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REDUCED FALSE POSITIVE
IDENTIFICATION FOR SPECTROSCOPIC
QUANTIFICATION

RELATED APPLICATION

This application claims priority under 35 U.S.C. § 119 to
U.S. Provisional Patent Application No. 62/622,641 filed on
Jan. 26, 2018, the content of which is incorporated by
reference herein in its entirety.

BACKGROUND

Raw material identification may be utilized for quality-
control of pharmaceutical products. For example, raw mate-
rial identification may be performed on a medical material to
determine whether component ingredients of the medical
material correspond to a packaging label associated with the
medical material. Similarly, raw material quantification may
be performed to determine a concentration of a particular
component of a particular sample. For example, raw mate-
rial quantification may be performed to determine the con-
centration of an active ingredient in a medicine. Spectros-
copy may facilitate non-destructive raw material
identification and/or quantification with reduced preparation
and data acquisition time relative to other chemometric
techniques.

SUMMARY

According to some possible implementations, a device
may include one or more memories communicatively
coupled to one or more processors. The one or more
memories and the one or more processors may be configured
to receive information identifying results of a spectroscopic
measurement performed on an unknown sample. The one or
more memories and the one or more processors may be
configured to determine a decision boundary for a quanti-
fication model based on a configurable parameter, such that
a first plurality of training set samples of the quantification
model is within the decision boundary and a second plurality
of training set samples of the quantification model is not
within the decision boundary. The one or more memories
and the one or more processors may be configured to
determine a distance metric for the spectroscopic measure-
ment performed on the unknown sample relative to the
decision boundary. The one or more memories and the one
or more processors may be configured to determine a
plurality of distance metrics for the second plurality of
training set samples of the quantification model relative to
the decision boundary. The one or more memories and the
one or more processors may be configured to determine
whether the spectroscopic measurement performed on the
unknown sample corresponds to the quantification model
based on the distance metric for the spectroscopic measure-
ment and the plurality of distance metrics for the second
plurality of training set samples. The one or more memories
and the one or more processors may be configured to provide
information indicating whether the spectroscopic measure-
ment performed on the unknown sample corresponds to the
quantification model.

According to some possible implementations, a non-
transitory computer-readable medium may store one or more
instructions. The one or more instructions, when executed
by one or more processors, may cause the one or more
processors to obtain a quantification model relating to a
particular type of material of interest. The quantification
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model may be configured for determining a concentration of
a particular component in samples of the particular type of
the material of interest. The one or more instructions, when
executed by the one or more processors, may cause the one
or more processors to receive information identifying a
result of a particular spectroscopic measurement performed
on an unknown sample. The one or more instructions, when
executed by the one or more processors, may cause the one
or more processors to aggregate other spectroscopic mea-
surements of training set samples of the quantification model
into a single class for the quantification model. The one or
more instructions, when executed by the one or more
processors, may cause the one or more processors to sub-
divide the other spectroscopic measurements of the training
set samples into a first group and a second group. The first
group of the other spectroscopic measurements may be
within a decision boundary. The second group of the other
spectroscopic measurements may not be within the decision
boundary. The one or more instructions, when executed by
the one or more processors, may cause the one or more
processors to determine that a metric for the particular
spectroscopic measurement performed on the unknown
sample relative to corresponding metrics for the second
group of the other spectroscopic measurements satisfies a
threshold. The one or more instructions, when executed by
the one or more processors, may cause the one or more
processors to provide information indicating that the
unknown sample is not the particular type of the material of
interest.

According to some possible implementations, a method
may include receiving, by a device, information identifying
results of a near infrared (NIR) spectroscopic measurement
performed on an unknown sample. The method may include
determining, by the device, a decision boundary for a
quantification model, wherein the decision boundary divides
a single class of the quantification model into a first plurality
of training set samples of the quantification model within the
decision boundary and a second plurality of training set
samples of the quantification model is not within the deci-
sion boundary. The method may include determining, by the
device, that a particular distance metric for the NIR spec-
troscopic measurement performed on the unknown sample
satisfies a threshold relative to other distance metrics for the
second plurality of training set samples. The method may
include providing, by the device, information indicating that
the NIR spectroscopic measurement performed on the
unknown sample does not correspond to the quantification
model based on determining that the particular distance
metric for the NIR spectroscopic measurement performed on
the unknown sample satisfies the threshold relative to the
other distance metrics for the second plurality of training set
samples.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1A and 1B are diagrams of an overview of an
example implementation described herein;

FIG. 2 is a diagram of an example environment in which
systems and/or methods, described herein, may be imple-
mented;

FIG. 3 is a diagram of example components of one or
more devices of FIG. 2;

FIG. 4 is a flow chart of an example process for generating
a quantification model for spectroscopic quantification;

FIG. 5 is a diagram of an example implementation relat-
ing to the example process shown in FIG. 4;
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FIG. 6 is a flow chart of an example process for avoidance
of false positive identification during spectroscopic quanti-
fication; and

FIGS. 7A and 7B are diagrams of an example implemen-
tation relating to the example process shown in FIG. 6.

DETAILED DESCRIPTION

The following detailed description of example implemen-
tations refers to the accompanying drawings. The same
reference numbers in different drawings may identify the
same or similar elements.

Raw material identification (RMID) is a technique uti-
lized to identify components (e.g., ingredients) of a particu-
lar sample for identification, verification, and/or the like. For
example, RMID may be utilized to verify that ingredients in
a pharmaceutical material correspond to a set of ingredients
identified on a label. Similarly, raw material quantification is
a technique utilized to perform a quantitative analysis on a
particular sample, such as determining a concentration of a
particular component material in the particular sample. A
spectrometer may be utilized to perform spectroscopy on a
sample (e.g., the pharmaceutical material) to determine
components of the sample, concentrations of components of
the sample, and/or the like. The spectrometer may determine
a set of measurements of the sample and may provide the set
of measurements for a spectroscopic determination. A spec-
troscopic classification technique (e.g., a classifier) may
facilitate determination of the components of the sample or
concentrations of the components of the sample based on the
set of measurements of the sample.

However, some unknown samples, which are to be subject
to a spectroscopic quantification, are not actually included in
a class of materials that a quantification model is configured
to quantify. For example, for a quantification model trained
to determine a concentration of a particular type of protein
in samples of fish, a user may inadvertently provide a sample
of beef for quantification. In this case, a control device may
perform a spectroscopic quantification of the sample of beef,
and may provide an identification of the sample of beef as
having a particular concentration of the particular type of
protein. However, because of differences between spectro-
scopic signatures of beef and fish and proteins thereof, the
identification may be inaccurate, and may be termed a false
positive identification.

As another example, a quantification model may be
trained to quantify relative concentrations of different types
of sugar (e.g., glucose, fructose, galactose, and/or the like)
and in unknown samples. However, a user of a spectrometer
and a control device may inadvertently attempt to classify an
unknown sample of sugar based on incorrectly using the
spectrometer to perform a measurement. For example, the
user may operate the spectrometer at an incorrect distance
from the unknown sample, at environmental conditions
different from calibration conditions at which spectroscopy
was performed to train the quantification model, and/or the
like resulting in an incorrectly obtained measurement. In this
case, the control device may receive an inaccurate spectrum
for the unknown sample resulting in a false positive iden-
tification of the unknown sample as having a first type of
sugar at a first concentration, when the unknown sample
actually includes a second type of sugar at a second con-
centration.

