(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum

(51) Internationale Patentklassifikation:
C07D 471/04 (2006.01) A61P 35/00 (2006.01)
A61K 31/437 (2006.01)

(25) Einreichungspräsprache: Deutsch

(26) Veröffentlichungspräsprache: Deutsch

(30) Angaben zur Priorität:

(72) Erfinder; und

(74) Gemeinsamer Vertreter: MERCK PATENT GMBH; Frankfurter Strasse 250, 64293 Darmstadt (DE).

(54) Title: N,N'-DITHENYLUREA DERIVATIVES USED IN THE FORM OF KINASE INHIBITORS

(54) Bezeichnung: ALS KINASEINHIBITOREN GEEIGNETE DERIVATE DES N, N'-DI-PHENYLHARNSTOFFS

(57) Zusammenfassung:
Verbindungen der Formel (I), worin R₁, R₂, R₃, R₄, R₅, R₆, R₇ und R₈ die in Anspruch 1 angegebenen Bedeutung haben, sind Inhibitoren der Tyrosinkinasen, insbesondere TIE-2, und der Raf-Kinasen und können u.a. zur Behandlung von Tumoren eingesetzt werden.

(57) Abstract: The invention relates to compounds of formula (I), wherein R₁, R₂, R₃, R₄, R₅, R₆, R₇ and R₈ are as defined in the first claim. Said compounds are tyrosine-kinase inhibitors, in particular TIE-2 and Raf kinases which can be used, in particular for treating malignant tumors.
ALS KINASEINHIBITOREN GEEIGNETE DERIVATE DES N,N'-DIPHENYLHARNSTOFFS

HINTERGRUND DER ERFINDUNG

Der Erfindung lag die Aufgabe zugrunde, neue Verbindungen mit wertvollen Eigenschaften aufzufinden, insbesondere solche, die zur Herstellung von Arzneimitteln verwendet werden können.

Die vorliegende Erfindung betrifft Verbindungen und die Verwendung von Verbindungen, bei denen die Hemmung, Regulierung und/oder Modulation der Signaltransduktion von Kinasen, insbesondere der Tyrosinkinasen und/oder Serin/Threonin-Kinasen eine Rolle spielt, ferner pharmazeutische Zusammensetzungen, die diese Verbindungen enthalten, sowie die Verwendung der Verbindungen zur Behandlung kinasebedingter Krankheiten.

Bei den Tyrosinkinasen handelt es sich um eine Klasse von Enzymen mit mindestens 400 Mitgliedern, die die Übertragung des endständigen Phosphats des Adenosintriphosphats (gamma-Phosphat) auf Tyrosinreste bei Proteinsubstraten katalysieren. Man nimmt an, dass den Tyrosinkinasen bei verschiedenen Zelfunktionen über die Substratphosphorylierung eine wesentliche Rolle bei der Signaltransduktion zukommt. Obwohl die genauen Mechanismen der Signaltransduktion noch unklar sind, wurde gezeigt, dass die Tyrosinkinasen wichtige Faktoren bei der Zellproliferation, der Karzinogenese und der Zelldifferenzierung darstellen.

F. Bussolino et al. TIBS 22, 251 –256 (1997)

Die zytosolischen Tyrosinkinasen bestehen ebenfalls aus einer Vielzahl von Unterfamilien, darunter Src, Frk, Btk, Csk, Abl, Zap70, Fes/Fps, Fak, Jak, Ack, and LIMK. Jede dieser Unterfamilien ist weiter in verschiedene Rezeptoren unterteilt. So stellt zum Beispiel die Src-Unterfamilie eine der größten Unterfamilien dar. Sie beinhaltet Src, Yes, Fyn, Lyn, Lck, Blk, Hck,

Sowohl die Receptor-Tyrosinkinasen als auch die zytosolischen Tyrosinkinasen sind an Signalübertragungswegen der Zelle, die zu verschiedenen Leidenszuständen führen, darunter Krebs, Schuppenflechte und Hyperimmunreaktionen, beteiligt.

Drei PTK (Protein-Tyrosinkinase)-Rezeptoren für VEGFR sind identifiziert worden: VEGFR-1 (Flt-1); VEGFR-2 (Flk-1 oder KDR) und VEGFR-3 (Flt-4). Von besonderem Interesse ist VEGFR-2.

Intraokular injizierte monoklonale Anti-VEGF-Antikörper, oder VEGF-Rezeptor-Immunkonjugate, hemmen sowohl im Primaten- als auch im
Nagetiermodell die Gefäßneubildung im Auge. Unabhängig vom Grund der Induktion des VEGF bei der diabetischen Retinopathie des Menschen, eignet sich die Hemmung des Augen-VEGF zur Behandlung dieser Krankheit.

Demzufolge würde man erwarten, daß eine Hemmung von TIE-2 die Umbildung und Reifung eines durch Angiogenese initiierten neuen Gefäßsystems und dadurch den Angiogeneseprozeß unterbrechen sollte. Weiterhin würde eine Hemmung an der Kinasedomäne-Bindungsstelle von VEGFR-2 die Phosphorylierung von Tyrosinresten blockieren und dazu

Die vorliegende Erfindung richtet sich auf Verfahren zur Regulation, Modulation oder Hemmung der TIE-2 zur Vorbeugung und/oder Behandlung von Erkrankungen im Zusammenhang mit unregulierter oder gestörter TIE-2-Aktivität. Insbesondere lassen sich die Verbindungen der Formel I auch bei der Behandlung gewisser Krebsformen einsetzen. Weiterhin können die Verbindungen der Formel I verwendet werden, um bei gewissen existierenden Krebschemotherapien additive oder synergistische Effekte bereitzustellen, und/oder können dazu verwendet werden, um die Wirksamkeit gewisser existierender Krebschemotherapien und -bestrahlungen wiederherzustellen.

Weiterhin können die Verbindungen der Formel I zur Isolierung und zur Untersuchung der Aktivität oder Expression von TIE-2 verwendet werden. Außerdem eigenen sie sich insbesondere zur Verwendung in diagnostischen Verfahren zu Erkrankungen im Zusammenhang mit unregulierter oder gestörter TIE-2-Aktivität.

Die vorliegende Erfindung richtet sich weiterhin auf Verfahren zur Regulation, Modulation oder Hemmung des VEGFR-2 zur Vorbeugung und/oder Behandlung von Erkrankungen im Zusammenhang mit unregulierter oder gestörter VEGFR-2-Aktivität.

Die vorliegende Erfindung betrifft weiterhin die Verbindungen der Formel I als Inhibitoren von Raf-Kinasen.
Protein-Phosphorylierung ist ein fundamentaler Prozess für die Regulation von Zellfunktionen. Die koordinierte Wirkung von sowohl Proteinkinasen als auch Phosphatasen kontrolliert die Phosphorylierungsgrade und folglich die Aktivität spezifischer Zielproteine. Eine der vorherrschenden Rollen der Protein-Phosphorylierung ist bei der Signaltransduktion, wenn extrazelluläre Signale amplifiziert und durch eine Kaskade von Protein-Phosphorylierungs- und Dephosphorylierungseignissen, z. B. im p21ras/raf-Weg propagiert werden.

Das p21ras-Gen wurde als ein Onkogen der Harvey- und Kirsten-Ratten-Sarkom-Viren (H-Ras bzw. K-Ras) entdeckt. Beim Menschen wurden charakteristische Mutationen im zellulären Ras-Gen (c-Ras) mit vielen verschiedenen Krebsarten in Verbindung gebracht. Von diesen mutanten Allelen, die Ras konstitutiv aktiv machen, wurde gezeigt, dass sie Zellen, wie zum Beispiel die murine Zelllinie NIH 3T3, in Kultur transformieren.

Biochemisch ist Ras ein Guanin-Nukleotid-bindendes Protein, und das Zyklieren zwischen einer GTP-gebundenen aktivierten und einer GDP-gebundenen ruhenden Form wird von Ras-endogener GTPase-Aktivität und anderen Regulatorproteinen strikt kontrolliert. Das Ras-Genprodukt bindet an Guanintriphosphat (GTP) und Guanindiphosphat (GDP) und hydrolysiert GTP zu GDP. Ras ist im GTP-gebundenen Zustand aktiv. In den Ras-Mutanten in Krebszellen ist die endogene GTPase-Aktivität abge-

5 Drei Isozyme wurden charakterisiert:

Einer der Hauptmechanismen, durch den die Zellregulation bewirkt wird, ist durch die Transduktion der extrazellulären Signale über die Membran, die wiederum biochemische Wege in der Zelle modulieren. Protein-Phosphorylierung stellt einen Ablauf dar, über den intrazelluläre Signale von Molekül zu Molekül propagiert werden, was schließlich in einer Zellantwort resultiert. Diese Signaltransduktionskaskaden sind hoch reguliert und überlappen häufig, wie aus dem Vorliegen vieler Protein-

Die Synthese von kleinen Verbindungen, die die Signaltransduktion der Tyrosinkinasen und/oder Raf-Kinasen spezifisch hemmen, regulieren und/oder modulieren, ist daher wünschenswert und ein Ziel der vorliegenden Erfindung.

Es wurde gefunden, dass die erfindungsgemäßen Verbindungen und ihre Salze bei guter Verträglichkeit sehr wertvolle pharmakologische Eigenschaften besitzen.

Insbesondere zeigen sie inhibierende Eigenschaften der Tyrosinkinase. Es wurde weiterhin gefunden, dass die erfindungsgemäßen Verbindungen Inhibitoren des Enzyms Raf-Kinase sind. Da das Enzym ein „Downstream“-Effektor von p21ras ist, erweisen sich die Inhibitoren in pharmazeutischen Zusammensetzungen für die human- oder veterinärmedizinische Anwendung als nützlich, wenn Inhibition des Raf-Kinase-Weges, z. B. bei der Behandlung von Tumoren und/oder durch

Es wurde überraschend gefunden, daß die erfindungsgemäßen Verbindungen mit Signalwegen, besonders mit den hierin beschriebenen Signalwegen und bevorzugt dem Raf-Kinase-Signalweg interagieren können. Die erfindungsgemäßen Verbindungen zeigen bevorzugt eine vorteilhafte biologische Aktivität, die in auf Enzymen basierenden Assays, zum Beispiel Assays wie hierin beschrieben, leicht nachweisbar ist. In derartigen auf Enzymen basierenden Assays zeigen und bewirken die erfindungsgemäßen Verbindungen bevorzugt einen inhibierenden Effekt, der gewöhnlich durch IC_{50}-Werte in einem geeigneten Bereich, bevorzugt im mikromolaren Bereich und bevorzugter im nanomolaren Bereich dokumentiert wird.

Der Wirt oder Patient kann jeglicher Säugerspezies angehören, z. B. einer Primatenspezies, besonders Menschen; Nagetieren, einschließlich Mäusen, Ratten und Hamstern; Kaninchen; Pferden, Rindern, Hunden, Katzen usw. Tiermodelle sind für experimentelle Untersuchungen von Interesse, wobei sie ein Modell zur Behandlung einer Krankheit des Menschen zur Verfügung stellen.

im Allgemeinen fortgesetzt, bis eine erhebliche Reduktion vorliegt, z. B. mindestens ca. 50 % Verminderung der Zelllast und kann fortgesetzt werden, bis im Wesentlichen keine unerwünschten Zellen mehr im Körper nachgewiesen werden.

dung ist kein oder ein vermindertes radioaktives Signal nachweisbar. Ferner sind die Homogeneous Time-resolved Fluorescence Resonance Energy Transfer- (HTR-FRET-) und Fluoreszenzpolarisations- (FP-) Technologien als Assay-Verfahren nützlich (Sills et al., J. of Biomolecular Screening, 2002, 191-214).

Die erfindungsgemäßen Verbindungen eignen sich auch als p38 Kinase-Inhibitoren. Heteroarylharnstoffe, die p38 Kinase inhibieren sind in der WO 02/85859 beschrieben.
STAND DER TECHNIK

Pyridopyrimidine sind in WO 98/08846 beschrieben.

