
(12) United States Patent

USOO8261269B2

(10) Patent No.: US 8,261,269 B2
Garmark (45) Date of Patent: Sep. 4, 2012

(54) SYSTEMAND METHOD FOR 58.8%. A 'S Sea T19,312 Stedt .
SYNCHRONIZING TRANSIENT RESOURCE 2009,0178037 A1* 7, 2009 Winter et al. T18, 1
USAGE BETWEEN VIRTUAL MACHINES IN
A HYPERVISOR ENVIRONMENT OTHER PUBLICATIONS

PCT International Search Report in connection with PCT Applica
(75) Inventor: Sten Garmark, Stockholm (SE) tion No. PCT/US2010/047163 dated Dec. 2, 2010, 8 pages.

Shuf, “Exploiting Prolific Types of Memory Management and Opti
(73) Assignee: Oracle International Corporation, mizations'. ACM. vol. 37, No. 1, Jan. 2002, 12 pages.

Redwood Shores, CA (US) * cited by examiner

(*) Notice: Subject to any disclaimer, the term of this Primary Examiner — Emerson Puente
patent is extended or adjusted under 35 Assistant Examiner — Gregory Kessler
U.S.C. 154(b) by 310 days. (74) Attorney, Agent, or Firm — Fliesler Meyer LLP

(21) Appl. No.: 12/563,440 (57) ABSTRACT
A system and method for synchronizing transient resource

(22) Filed: Sep. 21, 2009 usage between virtual machines, e.g. Java Virtual Machines
(JVMs), running within a hypervisor. In accordance with an

(65) Prior Publication Data embodiment, the system allows for synchronizing garbage
f collection and code optimization to reduce transient proces

US 2011 FOOT2427 A1 Mar. 24, 2011 Sor (cpu) and memory usage. In accordance with an embodi
ment, the system comprises a computer, a hypervisor for

(51) Int. Cl. executing virtual servers running JVMs; a communication
G06F 9/455 (2006.01) channel between the virtual servers; wherein each virtual

(52) U.S. Cl. ... 718/1 server further comprises non-transient and transient memory
(58) Field of Classification Search None and a synchronization module. In accordance with an

See application file for complete search history. embodiment the synchronization modules Schedule garbage
collects and code optimizations to minimize overlaps,

(56) References Cited thereby reducing the peak transient memory and cpu usage

7,299.468 B2*
U.S. PATENT DOCUMENTS

1 1/2007 Casey et al. T18, 104
7,574.496 B2 * 8/2009 McCrory et al. 709,223

2004/0230949 A1* 11, 2004 Talwar et al. 717.118
2008.0034365 A1 2/2008 Dahlstedt T18, 1

and the resulting Volatility of transient resource usage within
a computer. In accordance with another embodiment, a cloud
manager can move virtual servers between computers to opti
mize computer volatility within a cloud.

20 Claims, 9 Drawing Sheets

63 -N.

Wait for a notification from any JVM that a garbage collect
or code optimization has started or ended or that the predicted
garbage collection time has changed.

Reques: garbage collection predictions from VMs
and update schedule accordingly.

884.

FF
Detect garbage collection overlaps in schedule,
minimize overlaps by advancing pedicted garbage collects.

86-y

avoid overlaps,

Detect conflicts between scheduled code optimizations and
garbage collects, postpones scheduled code optimizations to

Schedule new code optimizations using a rotard-robin scheme.

38 - Etter waiting state,

U.S. Patent

Non-Transient
Memory 110

Transient ...
Memory 116

Sep. 4, 2012

Computer 100

Wirtua Server
running a JVM

84

Internai JVM
memory 106

ava Heap
(38

Transient
Meriory for
Garbage
Collection

Syne Module 118

Sheet 1 of 9

Virtual Server
running a JVM

internal VM
memory i09

Java Heap

Hypervisor 102

FIG. 1

US 8,261,269 B2

Wirtua Server
running a JVM

87

Internai JVM
memory ii

Transient
Memory for
Code
Generation

U.S. Patent Sep. 4, 2012 Sheet 2 of 9 US 8,261,269 B2

Java fieap Size

/

83
s

24.

:

Cés

- - -- - ine
260 21& 24 208

Start GCloken

deadlines-1000ms

FIG. 2

U.S. Patent

First WM opt-queue
3O8.