Some implementations, described herein, may use a
single class support vector machine (SC-SVM) technique to
reduce a likelihood of false positive identification in spec-
troscopic quantification. For example, a control device that
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receives a spectroscopic measurement of an unknown
sample may determine whether the spectroscopic measure-
ment of the unknown sample corresponds to a class of
materials that a spectroscopic model is configured to quan-
tify. In some implementations, the control device may
determine that the unknown sample is not associated with
the class of materials that the spectroscopic model is con-
figured to quantify, and may provide information indicating
that the unknown sample is not associated with the class of
materials, thereby avoiding a false positive identification of
the unknown sample. Alternatively, based on determining
that the unknown sample is associated with the class of
materials that the spectroscopic model is configured to
quantify, the control device may analyze a spectrum of the
unknown sample to provide a spectroscopic determination,
such as of a concentration, a classification, and/or the like.
Furthermore, the control device may utilize confidence
metrics, such as probability estimates, decision values, and/
or the like to filter out false positive identifications.

In this way, an accuracy of spectroscopy is improved
relative to spectroscopy performed without identification of
potential error samples (e.g., samples associated with a class
of materials for which a spectroscopic model is not config-
ured or samples for which a spectroscopic measurement is
incorrectly obtained) and/or confidence metrics. Moreover, a
determination of whether a material is associated with a
class for which a spectroscopic model is configured may be
used when generating a quantification model based on a
training set of known spectroscopic samples. For example,
a control device may determine that a sample, of the training
set, is not of a type corresponding to the rest of the training
set (e.g., based on human error resulting in an incorrect
sample being introduced into the training set), and may
determine not to include data regarding the sample when
generating a quantification model. In this way, the control
device improves an accuracy of quantification models for
spectroscopy.

FIGS. 1A and 1B are diagrams of an overview of an
example implementation 100 described herein. As shown in
FIG. 1A, example implementation 100 may include a con-
trol device and a spectrometer.

As further shown in FIG. 1A, the control device may
cause the spectrometer to perform a set of spectroscopic
measurements on a training set and a validation set (e.g., a
set of known samples utilized for training and validation of
a classification model). The training set and the validation
set may be selected to include a threshold quantity of
samples for a component for which a quantification model is
to be trained. Materials, in which the component may occur
and which may be used to train the quantification model,
may be termed materials of interest. In this case, the training
set and the validation set may include, for example, a first
group of samples representing a first concentration of a
material of interest, a second group of samples representing
a second concentration of the material of interest, and/or the
like to enable training of a quantification model to identify
concentrations of the material of interest in unknown
samples.

As further shown in FIG. 1A, the spectrometer may
perform the set of spectroscopic measurements on the train-
ing set and the validation set based on receiving an instruc-
tion from the control device. For example, the spectrometer
may determine a spectrum for each sample of the training set
and the validation set to enable the control device to generate
a set of classes for classifying an unknown sample as one of
the materials of interest for the quantification model.
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The spectrometer may provide the set of spectroscopic
measurements to the control device. The control device may
generate a quantification model using a particular determi-
nation technique and based on the set of spectroscopic
measurements. For example, the control device may gener-
ate a quantification model using a support vector machine
(SVM) technique (e.g., a machine learning technique for
information determination), such as a single class SVM
(SC-SVM) technique. The quantification model may include
information associated with assigning a particular spectrum
to a particular concentration of a component of a material of
interest (e.g., a particular level of concentration of the
component in the material of interest). In this way, a control
device can provide information identifying a concentration
of' a component in an unknown sample based on assigning
a spectrum of the unknown sample to a particular class of
concentration of the quantification model corresponding to a
particular concentration.

As shown in FIG. 1B, the control device may receive the
quantification model (e.g., from storage, from another con-
trol device that generated the quantification model, and/or
the like). The control device may cause a spectrometer to
perform a set of spectroscopic measurements on an
unknown sample (e.g., an unknown sample for which clas-
sification or quantification is to be performed). The spec-
trometer may perform the set of spectroscopic measure-
ments based on receiving an instruction from the control
device. For example, the spectrometer may determine a
spectrum for the unknown sample. The spectrometer may
provide the set of spectroscopic measurements to the control
device. The control device may attempt to quantify the
unknown sample based on the quantification model (e.g.,
classify the unknown sample into a particular class associ-
ated with a particular concentration or a particular quantity
of a particular component in the unknown sample). For
example, the control device may attempt to determine a
particular concentration of ibuprofen within an unknown
sample (e.g., of a pill), a particular quantity of units of
glucose within an unknown sample (e.g., of a sugar-based
product), and/or the like.

With regard to FIG. 1B, the control device may attempt to
determine whether the unknown sample corresponds to the
quantification model. For example, the control device may
determine a confidence metric corresponding to a likelihood
that the unknown sample belongs to the material of interest
(e.g., in any concentration of a set of concentrations for
which the quantification model is configured using the
training set and the validation set). As an example, for a
quantification model configured to identify concentrations
of ibuprofen within samples of ibuprofen pills, the control
device may determine whether the unknown sample is an
ibuprofen pill (rather than another type of pill, such as an
acetaminophen pill, an acetylsalicylic acid pill, and/or the
like. As another example, for a quantification model con-
figured to identify concentrations of salt in a fish meat, the
control device may determine whether the unknown sample
is fish meat (rather than chicken, beef, pork, and/or the like).

In this case, based on the control device determining that
the confidence metric, such as a probability estimate, a
decision value output of a support vector machine, and/or
the like, satisfies a threshold (e.g., a standard deviation
threshold as described herein), the control device may
determine that the unknown sample is not a material of
interest (e.g., which may correspond to the unknown sample
being a different material, a spectroscopic measurement of
the unknown sample being incorrectly performed, and/or the
like). In this case, the control device may report that the
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unknown sample cannot be accurately quantified using the
quantification model, thereby reducing a likelihood that the
unknown sample is subject to a false positive identification
of the unknown sample as belonging to a particular concen-
tration of a component in the material of interest.

In this way, the control device enables spectroscopy for an
unknown sample with improved accuracy relative to other
quantification models based on reducing a likelihood of
reporting a false positive identification of the unknown
sample as being a particular concentration of a component in
the material of interest.

As indicated above, FIGS. 1A and 1B are provided merely
as an example. Other examples are possible and may differ
from what was described with regard to FIGS. 1A and 1B.

FIG. 2 is a diagram of an example environment 200 in
which systems and/or methods, described herein, may be
implemented. As shown in FIG. 2, environment 200 may
include a control device 210, a spectrometer 220, and a
network 230. Devices of environment 200 may interconnect
via wired connections, wireless connections, or a combina-
tion of wired and wireless connections.

Control device 210 includes one or more devices capable
of'storing, processing, and/or routing information associated
with spectroscopic quantification. For example, control
device 210 may include a server, a computer, a wearable
device, a cloud computing device, and/or the like that
generates a quantification model based on a set of measure-
ments of a training set, validates the quantification model
based on a set of measurements of a validation set, and/or
utilizes the quantification model to perform spectroscopic
quantification based on a set of measurements of an
unknown set. In some implementations, control device 210
may utilize a machine learning technique to determine
whether a spectroscopic measurement of an unknown
sample is to be classified as not corresponding to a material
of interest for the quantification model, as described herein.
In some implementations, control device 210 may be asso-
ciated with a particular spectrometer 220. In some imple-
mentations, control device 210 may be associated with
multiple spectrometers 220. In some implementations, con-
trol device 210 may receive information from and/or trans-
mit information to another device in environment 200, such
as spectrometer 220.