ZUSAMMENFASSUNG DER ERFINDUNG

Die Erfindung betrifft Verbindungen der Formel I

[wird eine Strukturformel gezeigt]

worin

- R^{1a}, R^{1b}, R^{1c},
- R^{1d}, R^{1e},
- R^{2a}, R^{2b} jeweils unabhängig voneinander R, Hal, CN, NO$_2$, NRR',
- NHCOR, NHSO$_2$R, OR, CO-R, COOR, CO-NHR, OA, SA,
- SO$_3$R, SO$_2$R und/oder SO$_2$NHR,
- zwei benachbarte Reste ausgewählt aus R^{1a}, R^{1b}, R^{1c}, R^{1d}, R^{1e} zusammen auch -O-CH$_2$-CH$_2$-, -O-CH$_2$-O- oder
- -O-CH$_2$-CH$_2$-O-,
- R^3 Hal oder OR,
- R, R' jeweils unabhängig voneinander H, A, -[C(R$_4$)$_2$]-Ar,
- [-C(R$_4$)$_2$]-Het, [-C(R$_4$)$_2$]-O-C(R$_4$)$_2$]-Ar,
- [-C(R$_4$)$_2$]-O-C(R$_4$)$_2$]-Het,
- R^4 H oder A,
- R^5 H oder A,
unsubstituiertes oder ein-, zwei- oder dreifach durch Hal, A,
OR₄, N(R₄)₂, NO₂, CN, COOR₄, CON(R₄)₂, NR₄COA, NR₄SO₂A,
COR₄, SO₂N(R₄)₂, -[C(R₄)₂]ₙ-COOR₄, -O-[C(R₄)₂]ₙ-COOR₄,
SO₃H und/oder S(O)ₓₜₐₜ substituiertes Phenyl, Naphthyl oder

Het einen ein- oder zweikernigen gesättigten, ungesättigten oder
aromatischen Heterocyclus mit 1 bis 4 N-, O- und/oder S-
Atomen, der unsubstituiert oder ein-, zwei- oder dreifach durch

Carbonylsauerstoff (=O), =S, =N(R₄)₂, Hal, A, -[C(R₄)₂]ₙ-Ar,
-[C(R₄)₂]ₙ-Cycloalkyl, -[C(R₄)₂]ₙ-OR₄, -[C(R₄)₂]ₙ-N(R₄)₂, NO₂, CN,
-[C(R₄)₂]ₙ-COOR₄, -[C(R₄)₂]ₙ-CON(R₄)₂,
-[C(R₄)₂]ₙ-NR₄COA, NR₄CON(R₄)₂,
-[C(R₄)₂]ₙ-NR₄SO₂A, COR₄, SO₂N(R₄)₂ und/oder S(O)ₓₜₐₜ
substituiert sein kann,

A unverzweigtes oder verzweigtes Alkyl mit 1-10 C-Atomen, worin

eine oder zwei CH₂-Gruppen durch O- oder S-Atome und/oder
durch –CH=CH-Gruppen und/oder auch 1-7 H-Atome durch F
ersetzte sein können,

oder cyclisches Alkyl mit 3-7 C-Atomen,

Hal F, Cl, Br oder I,
n 0, 1, 2, 3 oder 4,
p 1, 2, 3 oder 4
q 0, 1, 2, 3 oder 4
bedeuten,
sowie ihre pharmazeutisch verwendbaren Derivate, Solvate, Salze,
Tautomere und Stereoisomere, einschließlich deren Mischungen in allen
Verhältnissen.

Gegenstand der Erfindung sind auch die optisch aktiven Formen
(Stereoisomen), die Enantiomeren, die Racemate, die Diastereomeren
sowie die Hydrate und Solvate dieser Verbindungen. Unter Solvate der
Verbindungen werden Anlagerungen von inerten Lösungsmittelmolekülen
an die Verbindungen verstanden, die sich aufgrund ihrer gegenseitigen Anziehungskraft ausbilden. Solvate sind z.B. Mono- oder Dihydrate oder Alkoholate.

Die Formel I umfaßt auch die tautomeren Verbindungen der Formel I. Falls R₃ z.B. OH bedeutet, dann sind auch die tautomeren Verbindungen der Formel Ia umfaßt

Unter pharmazeutisch verwendbaren Derivaten versteht man z.B. die Salze der erfindungsgemäßen Verbindungen als auch sogenannte Prodrug-Verbindungen.

Unter Prodrug-Derivaten versteht man mit z. B. Alkyl- oder Acylgruppen, Zuckern oder Oligopeptiden abgewandelte Verbindungen der Formel I, die im Organismus rasch zu den wirksamen erfindungsgemäßen Verbindungen gespalten werden.

Der Ausdruck "wirksame Menge" bedeutet die Menge eines Arzneimittels oder eines pharmazeutischen Wirkstoffes, die eine biologische oder medizinische Antwort in einem Gewebe, System, Tier oder Menschen hervorruft, die z.B. von einem Forscher oder Mediziner gesucht oder erstrebter ist.
Darüberhinaus bedeutet der Ausdruck "therapeutisch wirksame Menge" eine Menge, die, verglichen zu einem entsprechenden Subjekt, das diese Menge nicht erhalten hat, folgendes zur Folge hat:

Die Bezeichnung "therapeutisch wirksame Menge" umfaßt auch die Mengen, die wirkungsvoll sind, die normale physiologische Funktion zu erhöhen.

Besonders bevorzugt handelt es sich dabei um Mischungen stereoisomerer Verbindungen.

Gegenstand der Erfindung sind die Verbindungen der Formel I und ihre Salze sowie ein Verfahren zur Herstellung von Verbindungen der Formel I nach den Ansprüchen 1-7 sowie ihrer pharmazeutisch verwendbaren Derivate, Salze, Solvate, Tautomeren und Stereoisomeren, dadurch gekennzeichnet, daß man

a) eine Verbindung der Formel II
worin
\(R^{2a}, R^{2b}, R^3 \) und \(R^5 \) die in Anspruch 1 angegebenen Bedeutungen haben,

mit einer Verbindung der Formel III

![Chemical Structure](image)

worin \(R^{1a} \)-\(R^{1e} \) die in Anspruch 1 angegebenen Bedeutungen haben,

umgesetzt,

oder

b) einen Rest \(R^3 \) in einen anderen Rest \(R^3 \) umwandelt, indem man ein Halogenatom substituiert, und/oder

eine Base oder Säure der Formel I in eines ihrer Salze umwandelt.

Vor- und nachstehend haben die Reste \(R^{1a}, R^{1b}, R^{1c}, R^{1d}, R^{1e}, R^{2a}, R^{2b}, R^3 \) und \(X \) die bei der Formel I angegebenen Bedeutungen, sofern nicht ausdrücklich etwas anderes angegeben ist.

A bedeutet Alkyl, ist unverzweigt (linear) oder verzweigt, und hat 1, 2, 3, 4, 5, 6, 7, 8, 9 oder 10 C-Atome. A bedeutet vorzugsweise Methyl, weiterhin Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, sek.-Butyl oder tert.-Butyl, ferner auch Pentyl, 1-, 2- oder 3-Methylbutyl, 1,1- , 1,2- or 2,2-Dimethylpropyl, 1-Ethylpropyl, Hexyl, 1- , 2- , 3- or 4-Methylpentyl, 1,1- , 1,2- , 1,3- ,
2,2-, 2,3- oder 3,3-Dimethylbutyl, 1- oder 2-Ethylbutyl, 1-Ethyl-1-methylpropyl, 1-Ethyl-2-methylpropyl, 1,1,2- oder 1,2,2-Trimethylpropyl, weiter bevorzugt z.B. Trifluormethyl.

A bedeutet ganz besonders bevorzugt Alkyl mit 1, 2, 3, 4, 5 oder 6 C-Atomen, vorzugsweise Methyl, Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, sek.-Butyl, tert.-Butyl, Pentyl, Hexyl, Trifluormethyl, Pentafluorethyl oder 1,1,1-Trifluorethyl. A bedeutet auch Cycloalkyl.

Cycloalkyl bedeutet vorzugsweise Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl oder Cycloheptyl.

A bedeutet in einer bevorzugten Ausführungsform auch unverzweigtes oder verzweigtes Alkyl mit 1-10 C-Atomen, worin 1-7 H-Atome durch F ersetzt sein können.

R1a, R1b, R1c, R1d und R1e bedeuten vorzugsweise, jeweils unabhängig voneinander, H, A, OA oder Hal.

R2a und R2b bedeuten vorzugsweise H.

R3 bedeutet vorzugsweise Hal oder OH.

R5 bedeutet besonders bevorzugt Alkyl mit 1-6 C-Atomen, wie z.B. Methyl, Ethyl, Propyl oder cyclisches Alkyl wie z.B. Cyclopropyl.

Ungeachtet weiterer Substitutionen, bedeutet Het z.B. 2- oder 3-Furyl, 2- oder 3-Thienyl, 1-, 2- oder 3-Pyrrol, 1-, 2-, 4- oder 5-Imidazolyl, 1-, 3-, 4- oder 5-Pyrazolyl, 2-, 4- oder 5-Oxazolyl, 3-, 4- oder 5-Isoxazolyl, 2-, 4- oder 5-Thiazolyl, 3-, 4- oder 5-Isothiazolyl, 2-, 3- oder 4-Pyridyl, 2-, 4-, 5- oder 6-Pyrimidinyl, weiterhin bevorzugt 1,2,3-Triazol-1-, -4- oder -5-yl, 1,2,4-Triazol-1-, -3- oder 5-yl, 1- oder 5-Tetrazolyl, 1,2,3-Oxadiazol-4- oder -5-yl, 1,2,4-Oxadiazol-3- oder -5-yl, 1,3,4-Thiadiazol-2- oder -5-yl, 1,2,4-
Thiadiazol-3- oder -5-yl, 1,2,3-Thiadiazol-4- oder -5-yl, 3- oder 4-Pyridazinyl, Pyrazinyl, 1-, 2-, 3-, 4-, 5-, 6- oder 7-lndolyl, 4- oder 5-Isoindolyl, 1-, 2-, 4- oder 5-Benzimidazolyl, 1-, 3-, 4-, 5-, 6- oder 7-Benzopyrazolyl, 2-, 4-, 5-, 6- oder 7-Benzoxazolyl, 3-, 4-, 5-, 6- oder 7-Benzisoxazolyl, 2-, 4-, 5-, 6- oder 7-Benzothiazolyl, 2-, 4-, 5-, 6- oder 7-Benzisothiazolyl, 4-, 5-, 6- oder 7-Benz-2,1,3-oxadiazolyl, 2-, 3-, 4-, 5-, 6-, 7- oder 8-Chinolyl, 1-, 3-, 4-, 5-, 6-, 7- oder 8-Isochinolyl, 3-, 4-, 5-, 6-, 7- oder 8-Cinnolinyl, 2-, 4-, 5-, 6-, 7- oder 8-Chinazoquinolynl, 5- oder 6-Chinoxalinyl, 2-, 3-, 5-, 6-, 7- oder 8-2H-Benz[1,4]oxazinyl, weiter bevorzugt 1,3-Benzodioxol-5-yl, 1,4-Benzodioxan-6-yl, 2,1,3-Benzothiadiazol-4- oder -5-yl oder 2,1,3-Benzoxadiazol-5-yl.

Die heterocyclischen Reste können auch teilweise oder vollständig hydriert sein.

