Die Erfindung beinhaltet wässrige Dispersionen von Polyurethanen mit einer Säurezahl von 5 bis 60 mg KOH/g Polyurethan-Feststoff, einem Gehalt an Hydroxylgruppen von 0,25 bis 6,5 Gew.-% und an Urethangruppen (berechnet als -NH-CO-O-) von 2 bis 25 Gew.-%, jeweils bezogen auf Polyurethan-Feststoff, dadurch gekennzeichnet, daß die Polyurethane gegebenenfalls zumindest teilweise mit Basen neutralisierte, Umsetzungsprodukte darstellen von a) 10 bis 80 Gew.-% mindestens eines Dimerdios, b) 10 bis 80 Gew.-% mindestens eines Dimerdialkoholats und/oder Dimerdiolethers, c) 1 bis 10 Gew.-% mindestens einer Säurekomponente bestehend aus l) Hydroxy carbonsäuren, ii) Aminocarbonsäuren, iii) Aminosulfonsäuren und iv) Hydroxy sulfonsäuren, d) 0 bis 20 Gew.-% einer niedermolekularen Komponente, bestehend aus mindestens zwei Hydroxyl- und/oder Amonogruppen enthaltenden Verbindungen des Molekulargewichtsbereichs 60 bis 300, e) 0 bis 20 Gew.-% mindestens eines hydrophil, Ethylenoxisediheiten aufweisenden ein- oder mehrwertigen Alkohols des Molekulargewichtsbereichs 350 bis 3,000, f) 5 bis 40 Gew.-% einer Isocyanatkomponente, wobei sich die genannten Prozentangaben zu 100 ergänzen.
"Dispersionen von Polyurethanen"

Gebiet der Erfindung

Die Erfindung betrifft wässrige Dispersionen von speziellen Polyurethanen mit einem Gehalt an Hydroxygruppen und an Urethangruppen.

Stand der Technik

EP-B-533 730 (Henkel) beschreibt Beschichtungsmittel für flexible Substrate enthaltend wäbrige Polyurethandispersionen, deren Polyurethane aufgebaut sind aus einer zumindest überwiegend aus Polycaprolactondiolen bestehenden Polylomischung einer Isocyanatmischung mit einer mittleren NCO-Funktionalität über 1,5 sowie aus in wäbriger Lösung zur Salzbildung befähigten funktionellen Komponenten und gewünschtenfalls Kettenverlängerungsmitteln. Dimerdiol und Dimerdiolcarbonat sind jedoch keine Bausteine zur Herstellung des Polyurethans.

Beschreibung der Erfindung

Aufgabe der vorliegenden Erfindung war es, wässrige Bindemittel zur Verfügung zu stellen, die für hochelastische Lacke, Beschichtungen und Dichtmassen geeignet sind, eine gute Filmmechanik und Haftung aufweisen, sich ferner durch eine gute Lösemittelbeständigkeit auszeichnen und darüber hinaus auch möglichst wenige flüchtige organische Substanzen enthalten um auch hohen Anforderungen bezüglich der Umweltverträglichkeit gerecht werden zu können.

Gegenstand der Erfindung sind zunächst wässrige Dispersionen von Polyurethanen mit einer Säurezahl von 5 bis 60 mg KOH/g Polyurethan-Feststoff, einem Gehalt an Hydroxylgruppen von 0,25 bis 6,5 Gew.-% und an Urethangruppen (berechnet als -NH-CO-O-) von 2 bis 25 Gew.-%, jeweils bezogen auf Polyurethan-Feststoff, dadurch gekennzeichnet, daß die Polyurethane gegebenenfalls zumindest teilweise mit Basen neutralisierte, Umsetzungsprodukte darstellen von

a) 10 bis 80 Gew.-% mindestens eines Dimerdiols,

b) 10 bis 80 Gew.-% mindestens eines Dimerdiolcarbonats und/oder Dimerdiolethers,

c) 1 bis 10 Gew.-% mindestens einer Säurekomponente bestehend aus i) Hydroxycarbonsäuren, ii) Aminocarbonsäuren, iii) Aminosulfonsäuren und iv) Hydroxysulfonsäuren,

d) 0 bis 20 Gew.-% einer niedermolekularen Komponente, bestehend aus mindestens zwei Hydroxyl- und/oder Aminogruppen enthaltenden Verbindungen des Molekulargesichtsbereichs 60 bis 300,
e) 0 bis 20 Gew.-% mindestens eines hydrophilen, Ethylenoxideinheiten aufweisenden ein- oder mehrwertigen Alkohols des Molekulargewichtsbereichs 350 bis 3.000,

f) 5 bis 40 Gew.-% einer Isocyanatkomponente

wobei sich die genannten Prozentangaben zu 100 ergänzen.

Ausdrücklich sei festgestellt, daß Polyesterpolyole wie sie in der eingangs erwähnten EP-B-669 352 beschrieben sind (vergleiche dort Seite 2, Zeile 34 und Seite 4, Zeilen 3 bis 22) als Bausteine für die Polyurethane gemäß der vorliegenden Erfindung ausgeschlossen sind.

Ein weiterer Gegenstand der Erfindung ist die Verwendung der genannten Dispersionen zur Herstellung wässriger Beschichtungsmittel auf Basis von in Wasser dispersierten Bindemitteln und Vernetzerharzen. Dabei wählt man die Vernetzerharze aus der Gruppe bestehend aus Aminoplastharzen, gegebenenfalls hydrophil modifizierten blockierten Isocyanaten und gegebenenfalls hydrophil modifizierten Isocyanaten mit freien Isocyanatgruppen.