Spectrometer 220 includes one or more devices capable of
performing a spectroscopic measurement on a sample. For
example, spectrometer 220 may include a spectrometer
device that performs spectroscopy (e.g., vibrational spec-
troscopy, such as a near infrared (NIR) spectrometer, a
mid-infrared spectroscopy (mid-IR), Raman spectroscopy,
and/or the like). In some implementations, spectrometer 220
may be incorporated into a wearable device, such as a
wearable spectrometer and/or the like. In some implemen-
tations, spectrometer 220 may receive information from
and/or transmit information to another device in environ-
ment 200, such as control device 210.

Network 230 may include one or more wired and/or
wireless networks. For example, network 230 may include a
cellular network (e.g., a long-term evolution (LTE) network,
a 3G network, a code division multiple access (CDMA)
network, etc.), a public land mobile network (PLMN), a
local area network (LAN), a wide area network (WAN), a
metropolitan area network (MAN), a telephone network
(e.g., the Public Switched Telephone Network (PSTN)), a
private network, an ad hoc network, an intranet, the Internet,
a fiber optic-based network, a cloud computing network,
and/or the like, and/or a combination of these or other types
of networks.
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The number and arrangement of devices and networks
shown in FIG. 2 are provided as an example. In practice,
there may be additional devices and/or networks, fewer
devices and/or networks, different devices and/or networks,
or differently arranged devices and/or networks than those
shown in FIG. 2. Furthermore, two or more devices shown
in FIG. 2 may be implemented within a single device, or a
single device shown in FIG. 2 may be implemented as
multiple, distributed devices. For example, although control
device 210 and spectrometer 220 are described, herein, as
being two separate devices, control device 210 and spec-
trometer 220 may be implemented within a single device.
Additionally, or alternatively, a set of devices (e.g., one or
more devices) of environment 200 may perform one or more
functions described as being performed by another set of
devices of environment 200.

FIG. 3 is a diagram of example components of a device
300. Device 300 may correspond to control device 210
and/or spectrometer 220. In some implementations, control
device 210 and/or spectrometer 220 may include one or
more devices 300 and/or one or more components of device
300. As shown in FIG. 3, device 300 may include a bus 310,
a processor 320, a memory 330, a storage component 340,
an input component 350, an output component 360, and a
communication interface 370.

Bus 310 includes a component that permits communica-
tion among the components of device 300. Processor 320 is
implemented in hardware, firmware, or a combination of
hardware and software. Processor 320 is a central processing
unit (CPU), a graphics processing unit (GPU), an acceler-
ated processing unit (APU), a microprocessor, a microcon-
troller, a digital signal processor (DSP), a field-program-
mable gate array (FPGA), an application-specific integrated
circuit (ASIC), or another type of processing component. In
some implementations, processor 320 includes one or more
processors capable of being programmed to perform a
function. Memory 330 includes a random access memory
(RAM), a read only memory (ROM), and/or another type of
dynamic or static storage device (e.g., a flash memory, a
magnetic memory, and/or an optical memory) that stores
information and/or instructions for use by processor 320.

Storage component 340 stores information and/or soft-
ware related to the operation and use of device 300. For
example, storage component 340 may include a hard disk
(e.g., a magnetic disk, an optical disk, a magneto-optic disk,
and/or a solid state disk), a compact disc (CD), a digital
versatile disc (DVD), a floppy disk, a cartridge, a magnetic
tape, and/or another type of non-transitory computer-read-
able medium, along with a corresponding drive.

Input component 350 includes a component that permits
device 300 to receive information, such as via user input
(e.g., a touch screen display, a keyboard, a keypad, a mouse,
a button, a switch, and/or a microphone). Additionally, or
alternatively, input component 350 may include a sensor for
sensing information (e.g., a global positioning system (GPS)
component, an accelerometer, a gyroscope, and/or an actua-
tor). Output component 360 includes a component that
provides output information from device 300 (e.g., a display,
a speaker, and/or one or more light-emitting diodes (LEDs)).

Communication interface 370 includes a transceiver-like
component (e.g., a transceiver and/or a separate receiver and
transmitter) that enables device 300 to communicate with
other devices, such as via a wired connection, a wireless
connection, or a combination of wired and wireless connec-
tions. Communication interface 370 may permit device 300
to receive information from another device and/or provide
information to another device. For example, communication
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interface 370 may include an Ethernet interface, an optical
interface, a coaxial interface, an infrared interface, a radio
frequency (RF) interface, a universal serial bus (USB)
interface, a wireless local area network interface, a cellular
network interface, and/or the like.

Device 300 may perform one or more processes described
herein. Device 300 may perform these processes based on
processor 320 executing software instructions stored by a
non-transitory computer-readable medium, such as memory
330 and/or storage component 340. A computer-readable
medium is defined herein as a non-transitory memory
device. A memory device includes memory space within a
single physical storage device or memory space spread
across multiple physical storage devices.

Software instructions may be read into memory 330
and/or storage component 340 from another computer-
readable medium or from another device via communication
interface 370. When executed, software instructions stored
in memory 330 and/or storage component 340 may cause
processor 320 to perform one or more processes described
herein. Additionally, or alternatively, hardwired circuitry
may be used in place of or in combination with software
instructions to perform one or more processes described
herein. Thus, implementations described herein are not
limited to any specific combination of hardware circuitry
and software.

The number and arrangement of components shown in
FIG. 3 are provided as an example. In practice, device 300
may include additional components, fewer components,
different components, or differently arranged components
than those shown in FIG. 3. Additionally, or alternatively, a
set of components (e.g., one or more components) of device
300 may perform one or more functions described as being
performed by another set of components of device 300.

FIG. 4 is a flow chart of an example process 400 for
generating a quantification model for spectroscopic quanti-
fication. In some implementations, one or more process
blocks of FIG. 4 may be performed by control device 210.
In some implementations, one or more process blocks of
FIG. 4 may be performed by another device or a group of
devices separate from or including control device 210, such
as spectrometer 220.

As shown in FIG. 4, process 400 may include causing a
set of spectroscopic measurements to be performed on a
training set and/or a validation set (block 410). For example,
control device 210 may cause (e.g., using processor 320,
communication interface 370, and/or the like) spectrometer
220 to perform a set of spectroscopic measurements on a
training set and/or a validation set of samples to determine
a spectrum for each sample of the training set and/or the
validation set. The training set may refer to a set of samples
of one or more known materials with a set of concentrations
of' a component, which are utilized to generate a quantifi-
cation model for the component. Similarly, the validation set
may refer to a set of samples of one or more known materials
with a set of concentrations of the component, which are
utilized to validate accuracy of the quantification model. For
example, the training set and/or the validation set may
include one or more versions of a particular material (e.g.,
one or more versions manufactured by different manufac-
turers to control for manufacturing differences) in a set of
different concentrations.

In some implementations, the training set and/or the
validation set may be selected based on an expected set of
materials of interest for which spectroscopic quantification
is to be performed using the quantification model. For
example, when spectroscopic quantification is expected to
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be performed for a pharmaceutical material to determine a
concentration of a particular component of the pharmaceu-
tical material, the training set and/or the validation set may
include a set of samples of the particular component in a set
of different possible concentrations in a set of pharmaceu-
tical materials that are to be tested for presence of the
particular component.