Het kann also z. B. auch bedeuten 2,3-Dihydro-2-, -3-, -4- oder -5-furyl, 2,5-Dihydro-2-, -3-, -4- oder 5-furyl, Tetrahydro-2- oder -3-furyl, 1,3-Dioxolan-4-yl, Tetrahydro-2- oder -3-thiényl, 2,3-Dihydro-1-, -2-, -3-, -4- oder -5-pyrrolyl, 2,5-Dihydro-1-, -2-, -3-, -4- oder -5-pyrrolyl, 1-, 2- oder 3-Pyrrolidinyl, Tetrahydro-1-, -2- oder -4-imidazolyl, 2,3-Dihydro-1-, -2-, -3-, -4- oder -5-pyrazolyl, Tetrahydro-1-, -3- oder -4-pyrazolyl, 1,4-Dihydro-1-, -2-, -3- oder -4-pyridyl, 1,2,3,4-Tetrahydro-1-, -2-, -3-, -4-, -5- oder -6-pyridyl, 1-, 2-, 3- oder 4-Piperidinyl, 2-, 3- oder 4-Morpholinyl, Tetrahydro-2-, -3- oder -4-pyranyl, 1,4-Dioxanyl, 1,3-Dioxan-2-, -4- oder -5-yl, Hexahydro-1-, -3- oder -4-pyridazinyl, Hexahydro-1-, -2-, -4- oder -5-pyrimidinyl, 1-, 2- oder 3-Piperazinyl, 1,2,3,4-Tetrahydro-1-, -2-, -3-, -4-, -5-, -6-, -7- oder -8-chinolyl, 1,2,3,4-Tetrahydro-1-, -2-, -3-, -4-, -5-, -6-, -7- oder -8-oxazinyl, 2-, 3-, 5-, 6-, 7- oder 8-3,4-Dihydro-2H-benzo[1,4]oxazinyl, weiter bevorzugt 2,3-Methylendioxyphenyl, 3,4-Methylendioxyphenyl, 2,3-Ethylendioxyphenyl, 3,4-Ethylendioxyphenyl, 3,4-(Difluormethylendioxy)phenyl, 2,3-Dihydrobenzofuran-5- oder 6-yl, 2,3-(2-Oxo-methylendioxy)-phenyl oder auch 3,4-Dihydro-2H-1,5-benzodioxidepin-6- oder -7-yl, ferner bevorzugt 2,3-Dihydrobenzofurany1 oder 2,3-Dihydro-2-oxo-furanyl.
Ar bedeutet z.B. Phenyl, o-, m- oder p-Tolyl, o-, m- oder p-Ethylphenyl, o-, m- oder p-Propylphenyl, o-, m- oder p-Isopropylphenyl, o-, m- oder p-tert-Butylphenyl, o-, m- oder p-Hydroxyphenyl, o-, m- oder p-Nitrophenyl, o-, m- oder p-Aminophenyl, o-, m- oder p-(N-Methylamino)-phenyl, o-, m- oder p-(N-Methylaminocarbonyl)-phenyl, o-, m- oder p-Acetamidophenyl, o-, m- oder p-Methoxyphenyl, o-, m- oder p-Ethoxyphenyl, o-, m- oder p-Ethoxy carbonylphenyl, o-, m- oder p-(N,N-Dimethylamino)-phenyl, o-, m- oder p-(N,N-Dimethylaminocarbonyl)-phenyl, o-, m- oder p-(N,N-Diethylamino)-phenyl, o-, m- oder p-Fluorphenyl, o-, m- oder p-Bromphenyl, o-, m- oder p-Chlорphenyl, o-, m- oder p-(Methylsulfonyl)-phenyl, weiter bevorzugt 2,3-, 2,4-, 2,5-, 2,6-, 3,4- oder 3,5-Difluorphenyl, 2,3-, 2,4-, 2,5-, 2,6-, 3,4- oder 3,5-Dichlorphenyl, 2,3-, 2,4-, 2,5-, 2,6-, 3,4- oder 3,5-Dibromphenyl, 2,4- oder 2,5-Dinitrophenyl, 2,5- oder 3,4-Dimethoxyphenyl, 3-Nitro-4-chlorphenyl, 3-Amino-4-chlor-, 2-Amino-3-chlor-, 2-Amino-4-chlor-, 2-Amino-5-chlor- oder 2-Amino-6-chlorphenyl, 2-Nitro-4-N,N-dimethylanilino- oder 3-Nitro-4-N,N-dimethylanilinophenyl, 2,3-Diaminophenyl, 2,3,4-, 2,3,5-, 2,3,6-, 2,4,6- oder 3,4,5-Trichlorphenyl, 2,4,6-Trime thoxyphenyl, 2-Hydroxy-3,5-dichlorphenyl, p-Iodphenyl, 3,6-Dichlor-4-amino-phenyl, 4-Fluor-3-chlorphenyl, 2-Fluor-4-bromphenyl, 2,5-Difluor-4-bromphenyl, 3-Brom-6-methoxyphenyl, 3-Chlor-6-methoxyphenyl, 3-Chlor-4-acetamidophenyl, 3-Fluor-4-methoxyphenyl, 3-Amino-6-methylphenyl, 3-Chlor-4-acetamidophenyl oder 2,5-Dimethyl-4-chlorphenyl.

Hal bedeutet vorzugsweise F, Cl oder Br, aber auch I, besonders bevorzugt F oder Cl.

Für die gesamte Erfindung gilt, daß sämtliche Reste, die mehrfach auftreten, gleich oder verschieden sein können, d.h. unabhängig voneinander sind.
Die Verbindungen der Formel I können ein oder mehrere chirale Zentren besitzen und daher in verschiedenen stereoisomeren Formen vorkommen. Die Formel I umschließt alle diese Formen.

Dementsprechend sind Gegenstand der Erfindung insbesondere diejenigen Verbindungen der Formel I, in denen mindestens einer der genannten Reste eine der vorstehend angegebenen bevorzugten Bedeutungen hat. Einige bevorzugte Gruppen von Verbindungen können durch die folgenden Teilformeln Ia bis le ausgedrückt werden, die der Formel I entsprechen und worin die nicht näher bezeichneten Reste die bei der Formel I angegebene Bedeutung haben, worin jedoch

\[R^{1a}, R^{1b}, R^{1c}, \]
\[R^{1d}, R^{1e} \] jeweils unabhängig voneinander H, A, OA und/oder Hal bedeutet;

\[R^{2a}, R^{2b} \] H bedeuten;

\[R^{3} \] Hal oder OH bedeuten;

\[A \] unverzweigtes oder verzweigtes Alkyl mit 1-10 C-Atomen, worin 1-7 H-Atome durch F ersetzt sein können, oder cyclisches Alkyl mit 3-7 C-Atomen, bedeutet;

\[R^{1a}, R^{1b}, R^{1c}, \]
\[R^{1d}, R^{1e} \] jeweils unabhängig voneinander H, A, OA und/oder Hal,

\[R^{2a}, R^{2b} \] H,

\[R^{3} \] Hal oder OH
R5 H oder A,
A unverzweigtes oder verzweigtes Alkyl mit 1-10 C-
 Atomen, worin 1-7 H-Atome durch F ersetzt sein
 können,
 oder cyclisches Alkyl mit 3-7 C-Atomen,
 Hal F, Cl, Br oder I,
 bedeuten;

sowie ihre pharmazeutisch verwendbaren Derivate, Salze, Solvate,
Tautomore und Stereoisomere, einschließlich deren Mischungen in allen
Verhältnissen.

Die Verbindungen der Formel I und auch die Ausgangsstoffe zu ihrer Her-
stellung werden im übrigen nach an sich bekannten Methoden hergestellt,
wie sie in der Literatur (z.B. in den Standardwerken wie Houben-Weyl,
Methoden der organischen Chemie, Georg-Thieme-Verlag, Stuttgart)
beschrieben sind, und zwar unter Reaktionsbedingungen, die für die ge-
nannten Umsetzungen bekannt und geeignet sind. Dabei kann man auch
von an sich bekannten, hier nicht näher erwähnten Varianten Gebrauch
machen.

Die Ausgangsstoffe können, falls erwünscht, auch in situ gebildet werden,
so daß man sie aus dem Reaktionsgemisch nicht isoliert, sondern sofort
weiter zu den Verbindungen der Formel I umsetzt.

Verbindungen der Formel I können vorzugsweise erhalten werden, indem
man Verbindungen der Formel II mit Verbindungen der Formel III umsetzt.

Die Verbindungen der Formel II sind neu, die der Formel III sind in der
Regel bekannt.
Die Umsetzung erfolgt in der Regel in einem inerten Lösungsmittel, in Gegenwart einer organischen Base wie Triethylamin, Dimethylanilin, Pyridin oder Chinolin. Die Reaktionszeit liegt je nach den angewendeten Bedingungen zwischen einigen Minuten und 14 Tagen, die Reaktions- temperatur zwischen etwa 0° und 150°, normalerweise zwischen 15° und 90°, besonders bevorzugt zwischen 15 und 30°C.

Als inerte Lösungsmittel eignen sich z.B. Kohlenwasserstoffe wie Hexan, Petroleum, Benzol, Toluol oder Xyol; chlorierte Kohlenwasserstoffe wie Trichlorethylen, 1,2-Dichlorethan, Tetrachlorkohlenstoff, Chloroform oder Dichlormethan; Alkohole wie Methanol, Ethanol, Isopropanol, n-Propanol, n-Butanol oder tert.-Butanol; Ether wie Diethylether, Diisopropylether, Tetrahydrofuran (THF) oder Dioxan; Glykolether wie Ethylen glykolmonomethyl- oder -monoethylether (Methylglykol oder Ethylglykol), Ethylen glykoldimethylether (Diglyme); Ketone wie Aceton oder Butanon; Amide wie Acetamid, Dimethylacetamid oder Dimethylformamid (DMF); Nitrile wie Acetonitril; Sulfoxide wie Dimethylsulfoxid (DMSO); Schwefel- kohlenstoff; Carbonsäuren wie Ameisensäure oder Essigsäure; Nitrover- bindungen wie Nitromethan oder Nitrobenzol; Ester wie Ethylacetat oder Gemische der genannten Lösungsmittel.

Pharmazeutische Salze und andere Formen
Die genannten erfindungsgemäßen Verbindungen lassen sich in ihrer endgültigen Nichtsalzform verwenden. Andererseits umfaßt die vorliegende Erfindung auch die Verwendung dieser Verbindungen in Form ihrer pharmazeutisch unbedenklichen Salze, die von verschiedenen organischen und anorganischen Säuren und Basen nach fachbekannten Vorgehensweisen abgeleitet werden können. Pharmazeutisch unbedenk- liche Salzformen der Verbindungen der Formel I werden größtenteils konventionell hergestellt. Sofern die Verbindung der Formel I eine Carbonsäuregruppe enthält, läßt sich eines ihrer geeigneten Salze dadurch bilden, daß man die Verbindung mit einer geeigneten Base zum ent-
Weiterhin zählen zu den Basensalzen der erfindungsgemäßen Verbindungen Aluminium-, Ammonium-, Calcium-, Kupfer-, Eisen(III)-, Eisen(II)-, Lithium-, Magnesium-, Mangan(III)-, Mangan(II)-, Kalium-, Natrium- und Zinksalze, was jedoch keine Einschränkung darstellen soll. Bevorzugt unter den oben genannten Salzen sind Ammonium; die Alkalimetallsalze Natrium und Kalium, sowie die Erdalkalimetallsalze Calcium und Magnesium. Zu Salzen der Verbindungen der Formel I, die sich von pharmazeutisch unbedenklichen organischen nicht-toxischen Basen ableiten, zählen Salze primärer, sekundärer und tertiärer Amine, substituierter Amine, darunter auch natürlich vorkommender substituierter Amine, cyclischer Amine sowie basischer Ionenaustauscherharze, z.B. Arginin, Betain, Koffein, Chlorprocain, Cholin, N,N'-Dibenzylethylendiamin (Benzathin), Dicyclohexylamin, Diethanolamin, Diethylamin, 2-Diethylaminoethanol, 2-Dimethylaminoethanol, Ethanolamin, Ethylen-diamin, N-Ethylnmorpholin, N-Ethylpiperidin, Glucamin, Glucosamin, Histidin, Hydrabamin, Iso-propylamin, Lidocain, Lysin, Meglumin, N-Methyl-D-glucamin, Morpholin, Piperazin, Piperidin, Polyaminharze, Procain, Purine, Theobromin, Triethanolamin, Triethylamin, Trimethylamin, Tripropylamin sowie Tris-(hydroxymethyl)-methylamin (Tromethamin), was jedoch keine Einschränkung darstellen soll.

Zu den oben genannten pharmazeutischen Salzen, die bevorzugt sind, zählen Acetat, Trifluoracetat, Besylat, Citrat, Fumarat, Gluconat, Hemisuccinat, Hippurat, Hydrochlorid, Hydrobromid, Isethionat, Mandelat, Meglumin, Nitrat, Oleat, Phosphonat, Pivalat, Natriumphosphat, Stearat, Sulfat, Sulfosalicylat, Tartrat, Thiomalat, Tosylat und Tromethamin, was jedoch keine Einschränkung darstellen soll.

Die Säureadditionssalze basischer Verbindungen der Formel I werden dadurch hergestellt, daß man die freie Basenform mit einer ausreichenden Menge der gewünschten Säure in Kontakt bringt, wodurch man auf übliche Weise das Salz darstellt. Die freie Base läßt sich durch In-Kontakt-Bringen der Salzform mit einer Base und Isolieren der freien Base auf übliche Weise regenerieren. Die freien Basenformen unterscheiden sich in gewissem Sinn von ihren entsprechenden Salzformen in bezug auf bestimmte physikalische Eigenschaften wie Löslichkeit in polaren Lösungsmitteln; im Rahmen der Erfindung entsprechen die Salze jedoch sonst ihren jeweiligen freien Basenformen.

Wie erwähnt werden die pharmazeutisch unbedenklichen Basenadditionssalze der Verbindungen der Formel I mit Metallen oder Aminen wie Alkalimetallen und Erdalkalimetallen oder organischen Aminen gebildet.

Bevorzugte Metalle sind Natrium, Kalium, Magnesium und Calcium. Bevorzugte organische Amine sind N,N'-Dibenzylethylen diamin, Chlorprocain, Cholin, Diethanolamin, Ethylendiamin, N-Methyl-D-glucamin und Procaín.

Die Basenadditionssalze von erfindungsgemäßen sauren Verbindungen werden dadurch hergestellt, daß man die freie Säureform mit einer ausreichenden Menge der gewünschten Base in Kontakt bringt, wodurch man das Salz auf übliche Weise darstellt. Die freie Säure läßt sich durch In-Kontakt-Bringen der Salzform mit einer Säure und Isolieren der freien Säure auf übliche Weise regenerieren. Die freien Säureformen unterscheiden sich in gewissem Sinn von ihren entsprechenden Salzformen in
bezug auf bestimmte physikalische Eigenschaften wie Löslichkeit in
polaren Lösungsmitteln; im Rahmen der Erfindung entsprechen die Salze
jedoch sonst ihren jeweiligen freien Säureformen.

Enthält eine erfindungsgemäße Verbindung mehr als eine Gruppe, die
solche pharmazeutisch unbedenklichen Salze bilden kann, so umfaßt die
Erfindung auch mehrfache Salze. Zu typischen mehrfachen Salzformen
zählen zum Beispiel Bitartrat, Diacetat, Difumarat, Dimeglumin,
Diphosphat, Dinatrium und Trihydrochlorid, was jedoch keine Ein-
schränkung darstellen soll.