Ein weiterer Gegenstand der Erfindung sind wäbrige Beschichtungsmittel, welche als Bindemittel eine Kombination aus
A) einer Polyolkomponente mit
B) einem Vernetzerharz, ausgewählt aus der Gruppe bestehend aus Melaminharzen, gegebenenfalls hydrophil modifizierten blockierten Isocyanaten und gegebenenfalls hydrophil modifizierten Isocyanaten mit freien Isocyanatgruppen enthalten, wobei die Komponente A) zu 25 bis 100 Gew.-% aus einem Hydroxylgruppen enthaltenden Polyurethan der erfindungsgemäß dispersiert vorliegenden Art und zu 0 bis 75 Gew.-% aus anderen, von diesen Polyurethanen
verschiedenen Bindemitteln besteht. Dabei kann das Beschichtungsmittel gewünschtemfalls zusätzlich die üblichen Hilfs- und Zusatzstoffe enthalten.

Die in den Dispersionsen als disperse Phase vorliegenden Polyurethane weisen, bezogen auf Feststoff, einen Gehalt an Urethangruppen (-NH-CO-O) von 2 bis 25, vorzugsweise 4 bis 19 Gew.-%, eine Säurezahl von 5 bis 60 mg KOH/g, vorzugsweise von 8 bis 40 mg KOH/g, wobei sich die Säurezahl sowohl auf freie Säuregruppen, als auch auf mit Basen neutralisierte Säuregruppen des Feststoffs bezieht, und einen Gehalt an Hydroxylgruppen von 0,25 bis 6,5, vorzugsweise 0,5 bis 3,5 Gew.-% auf. Die Wasserverdünnbarkeit der Polyurethane ist im wesentlichen auf ihren Gehalt an den genannten anionischen Gruppen zurückzuführen.

Die **Herstellung der Dispersionsen** erfolgt durch Umsetzung von

- 10 bis 80, vorzugsweise 20 bis 70 Gew.-% der Ausgangskomponente a),
- 10 bis 80, vorzugsweise 10 bis 60 Gew.-% der Ausgangskomponente b),
- 1 bis 10, vorzugsweise 2 bis 7 Gew.-% der Ausgangskomponente c),
• 0 bis 20, vorzugsweise 0,5 bis 20 Gew.-% der Ausgangskomponente d),
• 0 bis 20, vorzugsweise 0 bis 10 Gew.-% der Ausgangskomponente e)
• mit 5 bis 40, vorzugsweise 7 bis 30 Gew.-% der Ausgangskomponente f),
wobei sich die zu a) bis f) gemachten Prozentangaben zu 100 % ergänzen, in 40-
bis 100-, vorzugweise 85- bis 100-%iger, organischer Lösung (100%ig =
lösungsmittelfrei), wobei die Komponenten a) bis e) gegebenenfalls mit Lösemittel
vorgelegt und in Gegenwart von 0 bis 2,5, vorzugsweise 0,01 bis 0,5 Gew.-%
geeigneter Katalysatoren bei 40 bis 160 °C mit Komponente f) derart zur Reaktion
gebracht werden, daß nach der Umsetzung praktisch keine freien NCO-Gruppen
mehr nachweisbar sind.

Bei dieser Umsetzung wird im allgemeinen unter Einhaltung eines
Äquivalentverhältnisses von gegenüber Isocyanatgruppen reaktionsfähigen
Gruppen zu Isocyanatgruppen von 1,1:1 bis 2,5:1, vorzugsweise 1,2:1 bis 1,5:1
gearbeitet, so daß letztendlich Umsetzungsprodukte mit dem obengenannten
Hydroxylgruppengehalt resultieren. Gegebenenfalls im Reaktionsgemisch
vorliegende zur Überführung in anionische Gruppen bestimmte Carboxylgruppen
sind hierbei nicht als "gegenüber Isocyanatgruppen reaktionsfähig" anzusehen.

Im Anschluß an die genannte Umsetzung wird das Reaktionsgemisch in Wasser
dispergiert bzw. gelöst, wobei gegebenenfalls in das Reaktionsgemisch eingeführte
Säuregruppen während der Umsetzung oder vor bzw. während des Disperschrittes
durch Zugabe eines Neutralisationsmittels zu 25 bis 100, vorzugsweise zu 45 bis
100 % in Salzgruppen überführt werden. Ein Einbau von anionischen Gruppen auf
diese Weise erübrigt sich selbstverständlich, wenn als Aufbaukomponente e) bereits
Salze, insbesondere Alkalisalze, von geeigneten Amino- bzw. Hydroxycarbon-
bzw. -sulfonsäuren zum Einsatz gelangen.
In einer bevorzugten Ausführungsform erfolgt die Herstellung der Dispersionen derart, daß man zunächst in erster Stufe eine Mischung von

- 10 bis 80, vorzugsweise 20 bis 70 Gew.-% der Ausgangskomponente a),
- 10 bis 80, vorzugsweise 10 bis 60 Gew.-% der Ausgangskomponente b) und
- 1 bis 10, vorzugsweise 2 bis 7 Gew.-% der Ausgangskomponente c),
- mit 5 bis 40, vorzugsweise 7 bis 30 Gew.-% der Ausgangskomponente f),

umsetzt, wobei man ein Äquivalentverhältnis NCO : OH im Bereich von 1,05 : 1 bis 2 : 1 und insbesondere von 1,2 : 1 einstellt und die so erhaltene "Zwischenverbindung" in zweiter Stufe mit

- 0,5 bis 20 Gew.-% der Ausgangskomponente d) umsetzt.

Dabei gilt wiederum, daß sich die zu a), b), c), d) und f) gemachten Prozentangaben zu 100 % ergänzen und daß am Ende der zweiten Stufe praktisch keine freien NCO-Gruppen mehr nachweisbar sind. Im Hinblick auf den Einsatz von Lösungsmitteln, den Einsatz von Katalysatoren und dem Dispergieren in Wasser gilt im übrigen das oben Gesagte.

