains an entry for the tag file but
the attributes of the tag file do not
match the attributes identified by
the SDb entry information..

backup. After restoration, the
newer tag file was replaced by an

older version of the tag file.

Missing tag file cases

(1) SDb comprises an entry for a
tag file. No corresponding tag file
found in the restored file system.
Corresponding repository file does

not exist.

Repository file lost, tag created
after backup.

The SDb entry is deleted. A
corresponding CDb entry exists, if
found, is also deleted. Report error
condition that the data file is lost as
it was not contained in the backup.
The data file may be retrievable
from an earlier backup before the

file was migrated.

(2) SDb comprises an entry for a
tag file. No corresponding tag file
found in the restored file system.
Corresponding repository file

exists.

A file was created and migrated

after the backup.

A new tag file is created using

information from the SDb entry.

(3) SDb lost. CDb comprises an
entry for a tag file. No
corresponding tag file found in the
restored file system.
Corresponding repository file does

not exist.

An unsynchronized alternate recall
occurred after the backup.
Originating server could not inform
the CDb of the recall before the

data crash event.

The CDb entry is deleted. Report
error condition that the data file is
lost as it was not contained in the
backup. The data file may be
retrievable from an earlier backup

before the file was migrated.

(4) SDb lost. CDb comprises an
entry for a tag file. No
corresponding tag file found in the
restored file system.
Corresponding repository file

exists.

Data file created after backup and
migrated (creating tag).

A new tag file is created using

information from the CDb entry.

In

consistencies related to repository files

(1) Repository file exists after
restoration. CDb contains an entry
for the repository file. The
repository file attributes differ from
the CDb entry attributes.

The file was possibly remigrated or
changed since the last backup. An
older repository file was restored
from backup.

An error condition is reported
indicating that the restored
repository file is older. Also report
that updates performed to the file
since the backup may be lost.

25

10

WO 2004/051481

PCT/US2003/038246

(2) Repository file exists after
restoration. CDb does not contain

an entry for the repository file.

The file was either recalled or

deleted after the backup.

The repository file is moved to a
special "orphans" area for
subsequent deletion or relocation.
An error condition is reported
indicating that the data file
corresponding to the repository file

is not accessible.

Such a repository file is called an
"orphan" referring to a valid
repository file with no tag file on

the originating server pointing to it.

(3) Volume of the repository file
does not exist in the CDb's volume

table.

The originating server machine was
removed or uninstalled, or the
HSM product was
removed/uninstalled from the

originating server machine.

An error condition is reported. The
repository file is moved to a special
"orphans" area for subsequent

deletion or relocation.

(4) CDb contains an entry for a
repository file with no
corresponding repository file (a
different destination or repository

volume may be identified).

The repository file was remigrated
after backup. Or, the backup
operation failed to archive the
repository file. Or unsynchronized

recall occurred.

An error condition is reported. The
repository file is moved to a special
"orphans" area for subsequent

deletion or relocation.

(5) Repository file missing.

Repository file was not included in
the backup.

An error condition is reported
indicating that the repository file is

missing.

[0105]

Fig. 8 is a simplified block diagram of a computer system 800 capable of

implementing an embodiment of the present invention. As shown in Fig. 8, computer system

800 includes a processor 802 that communicates with a number of peripheral devices via a

bus subsystem 804. These peripheral devices may include a storage subsystem 806,

comprising a memory subsystem 808 and a file storage subsystem 810, user interface input

devices 812, user interface output devices 814, and a network interface subsystem 816. The

input and output devices allow a user, such as the administrator, to interact with computer

system 800.

[0106]

Network interface subsystem 816 provides an interface to other computer systems,

networks, servers, and storage units. Network interface subsystem 816 serves as an interface

26

10

15

20

25

30

WO 2004/051481 PCT/US2003/038246

for receiving data from other sources and for transmitting data to other sources from
computer system 800. Embodiments of network interface subsystem 816 include an Ethernet
card, a modem (telephone, satellite, cable, ISDN, etc.), (asynchronous) digital subscriber line
(DSL) units, and the like.

[0107] User interface input devices 812 may include a keyboard, pointing devices such as a
mouse, trackball, touchpad, or graphics tablet, a scanner, a barcode scanner, a touchscreen
incorporated into the display, audio input devices such as voice recognition systems,
microphones, and other types of input devices. In general, use of the term "input device" is
intended to include all possible types of devices and mechanisms for inputting information to

computer system 800.

[0108] User interface output devices 814 may include a display subsystem, a printer, a fax
machine, or non-visual displays such as audio output devices, etc. The display subsystem
may be a cathode ray tube (CRT), a flat-panel device such as a liquid crystal display (LCD),
or a projection device. In general, use of the term "output device" is intended to include all
possible types of devices and mechanisms for outputting information from computer system
800.