Im Hinblick auf das oben Gesagte sieht man, daß unter dem Ausdruck
"pharmazeutisch unbedenkliches Salz" im vorliegenden Zusammenhang
ein Wirkstoff zu verstehen ist, der eine Verbindung der Formel I in der
Form eines ihrer Salze enthält, insbesondere dann, wenn diese Salzform
dem Wirkstoff im Vergleich zu der freien Form des Wirkstoffs oder
irgendeiner anderen Salzform des Wirkstoffs, die früher verwendet wurde,
verbesserte pharmacokinetische Eigenschaften verleiht. Die pharma-
zutisch unbedenkliche Salzform des Wirkstoffs kann auch diesem
Wirkstoff erst eine gewünschte pharmacokinetische Eigenschaft verleihen,
über die er früher nicht verfüg hat, und kann sogar die Pharmakodynamik
dieses Wirkstoffs in bezug auf seine therapeutische Wirksamkeit im
Körper positiv beeinflussen.

Gegenstand der Erfindung sind ferner Arzneimittel, enthaltend mindestens
eine Verbindung der Formel I und/oder ihre pharmazeutisch verwendbaren
Derivate, Solvate und Stereoisomere, einschließlich deren Mischungen in
allen Verhältnissen, sowie gegebenenfalls Träger- und/oder Hilfsstoffe.

Pharmazeutische Formulierungen können in Form von Dosiseinheiten, die
eine vorbestimmte Menge an Wirkstoff pro Dosiseinheit enthalten,
dargereicht werden. Eine solche Einheit kann beispielsweise 0,5 mg bis
1 g, vorzugsweise 1 mg bis 700 mg, besonders bevorzugt 5 mg bis 100 mg einer erfindungsgemäßen Verbindung enthalten, je nach dem behandelten Krankheitszustand, dem Verabreichungsweg und dem Alter, Gewicht und Zustand des Patienten, oder pharmazeutische Formulierungen können in Form von Dosiseinheiten, die eine vorbestimmte Menge an Wirkstoff pro Dosiseinheit enthalten, dargereicht werden. Bevorzugte Dosierungseinheitsformulierungen sind solche, die eine Tagesdosis oder Teildosis, wie oben angegeben, oder einen entsprechenden Bruchteil davon eines Wirkstoffs enthalten. Weiterhin lassen sich solche pharmazeutischen Formulierungen mit einem der im pharmazeutischen Fachgebiet allgemein bekannten Verfahren herstellen.

Pharmazeutische Formulierungen lassen sich zur Verabreichung über einen beliebigen geeigneten Weg, beispielsweise auf oralem (einschließlich buccalem bzw. sublingualem), rektalem, nasalem, topischem (einschließlich buccalem, sublingualem oder transdermalem), vaginalen oder parenteralen (einschließlich subkutanem, intramuskulärem, intravenösem oder intradermalem) Wege, anpassen. Solche Formulierungen können mit allen im pharmazeutischen Fachgebiet bekannten Verfahren hergestellt werden, indem beispielsweise der Wirkstoff mit dem bzw. den Trägerstoff(en) oder Hilfsstoff(en) zusammengebracht wird.

An die orale Verabreichung angepaßte pharmazeutische Formulierungen können als separate Einheiten, wie z.B. Kapseln oder Tabletten; Pulver oder Granulate; Lösungen oder Suspensionen in wäβrigen oder nichtwäβrigen Flüssigkeiten; eßbare Schäume oder Schaumspeisen; oder Öl-in-Wasser-Flüssigemulsionen oder Wasser-in-Öl-Flüssigemulsionen dargereicht werden.

So läßt sich beispielsweise bei der oralen Verabreichung in Form einer Tablette oder Kapsel die Wirkstoffkomponente mit einem oralen, nicht-

einem Verdünnungsmittel oder einer Base, wie oben beschrieben, und
gegebenenfalls mit einem Bindemittel, wie z.B. Carboxymethylzellulose,
einem Alginat, Gelatine oder Polyvinylpyrrolidon, einem Lösungsverlang-
samer, wie z.B. Paraffin, einem Resorptionsbeschleuniger, wie z.B. einem
quaternären Salz und/oder einem Absorptionsmittel, wie z.B. Bentonit,
Kaolin oder Dikalziumphosphat, vermischt wird. Das Pulvergemisch läßt
sich granulieren, indem es mit einem Bindemittel, wie z.B. Sirup, Stärke-
paste, Acadia-Schleim oder Lösungen aus Zellulose- oder Polymer-
materialien benetzt und durch ein Sieb gepreßt wird. Als Alternative zur
Granulierung kann man das Pulvergemisch durch eine Tablettiermaschine
laufen lassen, wobei ungleichmäßig geformte Klumpen entstehen, die in
Granulate aufgebrochen werden. Die Granulate können mittels Zugabe
von Stearinsäure, einem Stearatsalz, Talkum oder Mineralöl gefettet
werden, um ein Kleben an den Tablettengußformen zu verhindern. Das
gefettete Gemisch wird dann zu Tabletten verpreßt. Die erfindungs-
gemäßen Verbindungen können auch mit einem freifließenden inerten
Trägerstoff kombiniert und dann ohne Durchführung der Granulierungs-
oder Trockenverpressungsschritte direkt zu Tabletten verpreßt werden.
Eine durchsichtige oder undurchsichtige Schutzschicht, bestehend aus
einer Versiegelung aus Schellack, einer Schicht aus Zucker oder Polymer-
material und einer Glanzschicht aus Wachs, kann vorhanden sein. Diesen
Beschichtungen können Farbstoffe zugesetzt werden, um zwischen unter-
schiedlichen Dosierungseinheiten unterscheiden zu können.

Orale Flüssigkeiten, wie z.B. Lösung, Sirupe und Elixiere, können in Form
von Dosierungseinheiten hergestellt werden, so daß eine gegebene
Quantität eine vorgegebene Menge der Verbindung enthält. Sirupe lassen
sich herstellen, indem die Verbindung in einer wäßrigen Lösung mit
geeignetem Geschmack gelöst wird, während Elixiere unter Verwendung
eines nichttoxischen alkoholischen Vehikels hergestellt werden.
Suspensionen können durch Dispersion der Verbindung in einem nicht-
toxischen Vehikel formuliert werden. Lösungsvermittler und Emulgiermittel,
wie z.B. ethoxylierte Isostearylalkohole und Polyoxyethylensorbitolether, Konservierungsmittel, Geschmackszusätze, wie z.B. Pfefferminzöl oder natürliche Süßstoffe oder Saccharin oder andere künstliche Süßstoffe, u.ä. können ebenfalls zugegeben werden.

Die Dosierungseinheitsformulierungen für die orale Verabreichung können gegebenenfalls in Mikrokapseln eingeschlossen werden. Die Formulierung läßt sich auch so herstellen, daß die Freisetzung verlängert oder retardiert wird, wie beispielsweise durch Beschichtung oder Einbettung von partikulärem Material in Polymere, Wachs u.ä.

Die Verbindungen der Formel I sowie Salze, Solvate und physiologisch funktionelle Derivate davon lassen sich auch in Form von Liposomenzuführsystemen, wie z.B. kleinen unilamellaren Vesikeln, großen unilamellaren Vesikeln und multilamellaren Vesikeln, verabreichen. Liposomen können aus verschiedenen Phospholipiden, wie z.B. Cholesterin, Stearylamin oder Phosphatidylcholinen, gebildet werden.

Weiterhin können die Verbindungen an eine Klasse von biologisch abbaubarem Polymeren, die zur Erzielung einer kontrollierten Freisetzung eines Arzneistoffs geeignet sind, z.B. Polymilchsäure, Polyeipsilon-Caprolacton, Polyhydroxybuttersäure, Polyorthoester, Polyacetale, Polydihydroxyhyprane, Polycyanoacrylate und quervernetzte oder amphipatische Blockcopolymere von Hydrogelen, gekoppelt sein.

An die topische Verabreichung angepasste pharmazeutische Verbindungen können als Salben, Cremes, Suspensionen, Lotionen, Pulver, Lösungen, Pasten, Gele, Sprays, Aerosole oder Öle formuliert sein.

Zu den an die topische Applikation am Auge angepassten pharmazeutischen Formulierungen gehören Augentropfen, wobei der Wirkstoff in einem geeigneten Träger, insbesondere einem wässrigen Lösungsmittel, gelöst oder suspendiert ist.

An die topische Applikation im Mund angepasste pharmazeutische Formulierungen umfassen Lutschtabletten, Pastillen und Mundspülmittel.

An die rektale Verabreichung angepasste pharmazeutische Formulierungen können in Form von Zäpfchen oder Einläufen dargereicht werden.

An die Verabreichung durch Inhalation angepaßte pharmazeutische Formulierungen umfassen feinpartikuläre Stäube oder Nebel, die mittels verschiedener Arten von unter Druck stehenden Dosierspendern mit Aerosolen, Verneblern oder Inhüblatoren erzeugt werden können.

An die vaginale Verabreichung angepaßte pharmazeutische Formulierungen können als Pessare, Tampons, Cremes, Gele, Pasten, Schäume oder Sprayformulierungen dargereicht werden.

Zu den an die parenterale Verabreichung angepaßten pharmazeutischen Formulierungen gehören wäßrige und nichtwäßrige sterile Injektionslösungen, die Antioxidantien, Puffer, Bakteriostatika und Solute, durch die die Formulierung isotonisch mit dem Blut des zu behandelnden Empfängers gemacht wird, enthalten; sowie wäßrige und nichtwäßrige sterile Suspensionen, die Suspensionsmittel und Verdicker enthalten können. Die Formulierungen können in Einzeldosis- oder Mehrfachdosisbehältern, z.B. versiegelten Ampullen und Fläschchen, dargereicht und in gefriergetrocknetem (lyophilisiertem) Zustand gelagert werden, so daß nur die Zugabe der steril Trägerflüssigkeit, z.B. Wasser für Injektionszwecke, unmittelbar vor Gebrauch erforderlich ist. Rezepturmäßig hergestellte Injektionslösungen und Suspensionen können aus sterilen Pulvern, Granulaten und Tabletten hergestellt werden.
Es versteht sich, daß die Formulierungen neben den obigen besonders erwähnten Bestandteilen andere im Fachgebiet übliche Mittel mit Bezug auf die jeweilige Art der Formulierung enthalten können; so können beispielsweise für die orale Verabreichung geeignete Formulierungen Geschmacksstoffe enthalten.

Eine therapeutisch wirksame Menge einer Verbindung der Formel I hängt von einer Reihe von Faktoren ab, einschließlich z.B. dem Alter und Gewicht des Tiers, dem exakten Krankheitszustand, der der Behandlung bedarf, sowie seines Schweregrads, der Beschaffenheit der Formulierung sowie dem Verabreichungsweg, und wird letztendlich von dem behandelnden Arzt bzw. Tierarzt festgelegt. Jedoch liegt eine wirksame Menge einer Verbindung der Formel I für die Behandlung von neoplastischem Wachstum, z.B. Dickdarm- oder Brustkarzinom, im allgemeinen im Bereich von 0,1 bis 100 mg/kg Körpergewicht des Empfängers (Säugers) pro Tag und besonders typisch im Bereich von 1 bis 10 mg/kg Körpergewicht pro Tag. Somit läge für einen 70 kg schweren erwachsenen Säuger die tatsächliche Menge pro Tag für gewöhnlich zwischen 70 und 700 mg, wobei diese Menge als Einzeldosis pro Tag oder üblicher in einer Reihe von Teildosen (wie z.B. zwei, drei, vier, fünf oder sechs) pro Tag gegeben werden kann, so daß die Gesamttagesdosis die gleiche ist. Eine wirksame Menge eines Salzes oder Solvats oder eines physiologisch funktionellen Derivats davon kann als Anteil der wirksamen Menge der Verbindung der Formel I per se bestimmt werden. Es läßt sich annehmen, daß ähnliche Dosierungen für die Behandlung der anderen, obenerwähnten Krankheitszustände geeignet sind.

Gegenstand der Erfindung sind ferner Arzneimittel enthaltend mindestens eine Verbindung der Formel I und/oder ihre pharmazeutisch verwendbaren
Derivate, Solvate und Stereoisomere, einschließlich deren Mischungen in allen Verhältnissen, und mindestens einen weiteren Arzneimittelwirkstoff.

Gegenstand der Erfindung ist auch ein Set (Kit), bestehend aus getrennten Packungen von

(a) einer wirksamen Menge an einer Verbindung der Formel I und/oder ihrer pharmazeutisch verwendbaren Derivate, Solvate und Stereoisomere, einschließlich deren Mischungen in allen Verhältnissen,

und

(b) einer wirksamen Menge eines weiteren Arzneimittelwirkstoffes.