Für die Dimerdiolether ist ein Molekulargeiwichtsbereich von 350 bis 3.500 bevorzugt.

Bei der **Ausgangskomponente d)** handelt es sich um mindestens zwei Hydroxyl- und/oder Aminogruppen enthaltende Verbindungen des Molekulargewichtsbereichs 60 bis 300. Geeignet sind beispielsweise Ethylenlykol, Propylenlykol, Neopentylglykol, Butandiol, Hexandiol, Cyclohexandimethanol, Diethylenglykol, Dipropylenlykol, Trimethylolpropan (TMP), 1,4-Cyclohexandiol, Glycerin, Pentaerythrit, Aminoethanol, Aminoisopropanol sowie Gemische dieser und anderer entsprechender Verbindungen.

Bei der **Ausgangskomponente e)** handelt es sich nichtionische hydrophile Polyethylenlykole, die ein oder zwei Hydroxylgruppen aufweisen. Vorzugsweise handelt es sich hierbei um 1- oder 2-wertige Polyetheralkohole des Molekulargewichtsbereichs 350 bis 2.000, wie sie in an sich bekannter Weise durch Alkoxylierung von 1- oder 2-wertigen Alkoholen als Startermoleküle erhalten werden, wobei als Alkylenoxide vorzugsweise Ethylenoxid oder Gemische aus Ethylenoxid und Propylenoxid zum Einsatz gelangen.
Bei der **Ausgangskomponente f)** handelt es sich um Isocyanate. Dabei unterliegt die Wahl der Isocyanate an sich keinen besonderen Einschränkungen. Prinzipiell lassen sich somit alle dem Fachmann einschlägig bekannten Isocyanate einsetzen.

Bei den Diisocyanaten setzt man vorzugsweise Verbindungen der allgemeinen Struktur \(O=C-N-X-N=C=O \) ein, wobei \(X \) ein aliphatischer, alicyclischer oder aromatischer Rest ist, vorzugsweise ein aliphatischer oder alicyclischer Rest mit 4 bis 18 C-Atomen.

Geeignete Diisocyanate sind beispielsweise: 1,5-Naphthylendiisocyanat, 4,4'-Diphenylmethandiisocyanat (= Methylene-diphenylen-diisocyanat, **MDI**), hydriertes MDI (**H_{12}MDI**, eine cyloaliphatische Verbindung), Xylylendiisocyanat (**XDI**),
Tetramethylxylylendiisocyanat (TMXDI), 4,4'-Diphenyldimethylmethandiisocyanat, Di- und Tetraalkyldiphenyldithiadiisocyanat, 4,4'-Dibenzyldiisocyanat, 1,3-Phenylendiisocyanat, 1,4-Phenylendiisocyanat, die Isomeren des Tolyldiisocyanats (TDI, insbesondere das technische Isomerengemisch aus im wesentlichen 2,4- und 2,6-Toluylendiisocyanat), 1-Methyl-2,4-diisocyanato-cyclohexan, 1,6-Diisocyanato-2,2,4-trimethylhexan, 1,6-Diisocyanato-2,4,4-trimethylhexan, 1-Isocyanatomethyl-3-isocyanato-1,5,5-trimethyl-cyclohexan (Isophorondiisocyanat = IPDI), chlorierte und bromierte Diisocyanate, phosphorhaltige Diisocyanate, 4,4'-Diisocyanatophenylperfluorethan, Tetramethoxybutan-1,4-diisocyanat, Butan-1,4-diisocyanat, Hexamethylenediisocyanat (HDI), Dicyclohexylmethandiisocyanat, Cyclohexan-1,4-diisocyanat, Ethylen-diisocyanat, Phthalsäure-bis-isocyanatoethylster, ferner Diisocyanate mit reaktionsfähigen Halogenatomen, wie 1-Chlormethylphenyl-2,4-diisocyanat, 1-Brommethylphenyl-2,6-diisocyanat, 3,3-Bis-chlormethyl ether-4,4'-diphenyldiisocyanat. Schwefelhaltige Polyisocyanate erhält man beispielsweise durch Umsetzung von 2 mol Hexamethylen-diisocyanat mit 1 mol Thiodiglykol oder Dihydroxydihexylsulfid. Weitere wichtige Diisocyanate sind Trimethylhexamethylenediisocyanat, 1,4-Diisocyanatobutan, 1,12-Diisocyanatododecan und Dimerfettsäure-diisocyanat (Handelsprodukt "Sovermol DDI 1410" der Cognis Deutschland GmbH - früher der Henkel KgaA).

Besonders geeignete Diisocyanate sind: Tetramethylen-, Hexamethylen-, Undecan-, Dodecamethylen-, 2,2,4-Trimethylhexan-, 1,3-Cyclohexan-, 1,4-Cyclohexan-, 1,3-bzw. 1,4-Tetramethylylo-, Isophoronz-, 4,4'-Dicyclohexylmethan- und Lysinester-Diisocyanat.

