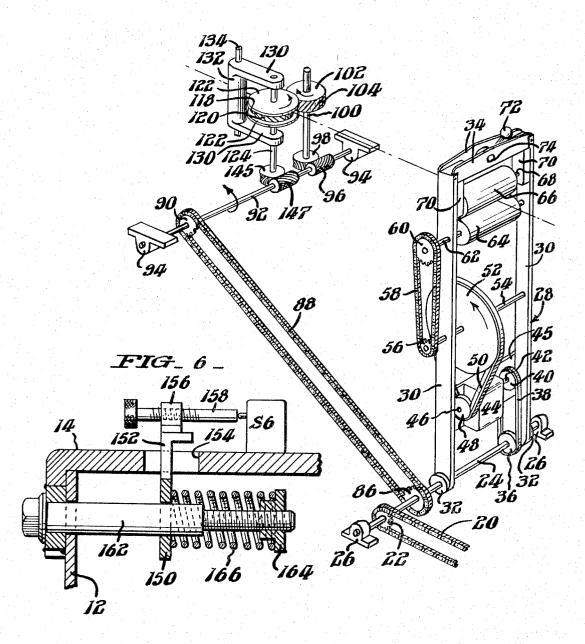

Filed Feb. 19, 1964

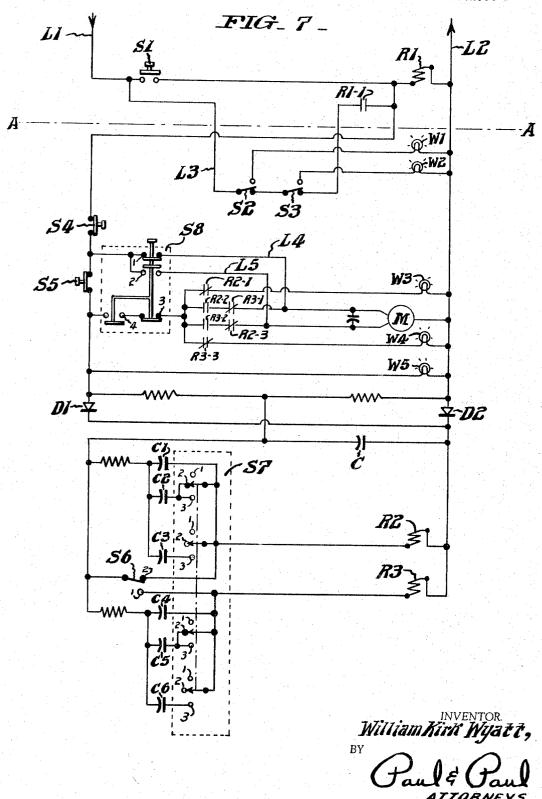
Filed Feb. 19, 1964


Filed Feb. 19, 1964

Filed Feb. 19, 1964

5 Sheets-Sheet 4

FIG_5


William Kirk Wyatt,

BY

Paul & Paul

ATTORNEYS

Filed Feb. 19, 1964

1

APPARATUS FOR PROCESSING TEXTILES
William Kirk Wyatt, Lansdale, Pa., assignor to Turbo
Machine Company, Lansdale, Pa., a corporation of
Pennsylvania

Filed Feb. 19, 1964, Ser. No. 346,045 1 Claim. (Cl. 19—240)

This invention relates generally to method and apparatus for processing textiles and particularly to method 10 and apparatus for drawing and automatically leveling the textile.

In the continuous processing of sliver, short term variations disappear after about five yards, but long term variations persist longer. It is recognized that short term 15 variations are not critical because doubling takes care of this problem satisfactorily. However, doubling does not take care of long term variations satisfactorily. There fore, in accordance with common practice, before final gilling, the sliver is fed into cans and then the net weights are computed and leveled. This practice is not entirely satisfactory because it is awkward, time consuming and expensive.

Accordingly, an important object of the invention is to provide method and apparatus for continuously drawing and automatically correcting solely for long term variations in the weight of sliver in order to reliably maintain uniform can to can weight of sliver.

Another object is to provide such apparatus wherein, in response to variations in sliver thickness, delayed action means changes the rate of sliver feed as required to correct for long term variations in sliver thickness.

Another object is to provide such appartaus with measuring and nip rolls between which the sliver is drawn, and with means for varying the distance between said rolls to accommodate varying lengths of sliver fibers.

Another object of the invention is to provide such apparatus which is flexible in use because it may be set up in an existing line of machines.

Other objects of the invention will become apparent when the following description is read with reference to the accompanying drawings, in which:

FIG. 1 is a perspective view of apparatus constructed in accordance with the invention;

FIG. 2 is a fragmentary combination plan view and 45 horizontal section of the apparatus;

FIG. 3 is an end view of the apparatus appearing in FIG. 2, looking upstream of the path of flow of the sliver, with portions of the table and drive structure shown in section for convenience of illustration;

FIG. 4 is a section on line IV—IV in FIG. 2;

FIG. 5 is a perspective view of essential parts of the apparatus;

FIG. 6 is a fragmentary section on line VI—VI of FIG. 2; and

FIG. 7 is a wiring diagram.

The following description is directed to the specific embodiment of the invention illustrated in the drawings and is not addressed to the scope of the invention, which may be practiced in a variety of forms.