In some implementations, the training set and/or the
validation set may be selected to include a particular quan-
tity of samples for each concentration of a material. For
example, the training set and/or the validation set may be
selected to include multiple samples (e.g., 5 samples, 10
samples, 15 samples, 50 samples, etc.) of a particular
concentration. In this way, control device 210 can be pro-
vided with a threshold quantity of spectra associated with a
particular type of material, thereby facilitating generation
and/or validation of a class (e.g., a group of samples
corresponding to a particular concentration of the compo-
nent), for a quantification model, to which unknown samples
can be accurately assigned (e.g., based on unknown samples
having the particular concentration of the component).

In some implementations, control device 210 may cause
multiple spectrometers 220 to perform the set of spectro-
scopic measurements to account for one or more physical
conditions. For example, control device 210 may cause a
first spectrometer 220 and a second spectrometer 220 to
perform a set of vibrational spectroscopic measurements
using NIR spectroscopy. Additionally, or alternatively, con-
trol device 210 may cause the set of spectroscopic measure-
ments to be performed at multiple times, in multiple loca-
tions, under multiple different laboratory conditions, and/or
the like. In this way, control device 210 reduces a likelihood
that a spectroscopic measurement is inaccurate as a result of
a physical condition relative to causing the set of spectro-
scopic measurements to be performed by a single spectrom-
eter 220.

In this way, control device 210 causes the set of spectro-
scopic measurements to be performed on the training set
and/or the validation set).

As further shown in FIG. 4, process 400 may include
receiving information identifying results of the set of spec-
troscopic measurements (block 420). For example, control
device 210 may receive (e.g., using processor 320, commu-
nication interface 370, and/or the like) information identi-
fying the results of the set of spectroscopic measurements.
In some implementations, control device 210 may receive
information identifying a set of spectra corresponding to
samples of the training set and/or the validation set. For
example, control device 210 may receive information iden-
tifying a particular spectrum, which was observed when
spectrometer 220 performed spectroscopy on the training
set. In some implementations, control device 210 may
receive information identifying spectra for the training set
samples and the validation set samples concurrently. In some
implementations, control device 210 may receive informa-
tion identifying spectra for the training set samples, may
generate a quantification model, and may receive informa-
tion identifying spectra for the validation set samples after
generating the quantification model to enable testing of the
quantification model.

In some implementations, control device 210 may receive
the information identifying the results of the set of spectro-
scopic measurements from multiple spectrometers 220. For
example, control device 210 may control for physical con-
ditions, such as a difference between the multiple spectrom-
eters 220, a potential difference in a lab condition, and/or the
like, by receiving spectroscopic measurements performed by
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multiple spectrometers 220, performed at multiple different
times, performed at multiple different locations, and/or the
like.

In some implementations, control device 210 may remove
one or more spectra from utilization in generating the
quantification model. For example, control device 210 may
perform spectroscopic quantification and may determine
that a spectrum does not correspond to a type of material for
which the quantification model is configured to quantity, and
may determine that a sample corresponding to the spectrum
was inadvertently a material that is not of interest (e.g.,
based on human error in correctly performing spectroscopy,
errors in the information identifying the spectra of the
training set, and/or the like). In this case, control device 210
may determine to remove the spectrum from the training set.
In this way, control device 210 may improve an accuracy of
quantification models by reducing a likelihood that a quan-
tification model is generated using incorrect or inaccurate
information regarding a training set or validation set.

In this way, control device 210 receives information
identifying results of the set of spectroscopic measurements.

As further shown in FIG. 4, process 400 may include
generating a quantification model based on the information
identifying the results of the set of spectroscopic measure-
ments (block 430). For example, control device 210 may
generate (e.g., using processor 320, memory 330, storage
component 340, and/or the like) a quantification model
associated with an SVM classifier technique based on the
information identifying the results of the set of spectroscopic
measurements.

SVM may refer to a supervised learning model that
performs pattern recognition and uses confidence metrics for
quantification. In some implementations, control device 210
may utilize a particular type of kernel function to determine
a similarity of two or more inputs (e.g., spectra) when
generating a quantification model using the SVM technique.
For example, control device 210 may utilize a radial basis
function (RBF) (e.g., termed SVM-rbf) type of kernel func-
tion, which may be represented as k(x,y)=exp(—|jx-y||"2) for
spectra x and y; a linear function (e.g., termed SVM-linear
and termed hier-SVM-linear when utilized for a multi-stage
determination technique) type of kernel function, which may
be represented as k(x,y)=<x'y>; a sigmoid function type of
kernel function; a polynomial function type of kernel func-
tion; an exponential function type of kernel function; and/or
the like. In some implementations, control device 210 may
generate the quantification model using a single class SVM
(SC-SVM) classifier technique. For example, control device
210 may aggregate multiple classes corresponding to mul-
tiple concentrations of a component in the training set to
generate a single class representing the quantification model.
In this case, control device 210 may utilize a confidence
metric to determine a likelihood that an unknown sample is
of a type that the quantification model is configured to
analyze, as described herein.

In some implementations, control device 210 may utilize
a particular type of confidence metric for SVM, such as a
probability value based SVM (e.g., determination based on
determining a probability that a sample is a member of a
class (of concentration) of a set of classes (of possible
concentrations)), a decision value based SVM (e.g., deter-
mination utilizing a decision function to vote for a class, of
a set of classes, as being the class of which the sample is a
member), and/or the like. For example, during use of the
quantification model with decision value based SVM, con-
trol device 210 may determine whether an unknown sample
is located within a boundary of a constituent class (e.g., a
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particular quantity or concentration of a component of the
unknown sample) based on a plotting of a spectrum of the
unknown sample, and may assign the sample to a class based
on whether the unknown sample is located within the
boundary of the constituent class. In this way, control device
210 may determine whether to assign an unknown spectrum
to a particular class for quantification.

Although some implementations, described herein, are
described in terms of a particular set of machine learning
techniques, other techniques are possible for determining
information regarding an unknown spectrum, such as a
classification of the material and/or the like.

In some implementations, control device 210 may select
the particular classifier that is to be utilized for generating
the quantification model from a set of quantification tech-
niques. For example, control device 210 may generate
multiple quantification models corresponding to multiple
classifiers and may test the multiple quantification models,
such as by determining a transferability of each model (e.g.,
an extent to which a quantification model generated based
on spectroscopic measurements performed on a first spec-
trometer 220 is accurate when applied to spectroscopic
measurements performed on a second spectrometer 220), a
large-scale determination accuracy (e.g., an accuracy with
which a quantification model can be utilized to concurrently
identify concentrations for a quantity of samples that satisfy
a threshold), and/or the like. In this case, control device 210
may select a classifier, such as the SVM classifier (e.g., a
hier-SVM-linear classifier, an SC-SVM classifier, and/or the
like), based on determining that the classifier is associated
with superior transferability and/or large-scale determina-
tion accuracy relative to other classifiers.

In some implementations, control device 210 may gen-
erate the quantification model based on information identi-
fying samples of the training set. For example, control
device 210 may utilize the information identifying the types
or concentrations of materials represented by samples of the
training set to identify classes of spectra with types or
concentrations of materials.