In einer Ausführungsform der vorliegenden Erfindung setzt man lineare, aliphatische Diisocyanate des Molekulargewichtsbereichs 168 bis 1.000 ein, wobei insbesondere mindestens 50 Gew.-% der Isocyanatkomponente Diisocyanate des Molekulargewichtsbereichs 168 bis 300 darstellen.
In einer Ausführungsform der vorliegenden Erfindung setzt man höherfunktionelle Isocyanate ein, worunter solche Isocyanate verstanden werden, die eine mittlere NCO-Funktionalität von mindestens 2,0 aufweisen. Insbesondere sei hier auf alle handelsüblichen Polyisocyanate (beispielsweise Polymer-MDI und dergleichen sowie die in EP-A-438 836 offenbarten Polyisocyanate der Formeln 1 bis 7) verwiesen, die eine NCO-Funktionalität oberhalb von 2,0 aufweisen. Wie dem Fachmann bekannt spricht man von mittlerer NCO-Funktionalität, weil die entsprechenden höherfunktionellen Isocyanate nicht zwingend in Form chemisch einheitlicher Individuen wie etwa cyclotrimerisierten Isocyanaten vorliegen müssen, sondern – insbesondere bei handelsüblichen technischen Produkten – häufig Gemische verschiedener chemischer Individuen darstellen, die jeweils definierte NCO-Funktionalitäten aufweisen.

Gewünschtenfalls führt man Urethanisierungsreaktion, also die Umsetzung der Komponenten a) bis f), in Gegenwart geeigneter Katalysatoren durch. Geeignete Katalysatoren für die Urethanisierungsreaktion, d.h. die Umsetzung der Komponenten a) bis f), können z.B. sein: Triethylamin, Zinn-II-octoat, Dibutylzinoxid, Dibutylzinndilaurat und andere gebräuchliche Katalysatoren.

Die erfindungsgemäßen Polyurethan-Dispersionen weisen im allgemeinen einen Gehalt an organischen Lösungsmitteln von unter 10, vorzugsweise unter 6 und besonders bevorzugt unter 4 Gew.-% auf.

Den erfindungsgemäßen Dispersionen können im Anschluß an ihre Herstellung zur Erzielung bestimmter Eigenschaften weitere organische Lösungsmittel, insbesondere alkoholische Lösungsmittel wie beispielsweise Ethanol, n-Butanol, n-
Octanol, Butyldiglykol, Ethyldiglykol, Methyldiglykol oder Methoxypropanol zugesetzt werden.

Geeignete **Vernetzerharze B** sind Aminoplastharze, gegebenenfalls hydrophil modifizierte Polyisocyanate mit blockierten Isocyanatgruppen und gegebenenfalls hydrophil modifizierte Polyisocyanate mit freien Isocyanatgruppen.

Ebenfalls geeignete Vernetzerharze sind blockierte Polyisocyanate, beispielsweise auf Basis von Isophorondiisocyanat, Hexamethylen-diisocyanate, 1,4-Diisocyanatcyclohexan, Dicyclohexylmethandiisocyanat, 1,3-Diisocyanatobenzol, 1,4-Diisocyanatobenzol, 2,4-Diisocyanato-1-methylbenzol, 1,3-Diisocyanato-2-methylbenzol, 1,3-Bisisocyanatomethylbenzol, 2,4-Bisisocyanatomethyl-1,5-dimethyl-benzol, Bis-(4-isocyanatophenyl)-propan, Tris-(4-isocyanatophenyl)-methan, Trimethyl-1,6-diisocyanatohexan oder blockierte "Lackpolyisocyanate" wie Biuretgruppen aufweisende Polyisocyanate auf Basis von 1,6-Diisocyanatohexan, Isocyanuratgruppen aufweisende Polyisocyanate auf Basis von 1,6-Diisocyanatohexan oder Urethangruppen aufweisende Lackpolyisocyanate auf Basis von 2,4- und/oder 2,6-Diisocyanatotoluol oder Isophorondiisocyanat einerseits und niedermolekularen Polyhydroxylverbindungen wie Trimethylolpropan, den isomeren Propandiolen oder Butandiolen oder beliebigen Gemischen derartiger Polyhydroxylverbindungen andererseits, jeweils mit blockierten Isocyanatgruppen.

Ebenfalls geeignet sind z.B. durch Salzgruppen oder Polyetherstrukturen hydrophilierte, blockierte Polyisocyanate.
Geeignete Blockierungsmittel für diese Polyisocyanate sind beispielsweise einwertige Alkohole wie Methanol, Ethanol, Butanol, Hexanol, Benzyalkohol, Oxime wie Methylalketoxim, Lactame wie ε-Caprolactam, Phenole oder CH-acide Verbindungen wie z.B. Diethylmalonat.

Als freie Isocyanatgruppen enthaltende Polyisocyanatvernetzer B) sind beispielsweise organische Polyisocyanate mit aliphatisch, cycloaliphatisch, araliphatisch und/oder aromatisch gebundenen, freien Isocyanatgruppen, die bei Raumtemperatur flüssig sind, geeignet. Solche Polyisocyanatvernetzer B) weisen im allgemeinen bei 23 °C eine Viskosität von 50 bis 10.000, vorzugsweise von 50 bis 1 500 mPas auf.

Falls erforderlich, können die Polyisocyanate in Abmischung mit geringen Mengen an inerten Lösungsmitteln zum Einsatz gelangen, um die Viskosität auf einen Wert innerhalb der genannten Bereiche abzusenken.

Sehr gut geeignet sind beispielsweise "Lackpolyisocyanate" auf Basis von Hexamethyleniisocyanat oder von 1-Isocyanato-3,3,5-trimethyl-5-isocyanatomethylcyclohexan und/oder Dicyclohexylmethandiisocyanat. Unter "Lackpolyisocyanaten" auf Basis dieser Diisocyanate sind die an sich bekannten Biuret-, Urethan-, Allophanat-, Uretdion- und/oder Isocyanuratgruppen aufweisenden Derivate dieser Diisocyanate zu verstehen, die im Anschluß an ihre Herstellung in bekannter Weise, vorzugsweise durch Destillation von überschüssigem Ausgangsdiisocyanat bis auf einen Restgehalt von weniger 0,5 Gew.-% befreit worden sind. Zu den bevorzugten, erfindungsgemäß zu verwendenden, aliphatischen Polyisocyanaten gehören den obengenannten Kriterien entsprechende, Biuretgruppen aufweisende Polyisocyanate auf Basis von Hexamethyleniisocyanat und die aus Gemischen von N,N',N"-Tris-(6-
isocyanatohexyl)-biuret mit untergeordneten Mengen seiner höheren Homologen bestehen, sowie die den genannten Kriterien entsprechenden cyclischen Trimerisate von Hexamethylendiisocyanat und die im wesentlichen aus N,N',N"-Tris-(6-isocyanatohexyl)-isocyanurat im Gemisch mit untergeordneten Mengen an seinen höheren Homologen bestehen.