[0109] Storage subsystem 806 may be configured to store the basic programming and data
constructs that provide the functionality of the present invention. For example, according to
an embodiment of the present invention, software code modules implementing the
functionality of the present invention may be stored in storage subsystem 806. These
software modules may be executed by processor(s) 802. Storage subsystem 806 may also
provide a repository for storing data used in accordance with the present invention. For
example, the SDb and CDb databases may be stored in storage subsystem 806. Storage
subsystem 806 may also be used as a migration repository to store data that is moved from a
storage unit. Storage subsystem 806 may also be used to store data that is moved from
another storage unit. Storage subsystem 806 may comprise memory subsystem 808 and

file/disk storage subsystem 810.

[0110] Memory subsystem 808 may include a number of memories including a main
random access memory (RAM) 818 for storage of instructions and data during program
execution and a read only memory (ROM) 820 in which fixed instructions are stored. File
storage subsystem 810 provides persistent (non-volatile) storage for program and data files,

and may include a hard disk drive, a floppy disk drive along with associated removable

27

10

15

20

25

30

WO 2004/051481 PCT/US2003/038246

media, a Compact Disk Read Only Memory (CD-ROM) drive, an optical drive, removable

media cartridges, and other like storage media.

[0111] Bus subsystem 804 provides a mechanism for letting the various components and
subsystems of computer system 800 communicate with each other as intended. Although bus
subsystem 804 is shown schematically as a single bus, alternative embodiments of the bus

subsystem may utilize multiple busses.

[0112] Computer system 800 can be of various types including a personal computer, a
portable computer, a workstation, a network computer, a mainframe, a kiosk, or any other
data processing system. Due to the ever-changing nature of computers and networks, the
description of computer system 800 depicted in Fig. 8 is intended only as a specific example
for purposes of illustrating the preferred embodiment of the computer system. Many other
configurations having more or fewer components than the system depicted in Fig. 8 are -

possible.

[0113] Although specific embodiments of the invention have been described, various
modifications, alterations, alternative constructions, and equivalents are also encompassed
within the scope of the invention. The described invention is not restricted to operation
within certain specific data processing environments, but is free to operate within a plurality
of data processing environments. Additionally, although the present invention has been
described using a particular series of transactions and steps, it should be apparent to those
skilled in the art that the scope of the present invention is not limited to the described series

of transactions and steps.

[0114] Further, while the present invention has been described using a particular
combination of hardware and software, it should be recognized that other combinations of
hardware and software are also within the scope of the present invention. The present
invention may be implemented only in hardware, or only in software, or using combinations

thereof.

[0115] The specification and drawings are, accordingly, to be regarded in an illustrative
rather than a restrictive sense. It will, however, be evident that additions, subtractions,
deletions, and other modifications and changes may be made thereunto without departing

from the broader spirit and scope of the invention as set forth in the claims.

28

O 00 N1 O W bW N

e e e e T e e T o S
0O 3 O W bW N = O

bR W N -

AN W W =

WO 2004/051481 PCT/US2003/038246

WHAT IS CLAIMED IS:

1. In a storage environment comprising a plurality of servers, the plurality
of servers including a first server having a file system storing a plurality of files restored from
a backup medium, the plurality of files including one or more data files and one or more tag
files corresponding to data files that have migrated from the file system, a computer-
implemented method of maintaining consistency of the file system of the first server, the
method comprising:

providing first information comprising information related to the plurality of
files stored in the file system of the first server, the first information comprising a plurality of
entries, each entry corresponding to a file and storing status information identifying whether
the file is a tag file or a data file, each entry storing attributes information identifying one or
more attributes of the file;

comparing the plurality of files to information included in the first
information;

identifying, based upon the comparing, at least a first inconsistency where
information associated with a first file from the plurality of files is inconsistent with
information in the first information; and

performing a first set of one or more operations to resolve the first

inconsistency.

2. The method of claim 1 further comprising:

identifying at least a first entry in the first information that stores status
information identifying a file as a tag file and for which there is no corresponding tag file in
the plurality of files; and

performing a second set of one or more operations for the first entry.

3. The method of claim 2 wherein performing the second set of one or
more operations comprises:

determining, based upon information in the first entry, if a repository file
exists corresponding to the first entry; and

deleting the first entry from the first information upon determining that a

repository file corresponding to the first entry does not exist.

29

A N WO =

Pk .
S O 00 NN N N W N =

N Y AW -

0 N O W R WON

WO 2004/051481 PCT/US2003/038246

4. The method of claim 2 wherein performing the second set of one or
more operations comprises:

determining, based upon information in the first entry, if a repository file
exists corresponding to the first entry; and

creating a tag file using information in the first entry upon determining that a

repository file corresponding to the first entry exists.

5. The method of claim 2 wherein the plurality of files comprises one or
more repository files storing migrated data, the method further comprising:

providing second information including information related to files stored by
the plurality of servers that have been migrated;

comparing the one or more repository files to information stored in the first
information and the second information;

identifying at least one inconsistency based upon comparing the one or more
repository files to information in the first information and the second information; and

performing a set of one or more actions to resolve the at least one

inconsistency.