In some implementations, control device 210 may train
the quantification model when generating the quantification
model. For example, control device 210 may cause the
quantification model to be trained using a portion of the set
of spectroscopic measurements (e.g., measurements relating
to the training set). Additionally, or alternatively, control
device 210 may perform an assessment of the quantification
model. For example, control device 210 may validate the
quantification model (e.g., for predictive strength) utilizing
another portion of the set of spectroscopic measurements
(e.g., the validation set).

In some implementations, control device 210 may vali-
date the quantification model using a multi-stage determi-
nation technique. For example, for in-situ local modeling
based quantification, control device 210 may determine that
a quantification model is accurate when utilized in associa-
tion with one or more local quantification models. In this
way, control device 210 ensures that the quantification
model is generated with a threshold accuracy prior to
providing the quantification model for utilization, such as by
control device 210, by other control devices 210 associated
with other spectrometers 220, and/or the like.

In some implementations, control device 210 may provide
the quantification model to other control devices 210 asso-
ciated with other spectrometers 220 after generating the
quantification model. For example, a first control device 210
may generate the quantification model and may provide the
quantification model to a second control device 210 for
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utilization. In this case, for in-situ local modeling based
quantification, the second control device 210 may store the
quantification model (e.g., a global quantification model),
and may utilize the quantification model in generating one or
more in-situ local quantification models for determining a
concentration of a component of a material in one or more
samples of an unknown set. Additionally, or alternatively,
control device 210 may store the quantification model for
utilization by control device 210 in performing quantifica-
tion, in generating one or more local quantification models
(e.g., for in-situ local modeling based quantification), and/or
the like. In this way, control device 210 provides the
quantification model for utilization in spectroscopic quanti-
fication of unknown samples.

In this way, control device 210 generates the quantifica-
tion model based on the information identifying the results
of the set of spectroscopic measurements.

Although FIG. 4 shows example blocks of process 400, in
some implementations, process 400 may include additional
blocks, fewer blocks, different blocks, or differently
arranged blocks than those depicted in FIG. 4. Additionally,
or alternatively, two or more of the blocks of process 400
may be performed in parallel.

FIG. 5 is a diagram of an example implementation 500
relating to example process 400 shown in FIG. 4. FIG. §
shows an example of generating a quantification model.

As shown in FIG. 5, and by reference number 505, control
device 210-1 transmits information to spectrometer 220-1 to
instruct spectrometer 220-1 to perform a set of spectroscopic
measurements on training set and validation set 510.
Assume that training set and validation set 510 includes a
first set of training samples (e.g., measurements of which are
utilized for training a quantification model) and a second set
of validation samples (e.g., measurements of which are
utilized for validating accuracy of the quantification model).
As shown by reference number 515, spectrometer 220-1
performs the set of spectroscopic measurements based on
receiving the instruction. As shown by reference number
520, control device 210-1 receives a first set of spectra for
the training samples and a second set of spectra for the
validation samples. In this case, the training samples and the
validation samples may include samples of multiple con-
centrations of a component in a group of materials of interest
for quantification. For example, control device 210-1 may
receive spectra relating to generating a global model (e.g., a
global classification model or quantification model) to iden-
tify a type of meat using the global model and an in-situ local
modeling technique (to generate a local model, such as a
local classification model or quantification model), and to
quantifying a concentration of a particular protein in the type
of' meat. In this case, control device 210-1 may be configured
to generate multiple local quantification models (e.g., a first
quantification model for determining the concentration of
the particular protein in a first type of meat identified using
in-situ local modeling, a second quantification model for
determining the concentration of the particular protein in a
second type of meat identified using in-situ local modeling,
and/or the like). Assume that control device 210-1 stores
information identifying each sample of training set and
validation set 510.

With regard to FIG. 5, assume that control device 210-1
has selected to utilize a hier-SVM-linear classifier for gen-
erating a classification model, and an SC-SVM classifier for
the multiple quantification models. As shown by reference
number 525, control device 210-1 trains a global classifi-
cation model using the hier-SVM-linear classifier and the
first set of spectra and verifies the global classification model
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using the hier-SVM-linear classifier and the second set of
spectra. Further, control device 210-1 trains and verifies
multiple local quantification models (e.g., a local quantifi-
cation model corresponding to each class of the global
classification model and/or each class of a local classifica-
tion model generated based on the global classification
model). Assume that control device 210-1 determines that
the quantification models satisfies a validation threshold
(e.g., has an accuracy that exceeds the validation threshold).
As shown by reference number 530, control device 210-1
provides the quantification models to control device 210-2
(e.g., for utilization when performing a quantification on
spectroscopic measurements performed by spectrometer
220-2) and to control device 210-3 (e.g., for utilization when
performing a quantification on spectroscopic measurements
performed by spectrometer 220-3).

As indicated above, FIG. 5 is provided merely as an
example. Other examples are possible and may differ from
what was described with regard to FIG. 5.

In this way, control device 210 facilitates generation of a
quantification model based on a selected classification tech-
nique (e.g., selected based on model transferability, large-
scale quantification accuracy, and/or the like) and distribu-
tion of the quantification model for utilization by one or
more other control devices 210 associated with one or more
spectrometers 220.

FIG. 6 is a flow chart of an example process 600 for
avoidance of false positive identification during raw material
quantification. In some implementations, one or more pro-
cess blocks of FIG. 6 may be performed by control device
210. In some implementations, one or more process blocks
of FIG. 6 may be performed by another device or a group of
devices separate from or including control device 210, such
as spectrometer 220.

As shown in FIG. 6, process 600 may include receiving
information identifying results of a set of spectroscopic
measurements performed on an unknown sample (block
610). For example, control device 210 may receive (e.g.,
using processor 320, communication interface 370, and/or
the like) the information identifying the results of the set of
NIR spectroscopic measurements performed on the
unknown sample. In some implementations, control device
210 may receive information identifying results of a set of
spectroscopic measurements on an unknown set (e.g., of
multiple samples). The unknown set may include a set of
samples (e.g., unknown samples) for which a determination
(e.g., a spectroscopic quantification) is to be performed. For
example, control device 210 may cause spectrometer 220 to
perform the set of spectroscopic measurements on the set of
unknown samples, and may receive information identifying
a set of spectra corresponding to the set of unknown
samples.

In some implementations, control device 210 may receive
the information identifying the results from multiple spec-
trometers 220. For example, control device 210 may cause
multiple spectrometers 220 to perform the set of spectro-
scopic measurements on the unknown set (e.g., the same set
of samples), and may receive information identifying a set
of spectra corresponding to samples of the unknown set.
Additionally, or alternatively, control device 210 may
receive information identifying results of a set of spectro-
scopic measurements performed at multiple times, in mul-
tiple locations, and/or the like, and may quantify a particular
sample based on the set of spectroscopic measurements
performed at the multiple times, in the multiple locations,
and/or the like (e.g., based on averaging the set of spectro-
scopic measurements or based on another technique). In this
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way, control device 210 may account for physical conditions
that may affect results of the set of spectroscopic measure-
ments.

Additionally, or alternatively, control device 210 may
cause a first spectrometer 220 to perform a first portion of
the set of spectroscopic measurements on a first portion of
the unknown set and may cause a second spectrometer 220
to perform a second portion of the set of spectroscopic
measurements on a second portion of the unknown set. In
this way, control device 210 may reduce a quantity of time
to perform the set of spectroscopic measurements relative to
causing all the spectroscopic measurements to be performed
by a single spectrometer 220.