Erfindungsgemäß ebenfalls geeignet, jedoch weniger bevorzugte aromatische Polyisocyanate sind insbesondere "Lackpolyisocyanate" auf Basis von 2,4-Diisocyanatotoluol oder dessen technische Gemische mit 2,6-Diisocyanatotoluol oder auf Basis von 4,4'-Diisocyanatodiphenylnmethan bzw. dessen Gemische mit seinen Isomeren und/oder höheren Homologen. Ebenfalls geeignete Polyisocyanatvernetzer sind solche, die durch den Einbau von Polyether- und/oder Salzgruppen hydrophiliert sind.

Bevorzugte Vernetzerharze sind die vorstehend beschriebenen Polyisocyanatvernetzer mit freien Isocyanatgruppen, insbesondere hydrophilierte Vernetzer auf dieser Basis. Besonders bevorzugt handelt es sich bei der Polyisocyanatkomponente B) um solche Polyisocyanate oder Polyisocyanatgemische mit ausschließlich aliphatisch und/oder cycloaliphatisch gebundenen Isocyanatgruppen einer zwischen 2,2 und 5,0 liegenden (mittleren) NCO-Funktionalität und einer Viskosität bei 23 °C von 50 bis 1.500 mPas.

In den erfindungsgemäßen Beschichtungsmitteln liegen im allgemeinen, jeweils bezogen auf Feststoff, 50 bis 95, vorzugsweise 65 bis 90 Gew.-% der Hydroxygruppen aufweisenden Komponente A) in Kombination mit 5 bis 50, vorzugsweise 10 bis 35 Gew.-% Vernetzer B) vor. Der Festkörpergehalt der Beschichtungsmittel liegt im allgemeinen bei 35 bis 70 Gew.-%.
Die erfindungsgemäßen Beschichtungsmittel können selbstverständlich die an sich bekannten Hilfs- und Zusatzmittel der Lacktechnologie enthalten. Hierzu gehören beispielsweise Entschäumungsmittel, Verdickungsmittel, Verlaufshilfsmittel, Pigmente, Mattierungsmittel, Dispergierhilfsmittel für die Pigmentverteilung und dergleichen.

Beispiele

1. Abkürzungen

OHZ = Hydroxylzahl (OH-Zahl), bestimmt nach DIN 53240
SZ = Säurezahl, bestimmt nach DIN 53402
MEK = Methylethylketon (Lösungsmittel)

2. Eingesetzte Substanzen

Sovermol 908 = Dimerdiol (Handelsprodukt der Firma Cognis Deutschland GmbH)
Sovermol 910 = Dimerdiolpolyether (Handelsprodukt der Firma Cognis Deutschland GmbH)
Sovermol 913 = Dimerdiolpolycarbonat (Handelsprodukt der Firma Cognis Deutschland GmbH)
Quadrol L = Tetrakis-(2-hydroxypropyl)-ethylendiamin (Handelsprodukt der Firma Cognis Deutschland GmbH)

Polyester 1 (PE1): In einem Dreihalskolben versehen mit Rührer, Innenthermometer, und Wasserabscheider wurden 505 g (0.9 mol) Sovermol 908 (OHZ = 200) und 87.7 g (0.6 mol) Adipinsäure langsam auf 160°C erhitzt und so lange bei dieser Temperatur gehalten bis sich kein Wasser mehr abschied. Der resultierende Polyester (PE1) wies eine OHZ von 66 und eine SZ von 2.3 auf.

Polyester 2 (PE2): In einem Dreihalskolben versehen mit Rührer, Innenthermometer, und Wasserabscheider wurden 561.2 g (1 mol) Sovermol 908 (OHZ = 200) und 73.1 g (0.5 mol) Adipinsäure unter Zusatz von 100ppm Trifuormethansulfonsäure langsam auf 160°C erhitzt und so lange bei dieser Temperatur gehalten bis sich kein Wasser mehr abschiedet. Der resultierende Polyester (PE2) wies nach anschließender Neutralisation mit Quadrol L eine OHZ von 77 und eine SZ von 0,2 auf.
Basonat 8878: Handelsübliches Isocyanat (Fa. BASF)

3. Herstellbeispiele

Beispiel 1 (B1)
In einem Dreihalskolben versehen mit Rührer, Innenthermometer, Tropftrichter und Rückflußkühler wurden 195 g Sovermol 908 (OHZ = 205), 407,3 g Sovermol 913 (OHZ = 55), 35,2 g Dimethylolpropionsäure und 40,0 g N-Methylpyrrolidon gegeben und mit 200 g Metylethylketon unter Rühren bei 75°C aufgelöst. Anschließend wurden 218,6 g Isophorondiisocyanat zugetropft und die Reaktionsmischung auf 90°C erwärmt. Nach Erreichen eines NCO-Gehaltes von 1,62 Gewichtsprozent wurden 44 g Trimethylolpropan zugesetzt und solange gerührt, bis der NCO-Gehalt auf 0,09 Gewichtsprozent abgesunken war. Zur Neutralisation wurden dann 15,5 g Dimethylethanamin zugefügt. 200 g des Produktes wurden in MEK aufgenommen, mit 155 ml heißem Wasser versetzt und das Solvens entfernt. Die resultierende milchig-weiße wäbrige Dispersion wies einen Feststoffgehalt von 51% auf.