6. The method of claim 1 wherein:

the first file is a tag file representing a data file that has been migrated from
the file system of the first server;

identifying at least a first inconsistency comprises determining that the first
information does not include an entry for the first file; and

performing the first set of one or more operations comprises deleting the first
file.

7. The method of claim 1 wherein:

the first file is a tag file representing a data file that has been migrated from
the file system of the first server;

identifying at least a first inconsistency comprises determining that the first
information includes an entry corresponding to the first file storing status information that
identifies the file as a data file; and

performing the first set of one or more operations comprises:

deleting the first file; and

30

—
S O 0 N AN N B WN e

O 0 9 A A WN = AN W N

HOWND =

WO 2004/051481 PCT/US2003/038246

deleting the entry in the first information corresponding to the first file.

8. The method of claim 1 wherein:

the first file is a tag file representing a data file that has been migrated from
the file system of the first server;

identifying at least a first inconsistency comprises determining that the first
information includes an entry corresponding to the first file storing status information that
identifies the file as a tag file, wherein the attributes information stored by the entry does not
match at least one attribute of the first file; and »

performing the first set of one or more operations comprises updating the first
file such that the at least one attribute of the first file matches the attributes information stored

in the entry in the first information corresponding to the first file.

9. The method of claim 1 wherein:

the first file is a data file;

identifying at least a first inconsistency comprises determining that the first
information does not include an entry for the first file; and

performing a first set of one or more operations comprises adding an entry to

the first information for the first file.

10. The method of claim 1 wherein:
the first file is a data file;
identifying at least a first inconsistency comprises determining that the first
information includes a first entry corresponding to the first file storing status information that
identifies the file as a tag file; and
performing the first set of one or more operations comprises:
adding a second entry to the first information for the first file; and
creating a tag file to corresponding to the information in the first entry

in the first information.

11. The method of claim 1 wherein:
the first file is a data file;
identifying at least a first inconsistency comprises determining that the first

information includes an entry corresponding to the first file storing status information that

31

O 00 3 O W

O 00 ~2 O U AW

i e e T o S VG
A i AW - O

AW N

A D AW -

WO 2004/051481 PCT/US2003/038246

identifies the file as a data file, wherein the attributes information stored by the entry does not
match at least one attribute of the first file; and

performing the first set of one or more operations comprises updating the
information in the first information entry corresponding first file such that the attributes

information stored in the entry matches the at least one attribute of the first file.

12. In a storage environment comprising a plurality of servers, the plurality
of servers including a first server having a file system storing a plurality of files restored from
a backup medium, the plurality of files including one or more data files and one or more tag
files corresponding to data files that have migrated from the file system, a computer-
implemented method of maintaining consistency of the file system of the first server, the
method comprising:

providing first information including information related to files stored in the
file system of the first server;

providing second information comprising a plurality of entries, each entry
storing information related a file stored by the plurality of servers that has been migrated;

comparing a first tag file from the plurality of files to information stored in the
second information;

identifying, based upon the comparing, at least a first inconsistency where
information associated with the first tag file is inconsistent with the information included in
the second information; and

performing a first set of one or more actions to resolve the first inconsistency.

13. The method of claim 12 wherein:

identifying the first inconsistency comprises determining that the second
information does not include an entry for the first tag file; and

performing the first set of one or more actions comprises deleting the first tag
file.

14. The method of claim 12 wherein:

identifying the first inconsistency comprises determining that the second
information includes a first entry for the first tag file, a repository file exists for the first tag
file, and information in the first entry does not match at least one attribute of the first tag file;
and

performing the first set of one or more actions comprises:

32

10

AN W b W N A W N == ~N N R W N

AN W B W e

et

WO 2004/051481 PCT/US2003/038246

updating the first tag file such that the at least one attribute of the first
tag file matches the information in the first entry; and
adding an entry to the first information for the first tag file, the entry

storing information related to the first tag file.

15. The method of claim 12 wherein:

identifying the first inconsistency comprises determining that the second
information includes a first entry for the first tag file, a repository file exists for the first tag
file, and information in the first entry matches one or more attributes of the first tag file; and

performing the first set of one or more actions comprises adding an entry to
the first information for the first tag file, the entry storing information related to the first tag
file.

16. The method of claim 12 further comprising:
identifying at least a first entry in the second information for which there is no
corresponding tag file in the plurality of files; and

performing a second set of one or more operations for the first entry.

17. The method of claim 16 wherein performing the second set of one or
more operations comprises:

determining, based upon information in the first entry in the second
information, if a repository file exists corresponding to the first entry; and

deleting the first entry from the second information upon determining that a

repository file corresponding to the first entry does not exist.