In this way, control device 210 receives the information
identifying the results of the set of spectroscopic measure-
ments performed on the unknown sample.

As further shown in FIG. 6, process 600 may include
determining whether the unknown sample corresponds to a
quantification model (block 620). For example, control
device 210 may attempt to determine (e.g., using processor
320, memory 330, storage component 340, and/or the like)
whether the unknown sample is a material for which the
quantification model is configured to quantify and/or
includes a component, in the material, for which the quan-
tification model is configured to quantify.

In some implementations, control device 210 may use an
SC-SVM classifier technique to determine whether an
unknown spectrum corresponds to the quantification model.
For example, control device 210 may determine a config-
urable parameter value, nu, for using the SC-SVM tech-
nique. The parameter value may correspond to a ratio of
training set samples that are determined to be within a
decision boundary for the SC-SVM technique to training set
samples that are determined to not be within the decision
boundary. In some implementations, control device 210 may
determine the decision boundary based on the parameter
value. In some implementations, control device 210 may use
a cross-validation procedure to set multiple possible deci-
sion boundaries, and may combine results of using the
multiple possible decision boundaries (e.g., via averaging)
to determine whether the unknown spectrum corresponds to
the quantification model.

In some implementations, based on setting a decision
boundary to satisfy the parameter value (e.g., for a parameter
value of 0.5, setting the decision value such that half of
measurements of the training set are located within the
decision boundary and half of measurements of the training
set are located outside the decision boundary), control
device 210 may determine a decision value, which may
correspond to a distance metric from a measurement to the
decision boundary. For example, control device 210 may
determine a location on a set of axes for the spectrum of the
unknown sample, and may determine a distance between the
location and a nearest point of the decision boundary.
Although some implementations, described herein, are
described in terms of a graph or a set of axes, implementa-
tions described herein may be determined without use of a
graph or the set of axes, such as using another representation
of data relating to the unknown spectrum.

In some implementations, control device 210 may deter-
mine a decision value for the unknown spectrum. For
example, control device 210 may determine a distance from
the unknown spectrum to the decision boundary. In some
implementations, control device 210 may determine deci-
sion values for other measurements located outside the
decision boundary. In this case, control device 210 may
determine a statistical metric to represent a quantity of
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standard deviations of the decision value of the unknown
spectrum relative to decision values for other measurements
outside the decision boundary. For example, control device
210 may determine a log-normal standard deviation based
on a log-normal distribution, and may determine whether the
standard deviation satisfies a threshold (e.g., 1 standard
deviation, 2 standard deviations, 3 standard deviations, etc.).
In this case, based on the measurement of the spectrum of
the unknown sample being greater than a threshold quantity
of standard deviations from the decision boundary (e.g., 3
standard deviations from the decision boundary) relative to
other measurements outside the decision boundary, control
device 210 may determine that the unknown sample does
not correspond to the quantification model (block 620—
NO). Alternatively, based on the measurement being less
than the threshold quantity standard deviations from the
decision boundary, control device 210 may determine that
the unknown sample does correspond to the quantification
model (block 620—YES). Although described herein in
terms of a particular statistical technique and/or a particular
threshold quantity of standard deviations, other statistical
techniques and/or thresholds may be used.

In this way, control device 210 enables identification of
unknown spectra differing from the quantification model by
a threshold amount without having the quantification model
trained using samples similar to the unknown sample (e.g.,
also differing from training set samples of the material of
interest by the threshold amount). Moreover, control device
210 reduces an amount of samples to be collected for
generating the quantification model, thereby reducing cost,
time, and computing resource utilization (e.g., processing
resources and memory resources) relative to obtaining,
storing, and processing other samples for to ensure accurate
identification of samples differing from a material of interest
and/or concentrations thereof by a threshold amount.

In this way, control device 210 determines whether the
unknown sample corresponds to the quantification model.

As further shown in FIG. 6, based on determining that the
unknown sample corresponds to the quantification model
(block 620—YES) process 600 may include performing one
or more spectroscopic determinations based on the results of
the set of spectroscopic measurements (block 630). For
example, control device 210 may perform (e.g., using pro-
cessor 320, memory 330, storage component 340, and/or the
like) one or more spectroscopic determinations based on the
results of the set of spectroscopic measurements. In some
implementations, control device 210 may assign the
unknown sample to a particular class (e.g., representing a
particular concentration of a set of concentrations of a
component in a material of interest).

In some implementations, control device 210 may assign
the particular sample based on a confidence metric. For
example, control device 210 may determine, based on a
quantification model, a probability that a particular spectrum
is associated with each class of the quantification model
(e.g., each candidate concentration). In this case, control
device 210 may assign the unknown sample to the class
(e.g., a particular concentration) based on a particular prob-
ability for the class exceeding other probabilities associated
with classes. In this way, control device 210 determines a
concentration of a component in a material of interest that
the sample is associated with, thereby quantifying the
sample.

In some implementations, to perform in-situ local mod-
eling, such as for quantification models with greater than a
threshold quantity of classes, control device 210 may gen-
erate a local quantification model based on the first deter-
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mination. The local quantification model may refer to an
in-situ quantification model generated using an SVM deter-
mination technique (e.g., SVM-rbf, SVM-linear, etc. kernel
functions; probability value based SVM, decision value
based SVM, etc.; and/or the like) based on confidence
metrics associated with the first determination.

In some implementations, control device 210 may gen-
erate a local quantification model based on performing the
first determination using the global classification model. For
example, when control device 210 is being utilized to
determine a concentration of a component in an unknown
sample, and multiple unknown samples are associated with
different quantification models for determining the concen-
tration of the component, control device 210 may utilize the
first determination to select a subset of classes as local
classes for the unknown sample, and may generate a local
quantification model associated with the local classes for the
unknown sample. In this way, control device 210 utilizes
hierarchical determination and quantification models to
improve spectroscopic classification. In this case, control
device 210 may determine whether the unknown sample
corresponds to the local quantification model based on
determining a distance metric for the unknown sample
relative to a subset of other measurements of the local
quantification model.

As an example, when performing raw material identifi-
cation to determine a concentration of a particular chemical
in a plant material, where the plant material is associated
with multiple quantification models (e.g., relating to whether
the plant is grown indoors or outdoors, in winter or in
summer, and/or the like), control device 210 may perform a
set of classification determinations to identify a particular
quantification model. In this case, the control device 210
may determine that the plant is grown indoors in winter
based on performing a set of determinations, and may select
a quantification model relating to the plant being grown
indoors in winter for determining the concentration of the
particular chemical. Based on selecting the quantification
model, control device 210 may determine that the unknown
sample corresponds to the quantification model, and may
quantify the unknown sample using the quantification
model.

In some implementations, control device 210 may fail to
quantify the unknown sample using the quantification
model. For example, based on one or more decision values
or other confidence metrics failing to satisty a threshold,
control device 210 may determine that the unknown sample
cannot be accurately quantified using the quantification
model (block 630—A). Alternatively, control device 210
may successtully quantify the unknown sample based on
one or more decision values or other confidence metrics
satisfying a threshold (block 630—B).

In this way, control device 210 performs one or more
spectroscopic determinations based on the results of the set
of spectroscopic measurements.