Optimize
Buyer.toString

6.
32

Optimize -
Buyer.hasiCode

Optimize --
SeleplaceOrder

Sep. 4, 2012 Sheet 3 of 9

34 Second WM opt-queue
Opticken 3.
deadliness is

aOptimize

r ---aOptimize

---Optimize

Order performiPurchase.

Purchasechannel dispatch

Seeism(redit

N

real

FIG. 3

Optimize
sicServer FF

{Optimize
MusicParchase sample
Interrupted

3.

start Optimizing
MusicPurchase.Sample

r-Re
38

Opt Token
die&difie:2s

US 8,261,269 B2

Third JVM opt-queue
303

U.S. Patent Sep. 4, 2012 Sheet 5 Of 9 US 8,261,269 B2

E
8 S

S

6 S

SS

i& S i.

3 S

2s

S

} S

S

8 S

f S

6s

5 S

4 S

3 S

S

50
S rS.

S

s s i
SO)

FIG. 5

U.S. Patent Sep. 4, 2012 Sheet 6 of 9 US 8,261,269 B2

Wait for a notification from any JVM that a garbage collect
6(3) or code optimization has started or ended or that the predicted

garbage collection time has changed.

Request garbage collection predictions from JVMs
632 and update schedule accordingly.

Detect garbage collection overlaps in schedule,
64 minimize overlaps by advancing predicted garbage collects.

Detect conflicts between scheduled code optimizations and
86 N, garbage collects, postpones scheduled code optimizations to

avoid overlaps,

88 Schedule new code optimizations using a round-robin scheme,

6: Enter waiting state,

FIG. 6

U.S. Patent Sep. 4, 2012 Sheet 7 Of 9 US 8,261,269 B2

FS- iterate over a garage collects and capture the
Eaxiiim of concu Feini gaitage collects at airy tie.

For each gartage collect that overiaps any other,
calcitate how much it must be advanced to
reduce inaxis Ruin of concurrent garbage eclects,

* ---. Are there asy advanceable {Cs: s^i}
r

{h(xcise the advanceable gartage collect that needs
the eas: 33nourt of advancing.
Advance that garbage collect.

FIG. 7

U.S. Patent Sep. 4, 2012 Sheet 8 of 9 US 8,261,269 B2

General Cloud Management

Cload Wolatility Manager

Sync Master 812
Computer 804

US 8,261,269 B2 Sheet 9 Of 9 Sep. 4, 2012 U.S. Patent

Computer 906 Computer 902

Computer 916 Computer 914

FIG. 9

US 8,261,269 B2
1.

SYSTEMAND METHOD FOR
SYNCHRONIZING TRANSIENT RESOURCE
USAGE BETWEEN VIRTUAL MACHINES IN

A HYPERVISOR ENVIRONMENT

COPYRIGHT NOTICE

A portion of the disclosure of this patent document con
tains material which is Subject to copyright protection. The
copyright owner has no objection to the facsimile reproduc
tion by anyone of the patent document or the patent disclo
sure, as it appears in the Patent and Trademark Office patent
file or records, but otherwise reserves all copyright rights
whatsoever.

FIELD OF INVENTION

The invention is generally related to application servers
and virtual machines, and particularly to a system and method
for synchronizing transient resource usage between virtual
machines (for example JVMs) running within a hypervisor.

BACKGROUND

Server virtualization using hypervisors is a valuable tech
nique to reduce the operating costs of the server, as well as
improving the energy efficiency. A standard server with a
standard operating system and different server applications is
rarely fully used all the time. Since current server hardware
does not significantly reduce the energy consumption when
the software is idling, this will result in energy waste. Server
virtualization allows many virtual servers to run on a single
physical server, and therefore the processor (cpu) cycles and
memory that were previously wasted can instead be put to use
for another virtual server. The software that makes this pos
sible is referred to herein as a hypervisor.
When operating systems and server applications are virtu

alized onto physical hardware, a safety margin must be pro
vided to handle those situations when there is a Sudden Surge
in cpu cycles usage and/or memory usage by the server appli
cations. Depending on how Volatile the server applications
resource usage is, this margin can be small or large. If the
overall volatility of all virtual servers running within a hyper
visor is low, then the margins can be kept Small, and this will
generally provide higher savings since more virtual servers
can reliably be run on the same physical hardware.
Many server applications are currently written in the high

level language Java. Such applications are run with Java Vir
tual Machines (JVMs). Unfortunately the cpu-cycles and
memory usage for a JVM can be quite Volatile, and indepen
dent of the server application itself. This is due to the fact that
a JVM has to garbage collect the Java heap, as well as opti
mize code that has been detected as hot. These resource
usages are transient and can be significant.