18. The method of claim 16 wherein performing the second set of one or
more operations comprises:

determining, based upon information in the first entry, if a repository file
exists corresponding to the first entry; and

creating a tag file using information in the first entry for the second

information upon determining that a repository file corresponding to the first entry exists.

19. In a storage environment managed by a hierarchical storage
management application comprising a plurality of servers, the plurality of servers including a

first server having a file system storing a plurality of files including one or more data files

33

O 00 0 O Wn

10

12
13
14
15

O 00 N O R W -

T e T e T N S Y S S N
0 N N L RN - O

WO 2004/051481 PCT/US2003/038246

and one or more tag files corresponding to data files that have migrated from the file system,
a computer-implemented method of recovering information, the method comprising:

providing first information including information related to one or more data
files that have been migrated, wherein the information related to each data file that has been
migrated includes information identifying a server and a volume from which the data file is
migrated, and information identifying a server and volume where the migrated data of the
data file is stored, the first information comprising information related to a first data file that
has been migrated;

determining, based upon the first information, that the file system does not
contain a tag file corresponding to first data file; and

creating a tag file corresponding to the first data file based upon information

included in the first information.

20. In a storage environment comprising a plurality of servers, the plurality
of servers including a first server having a file system storing a plurality of files restored from
a backup medium, the plurality of files including one or more data files and one or more tag
files corresponding to data files that have migrated from the file system, a computer program
product stored on a computer-readable medium for maintaining consistency of the file system
of the first server, the computer program product comprising:

code for providing first information comprising information related to the
plurality of files stored in the file system of the first server, the first information comprising a
plurality of entries, each entry corresponding to a file and storing status information
identifying whether the file is a tag file or a data file, each entry storing attributes information
identifying one or more attributes of the file;

code for comparing the plurality of files to information included in the first
information;

code for identifying, based upon the comparison, at least a first inconsistency
where information associated with a first file from the plurality of files is inconsistent with
information in the first information; and

code for performing a first set of one or more operations to resolve the first

inconsistency.

21. The computer program product of claim 20 further comprising:

34

AN kAW N = n W N

A N AW

O 00 10 N W b W N e

— e e
No= O

WO 2004/051481 PCT/US2003/038246

code for identifying at least a first entry in the first information that stores
status information identifying a file as a tag file and for which there is no corresponding tag
file in the plurality of files; and

code for performing a second set of one or more operations for the first entry.

22. The computer program product of claim 21 wherein the code for
performing the second set of one or more operations comprises:

code for determining, based upon information in the first entry, if a repository

file exists corresponding to the first entry; and

code for deleting the first entry from the first information upon determining

that a repository file corresponding to the first entry does not exist.

23. The computer program product of claim 21 wherein the code for
performing the second set of one or more operations comprises:

code for determining, based upon information in the first entry, if a repository
file exists corresponding to the first entry; and

code for creating a tag file using information in the first entry upon

determining that a repository file corresponding to the first entry exists.

24, The computer program product of claim 21 wherein the plurality of
files comprises one or more repository files storing migrated data, the computer program
product further comprising:

code for providing second information including information related to files
stored by the plurality of servers that have been migrated,

code for comparing the one or more repository files to information stored in
the ﬁrst information and the second information;

code for identifying at least one inconsistency based upon comparing the one
or more repository files to information in the first information and the second information;
and

code for performing a set of one or more actions to resolve the at least one

inconsistency.

25. The computer program product of claim 20 wherein:.
the first file is a tag file representing a data file that has been migrated from

the file system of the first server;

35

N N v s

P
O 0 N N AW = L= e B N =) V. T G U S NG S

)
- O

AN bW

WO 2004/051481 PCT/US2003/038246

the code for identifying at least a first inconsistency comprises code for
determining that the first information does not include an entry for the first file; and
the code for performing the first set of one or more operations comprises code

for deleting the first file.

26. The computer program product of claim 20 wherein:
the first file is a tag file representing a data file that has been migrated from
the file system of the first server;
the code for identifying at least a first inconsistency comprises code for
determining that the first information includes an entry corresponding to the first file storing
status information that identifies the file as a data file; and
the code for performing the first set of one or more operations comprises:
code for deleting the first file; and
code for deleting the entry in the first information corresponding to the

first file.

27. The computer program product of claim 20 wherein:

the first file is a tag file representing a data file that has been migrated from
the file system of the first server;

the code for identifying at least a first inconsistency comprises code for
determining that the first information includes an entry corresponding to the first file storing
status information that identifies the file as a tag file, wherein the attributes information
stored by the entry does not match at least one attribute of the first file; and

the code for performing the first set of one or more operations comprises code
for updating the first file such that the at least one attribute of the first file matches the
attributes information stored in the entry in the first information corresponding to the first
file.

28. The computer program product of claim 20 wherein:

the first file is a data file;

the code for identifying at least a first inconsistency comprises code for
determining that the first information does not include an entry for the first file; and

the code for performing a first set of one or more operations comprises code

for adding an entry to the first information for the first file.