As further shown in FIG. 6, based on determining that the
unknown sample does not correspond to the quantification
model (block 620—NO) or based on a determination failure
when performing the one or more spectroscopic determina-
tions (block 630—A), process 600 may include providing
output indicating that the unknown sample does not corre-
spond to the quantification model (block 640). For example,
control device 210 may provide (e.g., using processor 320,
memory 330, storage component 340, communication inter-
face 370, and/or the like) information, such as via a user
interface, indicating that the unknown sample does not
correspond to the quantification model. In some implemen-
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tations, control device 210 may provide information asso-
ciated with identifying the unknown sample. For example,
based on attempting to quantify an amount of a particular
chemical in a particular plant, and determining that an
unknown sample is not of the particular plant (but, instead,
of another plant, such as based on human error), control
device 210 may provide information identifying the other
plant. In some implementations, control device 210 may
obtain another quantification model, and may use the other
quantification model to identify the unknown sample based
on determining that the unknown sample does not corre-
spond to the quantification model.

In this way, control device 210 reduces a likelihood of
providing incorrect information based on a false positive
identification of the unknown sample, and enables error
correction by a technician by providing information to assist
in determining that the unknown sample was, for example,
of the other plant rather than the particular plant.

In this way, control device 210 provides output indicating
that the unknown sample does not correspond to the quan-
tification model.

As further shown in FIG. 6, based on a classification
success when performing the one or more spectroscopic
determinations (block 630—B), process 600 may include
providing information identifying a classification relating to
the unknown sample (block 650). For example, control
device 210 may provide (e.g., using processor 320, memory
330, storage component 340, communication interface 370,
and/or the like) information identifying a quantification
relating to the unknown sample. In some implementations,
control device 210 may provide information identifying a
particular class for the unknown sample. For example,
control device 210 may provide information indicating that
a particular spectrum associated with the unknown sample is
determined to be associated with the particular class corre-
sponding to a particular concentration of a component in a
material of interest, thereby identifying the unknown
sample.

In some implementations, control device 210 may provide
information indicating a confidence metric associated with
assigning the unknown sample to the particular class. For
example, control device 210 may provide information iden-
tifying a probability that the unknown sample is associated
with the particular class and/or the like. In this way, control
device 210 provides information indicating a likelihood that
the particular spectrum was accurately assigned to the
particular class.

In some implementations, control device 210 may provide
a quantification based on performing a set of classifications.
For example, based on identifying a local quantification
model relating to a class of the unknown sample, control
device 210 may provide information identifying a concen-
tration of a substance in an unknown sample. In some
implementations, control device 210 may update the quan-
tification model based on performing a set of quantifications.
For example, control device 210 may generate a new quan-
tification model including the unknown sample as a sample
of the training set based on determining a quantification of
the unknown sample as a particular concentration of a
component in a material of interest.

In this way, control device 210 provides information
identifying the unknown sample.

Although FIG. 6 shows example blocks of process 600, in
some implementations, process 600 may include additional
blocks, fewer blocks, different blocks, or differently
arranged blocks than those depicted in FIG. 6. Additionally,
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or alternatively, two or more of the blocks of process 600
may be performed in parallel.

FIGS. 7A and 7B are diagrams of an example implemen-
tation 700 relating to prediction success rates associated
with example process 600 shown in FIG. 6. FIGS. 7A and
7B show example results of raw material identification using
a hierarchical support vector machine (hier-SVM-linear)
based technique.

As shown in FIG. 7A, and by reference number 705,
control device 210 may cause spectrometer 220 to perform
a set of spectroscopic measurements. For example, control
device 210 may provide an instruction to cause spectrometer
220 to obtain a spectrum for an unknown sample to deter-
mine a concentration of a component in the unknown
sample. As shown by reference number 710 and reference
number 715, spectrometer 220 may receive the unknown
sample and may perform the set of spectroscopic measure-
ments on the unknown sample. As shown by reference
number 720, control device 210 may receive spectra for the
unknown sample based spectrometer 220 performing the set
of spectroscopic measurements on the unknown sample.

As shown in FIG. 7B, control device 210 may use a
quantification model 725 to perform spectroscopic quanti-
fication. Quantification model 725 includes a single class
730 determined based on a parameter value, nu, such that a
decision boundary of the single class 730 results in a
threshold ratio of samples of a training set within a decision
boundary to samples of the training set not within the
decision boundary. In this case, quantification model 725
may be associated with multiple sub-classes corresponding
to multiple different concentrations of the component in
samples of the training set. As shown by reference numbers
735 and 740, a spectrum of the unknown sample is deter-
mined to not correspond to the quantification model based
on a standard deviation value (e.g., 0=3.2) for a distance of
the sample to the decision boundary satistying a threshold
(e.g., 3). As shown by reference number 745, control device
210 provides output to client device 750 indicating that the
unknown sample does not correspond to the quantification
model, rather than providing a false positive identification of
the unknown sample as a particular concentration of a
component in a material of interest.

As indicated above, FIGS. 7A and 7B are provided merely
as an example. Other examples are possible and may differ
from what was described with regard to FIGS. 7A and 7B.

In this way, control device 210 reduces a likelihood of
providing an inaccurate result of spectroscopy based on
avoiding a false positive identification of an unknown
sample as being a particular concentration of a component in
a material of interest for which a quantification model is
trained to identify.

The foregoing disclosure provides illustration and
description, but is not intended to be exhaustive or to limit
the implementations to the precise form disclosed. Modifi-
cations and variations are possible in light of the above
disclosure or may be acquired from practice of the imple-
mentations.

Some implementations are described herein in connection
with thresholds. As used herein, satistying a threshold may
refer to a value being greater than the threshold, more than
the threshold, higher than the threshold, greater than or equal
to the threshold, less than the threshold, fewer than the
threshold, lower than the threshold, less than or equal to the
threshold, equal to the threshold, etc.

It will be apparent that systems and/or methods, described
herein, may be implemented in different forms of hardware,
firmware, or a combination of hardware and software. The
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actual specialized control hardware or software code used to
implement these systems and/or methods is not limiting of
the implementations. Thus, the operation and behavior of the
systems and/or methods were described herein without
reference to specific software code—it being understood that
software and hardware can be designed to implement the
systems and/or methods based on the description herein.

Even though particular combinations of features are
recited in the claims and/or disclosed in the specification,
these combinations are not intended to limit the disclosure of
possible implementations. In fact, many of these features
may be combined in ways not specifically recited in the
claims and/or disclosed in the specification. Although each
dependent claim listed below may directly depend on only
one claim, the disclosure of possible implementations
includes each dependent claim in combination with every
other claim in the claim set.

No element, act, or instruction used herein should be
construed as critical or essential unless explicitly described
as such. Also, as used herein, the articles “a” and “an” are
intended to include one or more items, and may be used
interchangeably with “one or more.” Furthermore, as used
herein, the term “set” is intended to include one or more
items (e.g., related items, unrelated items, a combination of
related items and unrelated items, etc.), and may be used
interchangeably with “one or more.” Where only one item is
intended, the term “one” or similar language is used. Also,
as used herein, the terms “has,” “have,” “having,” and/or the
like are intended to be open-ended terms. Further, the phrase
“based on” is intended to mean “based, at least in part, on”
unless explicitly stated otherwise.