Beispiel 2 (B2)
In einem Dreihalskolben versehen mit Rührer, Innenthermometer, Tropftrichter und Rückflußkühler wurden 814,5 g (0,8 mol OH) Sovermol 913 (OHZ = 55), 27 g (0,2 mol) Dimethylolpropionsäure und 90,8 g N-Methylpyrrolidon gegeben und bei 75°C unter Rühren aufgeschmolzen. Anschließend wurden 155,4 g (0,7 mol) Isophorondiisocyanat zugetropft und die Reaktionsmischung auf 90°C erhitzt. Nach Erreichen eines NCO-Gehaltes von 1,62 Gewichtsprozent wurden 29,5 g (0,22 mol) Trimethylolpropan zugesetzt und solange bei 100°C gerührt bis der NCO-
Gehalt auf 0,09 Gewichtsprozent abgesunken war. Zur Neutralisation wurden dann 17,9 g Dimethylethanolamin zugefügt. 200 g des Produktes wurden in MEK aufgenommen, mit 183 ml heißem Wasser versetzt und das Solvens entfernt. Die resultierende milchig-weiße wäβrige Dispersion wies einen Feststoffgehalt von 50% auf.

Beispiel 3 (B3)

In einem Dreihalskolben versehen mit Rührer, Innenthermometer, Tropftrichter und Rückflußkühler wurden 344 g (Sovermol 910, OHZ 57), 17 g Dimethylpropionsäure und 45,4 g N-Methylpyrrrolidon gegeben und in 81 g MEK bei 75°C unter Rühren gelöst. Anschließend werden 77,7 g Isophorondiisocyanat zuge tropft und die Reaktionsmischung auf 90°C erhitzt. Nach Erreichen eines NCO-Gehaltes von 1,62 Gewichtsprozent werden 14 g TMP zugesetzt und solange bei 100°C gerührt bis der NCO-Gehalt auf 0,09 Gewichtsprozent abgesunken ist. Zur Neutralisation wurden dann 11,2 g Dimethylethanolamin zugefügt. 210 g des Produktes wurden in MEK aufgenommen, mit 155 ml heißem Wasser versetzt und das Solvens entfernt. Die resultierende milchig-weiße wäβrige Dispersion wies einen Feststoffgehalt von 48% auf.

Beispiel 4 (B4)

In einem Dreihalskolben versehen mit Rührer, Innenthermometer, Tropftrichter und Rückflußkühler werden 195 g Sovermol 908 (OHZ = 205), 393,0 g Sovermol 910 (OHZ = 57), 35,2 g Dimethylolpropionsäure und 40,0 g N-Methylpyrrrolidon gegeben und mit ca. 200 g Metyethylketon unter Rühren aufgelöst. Anschließend wurden 218,6 g Isophorondiisocyanat zuge tropft, wobei sich die Reaktionsmischung erwärmte. Nach Erreichen eines NCO-Gehaltes von 1,62 Gewichtsprozent wurden 44 g Trimethylolpropan zugesetzt und solange gerührt bis der NCO-Gehalt auf 0,09 Gewichtsprozent abgesunk en war. Zur Neutralisation wurden dann 15,5 g
Dimethylethanolamin zugefügt. 190g des Produktes wurden in MEK aufgenommen, mit 155 ml heißem Wasser versetzt und das Solvens entfernt. Die resultierende milchig-weiße wässrige Dispersion wies einen Feststoffgehalt von 52% auf.

Vergleichsbeispiel 1 (V1)

In einem Dreihalskolben versehen mit Rührer, Innenthermometer, Tropftrichter und Rückflußkühler wurden 136g des Polyesters 1 (PE1), 55 g Sovernol 908 (OHZ = 200), 204 g Sovernol 913 (OHZ = 55), 17,6 g Dimethylpropionsäure und 22,4 g N-Methylpyrrolidin gegeben und mit 125 g Metylethylketon unter Rühren bei 75°C aufgelöst. Anschließend wurden 109,3 g Isophorondiisocyanat zugetropft und die Reaktionsmischung auf 90°C erwärmt. Nach Erreichen eines NCO-Gehaltes von 1,29 Gewichtsprozent wurden 22 g Trimethylolpropan zugesetzt und solange gerührt bis der NCO-Gehalt auf 0,09 Gewichtsprozent abgesunken war. Zur Neutralisation wurden dann 7,8 g Dimethylethanolamin zugefügt. 170g des Produktes wurden in MEK aufgenommen, mit 160 ml heißem Wasser versetzt und das Solvens entfernt. Die resultierende milchig-weiße wässrige Dispersion wies einen Feststoffgehalt von 50% auf.

Vergleichsbeispiel 2 (V2)

In einem Dreihalskolben versehen mit Rührer, Innenthermometer, Tropftrichter und Rückflußkühler wurden 120g des Polyesters 2 (PE2), 55 g Sovernol 908 (OHZ = 200), 204 g Sovernol 913 (OHZ = 55), 17,6 g Dimethylpropionsäure und 22,4 g N-Methylpyrrolidin gegeben und mit 130 g Metylethylketon unter Rühren bei 75°C aufgelöst. Anschließend wurden 109,3 g Isophorondiisocyanat zugetropft und die Reaktionsmischung auf 90°C erwärmt. Nach Erreichen eines NCO-Gehaltes von 1,29 Gewichtsprozent wurden 22 g Trimethylolpropan zugesetzt und solange gerührt bis der NCO-Gehalt auf 0,09 Gewichtsprozent abgesunken war. Zur Neutralisation wurden dann 7,8 g Dimethylethanolamin zugefügt. 190g des
Produktes wurden in MEK aufgenommen, mit 175 ml heißem Wasser versetzt und das Solvens entfernt. Die resultierende milchig-weiße wässrige Dispersion wies einen Feststoffgehalt von 50% auf.