Das Set enthält geeignete Behälter, wie Schachteln oder Kartons, individuelle Flaschen, Beutel oder Ampullen. Das Set kann z.B. separate Ampullen enthalten, in denen jeweils eine wirksame Menge an einer Verbindung der Formel I und/oder ihrer pharmazeutisch verwendbaren Derivate, Solvate und Stereoisomere, einschließlich deren Mischungen in allen Verhältnissen,

und einer wirksamen Menge eines weiteren Arzneimittelwirkstoffs gelöst oder in lyophilisierter Form vorliegt.

VERWENDUNG

Die vorliegenden Verbindungen eignen sich als pharmazeutische Wirkstoffe für Säugetiere, insbesondere für den Menschen, bei der Behandlung von tyrosinkinasebedingten Krankheiten. Zu diesen Krankheiten zählen die Proliferation von Tumorzellen, die pathologische Gefäßneubildung (oder Angiogenese), die das Wachstum fester Tumoren fördert, die Gefäßneubildung im Auge (diabetische Retinopathie, altersbedingte Makula-Degeneration und dergleichen) sowie Entzündung (Schuppenflechte, rheumatoide Arthritis und dergleichen).

Ebenfalls umfasst ist die Verwendung der erfindungsgemäßen Verbindungen nach Anspruch 1 und/oder ihre physiologisch unbedenklichen Salze und Solvate zur Herstellung eines Arzneimittels zur Behandlung oder Vorbeugung einer Krankheit, an der Angiogenese beteiligt ist.

Eine derartige Krankheit, an der Angiogenese beteiligt ist, ist eine Augenkrankheit, wie Retina-Vaskularisierung, diabetische Retinopathie, altersbedingte Makula-Degeneration und dergleichen.

Ebenfalls umfasst ist die Verwendung der Verbindungen der Formel I und/oder ihre physiologisch unbedenklichen Salze und Solvate zur Herstellung eines Arzneimittels zur Behandlung oder Vorbeugung einer tyrosinkinasebedingten Krankheit bzw. eines tyrosinkinasebedingten Leidens bei einem Säugetier, wobei man diesem Verfahren einem kranken Säugetier, das einer derartigen Behandlung bedarf, eine therapeutisch wirksame Menge einer Verbindung der Formel I verabreicht.
therapeutische Menge hängt von der jeweiligen Krankheit ab und kann vom Fachmann ohne allen großen Aufwand bestimmt werden. Die vorliegende Erfindung umfasst auch die Verwendung der Verbindungen der Formel I und/oder ihre physiologisch unbedenklichen Salze und Solvate zur Herstellung eines Arzneimittels zur Behandlung oder Vorbeugung von Retina-Vaskularisierung.

Gegenstand der Erfindung ist somit die Verwendung von Verbindungen der Formel I, sowie ihrer pharmazeutisch verwendbaren Derivate, Solvate und Stereoisomere, einschließlich deren Mischungen in allen Verhältnissen, zur Herstellung eines Arzneimittels zur Behandlung von Krankheiten, bei denen die Hemmung, Regulierung und/oder Modulation der Signaltransduktion von Kinasen eine Rolle spielt.

Bevorzugt sind hierbei Kinasen ausgewählt aus der Gruppe der Tyrosinkinasen und Raf-Kinasen.

Vorzugsweise handelt es sich bei den Tyrosinkinasen um TIE-2, VEGFR, PDGFR, FGFR und/oder FLT/KDR.
Bevorzugt ist die Verwendung von Verbindungen der Formel I, sowie ihrer pharmazeutisch verwendbaren Derivate, Solvate und Stereoisomere, einschließlich deren Mischungen in allen Verhältnissen, zur Herstellung eines Arzneimittels zur Behandlung von Krankheiten, die durch Inhibierung der Tyrosinkinasen durch die Verbindungen nach Anspruch 1 beeinflußt werden.

Besonders bevorzugt ist die Verwendung zur Herstellung eines Arzneimittels zur Behandlung von Krankheiten, die durch Inhibierung von TIE-2, VEGFR, PDGFR, FGFR und/oder FLT/KDR durch die Verbindungen nach Anspruch 1 beeinflußt werden.

Insbesondere bevorzugt ist die Verwendung zur Behandlung einer Krankheit, wobei die Krankheit ein fester Tumor ist.

Der feste Tumor ist weiterhin vorzugsweise ausgewählt aus der Gruppe Lungenadenokarzinom, kleinzelige Lungenkarzinome, Bauchspeekel-drüsenkrebs, Glioblastome, Kolonkarzinom und Brustkarzinom.

Weiterhin bevorzugt ist die Verwendung zur Behandlung eines Tumors des Blut- und Immunsystems, vorzugsweise zur Behandlung eines Tumors ausgewählt aus der Gruppe der akuten myelotischen Leukämie, der chronischen myelotischen Leukämie, akuten lymphatischen Leukämie und/oder chronischen lymphatischen Leukämie.
Gegenstand der Erfindung ist weiterhin die Verwendung der Verbindungen der Formel I zur Behandlung einer Krankheit, an der Angiogenese beteiligt ist.

Vorzugsweise handelt es sich bei der Krankheit um eine Augenkrankheit.

Gegenstand der Erfindung ist weiterhin die Verwendung zur Behandlung von Retina-Vaskularisierung, diabetischer Retinopathie, altersbedingter Makula-Degeneration und/oder Entzündungskrankheiten.

Die Entzündungskrankheit ist vorzugsweise ausgewählt aus der Gruppe rheumatoide Arthritis, Schuppenflechte, Kontaktdermatitis und Spät-Typ der Überempfindlichkeitsreaktion stammt.

Gegenstand der Erfindung ist weiterhin die Verwendung der Verbindungen der Formel I zur Behandlung von Knochen-Pathologien, wobei die Knochenpathologie aus der Gruppe Osteosarkom, Osteoarthritis und Rachitis stammt.

Hierbei handelt es sich um Krebserkrankungen oder nicht krebsartige Erkrankungen.

Die nicht krebsartigen Erkrankungen sind ausgewählt aus der Gruppe bestehend aus Psoriasis, Arthritis, Entzündungen, Endometriose, Vernarbung, gutartiger Prostatahyperplasie, immunologischer Krankheiten, Autoimmunkrankheiten und Immunschwächekrankheiten.

„Östrogenrezeptormodulatoren“ bezieht sich auf Verbindungen, die die Bindung von Östrogen an den Rezeptor stören oder diese hemmen, und zwar unabhängig davon, wie dies geschieht. Zu den Östrogenrezeptor-
modulatoren zählen zum Beispiel Tamoxifen, Raloxifen, Idoxifen, LY353381, LY 117081, Toremifin, Fulvestrant, 4-[7-(2,2-Dimethyl-1-oxopropoxy)-4-methyl-2-[4-[2-(1-piperidinyl)ethoxy]phenyl]-2H-1-benzopyran-3-yl]phenyl-2,2-dimethylpropanoat, 4,4'-Dihydroxybenzophenon-2,4-dinitrophenylhydrazon und SH646, was jedoch keine Einschränkung darstellen soll.

„Zytotoxika“ bezieht sich auf Verbindungen, die in erster Linie durch direkte Einwirkung auf die Zellfunktion zum Zelltod führen oder die die Zellmyose hemmen oder diese stören, darunter Alkylierungsmittel, Tumornekrosefaktoren, interkalierende Mittel, Mikrotubulin-Hemmer und Topoisomerase-Hemmer.

Zu den Zytotoxika zählen zum Beispiel Tirapazimin, Sertenef, Cachectin, Ifosfamid, Tasonermin, Lonidamin, Carboplatin, Altretamin, Prednimustin, Dibromdulcit, Ranimustin, Fotemustin, Nedaplatin, Oxaliplatin, Temozolomid, Heptaplatin, Estramustine, Improsulfan-tosylat, Trofosfamid, Nimustin, Dibospidium-chlorid, Pumipena, Lobaplatin, Satraplatin, Profiromycin, Cisplatin, Irofulven, Dexifosfamid, cis-Amindichlor(2-methylpyridin)platin, Benzylguanin, Glufosfamid, GPX100, (trans,trans,trans)-bis-mu-(hexan-1,6-diamin)-mu-[diamin-platin(II)]bis-[diamin(chlor)platin(II)]-tetrachlorid, Dianizidinylspermin, Arsentrioxid, 1-(11-
Dodecylamino-10-hydroxyundecyl)-3,7-dimethylxanthin, Zorubicin,
Idarubicin, Daunorubicin, Bisantren, Mitoxantron, Pirarubicin, Pinafid,
Valrubricin, Amrubicin, Antineoplaston, 3'-Desamino-3'-morpholino-13-
dersoxo-10-hydroxycarminomycin, Annamycin, Galarubicin, Elinafid,
MEN10755 und 4-Desmethoxy-3-desamino-3-aziridiny1-4-methylsulfonyl-
daunorubicin (siehe WO 00/50032), was jedoch keine Einschränkung
darstellen soll.

Zu den Mikrotubulin-Hemmern zählen zum Beispiel Paclitaxel, Vindesin-
sulfat, 3',4'-Dideshydro-4'-desoxy-8'-norvincaleukoblastin, Docetaxol,
Rhizoxin, Dolastatin, Mivobulin-isethionat, Auristatin, Cemadotin,
RPR109881, BMS184476, Vinflunin, Cryptophycin, 2,3,4,5,6-pentafluor-N-
(3-fluor-4-methoxyphenyl)benzolsulfonamid, Anhydrovinblastin, N,N-
dimethyl-L-valyl-L-valyl-N-methyl-L-valyl-L-prolyl-L-prolin-t-butylamid,
TDX258 und BMS188797.

Topoisomerase-Hemmer sind zum Beispiel Topotecan, Hycaptamin,
Irinotecan, Rubitecan, 6-Ethoxypropionyl-3',4'-O-exo-benzyliden-
chartreusin, 9-Methoxy-N,N-dimethyl-5-nitropyrazolo[3,4,5-kl]acridin-2-
(6H)propanamin, 1-Amino-9-ethyl-5-fluor-2,3-dihydro-9-hydroxy-4-methyl-
dion, Lurtotecan, 7-[2-(N-Isopropylamino)ethyl]-(20S)camptothecin,
BNP1350, BNPI1100, BN80915, BN80942, Etoposid-phosphat, Teniposid,
Sobuzoxan, 2'-Dimethylamino-2'-desoxy-etoposid, GL331, N-[2-
(Dimethylamino)ethyl]-9-hydroxy-5,6-dimethyl-6H-pyrido[4,3-b]carbazol-1-
carboxamid, Asulacrin, (5a,5aB,8aa,9b)-9-[2-[N-[2-(Dimethylamino)ethyl]-
N-methylamino]ethyl]-5-[4-hydroxy-3,5-dimethoxyphenyl]-5,5a,6,8,8a,9-
hexahydrofuro(3',4':6,7)naphtho(2,3-d)-1,3-dioxol-6-on, 2,3-(Methylen-
dioxy)-5-methyl-7-hydroxy-8-methoxybenzo[c]phenanthridinium, 6,9-Bis[(2-
aminoethyl)amino]benzo[g]isochinolin-5,10-dion, 5-(3-Aminopropylamino)-
7,10-dihydroxy-2-(2-hydroxyethylaminomethyl)-6H-pyrazolo[4,5,1-de]-
acridin-6-on, N-[1-[2(Diethylamino)ethyl]amino]-7-methoxy-9-oxo-9H-thio-
 xanthen-4-ylmethyl]formamid, N-(2-(Dimethyl-amino)-ethyl)acridin-4-

Gegenstand der Erfindung ist ferner die Verwendung der Verbindungen der Formel I zur Herstellung eines Arzneimittels zur Behandlung von Krankheiten, wobei die Krankheit durch gestörte Angiogenese gekennzeichnet ist. Bei der Krankheit handelt es sich vorzugsweise um Krebserkrankungen.

Die gestörte Angiogenese resultiert vorzugsweise aus einer gestörten VEGFR-1-, VEGFR-2- und/oder VEGFR-3-Aktivität.
Besonders bevorzugt ist daher auch die Verwendung der erfindungs-
gemäßen Verbindungen zur Herstellung eines Arzneimittels zur
Inhibierung der VEGFR-2-Aktivität.

ASSAYS

Die in den Beispielen beschriebenen Verbindungen der Formel I wurden in
den unten beschriebenen Assays geprüft, und es wurde gefunden, dass
sie eine kinasehemmende Wirkung aufweisen. Weitere Assays sind aus
der Literatur bekannt und könnten vom Fachmann leicht durchgeführt
werden (siehe z.B. Dhanabal et al., Cancer Res. 59:189-197; Xin et al., J.
Biol. Chem. 274:9116-9121; Sheu et al., Anticancer Res. 18:4435-4441;
Inst. 52:413-427; Nicosia et al., In Vitro 18:538-549).