What is claimed is:

1. A device, comprising:

one or more memories; and

one or more processors, communicatively coupled to the

one or more memories, to:

receive information identifying results of a spectro-
scopic measurement performed on an unknown
sample;

determine a decision boundary, for a quantification
model and based on a configurable parameter, that
divides a single class of the quantification model into
a first plurality of training set samples that is within
the decision boundary and into a second plurality of
training set samples of the quantification model that
is not within the decision boundary;

determine a distance metric for the spectroscopic mea-
surement performed on the unknown sample relative
to the decision boundary;

determine a plurality of distance metrics for the second
plurality of training set samples of the quantification
model relative to the decision boundary;

determine whether the spectroscopic measurement per-
formed on the unknown sample corresponds to the
quantification model based on the distance metric for
the spectroscopic measurement and the plurality of
distance metrics for the second plurality of training
set samples; and

provide information indicating whether the spectro-
scopic measurement performed on the unknown
sample corresponds to the quantification model.

2. The device of claim 1, wherein the one or more
processors, when determining whether the spectroscopic
measurement performed on the unknown sample corre-
sponds to the quantification model, are to:

determine that the spectroscopic measurement does not

correspond to the quantification model; and
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wherein the one or more processors, when providing
information indicating whether the spectroscopic mea-
surement performed on the unknown sample corre-
sponds to the quantification model, are to:
provide information indicating that the spectroscopic
measurement does not correspond to the quantifica-
tion model.

3. The device of claim 1, wherein the one or more
processors, when determining whether the spectroscopic
measurement performed on the unknown sample corre-
sponds to the quantification model, are to:

determine that the spectroscopic measurement does cor-

respond to the quantification model; and

wherein the one or more processors, when providing

information indicating whether the spectroscopic mea-

surement performed on the unknown sample corre-

sponds to the quantification model, are to:

provide information indicating that the spectroscopic
measurement does correspond to the quantification
model.

4. The device of claim 1, wherein the one or more
processors, when determining whether the spectroscopic
measurement performed on the unknown sample corre-
sponds to the quantification model, are to:

determine a statistical metric for the distance metric

relative to the plurality of distance metrics; and
determine whether the spectroscopic measurement per-

formed on the unknown sample corresponds to the

quantification model based on the statistical metric.

5. The device of claim 4, wherein the statistical metric is
a log-normal standard deviation; and

wherein the one or more processors, when determining

whether the spectroscopic measurement performed on

the unknown sample corresponds to the quantification

model based on the statistical metric, are to:

determine that the log-normal standard deviation sat-
isfies a threshold; and

determine whether the spectroscopic measurement per-
formed on the unknown sample corresponds to the
quantification model based on determining that the
log-normal standard deviation satisfies the threshold.

6. The device of claim 1, wherein the quantification model
is associated with a single class support vector machine
(SC-SVM) classifier.

7. The device of claim 1, wherein the one or more
processors are further to:

receive a plurality of spectroscopic measurements relating

to the first plurality of training set samples and the
second plurality of training set samples;

determine the quantification model based on the plurality

of spectroscopic measurements;

validate the quantification model based on another plu-

rality of spectroscopic measurements of a plurality of
validation set samples;

store the quantification model; and

where the one or more processors, when determining the

decision boundary, are to:

obtain the quantification model from storage; and

determine the decision boundary after obtaining the
quantification model from storage.

8. A non-transitory computer-readable medium storing
instructions, the instructions comprising:

one or more instructions that, when executed by one or

more processors, cause the one or more processors to:
obtain a quantification model relating to a particular
type of material of interest,
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the quantification model configured for determining
a concentration of a particular component in
samples of the particular type of the material of
interest;
receive information identifying a result of a particular
spectroscopic measurement performed on an
unknown sample;
aggregate other spectroscopic measurements of train-
ing set samples of the quantification model into a
single class for the quantification model;
subdivide the other spectroscopic measurements of the
training set samples into a first group and a second
group,
the first group of the other spectroscopic measure-
ments being within a decision boundary, and
the second group of the other spectroscopic mea-
surements being not within the decision boundary;
determine that a metric for the particular spectroscopic
measurement performed on the unknown sample
relative to corresponding metrics for the second
group of the other spectroscopic measurements sat-
isfies a threshold; and
provide information indicating that the unknown
sample is not the particular type of the material of
interest.

9. The non-transitory computer-readable medium of claim
8, wherein the unknown sample is a different type of
material than the particular type of the material of interest.

10. The non-transitory computer-readable medium of
claim 8, wherein the unknown sample is the particular type
of the material of interest and for which a spectroscopic
measurement is an incorrectly obtained measurement.

11. The non-transitory computer-readable medium of
claim 8, wherein the metric and the corresponding metrics
are decision values.

12. The non-transitory computer-readable medium of
claim 8, wherein the threshold is a threshold quantity of
standard deviations of the metric from an average of the
corresponding metrics.

13. The non-transitory computer-readable medium of
claim 8, wherein the metric and the corresponding metrics
are determined using a single class support vector machine
technique.

14. The non-transitory computer-readable medium of
claim 8, wherein the quantification model is a local model,

wherein the one or more instructions, when executed by

the one or more processors, further cause the one or

more processors to:

perform a first determination relating to the particular
spectroscopic measurement of the unknown sample
using a global model relating to the particular type of
the material of interest;

generate the local model based on a particular result of
the first determination and using an in-situ local
modeling technique; and

wherein the one or more instructions, that cause the one
or more processors to obtain the quantification
model, cause the one or more processors to:
obtain the quantification model based on generating

the local model.
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15. A method, comprising:
receiving, by a device, information identifying results of

a near infrared (NIR) spectroscopic measurement per-

formed on an unknown sample;
determining, by the device, a decision boundary for a

quantification model,

wherein the decision boundary divides a single class of

the quantification model into a first plurality of
training set samples of the quantification model
within the decision boundary and a second plurality
of training set samples of the quantification model is
not within the decision boundary;
determining, by the device, that a particular distance
metric for the NIR spectroscopic measurement per-
formed on the unknown sample satisfies a threshold
relative to other distance metrics for the second plu-
rality of training set samples; and
providing, by the device, information indicating that the
NIR spectroscopic measurement performed on the
unknown sample does not correspond to the quantifi-
cation model based on determining that the particular
distance metric for the NIR spectroscopic measurement
performed on the unknown sample satisfies the thresh-
old relative to the other distance metrics for the second
plurality of training set samples.
16. The method of claim 15, further comprising:
determining a type of the unknown sample based on the

NIR spectroscopic measurement using a classification

model and based on determining that the particular

distance metric performed on the unknown sample
satisfies the threshold relative to the other distance
metrics for the second plurality of training set samples;
and

providing information identifying the type of the
unknown sample.

17. The method of claim 15, further comprising:

determining the decision boundary based on a kernel
function.

18. The method of claim 17, wherein the kernel function

at least one of:

a radial basis function,

a polynomial function,

a linear function, or

an exponential function.

19. The method of claim 15, wherein the threshold is

greater than at least one of:

1 standard deviation,

2 standard deviations, or

3 standard deviations.

20. The method of claim 15, wherein the first plurality of
training set samples and the second plurality of training set
samples are associated with a set of concentrations of a
component, and

wherein each concentration of the component, of the set

of concentrations of the component, is associated with
a threshold quantity of training set samples of the first
plurality of training set samples and the second plural-
ity of training set samples.
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