36

—_ —
— O O 0NN N bW = O 0 N O O b W N - O O 00 NN N bW

—
w N

WO 2004/051481 PCT/US2003/038246

29. The computer program product of claim 20 wherein: .
the first file is a data file;
the code for identifying at least a first inconsistency comprises code for
determining that the first information includes a first entry corresponding to the first file
storing status information that identifies the file as a tag file; and
the code for performing the first set of one or more operations comprises:
code for adding a second entry to the first information for the first file;
and
code for creating a tag file to corresponding to the information in the

first entry in the first information.

30. The computer program product of claim 20 wherein:

the first file is a data file;

the code for identifying at least a first inconsistency comprises code for
determining that the first information includes an entry corresponding to the first file storing
status information that identifies the file as a data file, wherein the attributes information
stored by the entry does not match at least one attribute of the first file; and

the code for performing the first set of one or more operations comprises code
for updating the information in the first information entry corresponding first file such that

the attributes information stored in the entry matches the at least one attribute of the first file.

31. In astorage environment comprising a plurality of servers, the plurality
of servers including a first server having a file system storing a plurality of files restored from
a backup medium, the plurality of files including one or more data files and one or more tag
files corresponding to data files that have migrated from the file system, a computer program
product stored on a computer-readable medium for maintaining consistency of the file system
of the first server, the computer program product comprising:

code for providing first information including information related to files
stored in the file system of the first server;

code for providing second information comprising a plurality of entries, each
entry storing informatior'l related a file stored by the plurality of servers that has been
migrated;

code for comparing a first tag file from the plurality of files to information

stored in the second information;

37

14
15
16
17
18

w» s W N -

—
O O 00 NN N W Rk W N =

0O 1 O i kA WD -

WO 2004/051481 PCT/US2003/038246

code for identifying, based upon the comparing, at least a first inconsistency
where information associated with the first tag file is inconsistent with the information
included in the second information; and

code for performing a first set of one or more actions to resolve the first

inconsistency.

32. The computer program product of claim 31 wherein:

the code for identifying the first inconsistency comprises code for determining
that the second information does not include an entry for the first tag file; and

code for performing the first set of one or more actions comprises code for

deleting the first tag file.

33. The computer program product of claim 31 wherein:
the code for identifying the first inconsistency comprises code for determining
that the second information includes a first entry for the first tag file, a repository file exists
for the first tag file, and information in the first entry does not match at least one attribute of
the first tag file; and
the code for performing the first set of one or more actions comprises:
code for updating the first tag file such that the at least one attribute of
the first tag file matches the information in the first entry; and
code for adding an entry to the first information for the first tag file,

the entry storing information related to the first tag file.

34. The computer program product of claim 31 wherein:

the code for identifying the first inconsistency comprises code for determining
that the second information includes a first entry for the first tag file, a repository file exists
for the first tag file, and information in the first entry matches one or more attributes of the
first tag file; and

the code for performing the first set of one or more actions comprises code for
adding an entry to the first information for the first tag file, the entry storing information

related to the first tag file.

35. The computer program product of claim 31 further comprising:
code for identifying at least a first entry in the second information for which

there is no corresponding tag file in the plurality of files; and

38

AN L A W N - AN W AW N =

O 0 3 O W W N =

e N T = Sy
A WK AW = O

WO 2004/051481 PCT/US2003/038246
code for performing a second set of one or more operations for the first entry.

36. The computer program product of claim 35 wherein the code for
performing the second set of one or more operations comprises:

code for determining, based upon information in the first entry in the second
information, if a repository file exists corresponding to the first entry; and

code for deleting the first entry from the second information upon determining

that a repository file corresponding to the first entry does not exist.

37. The computer program product of claim 35 wherein the code for
performing the second set of one or more dperations comprises:

code for determining, based upon information in the first entry, if a repository
file exists corresponding to the first entry; and

code for creating a tag file using information in the first entry for the second

information upon determining that a repository file corresponding to the first entry exists.

38. In a hierarchical storage management environment comprising a
plurality of servers, the plurality of servers including a first server having a file system
storing a plurality of files including one or more data files and one or more tag files
corresponding to data files that have migrated from the file system, a computer program
product stored on a computer-readable medium for recovering information, the computer
program product comprising:

code for providing first information including information related to one or
more data files that have been migrated, wherein the information related to each data file that
has been migrated includes information identifying a server and a volume from which the
data file is migrated, and information identifying a server and volume where the migrated
data of the data file is stored, the first information comprising information related to a first
data file that has been migrated;

code for determining, based upon the first information, that the file system
does not contain a tag file corresponding to first data file; and

code for creating a tag file corresponding to the first data file based upon

information included in the first information.