Because of this, virtualized Java applications need larger
safety margins than other server applications, which means
that virtualization savings for virtualized Java server applica
tions are less than for other kinds of server applications. This
is an area that embodiments of the present invention are
intended to address.

SUMMARY

Disclosed herein is a system and method for synchronizing
transient resource usage between virtual machines, e.g. Java
Virtual Machines (JVMs), running within a hypervisor. In
accordance with an embodiment, the system allows for Syn

10

15

25

30

35

40

45

50

55

60

65

2
chronizing garbage collection and code optimization to
reduce transient processor (cpu) and memory usage. In accor
dance with an embodiment, the system comprises a com
puter; a hypervisor for executing virtual servers each running
a JVM; a communication channel between the virtual servers;
wherein each virtual server further comprises non-transient
and transient memory and a synchronization module. In
accordance with an embodiment the synchronization mod
ules Schedule garbage collects and code optimizations to
minimize overlaps, thereby reducing the peak transient
memory and cpuusage and the resulting Volatility of transient
resource usage withina computer. In accordance with another
embodiment, a cloud manager can move virtual servers
between computers to optimize computer Volatility within a
cloud.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 shows an illustration of a system for synchronizing
transient resource usage in accordance with an embodiment.

FIG. 2 shows a graph illustrating how a garbage collection
can be advanced, in accordance with an embodiment.

FIG. 3 shows an illustration of how concurrent code opti
mization in separate JVMs can be prevented using a round
robin Scheme, in accordance with an embodiment.

FIG. 4 shows an illustrating of how the synchronization is
achieved between three JVMs by advancing garbage collects
and postponing code optimizations, in accordance with an
embodiment.

FIG. 5 shows an illustration of achieved synchronization
and low volatility in a different scale, in accordance with an
embodiment.

FIG. 6 shows a flowchart of a method to synchronize the
transient resource usage, in accordance with an embodiment.

FIG. 7 shows a flowchart of a method to advance garbage
collects to avoid overlaps, in accordance with an embodi
ment.

FIG. 8 shows an illustration of how a cloud of computers
can be controlled by a cloud manager to reduce computer
Volatility, in accordance with an embodiment.

FIG. 9 shows an illustration of how a cloud of computers
can be controlled by a cloud manager to reduce computer
resource usage, in accordance with an embodiment.

DETAILED DESCRIPTION

Described herein is a system and method for synchronizing
transient resource usage between virtual machines, e.g. JVMs
running within a hypervisor. As described herein, it is desir
able to lower the resource usage volatility of each virtual
server to allow more virtual servers to be safely run within the
same hypervisor. Unfortunately JVMs have a rather high
Volatility with garbage collects and code optimizations that
can consume significant memory and processor (cpu)
SOUCS.

In accordance with an embodiment, a system and methodis
provided that enables transient resource usage to be synchro
nized by advancing or postponing the execution of processes
in the different JVMs thereby avoiding peaks in transient
resource usage; thus lowering the Volatility and allowing
more virtual servers to be run within a single hypervisor with
the same safety margins. This is possible since garbage col
lection and code optimization are processes where the former
can be advanced, and the latter postponed, without signifi
cantly affecting performance of the running system.

It is not always possible to avoid overlapping processes.
The number of overlapping transient processes over a fixed

US 8,261,269 B2
3

period of time is an indication of the overall volatility of the
computer. In accordance with an embodiment, this number
can be used to evaluate if a computer has good safety margins.
In accordance with another embodiment, virtual servers can
be moved between computers within a cloud to reduce vola
tility of servers with high volatility, and increase volatility of
servers with inefficiently low volatility. In accordance with
another embodiment, a tailored operating system that can
only run a single JVM can reduce the volatility of a virtual
server, since there are no other possible processes competing
for resources.

FIG. 1 shows an illustration of a system in accordance with
an embodiment. As shown in FIG. 1, an embodiment of the
system generally comprises a computer 100 with a hypervisor
102 on which a plurality of virtual servers 104,105, 107 are
running.