4. Anwendungstechnische Untersuchungen

Tabelle 1: Filmbildung und Einbrennlacke

<table>
<thead>
<tr>
<th></th>
<th>mit Isocyanat</th>
<th>mit Isocyanat</th>
<th>mit Melaminharz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pendelhärte *)</td>
<td>Alkoholbeständigkeit **)</td>
<td>Pendelhärte</td>
<td></td>
</tr>
<tr>
<td>B1</td>
<td>168 Sekunden</td>
<td>> 3 Stunden</td>
<td>149 Sekunden</td>
</tr>
<tr>
<td>V1 ***</td>
<td>klebt</td>
<td>Prüfung nicht möglich</td>
<td>70 Sekunden</td>
</tr>
<tr>
<td>V2 ***</td>
<td>klebt</td>
<td>Prüfung nicht möglich</td>
<td>85 Sekunden</td>
</tr>
</tbody>
</table>

*) die Pendelhärte nach König (gemessen nach DIN 53157) wird in Sekunden angegeben

**) die Bestimmung der Alkoholbeständigkeit (gemäß DIN 68861) wurde mit Ethanol durchgeführt. Der Wert "> 3 Stunden" bedeutet, daß nach 3 Stunden noch keine Beeinträchtigung der Oberfläche beobachtet wurde. Da dies für die Praxis eine gute Alkoholbeständigkeit bedeutet, wurde der Versuch an dieser Stelle abgebrochen und auf eine nähere Bestimmung wie weit der Wert über 3 Stunden liegt, verzichtet

Aus Tabelle 1 ist zu erkennen, daß das erfindungsgemäße Beispiel 1 sowohl bei der Filmbildung mit Isocyanat als auch bei den Einbrennlacken den Vergleichsbeispielen deutlich überlegen ist.

Patentansprüche

1. Wäßrige Dispersionen von Polyurethenan mit einer Säurezahl von 5 bis 60 mg KOH/g Polyurethan-Feststoff, einem Gehalt an Hydroxylgruppen von 0,25 bis 6,5 Gew.-% und an Urethangruppen (berechnet als -NH-CO-O-) von 2 bis 25 Gew.-%, jeweils bezogen auf Polyurethan-Feststoff, dadurch gekennzeichnet, daß die Polyurethane gegebenenfalls zumindest teilweise mit Basen neutralisierte, Umsetzungsprodukte darstellen von

 a) 10 bis 80 Gew.-% mindestens eines Dimerdiols,

 b) 10 bis 80 Gew.-% mindestens eines Dimerdiolcarbonats und/oder Dimerdiolethers,

 c) 1 bis 10 Gew.-% mindestens einer Säurekomponente bestehend aus i) Hydroxycarbonsäuren, ii) Aminocarbonsäuren, iii) Aminosulfonsäuren und iv) Hydroxysulfonsäuren,

 d) 0 bis 20 Gew.-% einer niedermolekularen Komponente, bestehend aus mindestens zwei Hydroxyl- und/oder Amonogruppen enthaltenden Verbindungen des Molekulargesichtsbereichs 60 bis 300,

 e) 0 bis 20 Gew.-% mindestens eines hydrophilen, EthylenoxidEinheiten aufweisenden ein- oder mehrwertigen Alkohols des Molekulargewichtsbereichs 350 bis 3.000,

 f) 5 bis 40 Gew.-% einer Isocyanatkomponente,

 wobei sich die genannten Prozentangaben zu 100 ergänzen.

2. Verwendung der wäßrigen Dispersionen gemäß Anspruch 1 zur Herstellung wäßriger Beschichtungsmittel auf Basis von in Wasser dispersierten
Bindevilldii und Vernetzerharzen, ausgewählt aus der Gruppe bestehend aus Aminoplastharzen, gegebenenfalls hydrophil modifizierten blockierten Polyisocyanaten und gegebenenfalls hydrophil modifizierten Polyisocyanaten mit freien Isocyanatgruppen.

3. Wäßriges, gegebenenfalls die üblichen Hilfs- und Zusatzstoffe enthaltendes Beschichtungsmittel, welches als Bindemittel eine Kombination aus
 A) einer Polyolkomponente mit
 B) einem Vernetzerharz, ausgewählt aus der Gruppe bestehend aus Melaminharzen, gegebenenfalls hydrophil modifizierten blockierten Polyisocyanaten und gegebenenfalls hydrophil modifizierten Polyisocyanaten mit freien Isocyanatgruppen,

enthält, wobei die Polyolkomponente A) zu 25 bis 100 Gew.-% aus einem Hydroxylgruppen aufweisenden Polyurethan der gemäß Anspruch 1 in Wasser dispersiert vorliegenden Art und zu 0 bis 75 Gew.-% aus anderen, von diesen Polyurethanen verschiedenen Bindemitteln besteht.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

<table>
<thead>
<tr>
<th>IPC 7</th>
<th>C08G18/08</th>
<th>C08G18/32</th>
<th>C08G18/42</th>
<th>C08G18/66</th>
</tr>
</thead>
</table>

According to International Patent Classification (IPC) or to both national classification and IPC.

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

<table>
<thead>
<tr>
<th>IPC 7</th>
<th>C08G</th>
</tr>
</thead>
</table>

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched.