VEGF-Rezeptorkinase-Assay

Die VEGF-Rezeptorkinaseaktivität wird durch Einbau von radioaktiv mar-
kiertem Phosphat in 4:1 Polyglutaminsäure/Tyrosin-Substrat (pEY) be-
stimmt. Das phosphorylierte pEY-Produkt wird auf einer Filtermembran
festgehalten, und der Einbau des radioaktiv markierten Phosphats wird
durch Szintillationszählung quantitativ bestimmt.

MATERIALIEN

VEGF-Rezeptorkinase

Die intrazelluläre-Tyrosinkinase-Domänen des menschlichen KDR
(Terman, B. I. et al. Oncogene (1991) Bd. 6, S. 1677-1683.) und Flt-1
Glutathion-S-transferase (GST)-Genfusionsproteine kloniert. Dies geschah
durch Klonieren der Zytoplasma-Domäne der KDR-Kinase als
leserastergerechte Fusion am Carboxy-Terminus des GST-Gens. Die
löslichen rekombinanten GST-Kinasedomäne-Fusionsproteine wurden in
Spodoptera frugiperda (Sf21) Insektenzellen (Invitrogen) unter
Verwendung eines Baculovirus-Expressionsvektors (pAcG2T, Pharmingen) exprimiert.

Lysepuffer
50 mM Tris pH 7,4, 0,5 M NaCl, 5 mM DTT, 1 mM EDTA, 0,5% Triton X-100, 10% Glycerin, je 10 mg/ml Leupeptin, Pepstatin und Aprotinin sowie 1 mM Phenylmethylsulfonylfuorid (alle von Sigma).

Waschpuffer
50 mM Tris pH 7,4, 0,5 M NaCl, 5 mM DTT, 1 mM EDTA, 0,05% Triton X-100, 10% Glycerin, je 10 mg/ml Leupeptin, Pepstatin und Aprotinin sowie 1 mM Phenylmethylsulfonylfuorid.

Dialysepuffer
50 mM Tris pH 7,4, 0,5 M NaCl, 5 mM DTT, 1 mM EDTA, 0,05% Triton X-100, 50% Glycerin, je 10 mg/ml Leupeptin, Pepstatin und Aprotinin sowie 1 mM Phenylmethylsulfonylfuorid.

10× Reaktionspuffer
200 mM Tris, pH 7,4, 1,0 M NaCl, 50 mM MnCl₂, 10 mM DTT und 5 mg/ml Rinderserumalbumin [bovine serum albumin = BSA] (Sigma).

Enzymverdünnungspuffer
50 mM Tris, pH 7,4, 0,1 M NaCl, 1 mM DTT, 10% Glycerin, 100 mg/ml BSA.

10× Substrat
750 µg/ml Poly(glutaminsäure/Tyrosin; 4:1) (Sigma).

Stopp-Lösung
30% Trichloressigsäure, 0,2 M Natriumpyrophosphat (beide von Fisher).

Waschlösung
15% Trichloressigsäure, 0,2 M Natriumpyrophosphat.

Filterplatten
Millipore #MAFC NOB, GF/C 96-Well-Glasfaserplatte.

Verfahren A – Proteinaufreinigung
1. Die Sf21-Zellen wurden mit dem rekombinanten Virus bei einer m.o.i. (Multiplizität der Infektion) von 5 Virusspartikeln/Zelle infiziert und 48 Stunden lang bei 27°C gezüchtet.
2. Alle Schritte wurden bei 4°C durchgeführt. Die infizierten Zellen wurden durch Zentrifugieren bei 1000×g gerührt und 30 Minuten bei 4°C mit 1/10 Volumen Lysepuffer lysiert und anschließend 1 Stunde lang bei 100.000×g zentrifugiert. Der Überstand wurde dann über eine mit Lysepuffer äquilibrierte Glutathion-Sepharose-Säure (Pharmacia) gegeben und mit 5 Volumina des gleichen Puffers und anschließend 5 Volumina Waschpuffer gewaschen. Das rekombinante GST-KDR-Protein wurde mit Washpuffer/10 mM reduziertem Glutathion (Sigma) eluiert und gegen Dialysepuffer dialysiert.

Verfahren B – VEGF-Rezeptor kinase-Assay
1. Assay mit 5 μl Hemmstoff oder Kontrolle in 50% DMSO versetzen.
2. Mit 35 μl Reaktionsmischung, die 5 μl 10× Reaktionspuffer, 5 μl 25 mM ATP/10 μCi[^33]P]ATP (Amersham) und 5 μl 10× Substrat enthält, versetzen.
5. Reaktion durch Zugabe von 50 μl Stopp-Lösung stoppen.
6. 15 Minuten lang bei 4°C inkubieren.
7. 90-μl-Aliquot auf Filterplatte überführen.
9. 30 μl Szintillations-Cocktail zugeben, Platte verschließen und in einem Szintillations-Zähler Typ Wallac Microbeta zählen.

Mitogenese-Assay an menschlichen Nabelschnurvenenendothelzellen
Die Expression von VEGF-Rezeptoren, die mitogene Reaktionen auf den Wachstumsfaktor vermitteln, ist größtenteils auf Gefäßendothelzellen beschränkt. Kultierte menschliche Nabelschnurvenenendothelzellen (HUVECs) proliferieren als Reaktion auf Behandlung mit VEGF und können als Assaysystem zur quantitativen Bestimmung der Auswirkungen von KDR-Kinasehemmern auf die Stimulation des VEGF verwendet werden. In dem beschriebenen Assay werden Einzelzellschichten von HUVECs im Ruhezustand 2 Stunden vor der Zugabe von VEGF oder
„basic fibroblast growth factor“ (bFGF) mit dem Konstituens oder der Testverbindung behandelt. Die mitogene Reaktion auf VEGF oder bFGF wird durch Messung des Einbaus von [³H]Thymidin in die Zell-DNA bestimmt.

Materialien

HUVECs
Als Primärkulturisolate tiefgefrorene HUVECs werden von Clonetics Corp bezogen. Die Zellen werden im Endothel-Wachstumsmedium (Endothelial Growth Medium = EGM; Clonetics) erhalten und in der 3. — 7. Passage für die Mitogenitätsassays verwendet.

Kulturplatten
NUNCN 96-Well-Polystyrol-Gewebekulturplattten (NUNC #167008).

Assay-Medium
Nach Dulbecco modifiziertes Eagle-Medium mit 1 g/ml Glucose (DMEM mit niedrigem Glucosegehalt; Mediatech) plus 10% (v/v) fötales Rinderserum (Clonetics).

Testverbindungen
Mit den Arbeitsstammlösungen der Testverbindungen wird mit 100% Dimethylsulfoxid (DMSO) solange eine Reihenverdünnung durchgeführt, bis ihre Konzentrationen um das 400-fache höher als die gewünschte Endkonzentration sind. Die letzten Verdünnungen (Konzentration 1×) werden unmittelbar vor Zugabe zu den Zellen mit Assay-Medium hergestellt.

10× Wachstumsfaktoren
Lösungen des menschlichen VEGF 165 (500 ng/ml; R&D Systems) und bFGF (10 ng/ml; R&D Systems) werden mit Assay-Medium hergestellt.

10× [³H]-Thymidin
[Methyl-³H]-Thymidin (20 Ci/mmol; Dupont-NEN) wird mit DMEM-Medium mit niedrigem Glucosegehalt auf 80 μCi/ml verdünnt.

Zellwaschmedium
Hank’s balanced salt solution (Mediatech) mit 1 mg/ml Rinderserumalbumin (Boehringer-Mannheim).
Zell-Lyse-Lösung
1 N NaOH, 2% (w/v) Na₂CO₃.

Verfahren 1

In EGM gehaltene HUVEC-Einzelzellschichten werden durch Trypsinbehandlung geerntet und in einer Dichte von 4000 Zellen pro 100 µl Assay-Medium pro Näpfchen in 96-Well-Platten überimpft. Das Wachstum der Zellen wird 24 Stunden bei 37°C in einer 5% CO₂ enthaltenden feuchten Atmosphäre gestoppt.

Verfahren 2

Das Wachstumsstoppmedium wird durch 100 µl Assay-Medium ersetzt, das entweder das Konstituenten (0,25% [v/v] DMSO) oder die erwünschte Endkonzentration der Testverbindung enthält. Alle Bestimmungen werden in dreifacher Wiederholung durchgeführt. Die Zellen werden dann 2 Stunden bei 37°C/5% CO₂ inkubiert, so dass die Testverbindungen in die Zellen eindringen können.

Verfahren 3

Nach 2-stündiger Vorbehandlung werden die Zellen durch Zugabe von 10 µl Assay-Medium, 10× VEGF-Lösung oder 10× bFGF-Lösung pro Näpfchen stimuliert. Die Zellen werden dann bei 37°C/5% CO₂ inkubiert.

Verfahren 4

Nach 24 Stunden in Anwesenheit der Wachstumsfaktoren wird mit 10× [³H]-Thymidin (10 µl/well) versetzt.

Verfahren 5

Die TIE-2-Tests können z.B. analog der in WO 02/44156 angegebenen Methoden durchgeführt werden.

Der Assay bestimmt die inhibierende Aktivität der zu testenden Substanzen bei der Phosphorylierung des Substrats Poly(Glu, Tyr) durch Tie-2-Kinase in Gegenwart von radioaktivem ³²P-ATP. Das phosphorylierte Substrat bindet während der Inkubationszeit an die Oberfläche einer "flashplate"-Mikrotiterplatte. Nach Entfernen der Reaktionsmischung wird mehrmals gewaschen und anschließend die Radioaktivität an der Oberfläche der Mikrotiterplatte gemessen. Ein inhibierender Effekt der zu messenden Substanzen hat eine geringere Radioaktivität, verglichen mit einer ungestörten enzymatischen Reaktion, zur Folge.

Massenspektrometrie (MS): EI (Elektronenstoß-Ionisation) M⁺
FAB (Fast Atom Bombardment) (M+H)⁺
ESI (Electrospray Ionization) (M+H)⁺

APCI-MS (atmospheric pressure chemical ionization - mass spectrometry) (M+H)⁺.

Bestimmung der Retentionszeit Rₜ mittels HPLC:
Säule: Chromolith SpeedRPD, 50 x 4.6 mm² (Merck)
Gradient: 5.0 min, t = 0 min, A:B = 95:5, t = 4.4 min: A:B = 25:75, t = 4.5 min bis t = 5.0 min: A:B = 0:100
Fluss: 3.00 ml/min
Laufmittel A: Wasser + 0.1 % TFA (Trifluoressigsäure)
Laufmittel B: Acetonitril + 0.08 % TFA
Wellenlänge: 220 nm

Beispiel 1

Herstellung von 1-[4-(4-Chlor-2-methyl-3H-imidazo[4,5-c]pyridin-3-ylmethyl)-phenyl]-3-(2-fluor-5-trifluormethyl-phenyl)-harnstoff ("A1")

![Chemical Structure](image)

"A1"

1.1 Eine Lösung von 10,0 g 3,4-Diamino-2-chlor-pyridin und 6,62 ml Essigsäureanhydrid in 100 ml THF wird 16 Stunden bei Raumtemperatur gerührt. Das Produkt wird abgetrennt und getrocknet. Man erhält 7,3 g N-(4-Amino-2-chlor-pyridin-3-yl)-acetamid ("1").
1.2 7,3 g "1" wird in DMF gelöst und auf 5° abgekühlt. Man tropft eine Lösung von 5,05 g Kalium-tert.-butylat in DMF zu und rührt 45 Minuten unter Eiskühlung weiter. Dann wird eine Lösung von 9,38 g 4-Nitrobenzylbromid in DMF zugetropft. Bei Raumtemperatur wird 16 Stunden unter Stickstoffatmosphäre nachgerührt. Das Lösungsmittel wird entfernt und der Rückstand mit wasser aufgenommen. Das ausgefallene Produkt wird abgetrennt und getrocknet. Man erhält 3,5 g N-(4-Amino-2-chlor-pyridin-3-yl)-N-(4-nitro-benzyl)-acetamid ("2").

1.3 Eine Lösung von 3,5 g "2" und 13 ml 1N NaOH in Dioxan wird 16 Stunden unter Rückfluß erhitzt. Man arbeitet wie üblich auf und erhält 3,0 g 4-Chlor-2-methyl-3-(4-nitro-benzyl)-3H-imidazo[4,5-c]pyridin ("3")

```
\begin{tikzpicture}
  \node[anchor=north east] at (0,0) {\includegraphics[width=0.5\textwidth]{image.png}};
\end{tikzpicture}
```

1.4 3,0 g "3" wird in 60 ml THF in Anwesenheit von 0,6 g Raney-Nickel unter Standardbedingungen hydriert. Der Katalysator wird anschließend abgetrennt und wie üblich aufgearbeitet. Man erhält 3,2 g 4-Chlor-2-methyl-3-(4-amino-benzyl)-3H-imidazo[4,5-c]pyridin ("4"), das in das Hydrochlorid ("4a") überführt wird.