Each virtual server runs a JVM that needs internal memory
106, 109,111 to function. Each virtual server further includes
a Java heap 108, 113, 115, which is required to execute the
application server code. The internal memory and the heap
are both considered non-transient memory 110, that changes
size slowly, if at all.
A short-lived process, such as garbage collection, requires

memory 112 to execute. Other examples of short lived pro
cesses are code optimizations, and the memory 114 needed
for it to execute. The memory needed for these short lived
processes is considered transient memory 116.

Each virtual server contains a synchronization module 118,
119, 120. One of these synchronization modules is selected at
random to be the master synchronization module 120. The
master synchronization module uses a communication chan
nel 122 to synchronize the transient resource usage of all of
the virtual servers running within the hypervisor. This can be
used to, for example, prevent garbage collection and code
generation in different virtual servers from running concur
rently, and thereby reducing the peak usage of transient
memory and cpu cycles.

FIG. 2 shows a graph illustrating how a garbage collection
can be advanced, in accordance with an embodiment. As
shown in FIG. 2, the diagram 200 illustrates an example of
how the used memory 202 of the Java heap increases over
time.

Each small drop 204 in the used memory is the result of a
nursery garbage collection that is very fast and requires little
cpu and memory usage.
The large drop in used memory 206 is the result of an whole

heap garbage collection that can require a significant amount
of cpu and memory usage. The whole heap garbage collection
will be forced when all the Java heap is used up at the time
208. In accordance with an embodiment, this time can be
predicted with a linear approximation of the slope of the Java
heap usage graph and extending this line until it meets the
Java heap size 210. The end time of a garbage collect can be
predicted to be start time plus the length of the previous
garbage collect in the same JVM.
A garbage collect can be initiated at anytime before 208,

i.e. it is advanced ahead of its natural time of execution, which
is when the Java heap is full. At time 212 the master synchro
nization module needs to advance the predicted garbage col
lect from the time 208 to the time 214. In accordance with an
embodiment it does so by sending a Start GC token 216 using
the communication channel 122, together with a suitable
deadline to make sure the GC happens before time 214.

FIG. 3 shows an illustration how concurrent code optimi
Zation in separate JVMs can be prevented using around robin
scheme controlled by the master synchronization module, in
accordance with an embodiment. As shown in FIG. 3, three

5

10

15

25

30

35

40

45

50

55

60

65

4
optimization queues 300, 301,303 are provided, one for each
of the plurality of JVMs, wherein each queue contains a list of
methods that need to be optimized for that JVM. Optimized
code is usually not shared between different JVMs since
optimizations sometimes depend on runtime behavior that
can differ between the JVMs. Another reason for not sharing
the optimized code between different JVMs is that the opti
mized code also encodes several runtime references to fixed
addresses only valid within that particular JVM. If optimized
code was to be moved between different JVMs these refer
ences would have to be relinked. As shown in this example,
after the first JVM has optimized the method Buyer.toString
302, the synchronization module transfers an optimization
token 304 to the second JVM. The optimization token gives
the JVM the right to optimize a method for, at most, a certain
time specified by the optimization token, in this instance 1s.
Once the method is optimized, an optimization token can be
provided to another JVM, and the process continues in a
striping fashion across the plurality of JVMs.

Effectively every optimization at a JVM is postponed until
the JVM has received an optimization token. If the JVM has
failed to complete the optimization within the allotted time it
must abort the optimization, as illustrated in this instance by
the aborted optimization 306, and later restart the optimiza
tion when the JVM is later given a new optimization token.
The failure is reported to the synchronization module which
can send a modified optimization token 308 to the JVM that
doubles the length of the original time slot, in this instance to
2s. Thus the optimization of MusicPurchase.sample can be
subsequently restarted 310 and have a higher likelihood of
completion.

FIG. 4 shows an illustration of how the synchronization is
achieved between three JVMs by advancing garbage collects
and postponing code optimizations, in accordance with an
embodiment. As shown in FIG. 4, a schedule for garbage
collects and code optimizations evolves Successively from
different instances of the schedule 400, 402,404, 406 to 408.
Garbage collects are visualized as rectangles, and code opti
mizations are visualized as ellipses.