39. A storage system managed using a hierarchical storage management

application, the storage system comprising:

39

O 0 N O v bW

10
11
12
13
14
15
16
17
18
19
20

O 0 0 O i DWW -

e e T . D = S
H W= O

WO 2004/051481 PCT/US2003/038246

a first server; and
a set of one or more storage units coupled to the first server, the set of storage
units storing a plurality of files restored from a backup medium, the plurality of files
including one or more data files and one or more tag files corresponding to data files that
have migrated from the set of storage units;
a memory configured to store first information comprising information related
to the plurality of files stored on the set of storage units, the first information comprising a
plurality of entries, each entry corresponding to a file, each entry storing status information
identifying whether the file is a tag file or a data file, each entry storing attributes information
identifying one or more attributes of the file;
wherein the first server is configured to
compare the plurality of files to information included in the first
information,
identify, based upon the comparison, at least a first inconsistency
where information associated with a first file from the plurality of files is inconsistent with
information in the first information, and
perform a first set of one or more operations to resolve the first

inconsistency.

40. A storage system managed using a hierarchical storage management
application, the storage system comprising:

a first server; and

a set of one or more storage units coupled to the first server, the set of storage
units storing a plurality of files restored from a backup medium, the plurality of files
including one or more data files and one or more tag files corresponding to data files that
have migrated from the set of storage units; and

a memory configured to store first information and second information, the
first information including information related to files stored by the set of storage units, the
second information storing information for one or more files stored by the set of storage units
that have been migrated;

wherein the first server is configured to

compare a first tag file from the plurality of files to information stored

in the second information,

40

15
16
17
18
19

O 0 3 O Ui A W N

—_— e et e e e e
N Y RN W = O

WO 2004/051481 PCT/US2003/038246

identify, based upon the comparing, at least a first inconsistency where
information associated with the first tag file is inconsistent with the information included in
the second information, and

perform a first set of one or more actions to resolve the first

inconsistency.

41. In astorage system managed by a hierarchical storage management
application, the storage system comprising a plurality of servers, the plurality of servers
including a first server having a file system storing a plurality of files including one or more
data files and one or more tag files corresponding to data files that have migrated from the
file system, a data processing system comprising:

a processor; and

a memory configured to store first information including information related
to one or more data files that have been migrated, wherein the information related to each
data file that has been migrated includes information identifying a server and a volume from
which the data file is migrated, and information identifying a server and volume where the
migrated data of the data file is stored, the first information comprising information related to
a first data file that has been migrated, the memory further configured to store a plurality of
instructions which when executed by the processor cause the processor to:

determine, based upon the first information, that the file system does
not contain a tag file corresponding to first data file; and
create a tag file corresponding to the first data file based upon

information included in the first information.

41

WO 2004/051481 PCT/US2003/038246
1/8
100
r‘
PHYSICAL STORAGE UNITS ——102
Backup
S Vi1 V2 V3 V4 Vs -—~— 104
LoGIcAL
120 \/ \\ / STORAGE UNITS
112-sD8 SERVER g SERVER | sDs SERVER _ sDs L~
(S1) S2) (S3) 112
= 106-2)

106-1

STORAGE MANAGEMENT

SERVER/SYSTEM (SMS) 110
OTHER
~—114
CDs INFO MEMORY
))
S

116

118

FIG. 1

WO 2004/051481

SDB ASSUMEDTO
BE RELIABLE

208—

SELECT AN UNPROCESSED FILE (TAG
FILE OR DATAFILE) FROM VOLUMES
IDENTIFIED IN STEP 204

L

212—

COMPARE THE SELECTED FILE WITH
INFORMATION IN THE SDB TO IDENTIFY
ANY INCONSISTENCIES

PERFORM ACTIONS TO CORRECT
INCONSISTENCIES, IF ANY, IDENTIFIED IN
STEP 212

216

MORE

UNPROCESSED
FILES?

218—

220—

PCT/US2003/038246
2/8 200
(" starT) '
RECEIVE SIGNAL TO PERFORM DATA VERIFICATION FOR
A SERVER FILE SYSTEM THAT HAS BEEN RESTORED —— 202
FROM BACKUP
DETERMINE THE SERVER FILE SYSTEM VOLUMES THAT
WERE RESTORED FROM BACKUP 204
206
DB LOCATED ON A N
ON-AFFECTED VOLUME2
REPLACE SDB WITH AN EMPTY
BASELINE SDB ——222
SELECT AN UNPROCESSED FILE FROM
3| THE RESTORED VOLUMES IDENTIFIEDIN |—~— 224
STEP 204 .
FORATAG FILE, COMPARETHEFILE | 226
WITH INFORMATION IN THE CDB
FOR A TAG FILE, POPULATE THE SDB
AND TAKE ACTIONS TO CORRECT ANY
INCONSISTENCIES BASED UPON THE
PROCESSING PERFORMED IN STEP 226. 228
FOR A DATA FILE, CREATE A NEW ENTRY
INTHE SDB

MORE
UNPROCESSED
FILES?