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

WPI Data, EPO-Internal, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>EP 0 669 352 A (BAYER) 30 August 1995 (1995-08-30) cited in the application page 2, line 26 -page 7, line 42; claims 1-4; example 9</td>
<td>1-3</td>
</tr>
<tr>
<td>A</td>
<td>US 4 423 179 A (GAUGLIARDO) 27 December 1983 (1983-12-27) column 3, line 12 -column 6, line 42; claims 3-7; examples</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>EP 0 735 068 A (PARKER-PRAĐIFA) 2 October 1996 (1996-10-02) page 2, line 52 -page 3, line 32; claims 1-6 & DE 195 12 310 A 17 October 1996 (1996-10-17) cited in the application</td>
<td>1</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of box C. Patent family members are listed in annex.

* Special categories of cited documents:
 * A* document defining the general state of the art which is not considered to be of particular relevance
 * E* earlier document but published on or after the international filing date
 * L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 * O* document referring to an oral disclosure, use, exhibition or other means
 * P* document published prior to the international filing date but later than the priority date claimed

* *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 * *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 * *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents such combination being obvious to a person skilled in the art

Date of the actual completion of the international search 21 March 2001

Date of mailing of the international search report 03/04/2001

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2 NL—2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx 31 651 epo nl
Fax (+31-70) 340-3016

Authorized officer

Bourgonje, A
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>WO 93 24551 A (ZENEC RESINS) 9 December 1993 (1993-12-09) page 2, line 4 - page 12, line 12; claims 1-11; examples</td>
<td>1</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>EP 669352 A</td>
<td>30-08-1995</td>
<td>DE 4406159 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT 174355 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2143026 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 59504453 D</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2124444 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 7247333 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5569707 A</td>
</tr>
<tr>
<td>US 4423179 A</td>
<td>27-12-1983</td>
<td>NONE</td>
</tr>
<tr>
<td>EP 735068 A</td>
<td>02-10-1996</td>
<td>DE 19512310 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT 187747 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 59603899 D</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2094106 T</td>
</tr>
<tr>
<td>WO 9324551 A</td>
<td>09-12-1993</td>
<td>AU 4316893 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 9306496 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2136620 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69319731 D</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69319731 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0643734 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2118239 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 7507086 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SG 44644 A</td>
</tr>
</tbody>
</table>
INTERNATIONALER RECHERCHENBERICHT

A. KLASSEIFIZIERUNG DES ANMELDUNGSSEGENSTANDES

IPK 7 C08G18/08 C08G18/32 C08G18/42 C08G18/66

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Rechercherter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)

IPK 7 C08G

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

WPI Data, EPO-Internal, PAJ

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorien* Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile Betr. Anspruch Nr.

A EP 0 669 352 A (BAYER)
in der Anmeldung erwähnt
Seite 2, Zeile 26 -Seite 7, Zeile 42;
Ansprüche 1-4; Beispiel 9

A US 4 423 179 A (GUAGLIARDO)
Spalte 3, Zeile 12 -Spalte 6, Zeile 42;
Ansprüche 3-7; Beispiele

A EP 0 735 068 A (PARKER-PRÄDIFA)
2. Oktober 1996 (1996-10-02)
Seite 2, Zeile 52 -Seite 3, Zeile 32;
Ansprüche 1-6
& DE 195 12 310 A
17. Oktober 1996 (1996-10-17)
in der Anmeldung erwähnt

1-3

1

1

Datum des Abschlusses der internationalen Recherche

Absendezeit des internationalen Rechercheberichts

03/04/2001

Name und Postanschrift der internationalen Recherchebehörde

Europäisches Patentamt, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tlx 31 651 epo nl,
Fax (+31-70) 340-3016

Bevollmächtigter Bediensteter

Bourgonje, A
<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile</th>
<th>Betr. Anspruch Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>WO 93 24551 A (ZENEC RESINS) 9. Dezember 1993 (1993-12-09) Seite 2, Zeile 4 – Seite 12, Zeile 12; Ansprüche 1-11; Beispiele</td>
<td>1</td>
</tr>
</tbody>
</table>

Seite 2 von 2
<table>
<thead>
<tr>
<th>Im Recherchenbericht angeführtes Patentdokument</th>
<th>Datum der Veröffentlichung</th>
<th>Mitglied(er) der Patentfamilie</th>
<th>Datum der Veröffentlichung</th>
</tr>
</thead>
<tbody>
<tr>
<td>EP 669352 A</td>
<td>30-08-1995</td>
<td>DE 4406159 A</td>
<td>31-08-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT 174355 T</td>
<td>15-12-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2143026 A</td>
<td>26-08-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 59504453 D</td>
<td>21-01-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2124444 T</td>
<td>01-02-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 7247333 A</td>
<td>26-09-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5569707 A</td>
<td>29-10-1996</td>
</tr>
<tr>
<td>US 4423179 A</td>
<td>27-12-1983</td>
<td>KEINE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EP 735068 A</td>
<td>02-10-1996</td>
<td>DE 19512310 A</td>
<td>17-10-1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT 187747 T</td>
<td>15-01-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 59603899 D</td>
<td>20-01-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2094106 T</td>
<td>16-01-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WO 9324551 A</td>
<td>09-12-1993</td>
<td>AU 4316893 A</td>
<td>30-12-1993</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 9306496 A</td>
<td>15-09-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2136620 A</td>
<td>09-12-1993</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69319731 D</td>
<td>20-08-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69319731 T</td>
<td>19-11-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0643734 A</td>
<td>22-03-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2118239 T</td>
<td>16-09-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 7507086 T</td>
<td>03-08-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SG 44644 A</td>
<td>19-12-1997</td>
</tr>
</tbody>
</table>