In the example shown, in a first instance of the schedule
400, at a time 412, the master synchronization module has
received a predicted garbage collect 414 from JVM1 starting
at time 412 and ending at time 416. It has also scheduled a
code optimization 418. JVM3 has predicted a garbage collect
420; and JVM2 has predicted a collect 422.
At time 424, the master synchronization module requests

new predictions from the JVMs and updates the schedule
from its original instance 400 to a modified instance 402. In
this example, the schedule is updated with the new predicted
garbage collect 426 for JVM 1. The master synchronization
module also detects that the predicted start time for garbage
collect 422 has moved to 428 and therefore overlaps with the
currently predicted garbage collect 420.
To resolve this, the master synchronization module updates

the schedule 404, and advances the garbage collect 420 to a
new time 430, which is enough to avoid overlap. It does so by
sending a suitable start GC token to JVM3. Unfortunately the
scheduled optimization 418 has to be postponed since it can
not be started as previous optimization statistics show that it
would not complete within the shortened time frame. It is
therefore moved to a time 432.
At time 434, the master synchronization module again

acquires the latest predictions from the JVMs and can there
fore update the schedule 406, 408, and schedule a new opti
mization 436.

FIG. 5 shows an illustration of achieved synchronization
and low volatility in a different scale, in accordance with an

US 8,261,269 B2
5

embodiment. As shown in FIG. 5, the schedule 500 illustrates
the actual garbage collections and code optimizations in a
scale 502 that reflects the real world values (in this example
20 seconds). A garbage collect is again visualized as a rect
angle 504 and a code optimization is visualized as an ellipse 5
506. In the example shown, most of the garbage collects and
the code optimizations are non-overlapping, except for 508
where two garbage collects are scheduled to happen at the
same time, and 510 where one garbage collect and one code
optimization happen at the same time. It is worth noting that
no two code optimizations are scheduled to happen at the
same time. The number of overlaps are therefore 2, which is
the volatility of the computer for a period of 20 seconds.

FIG. 6 shows a flowchart of a method to synchronize the
transient resource usage, in accordance with an embodiment.
As shown in FIG. 6, in step 600 the master synchronization
module will wait for a notification from any JVM that a
garbage collect or code optimization has started or ended. A
JVM might also notify the master synchronization module
that the previously reported predicted garbage collection time
has changed. In step 602, the master synchronization module
requests predictions of the start and end times for garbage
collects from all the JVMs running within the hypervisor. It
updates the schedule accordingly. At step 604, the master
synchronization module detects garbage collection overlaps
and minimizes overlaps by advancing the start times of pre
dicted garbage collects. There can still be overlaps if a JVM is
forced to garbage collect earlier than predicted orifa garbage
collect cannot be advanced. This can happen if the application
behavior suddenly changes. At step 606, the master synchro
nization module detects overlaps between code optimizations
and garbage collects, if it finds any, the code optimizations are
postponed to avoid overlaps. There can still be overlaps if a
JVM is forced to garbage collect earlier than predicted. At
step 608, the master synchronization module schedules new
code optimization using a round robin Scheme. At step 610,
the master synchronization module enters the wait state
again.

FIG. 7 shows a flowchart of a method to advance garbage
collects to avoid overlaps, in accordance with an embodi
ment. As shown in FIG. 7, in step 700 the master synchroni
Zation module iterates over each start and endpoint in time of
each garbage collect. At each point in time, it counts how
many other garbage collects are active at that particular point 45
in time. It stores the maximum number of concurrently active
garbage collections. In step 702, it is checked if the stored
number is Zero, since if Zero then there are no overlapping
garbage collections and the method will finish 704. If there
are overlapping garbage collects 706, then in step 708 the 50
method calculates, for each garbage collect, that overlaps any
other, how much the garbage collect must be advanced until
the maximum number of concurrently overlapping garbage
collects is reduced. A garbage collect that, no matter how
much it is advanced cannot reduce the maximum number of 55
concurrent garbage collects is non-advanceable. If all gar
bage collects are non-advanceable 712, then the method is
finished. If there are advanceable garbage collects 714 then
the system picks the one that requires the least amount of
advancing 716 and advances this garbage collect. The method 60
then restarts at step 700.