230

DETERMINE TAG FILE ENTRIES IN THE
SDB THAT DO NOT HAVE A DETERMINE ENTRIES IN THE CDB THAT
CORRESPONDING FILE IN THE DO NOT HAVE A CORRESPONDING TAG |——232
RESTORED FILE SYSTEM FILE IN THE RESTORED FILE SYSTEM
' / TAKE ACTIONS FOR THE CDB ENTRIES
TAKE ACTIONS FOR THE SDB ENTRIES 234
IDENTIFIED IN STEP 218 IDENTIFIED IN STEP 232
COMPARE REPOSITORY FILES ON THE RESTORED
VOLUMES DETERMINED IN STEP 204 WITH INFORMATION
IN THE CDB TO IDENTIFY INCONSISTENCIES L 236
PERFORM ACTIONS TO CORRECT INCONSISTENCIES 238 FIG. 2
DETERMINED IN STEP 236

END

WO 2004/051481 PCT/US2003/038246

3/8
300

FROM STEP
208 IN FIG. 2

SELECTED
FILEIS TAG
FILE?

EXISTS IN SDB
OR FILE?,

P
D ADD ENTRY FOR
ELETE THE DATAFILE IN SDB
SELECTED TAG FILE

308 320

ARKED
ASTAGFILE IN
SDB?

ARKED
AS TAG FILEIN
SDB?

ADD ENTRY TO SDB
DELETE THE SDB FOR FILE
ENTRY AND THE (NOTE: MISSING
SELECTED TAG FILE TAG FILE CREATED
T IN STEP 218)
{ 310
32— 324
B
SDs
ENT;X g:rgl?_gms ENTRY ATTRIBUTES
TTRIBUTES? MATCH FILE
TTRIBUTES?
Y UPDATE SDB
UPDATE TAG ENTRY
FILE
ATTRIBUTES 326J
{314
b
L)) VMORE Y

< UNPROCESSED <

Y ;
= 216 in Fig. 2
N
v
TO STEP 208 TO STEP 218
INFIG. 2 INFIG. 2

FIG. 3

WO 2004/051481

PCT/US2003/038246

400

4/8
FROM STEP
216 INFIG. 2
SELECT AN UNPROCESSED TAG FILE ENTRY FROM THE
SDs 402

COMPARE THE SELECTED TAG FILE ENTRY TO TAG
FILES IN THE RESTORED FILE SYSTEM TO DETERMINE IF

ATAG FILE EXISTS IN THE RESTORED FILE sysTem | 404
CORRESPONDING TO THE SELECTED TAG FILE ENTRY

CORRESP.
TAG FILE FOUND IN FILE

SYSTEM?

CORRESP.
REPOSITORY FILE
EXISTS?

DELETE SELECTED TAG FILE
ENTRY FROM SDB. IF A
CREATE TAG FILE IN FILE CORRESPONDING ENTRY
SYSTEM USING EXISTS iN THE CDB, DELETE
INFORMATION FROM SDB THE CDB ENTRY
410J {412

MORE
UNPROCESSED TAG FILE
NTRIES IN SDB?

414

SELECT NEXT UNPROCESSED

TAG FILE ENTRY FROM THE SDB —— 416

FIG. 4

TO STEP 236
INFIG. 2

WO 2004/051481 PCT/US2003/038246

5/8
r— 500

FROM STEP
224 INFIG. 2

< 502

ELECTED
Y FILE ISTAG N
FILE

504

ENTRY

ADDENTRYFOR | _
EXISTS INCDB 516

N DATA FILE TO SDB

ORFILE?
DELETETHE |-
SELECTED TAG FILE 506
508
FILE EXISTS FOR
THE TAG FILE?
DELETE THE CDB
ENTRY AND THE
SELECTED TAG FILE
512
< 510
CDs
ENTRY TAG
ATTRIBUTES INFO
MATCHES TAG FILE
ATTRIBUTES?
UPDATE THE
TAG FILE

ATTRIBUTES

ADD ENTRY

FOR TAG FILE 1

008 45 L/MON
| UNPROCESSED >+

i 230 in Fig. 2

TOSTEP224 TOSTEP 232
IN FiG. 2 INFIG. 2

FIG. 5

WO 2004/051481

PCT/US2003/038246

6/8
— 600
FROM STEP
230 IN FIG. 2
SELECT AN UNPROCESSED TAG FILE ENTRY FROMTHE |
CDB 602
COMPARE THE SELECTED TAG FILE ENTRY TO TAG
FILES IN THE RESTORED FILE SYSTEM TO DETERMINE IF
ATAG FILE EXISTS IN THE RESTORED FILE SYSTEM F~— 604
CORRESPONDING TO THE SELECTED CDB TAG FILE
ENTRY
606
CORRESP.
TAG FILE FOUND IN FILE
SYSTEM?
608
CORRESP.
REPOSITORY FILE
EXISTS?
CREATE TAG FILE IN FILE
SYSTEM USING DELETE SELECTED TAG FILE
INFORMATION FROM CDB ENTRY FROM CDB
610 i 612
MoRe TO STEP 236
UNPROCESSED TAG FILE N F
NTRIES IN CDB IG. 2
614
SELECT NEXT UNPROCESSED
TAG FILE ENTRY FROM THE CDB 616