1.5 Eine Lösung von 92,76 mg "4a", 43,4 µl 2-Fluor-5-trifluormethylphenylisocyanat und 51,0 µl N-Ethylidiisopropylamin in 3 ml DMF wird 16 Stunden bei Raumtemperatur gerührt. Der Rückstand wird chromatographisch gereinigt und man erhält 30, 7 mg "A1", Rf 3.97.

Analog erhält man die nachstehenden Verbindungen
1-[4-(4-Chlor-2-methyl-3H-imidazo[4,5-c]pyridin-3-ylmethyl)-phenyl]-
3-(3-trifluormethyl-phenyl)-harnstoff, R_f 3.84;
1-[4-(4-Chlor-2-methyl-3H-imidazo[4,5-c]pyridin-3-ylmethyl)-phenyl]-
3-(3-fluor-5-trifluormethyl-phenyl)-harnstoff, R_f 4.05;
1-[4-(4-Chlor-2-methyl-3H-imidazo[4,5-c]pyridin-3-ylmethyl)-phenyl]-
3-(4-chlor-5-trifluormethyl-phenyl)-harnstoff, R_f 3.97;
1-[4-(4-Chlor-2-cyclopropyl-3H-imidazo[4,5-c]pyridin-3-ylmethyl)-
phenyl]-3-(2-fluor-5-trifluormethyl-phenyl)-harnstoff, R_f 4.32;
1-[4-(4-Chlor-2-cyclopropyl-3H-imidazo[4,5-c]pyridin-3-ylmethyl)-
phenyl]-3-(3-trifluormethyl-phenyl)-harnstoff, R_f 4.19;
1-[4-(4-Chlor-2-cyclopropyl-3H-imidazo[4,5-c]pyridin-3-ylmethyl)-
phenyl]-3-(3-fluor-5-trifluormethyl-phenyl)-harnstoff, R_f 4.37;
1-[4-(4-Chlor-2-cyclopropyl-3H-imidazo[4,5-c]pyridin-3-ylmethyl)-
phenyl]-3-(4-chlor-5-trifluormethyl-phenyl)-harnstoff, R_f 4.45;
1-[4-(4-Chlor-2-methyl-3H-imidazo[4,5-c]pyridin-3-ylmethyl)-phenyl]-
3-(2-methoxy-5-trifluormethyl-phenyl)-harnstoff, R_f 4.05;
1-[4-(4-Chlor-2-cyclopropyl-3H-imidazo[4,5-c]pyridin-3-ylmethyl)-
phenyl]-3-(2-methoxy-5-trifluormethyl-phenyl)-harnstoff, R_f 4.35.

Beispiel 2

Eine Lösung von 50 mg "A1" in 1 ml Ameisensäure (98-100%) wird 8
Stunden unter Rückfluß erhitzt und anschließend über einer RP18-Säule
aufgereinigt.
Man erhält 3 mg 1-[4-(4-Hydroxy-2-methyl-3H-imidazo[4,5-c]pyridin-3-
ylmethyl)-phenyl]-3-(2-fluor-5-trifluormethyl-phenyl)-harnstoff ("A2"), R_f
3.28.

Analog erhält man die nachstehenden Verbindungen
1-[4-(4-Hydroxy-2-methyl-3H-imidazo[4,5-c]pyridin-3-ylmethyl)-phenyl]-3-(3-trifluormethyl-phenyl)-harnstoff, \(R_I \) 3.36;
1-[4-(4-Hydroxy-2-methyl-3H-imidazo[4,5-c]pyridin-3-ylmethyl)-phenyl]-3-(3-fluor-5-trifluormethyl-phenyl)-harnstoff, \(R_I \) 3.36;
1-[4-(4-Hydroxy-2-methyl-3H-imidazo[4,5-c]pyridin-3-ylmethyl)-phenyl]-3-(4-chlor-5-trifluormethyl-phenyl)-harnstoff, \(R_I \) 3.41;
1-[4-(4-Hydroxy-2-cyclopropyl-3H-imidazo[4,5-c]pyridin-3-ylmethyl)-phenyl]-3-(2-fluor-5-trifluormethyl-phenyl)-harnstoff, \(R_I \) 3.55;
1-[4-(4-Hydroxy-2-cyclopropyl-3H-imidazo[4,5-c]pyridin-3-ylmethyl)-phenyl]-3-(3-trifluormethyl-phenyl)-harnstoff, \(R_I \) 3.47;
1-[4-(4-Hydroxy-2-cyclopropyl-3H-imidazo[4,5-c]pyridin-3-ylmethyl)-phenyl]-3-(3-chlor-5-trifluormethyl-phenyl)-harnstoff, \(R_I \) 3.63;
1-[4-(4-Hydroxy-2-cyclopropyl-3H-imidazo[4,5-c]pyridin-3-ylmethyl)-phenyl]-3-(3-chlor-5-trifluormethyl-phenyl)-harnstoff, \(R_I \) 3.71;
1-[4-(4-Hydroxy-2-methyl-3H-imidazo[4,5-c]pyridin-3-ylmethyl)-phenyl]-3-(2-methoxy-5-trifluormethyl-phenyl)-harnstoff, \(R_I \) 3.44;
1-[4-(4-Hydroxy-2-cyclopropyl-3H-imidazo[4,5-c]pyridin-3-ylmethyl)-phenyl]-3-(2-methoxy-5-trifluormethyl-phenyl)-harnstoff, \(R_I \) 3.6.
Die nachfolgenden Beispiele betreffen Arzneimittel:

Beispiel A: Injektionsgläser

Eine Lösung von 100 g eines Wirkstoffes der Formel I und 5 g Dinatriumhydrogenphosphat wird in 3 l zweifach destilliertem Wasser mit 2 N Salzsäure auf pH 6,5 eingestellt, steril filtriert, in Injektionsgläser abgefüllt, unter sterilen Bedingungen lyophilisiert und steril verschlossen. Jedes Injektionsglas enthält 5 mg Wirkstoff.

Beispiel B: Suppositorien

Man schmilzt ein Gemisch von 20 g eines Wirkstoffes der Formel I mit 100 g Sojalecithin und 1400 g Kakaobutter, gießt in Formen und läßt erkalten. Jedes Suppositorium enthält 20 mg Wirkstoff.

Beispiel C: Lösung

Man bereitet eine Lösung aus 1 g eines Wirkstoffes der Formel I, 9,38 g NaH$_2$PO$_4$ - 2 H$_2$O, 28,48 g Na$_2$HPO$_4$ - 12 H$_2$O und 0,1 g Benzalkoniumchlorid in 940 ml zweifach destilliertem Wasser. Man stellt auf pH 6,8 ein, füllt auf 1 l auf und sterilisiert durch Bestrahlung. Diese Lösung kann in Form von Augentropfen verwendet werden.

Beispiel D: Salbe

Man mischt 500 mg eines Wirkstoffes der Formel I mit 99,5 g Vaseline unter aseptischen Bedingungen.

Beispiel E: Tabletten
Ein Gemisch von 1 kg Wirkstoff der Formel I, 4 kg Lactose, 1,2 kg Kartoffelstärke, 0,2 kg Talk und 0,1 kg Magnesiumstearat wird in üblicher Weise zu Tabletten verpreßt, derart, daß jede Tablette 10 mg Wirkstoff enthält.

Beispiel F: Dragees

Analog Beispiel E werden Tabletten gepreßt, die anschließend in üblicher Weise mit einem Überzug aus Saccharose, Kartoffelstärke, Talk, Tragant und Farbstoff überzogen werden.

Beispiel G: Kapseln

2 kg Wirkstoff der Formel I werden in üblicher Weise in Hartgelatinekapseln gefüllt, so daß jede Kapsel 20 mg des Wirkstoffs enthält.

Beispiel H: Ampullen

Eine Lösung von 1 kg Wirkstoff der Formel I in 60 l zweifach destilliertem Wasser wird steril filtriert, in Ampullen abgefüllt, unter sterilen Bedingungen lyophilisiert und steril verschlossen. Jede Ampulle enthält 10 mg Wirkstoff.
Patentansprüche

1. Verbindungen der Formel I

\[\text{Diagramm mit chemischer Strukturformel} \]

worin

- \(R^{1a}, R^{1b}, R^{1c} \),
- \(R^{1d}, R^{1e} \),
- \(R^{2a}, R^{2b} \) jeweils unabhängig voneinander R, Hal, CN, NO\(_2\), NRR',
- NHCOR, NHSO\(_2\)R, OR, CO-R, COOR, CO-NHR, OA,
- SA, SO\(_3\)R, SO\(_2\)R und/oder SO\(_2\)NHR,
- zwei benachbarte Reste ausgewählt aus \(R^{1a}, R^{1b}, R^{1c}, R^{1d}, R^{1e} \)
- zusammen auch -O-CH\(_2\)-CH\(_2\)-, -O-CH\(_2\)-O- oder
- -O-CH\(_2\)-CH\(_2\)-O-, Hal oder OR,

- \(R^3 \) jeweils unabhängig voneinander H, A, -[C(R\(^4\))\(_2\)]\(_n\)-Ar,
- [C(R\(^4\))\(_2\)]\(_n\)-Het, [C(R\(^4\))\(_2\)]\(_p\)-O-C(R\(^4\))\(_2\)]\(_n\)-Ar,
- [C(R\(^4\))\(_2\)]\(_p\)-O-C(R\(^4\))\(_2\)]\(_n\)-Het,

- \(R^4 \) H oder A,
- \(R^5 \) H oder A,
- Ar unsubstituiertes oder ein-, zwei- oder dreifach durch
- Hal, A, OR\(^2\), N(R\(^4\))\(_2\), NO\(_2\), CN, COOR\(^4\), CON(R\(^4\))\(_2\),
- NR\(^4\)COA, NR\(^4\)SO\(_2\)A, COR\(^4\), SO\(_2\)N(R\(^4\))\(_2\),
- [C(R\(^4\))\(_2\)]\(_n\)-COOR\(^4\), -O-[C(R\(^4\))\(_2\)]\(_p\)-COOR\(^4\), SO\(_3\)H und/oder
- S(O)\(_p\)A substituiertes Phenyl, Naphthyl oder Biphenyl,
einen ein- oder zweikernigen gesättigten, ungesättigten oder aromatischen Heterocyclus mit 1 bis 4 N-, O- und/oder S-Atomen, der unsubstituiert oder ein-, zwei- oder dreifach durch Carbonylsauerstoff (=O), =S, =N(R^{4}{)}_{2}, Hal, A, [-C(R^{4}{)}_{2}]_{n}-Ar,
-C(R^{4}{)}_{2}]_{n}-Cycloalkyl,
-C(R^{4}{)}_{2}]_{n}-OR^{4}, [-C(R^{4}{)}_{2}]_{n}-N(R^{4}{)}_{2}, NO_{2}, CN,
-C(R^{4}{)}_{2}]_{n}-COOR^{4}, [-C(R^{4}{)}_{2}]_{n}-CON(R^{4}{)}_{2},
-C(R^{4}{)}_{2}]_{n}-NR^{4}COA, NR^{4}CON(R^{4}{)}_{2},
-C(R^{4}{)}_{2}]_{n}-NR^{4}SO_{2}A, COR^{4}, SO_{2}N(R^{4}{)}_{2} und/oder S(O)_{n}A substituiert sein kann,

A unverzweigtes oder verzweigtes Alkyl mit 1-10 C-Atomen, worin eine oder zwei CH_{2}-Gruppen durch O- oder S-Atome und/oder durch –CH=CH-Gruppen und/oder auch 1-7 H-Atome durch F ersetzt sein können,
oder cyclisches Alkyl mit 3-7 C-Atomen,

Hal F, Cl, Br oder I,
n 0, 1, 2, 3 oder 4,
p 1, 2, 3 oder 4
q 0, 1, 2, 3 oder 4

bedeuten,
sowie ihre pharmazeutisch verwendbaren Derivate, Solvate, Salze, Tautomere und Stereoisomere, einschließlich deren Mischungen in allen Verhältnissen.

2. Verbindungen nach Anspruch 1,
worin
R^{1a}, R^{1b}, R^{1c},
R^{1d}, R^{1e} jeweils unabhängig voneinander H, A, OA und/oder Hal

bedeuten,
sowie ihre pharmazeutisch verwendbaren Derivate, Solvate, Salze, Tautomere und Stereoisomere, einschließlich deren Mischungen in allen Verhältnissen.

3. Verbindungen nach Anspruch 1 oder 2, worin
\(R^{2a}, R^{2b} \) H bedeuten,
sowie ihre pharmazeutisch verwendbaren Derivate, Solvate, Salze, Tautomere und Stereoisomere, einschließlich deren Mischungen in allen Verhältnissen.

4. Verbindungen nach einem oder mehreren der Ansprüche 1-3, worin
\(R^3 \) Hal oder OH bedeutet,
sowie ihre pharmazeutisch verwendbaren Derivate, Solvate, Salze, Tautomere und Stereoisomere, einschließlich deren Mischungen in allen Verhältnissen.