The method shown in FIG. 7 must eventually terminate,
since at each iteration it will reduce the maximum number of
concurrent garbage collects (step 716). If it cannot reduce the
number of concurrent garbage collects it will terminate, either 65
at Step 702 when there are no overlapping garbage collects, or
at step 710 when no improvement can be made.

10

15

25

30

35

40

6
FIG. 8 shows an illustration of how a cloud of computers

can be controlled by a cloud manager to reduce computer
Volatility, in accordance with an embodiment. As shown in
FIG. 8, a cloud of computers 800 comprises individual com
puters 802, 804, 806, each executing a plurality of virtual
servers executing one or more JVMs 808. The JVMs within
each single computer is associated with a master synchroni
zation module 810, 812, 814 at that computer. In accordance
with an embodiment, the master synchronization modules are
controlled by a cloud volatility manager 816, which can work
together with other management tools 818 generally provided
with such cloud environments. If a first computer 802 has a
high overall volatility, i.e. there are many collisions between
garbage collects and code optimizations between the virtual
servers running on this computer, and a second computer 804
has a low overall volatility, then the cloud volatility manager
816 can decide to switch orchange the computer hosts 824 for
the virtual servers 820 and 822. If the overall volatility of the
computer 802 did not decrease more than the overall volatility
of 804 increased, then the Switch would be reverted. In accor
dance with an embodiment the switch could be preceded by a
check that the virtual server 820 has a more unpredictable
behavior than the virtual server 822. This can for example be
measured by the standard deviation of the distance between
garbage collects.

FIG. 9 shows an illustration of how a cloud of computers
can be controlled by a cloud manager to reduce computer
resource usage, inaccordance with an embodiment. As shown
in FIG. 9, a cloud of computers 900 comprises individual
computers 902,904,906, each executing a plurality of virtual
servers executing one or more JVMs. Each JVM has a non
transient memory usage 908 and a transient memory usage
910. To achieve the largest memory and cpu usage savings, it
is also important for the cloud volatility manager to locate
virtual servers with the same transient memory and cpuusage
on the same computer. Cloud 900 is therefore suboptimal
since all the computers 902, 904 and 906 require the same
large amount of transient memory. By relocating the virtual
servers into a new cloud configuration 911 the maximum
transient memory usage of the server 912 is almost equivalent
to the original configuration 902. However the maximum
transient memory usage is significantly reduced for 914 and
916 compared to their original configurations 904 and 906. In
accordance with an embodiment such a relocation is based on
the mean and standard deviation of the transient memory
usage of the virtual servers. Since the transient memory usage
is reduced, more virtual servers can be hosted on the comput
ers 914 and 916.
The present invention may be conveniently implemented

using one or more conventional general purpose or special
ized digital computer, computing device, machine, or micro
processor programmed according to the teachings of the
present disclosure. Appropriate Software coding can readily
be prepared by skilled programmers based on the teachings of
the present disclosure, as will be apparent to those skilled in
the software art.

In some embodiments, the present invention includes a
computer program product which is a storage medium or
computer-readable medium (media) having instructions
stored thereon/in which can be used to program a computer to
perform any of the processes of the present invention. The
storage medium can include, but is not limited to, any type of
disk including floppy disks, optical discs, DVD, CD-ROMs,
microdrive, and magneto-optical disks, ROMs, RAMs.
EPROMs, EEPROMs, DRAMs, VRAMs, flash memory
devices, magnetic or optical cards, nanosystems (including

US 8,261,269 B2
7

molecular memory ICs), or any type of media or device
Suitable for storing instructions and/or data.
The foregoing description of the present invention has been

provided for the purposes of illustration and description. It is
not intended to be exhaustive or to limit the invention to the
precise forms disclosed. Many modifications and variations
will be apparent to the practitioner skilled in the art. The
embodiments were chosen and described in order to best
explain the principles of the invention and its practical appli
cation, thereby enabling others skilled in the art to understand
the invention for various embodiments and with various
modifications that are Suited to the particular use contem
plated. It is intended that the scope of the invention be defined
by the following claims and their equivalence.
What is claimed is:
1. A system for synchronizing transient resource usage

between virtual servers in a hypervisor environment, com
prising:

a computer which includes
a hypervisor running thereon, for executing virtual Serv

ers, and
a communication channel, that enables synchronization

between the virtual servers;
a plurality of virtual servers executing on the hypervisor