FIG. 6

WO 2004/051481

PCT/US2003/038246

7/8
700

FROM STEP 220
OR 234 INFIG. 2

|

SELECT AN UNPROCESSED REPOSITORY FILE 702

COMPARE THE SELECTED REPOSITORY FILETOCDB [——704

ENTRIES TO FIND A CORRESPONDING CDB ENTRY FOR
THEFILE

MOVE REPOSITORY FILE TO
‘ORPHAN" DIRECTORY

<708

DIFFER FROM
REPOSITORY FILE
ATTRIBUTES?

UPDATE ATTRIBUTES IN CDB

712J

Fig. 7

MORE
UNPROCESSED
POSITORY FILE

Y | SELECT NEXT UNPROCESSED
REPOSITORY FILE

714 L71

FOR A CDB ENTRY FOR A
DESTINATION SERVER LOOK
FOR MATCHING FILEINTHE [~— 718

REPOSITORY DIR

6

VIATCHING ENTRY FOUND?

LOG ERROR

DELETE THE CDB ENTRY AND

720

-~

724

{722

WO 2004/051481

8/8

PCT/US2003/038246

800 COMPUTER SYSTEM

//—806 —

808 STORAGE SUBSYSTEM
~
MEMORY SUBSYSTEM 810 812\ ‘
FILE STORAGE | | /
// 1 ROM || RAM SUBSYSTEM USER INTERFACE
820 T INPUT DEVICES
7
818—"
Bus SUBSYSTEM
804/ \ | \ ’ l ‘
e Yl NETWORK USER INTERFACE
802 PROCESSOR(S) 816 INTERFACE OutPuT DEVICES |
814

g

COMMUNICATION NETWORKS,
SERVERS, STORAGE UNITS

FIG. 8

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US03/38246

A. CLASSIFICATION OF SUBJECT MATTER
IPC(7) GO6F 12/00
US CL 707/202, 203, 204

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

U.S. : 707/202, 203, 204, 200, 201

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Please See Continuation Sheet

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category * Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

Y US 6,453,325 Bl (CABRERA et al) 17 September 2002 (17.09.2002), Figures 16-20, 1-41
especially Figures 19-20 & corresponding portions of specification.

Y US 5,991,753 A (WILDE) 23 November 1999 (23.11. 1999) Figures 2-8 and 1-41
corresponding portions of specification.

Y BHATTACHARYA et al. Coordinating Backup/Recovery and Data Consistency Between 1-41
Database and File Systems. Procs. of the 2002 ACM SIGMOD International Conference on
Management of Data, June 2002, pages 500-511, especially pages 506-507.

A US 2001/0037475 A1l (BRADSHAW et al) 01 November 2001 (01.11.2001). 1-41

A US 2002/0174139 Al (MIDGLEY et al) 21 November 2002 (21.11.2002). 1-41

A US 6,339,793 Bl (BOSTIAN et al) 15 January 2002 (15.01.2002). 1-41

D Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:

“A" document defining the general state of the art which is not considered to be
of particular relevance

“E" earlier application or patent published on or after the international filing date

“L" document which may throw doubts on priority claim(s) or which is cited 10
establish the publication date of another citation or other special reason (as
specificd)

“0” document referring to an oral disclosure, use, exhibition or other means

“p" document published prior to the international filing date but later than the
priority date claimed

“T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand the
principle or theory underlying the invention

“XT document of particular relevance; the claimed invention cannot be
considered nove! or cannot be considered to involve an inventive step
when the document is laken alone

“yn document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

‘& document member of the same patent family

Date of the actual completion of the international search

01 April 2004 (01.04.2004)

Date of mailing of the international search report

14 APR 2000

Name and mailing address of the ISA/US
Mail Stop PCT, Attn: ISA/US
Commissioner for Patents
P.O. Box 1450
Alexandria, Virginia 22313-1450

Facsimile No. (703)305-3230

Authorized officer &N\{}J
Safet Metjahic PO/%\/\%

Telephone No. 703-305-3500

Form PCT/ISA/210 (second sheet) (July 1998)

PCT/US03/38246
INTERNATIONAL SEARCH REPORT

Continuation of B. FIELDS SEARCHED Item 3:

EAST, ACM, IEEE

search terms: file, stub, tag file, recovery, restore, fault, failure, attributes, metadata, inconsistent, discrepency, backup, archive,
migrate

Form PCT/ISA/210 (second sheet) (July 1998)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