5. Verbindungen nach einem oder mehreren der Ansprüche 1-4, worin
\(A \) unverzweigtes oder verzweigtes Alkyl mit 1-10 C-Atomen, worin 1-7 H-Atome durch F ersetzt sein können,
oder cyclisches Alkyl mit 3-7 C-Atomen,
bedeutet,
sowie ihre pharmazeutisch verwendbaren Derivate, Solvate, Salze, Tautomere und Stereoisomere, einschließlich deren Mischungen in allen Verhältnissen.

6. Verbindungen nach einem oder mehreren der Ansprüche 1-5, worin
\(R^{1a}, R^{1b}, R^{1c} \),
\(R^{1d}, R^{1e} \) jeweils unabhängig voneinander H, A, OA und/oder Hal,
\(R^{2a}, R^{2b} \) H,
\(R^3 \) Hal oder OH,
\(R^5 \) H oder A,
unverzweigtes oder verzweigtes Alkyl mit 1-10 C-
Atomen, worin 1-7 H-Atome durch F ersetzt sein
können,
or cyclisches Alkyl mit 3-7 C-Atomen,

Hal F, Cl, Br oder I,

wobei ihre pharmazeutisch verwendbaren Derivate, Solvate, Salze,
Tautomere und Stereoisomere, einschließlich deren Mischungen in
allen Verhältnissen.

7. Verbindungen nach Anspruch 1, ausgewählt aus der Gruppe

1-[4-(4-Chlor-2-methyl-3H-imidazo[4,5-c]pyridin-3-ylmethyl)-
phenyl]-3-(2-fluor-5-trifluormethyl-phenyl)-harnstoff,
1-[4-(4-Chlor-2-methyl-3H-imidazo[4,5-c]pyridin-3-ylmethyl)-
phenyl]-3-(3-trifluormethyl-phenyl)-harnstoff,
1-[4-(4-Chlor-2-methyl-3H-imidazo[4,5-c]pyridin-3-ylmethyl)-
phenyl]-3-(3-fluor-5-trifluormethyl-phenyl)-harnstoff,
1-[4-(4-Chlor-2-methyl-3H-imidazo[4,5-c]pyridin-3-ylmethyl)-
phenyl]-3-(4-chlor-5-trifluormethyl-phenyl)-harnstoff,
1-[4-(4-Chlor-2-cyclopropyl-3H-imidazo[4,5-c]pyridin-3-ylmethyl)-
phenyl]-3-(2-fluor-5-trifluormethyl-phenyl)-harnstoff,
1-[4-(4-Chlor-2-cyclopropyl-3H-imidazo[4,5-c]pyridin-3-ylmethyl)-
phenyl]-3-(3-trifluormethyl-phenyl)-harnstoff,
1-[4-(4-Chlor-2-cyclopropyl-3H-imidazo[4,5-c]pyridin-3-ylmethyl)-
phenyl]-3-(3-fluor-5-trifluormethyl-phenyl)-harnstoff,
1-[4-(4-Chlor-2-cyclopropyl-3H-imidazo[4,5-c]pyridin-3-ylmethyl)-
phenyl]-3-(4-chlor-5-trifluormethyl-phenyl)-harnstoff,
1-[4-(4-Chlor-2-methyl-3H-imidazo[4,5-c]pyridin-3-ylmethyl)-
phenyl]-3-(2-methoxy-5-trifluormethyl-phenyl)-harnstoff,
1-[4-(4-Chlor-2-cyclopropyl-3H-imidazo[4,5-c]pyridin-3-ylmethyl)-phenyl]-3-(2-methoxy-5-trifluormethyl-phenyl)-harnstoff,
1-[4-(4-Hydroxy-2-methyl-3H-imidazo[4,5-c]pyridin-3-ylmethyl)-phenyl]-3-(2-fluor-5-trifluormethyl-phenyl)-harnstoff,
1-[4-(4-Hydroxy-2-methyl-3H-imidazo[4,5-c]pyridin-3-ylmethyl)-phenyl]-3-(3-trifluormethyl-phenyl)-harnstoff,
1-[4-(4-Hydroxy-2-methyl-3H-imidazo[4,5-c]pyridin-3-ylmethyl)-phenyl]-3-(3-fluor-5-trifluormethyl-phenyl)-harnstoff,
1-[4-(4-Hydroxy-2-methyl-3H-imidazo[4,5-c]pyridin-3-ylmethyl)-phenyl]-3-(4-chlor-5-trifluormethyl-phenyl)-harnstoff,
1-[4-(4-Hydroxy-2-cyclopropyl-3H-imidazo[4,5-c]pyridin-3-ylmethyl)-phenyl]-3-(2-fluor-5-trifluormethyl-phenyl)-harnstoff,
1-[4-(4-Hydroxy-2-cyclopropyl-3H-imidazo[4,5-c]pyridin-3-ylmethyl)-phenyl]-3-(3-trifluormethyl-phenyl)-harnstoff,
1-[4-(4-Hydroxy-2-cyclopropyl-3H-imidazo[4,5-c]pyridin-3-ylmethyl)-phenyl]-3-(3-fluor-5-trifluormethyl-phenyl)-harnstoff,
1-[4-(4-Hydroxy-2-methyl-3H-imidazo[4,5-c]pyridin-3-ylmethyl)-phenyl]-3-(4-chlor-5-trifluormethyl-phenyl)-harnstoff,
1-[4-(4-Hydroxy-2-methyl-3H-imidazo[4,5-c]pyridin-3-ylmethyl)-phenyl]-3-(2-methoxy-5-trifluormethyl-phenyl)-harnstoff,
1-[4-(4-Hydroxy-2-cyclopropyl-3H-imidazo[4,5-c]pyridin-3-ylmethyl)-phenyl]-3-(2-methoxy-5-trifluormethyl-phenyl)-harnstoff,
sowie ihre pharmazeutisch verwendbaren Derivate, Solvate, Salze, Tautomere und Stereoisomere, einschließlich deren Mischungen in allen Verhältnissen.

8. Verfahren zur Herstellung von Verbindungen der Formel I nach den Ansprüchen 1-7 sowie ihrer pharmazeutisch verwendbaren Derivate, Salze, Solvate, Tautomeren und Stereoisomeren, dadurch gekennzeichnet, daß man
 a) eine Verbindung der Formel II
worin
R^{2a}, R^{2b}, R^{3} und R^{5} die in Anspruch 1 angegebenen Bedeutungen haben,

mit einer Verbindung der Formel III

worin R^{1a}-R^{1e} die in Anspruch 1 angegebenen Bedeutungen haben,

umgesetzt,

oder

b) einen Rest R^{3} in einen anderen Rest R^{3} umwandelt, indem man ein Halogenatom substituiert,

und/oder

eine Base oder Säure der Formel I in eines ihrer Salze umwandelt.

12. Verwendung nach Anspruch 11, wobei es sich bei den Tyrosinkinasen um TIE-2, VEGFR, PDGFR, FGFR und/oder FLT/KDR handelt.

13. Verwendung nach Anspruch 11 von Verbindungen gemäß Anspruch 1, sowie ihrer pharmazeutisch verwendbaren Derivate, Solvate und Stereoisomere, einschließlich deren Mischungen in allen Verhältnissen, zur Herstellung eines Arzneimittels zur Behandlung von Krankheiten, die durch Inhibierung der Tyrosinkinasen durch die Verbindungen nach Anspruch 1 beeinflußt werden.

14. Verwendung nach Anspruch 13, zur Herstellung eines Arzneimittels zur Behandlung von Krankheiten, die durch Inhibierung von TIE-2,
VEGFR, PDGFR, FGFR und/oder FLT/KDR durch die Verbindungen nach Anspruch 1 beeinflußt werden.

15. Verwendung nach Anspruch 13 oder 14, wobei die zu behandelnde Krankheit ein fester Tumor ist.

17. Verwendung nach Anspruch 15, wobei der feste Tumor aus der Gruppe Monozytenleukämie, Lungenadenokarzinom, kleinzellige Lungenkarzinome, Bauchspeicheldrüsenkrebs, Glioblastome und Brustkarzinom stammt.

18. Verwendung nach Anspruch 15, wobei der feste Tumor aus der Gruppe der Lungenadenokarzinom, kleinzellige Lungenkarzinome, Bauchspeicheldrüsenkrebs, Glioblastome, Kolonkarzinom und Brustkarzinom stammt.

19. Verwendung nach Anspruch 13 oder 14, wobei die zu behandelnde Krankheit ein Tumor des Blut- und Immunsystems ist.

20. Verwendung nach Anspruch 19, wobei der Tumor aus der Gruppe der akuten myelotischen Leukämie, der chronischen myelotischen Leukämie, akuten lymphatischen Leukämie und/oder chronischen lymphatischen Leukämie stammt.

22. Verwendung nach Anspruch 21, wobei es sich bei der Krankheit um eine Augenkrankheit handelt.

27. Verwendung von Verbindungen der Formel I gemäß Anspruch 1 und/oder ihrer physiologisch unbedenklichen Salze und Solvate zur Herstellung eines Arzneimittels zur Behandlung von festen Tumoren

31. Verwendung nach Anspruch 29, wobei die Erkrankungen ausgewählt sind aus der Gruppe der hyperproliferativen und nicht hyperproliferativen Erkrankungen.

32. Verwendung nach Anspruch 29 oder 31, wobei die Erkrankung Krebs ist.
33. Verwendung nach Anspruch 29 oder 31, wobei die Erkrankung nicht krebsartig ist.

34. Verwendung nach Anspruch 29, 31 oder 33, wobei die nicht krebsartigen Erkrankungen ausgewählt sind aus der Gruppe bestehend aus Psoriasis, Arthritis, Entzündungen, Endometriose, Vernarbung, gutartiger Prostatahyperplasie, immunologischer Krankheiten, Autoimmunkrankheiten und Immunschwächekrankheiten.

A. CLASSIFICATION OF SUBJECT MATTER
C07D471/04 A61K31/437 A61P35/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)
C07D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database consulted during the international search (name of data base and, where practical, search terms used)
EPO-Internal, CHEM ABS Data, BEILSTEIN Data, PAJ, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>WO 2004/078747 A (BAYER PHARMACEUTICALS CORPORATION; SCOTT, WILLIAM, J; DAMAS, JACQUES;) 16 September 2004 (2004-09-16) page 1, paragraph 2 page 58, paragraph 4 examples 108-153; table 1</td>
<td>1-35</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
 - "A" document defining the general state of the art which is not considered to be of particular relevance
 - "E" earlier document published on or after the international filing date
 - "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - "O" document referring to an oral disclosure, use, exhibition or other means
 - "P" document published prior to the international filing date but later than the priority date claimed
 - "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 - "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 - "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
 - "Z" document member of the same patent family

Date of the actual completion of the international search
14 February 2006

Date of mailing of the international search report
22/02/2006

Name and mailing address of the ISA
European Patent Office, P.B. 5816 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016

Authorized officer
Hoepfner, W
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CA 2517361 A1</td>
<td>16–09–2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 0314235 A</td>
<td>09–08–2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2498495 A1</td>
<td>25–03–2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1694889 A</td>
<td>09–11–2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1546157 A2</td>
<td>29–06–2005</td>
</tr>
</tbody>
</table>
INTERNATIONAL RECHERCHENBERICHT

Nach der Internationalen Patentklassifikation (IPC) oder nach der nationalen Klassifikation und der IPC

B. RESEARCHIERTE GEBIETE

Recherchiertes Mindestpräfix (Klassifikationssystem und Klassifikationssymbole)

C07D

Recherchierte, aber nicht zum Mindestpräfix gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, CHEM ABS Data, BEILSTEIN Data, PAJ, WPI Data

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

<table>
<thead>
<tr>
<th>Kategorie*</th>
<th>Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile</th>
<th>Betr. Anspruch Nr.</th>
</tr>
</thead>
</table>

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

Datum des Abschlusses der Internationalen Recherche

14. Februar 2006

Absendedatum des Internationalen Recherchenberichts

22/02/2006

Name und Postanschrift der Internationalen Recherchenbehörde

Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31-651 epo nl, Fax: (+31-70) 340-8016

Bevollmächtigter Bediensteter

Hoepfner, W
<table>
<thead>
<tr>
<th>Im Recherchenbericht angeführtes Patentdokument</th>
<th>Datum der Veröffentlichung</th>
<th>Mitglied(er) der Patentfamilie</th>
<th>Datum der Veröffentlichung</th>
</tr>
</thead>
<tbody>
<tr>
<td>WO 2004078747 A</td>
<td>16-09-2004</td>
<td>AU 2004217977 A1</td>
<td>16-09-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2517361 A1</td>
<td>16-09-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1599467 A1</td>
<td>30-11-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 0314235 A</td>
<td>09-08-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2498495 A1</td>
<td>25-03-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1694889 A</td>
<td>09-11-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1546157 A2</td>
<td>29-06-2005</td>
</tr>
</tbody>
</table>