and including a plurality of synchronization modules,
wherein each virtual server includes
a non-transient memory space or heap, for storage and

execution of relatively longer-lived processes,
a transient memory space or heap, for storage and execu

tion of relatively shorter-lived processes, and
a synchronization module that uses the communication

channel to communicate with synchronization mod
ules at others of the virtual servers;

wherein a master synchronization module is selected
within the plurality of synchronization modules; and

wherein the virtual servers can advance or postpone execu
tion of those processes that make use of the transient
memory space or heap, to synchronize transient
resource usage between the plurality of virtual servers,
including wherein the master synchronization module
uses the communication channel to pass tokens to the
virtual servers, wherein each token provides a receiving
virtual server a right to perform a garbage collection or
code optimization task within a certain period of time
specified by the token, and wherein if the task is not
completed by the receiving virtual server within that
period of time, the receiving virtual server aborts the
task.

2. The system of claim 1, wherein each virtual server runs
one or more Java Virtual Machines (JVMs).

3. The system of claim 2, wherein one or more of the virtual
servers has an operating system tailored to only run a single
JVM, and to reduce volatility of the single JVM.

4. The system of claim 2, wherein the non-transient
memory space or heap includes internal JVM memory and
Java Heap memory.

5. The system of claim 1, wherein the transient memory
space or heap is memory used for garbage collection pro
CCSSCS.

6. The system of claim 1, wherein the transient memory
space or heap is memory used for code optimization pro
CCSSCS.

7. The system of claim 1, wherein each of the plurality of
synchronization modules determines predictions of times of
garbage collects, code optimizations, or other processes at
that virtual server, and communicates the predictions to the
master synchronization module.

10

15

25

30

35

40

45

50

55

60

65

8
8. The system of claim 7, wherein the transient memory

space or heap is memory used for garbage collection pro
cesses, and wherein the master synchronization module
advances garbage collects at particular ones of the virtual
servers, based on the predictions received from Synchroniza
tion modules at those particular virtual servers, to avoid over
laps with other garbage collects at others of the virtual serv
CS.

9. The system of claim 7, wherein the transient memory
space or heap is memory used for code optimization pro
cesses, and wherein the master synchronization module post
pones code optimizations at particular ones of the virtual
servers, based on the predictions received from Synchroniza
tion modules at those particular virtual servers, to avoid over
laps with garbage collects and other code optimizations at
others of the virtual servers.

10. The system of claim 7, wherein the number of actual
overlaps is used to determine if a computer can host more
virtual servers.

11. The system of claim 7, wherein the master synchroni
Zation module requests new predictions from the synchroni
Zation modules at the other virtual servers, and uses the pre
dictions to update a schedule of garbage collects, code
optimizations, or other processes, from an original schedule
to a modified schedule.

12. The system of claim 7, wherein the synchronization
module uses the communication channel to communicate
information between the plurality of virtual servers, and to
synchronize transient resource usage between the virtual
SWCS.

13. The system of claim 1, wherein the communication
channel is provided as part of the hypervisor.

14. The system of claim 7, wherein each of the synchroni
Zation modules performs the steps of

waiting for a notification from a virtual server,
requesting garbage collection predictions from all other

virtual servers,
detecting and minimizing the number of garbage collection

overlaps by advancing garbage collects as necessary,
detecting and minimizing the number of code optimization

overlaps by postponing code optimizations as necessary,
and

scheduling garbage collects, code optimizations, or other
processes to synchronize transient resource usage
between the plurality of virtual servers.

15. The system of claim 1, wherein the system is used as a
component for controlling the volatility of a cloud of virtual
servers, and wherein the system further comprises:

a cloud volatility manager that monitors the volatility of
computers within the cloud;

a plurality of computers participating in the cloud, each of
which one or more computers further includes virtual
servers with measured resource usage Volatility, and
configured to synchronize transient resource usage
between the plurality of virtual servers; and

wherein the cloud volatility manager can Switch or move
virtual servers from a first of the plurality of computers
participating in the cloud, to a second of the plurality of
computers participating in the cloud, to improve Volatil
ity in the cloud.

16. The system of claim 1, wherein if the garbage collec
tion or code optimization task is not completed by the receiv
ing virtual server within the period of time such that the
receiving virtual server aborts the task, the failure is reported
to the synchronization module which Subsequently sends a
modified token to the virtual server specifying an increased
period of time.

US 8,261,269 B2

17. A method of synchronizing transient resource usage
between virtual servers running in a hypervisor environment,
comprising the steps of

providing a computer which includes
a hypervisor running thereon, for executing virtual Serv

ers, and
a communication channel, that enables synchronization

between the virtual servers;
providing a plurality of virtual servers executing on the

hypervisor and including a plurality of synchronization
modules, wherein each virtual server includes
a non-transient memory space or heap, for storage and

execution of relatively longer-lived processes,
a transient memory space or heap, for storage and execu

tion of relatively shorter-lived processes, and
a synchronization module that uses the communication

channel to communicate with synchronization mod
ules at others of the virtual servers;

Selecting a master synchronization within the plurality of
synchronization modules; and

using the communication channel to pass tokens from the
master synchronization module to the virtual servers,
wherein each token provides a receiving virtual server a
right to perform a garbage collection or code optimiza
tion task within a certain period of time specified by the
token, and wherein if the task is not completed by the
receiving virtual server within that period of time, the
receiving virtual server aborts the task, such that the
virtual servers can advance or postpone execution of
those processes that make use of the transient memory
space or heap, to synchronize transient resource usage
between the plurality of virtual servers.

18. The method of claim 17, wherein each of the plurality
of virtual servers further comprises a synchronization module
which determines predictions of times of garbage collects,
code optimizations, or other processes at that virtual server,
and wherein each of the synchronization modules performs
the steps of:

waiting for a notification from a virtual server,
requesting garbage collection predictions from all other

virtual servers,
detecting and minimizing the number of garbage collection

overlaps by advancing garbage collects as necessary,
detecting and minimizing the number of code optimization

overlaps by postponing code optimizations as necessary,
and

Scheduling garbage collects, code optimizations, or other
processes to synchronize transient resource usage
between the plurality of virtual servers.

10
19. The method of claim 17, wherein the method is used as

a component for controlling the volatility of a cloud of virtual
servers, and wherein the method further comprises:

providing a cloud volatility manager that monitors the
5 volatility of computers within the cloud;

providing a plurality of computers participating in the
cloud, each of which one or more computers further
includes virtual servers with measured resource usage
Volatility, and configured to synchronize transient
resource usage between the plurality of virtual servers;
and

wherein the cloud volatility manager can Switch or move
virtual servers from a first of the plurality of computers
participating in the cloud, to a second of the plurality of
computers participating in the cloud, to improve Volatil
ity in the cloud.

20. A non-transitory computer-readable medium, includ
ing instructions stored thereon which, when read and
executed by one or more computers, causes the one or more
computers to perform the method comprising the steps of

providing a computer which includes
a hypervisor running thereon, for executing virtual serv

ers, and
a communication channel, that enables synchronization

between the virtual servers;
providing a plurality of virtual servers executing on the

hypervisor and including a plurality of synchronization
modules, wherein each virtual server includes
a non-transient memory space or heap, for storage and

execution of relatively longer-lived processes,
a transient memory space or heap, for storage and execu

tion of relatively shorter-lived processes, and
a synchronization module that uses the communication

channel to communicate with synchronization mod
ules at others of the virtual servers;

selecting a master synchronization within the plurality of
synchronization modules; and

using the communication channel to pass tokens from the
master synchronization module to the virtual servers,
wherein each token provides a receiving virtual server a
right to perform a garbage collection or code optimiza
tion task within a certain period of time specified by the
token, and wherein if the task is not completed by the
receiving virtual server within that period of time, the
receiving virtual server aborts the task, such that the
virtual servers can advance or postpone execution of
those processes that make use of the transient memory
space or heap, to synchronize transient resource usage
between the plurality of virtual servers.

10

15

25

30

35

40

45

k k k k k

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. : 8,261,269 B2 Page 1 of 1
APPLICATIONNO. : 12/563440
DATED : September 4, 2012
INVENTOR(S) : Garmark

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the drawings: On sheet 6 of 9, in figure 6, Box 610, line 1, delete “state, and insert -- state. --,
therefor.

In column 4, line 42, delete “JVM1 and insert -- JVM 1 --, therefor.

Signed and Sealed this
Eighteenth Day of December, 2012

()

David J. Kappos
Director of the United States Patent and Trademark Office