Referring to FIGS. 1-7, apparatus constructed in accordance with the invention comprises a rigid frame structure, generally designated 10. The structure stands upon four upright legs 12 supporting a horizontally extending top 14. In the front of the structure, between the legs 12, is a skirt plate 16, and on each of the opposite sides of the structure, between the legs 12, is a skirt plate 18.

A chain drive 20 from a pin drafter (not shown) is trained about a sprocket 22, which is mounted upon a horizontally extending shaft 24. The opposite end portions of the shaft are received by bearings 26, which are carried by the frame 10.

2

Mounted upon the shaft 24 is a rigid frame 28 of inverted U-shape. The frame is provided with laterally spaced legs 30 at the lower extremities of which are hubs 32 which receive the shaft 24. The upper terminal portions of the legs 30 are connected together by laterally spaced bars 34.

Affixed to the shaft 24 is a pulley 36 about which is trained a V belt 38. The V belt is also trained about a pulley 40 mounted upon the input shaft 42 of a variable speed unit 44 carried by a bracket 45 affixed to the legs 30. The output shaft 46 of the variable speed unit mounts a pulley 48 about which is trained a V belt 50. The V belt is also trained about a pulley 52 affixed to a horizontally extending shaft 54 opposite end portions of which are journalled in the legs 30. Affixed to the shaft 54 is a chain sprocket 56 about which is trained a chain 58. The chain is also trained about a sprocket 60 affixed to a horizontally extending shaft 62 opposite end portions of which are journalled in the legs 30. Mounted upon the shaft 62, between the legs 30, is a cylindrical nip roll 64 provided with a rubber surface. Overlying the roll 64 is another cylindrical nip roll 66 provided with a rubber surface. The roll 66 is mounted upon a horizontally extending shaft 68 opposite end portions of which are carried by suitable bearings 70 for vertical shifting movement. A handle 72, pivoted as at 74, is provided for raising and lowering the roll 66 relative to the roll 64.

Formed in the horizontally extending top 14 is a large opening 76 across which extends a keeper plate 78. The opposite side marginal portions of plate 78 are provided with a series of notches 80 adapted to receive latches 82, pivoted as at 84 to the legs 30.

Affixed to the shaft 24 is a sprocket 86 about which is trained a chain 88. The chain 88 is also trained about sprocket 90 affixed to a horizontally extending shaft 92, opposite end portions of which are received in bearings 94, which are carried by the frame 10. Affixed to the shaft 92 is a worm 96 which meshes with a worm wheel 98 affixed to the lower end portion of a vertically extending shaft 100. Affixed to the upper end portion of the shaft 100 is a measuring roll 102 provided with a serrated rim 104.

Seated upon the horizontally extending top 14 and affixed thereto is an open frame, generally designated 106. The frame is provided with a horizontally extending base 108 and upright opposite end walls 110 supporting a horizontally extending top 112. Extending upwardly from the base 108 and depending from the top 112 are a pair of sleeves 114 housing a pair of aligned thrust bearings 116, which receive opposite end portions of the shaft 100. The measuring roll 102 is disposed between the bearings 116, while the worm wheel 98 is disposed below the lower bearing 116.

Aligned with the measuring roll 102 is a measuring roll 118 provided with a serrated rim 120, and with a pair of flanges 122 which receive therebetween a marginal portion of the measuring roll 102. The measuring roll 118 is affixed to a vertically extending shaft 124, opposite end portions of which are received respectively by a pair of thrust bearings 128 housed in sleeves 126 carried by a pair of laterally spaced arms 130 joined together by a cylindrical hub 132. A worm wheel 145 is affixed to the lower end portion of the shaft 124 and is mounted for meshing with a worm 147 affixed to the shaft 92. The worms 96 and 147 are of opposite hand.

The hub 132 is affixed to a vertically extending shaft 134, upper end and intermediate portions of which are journalled in bushings 136 carried respectively by the top and base of the frame 106. Threaded onto the upper end portion of the shaft 134 is a nut 138 and interposed between the nut and the bushing 136 is a washer 140.

Threaded onto the lower end portion of the shaft 134 is a nut 142 and interposed between the nut and the bushing 136 is a washer 144.

The lower terminal portion 146 of the shaft 134 is enlarged in diameter to receive the hub portion of a horizontally extending arm 150. The arm 150 mounts an upright extension 152 which extends through an opening 154 in the horizontally extending top 14. Mounted upon the extension 152 is a block 156 through which is threaded a screw 158 arranged to actuate a micro-switch S6. Extending through the proximate leg 12 is a bolt 162, the inner end portion of which is reduced in diameter. Threaded upon the reduced diameter portion of the bolt 162 is a nut 164, and interposed between the arm 150 and the nut 164 is a compression spring 166.

Mounted upon the skirt plate 16, on the front of the apparatus, is a plate 168 bearing indicia 170. Extending through the plate 168 and the skirt plate 16 is an opening 172 for a pointer 174 carried by the frame 28 for indicating the position thereof.

In the operation of the apparatus, sliver S from a creel passes between rubber covered nip rolls 64 and 66 and is spread as much as possible in order that as many fibers as possible are gripped. The distance between the rolls 64 and 66 is adjusted by swinging handle 72 about 25 pivot 74 to raise or lower roll 66 relative to roll 64. Upon leaving the rolls 64 and 66, the fibers are gathered, as at SS, and passed between measuring rolls 102 and 113, being confined therebetween by flanges 122. The fibers issue from the measuring rolls in compacted form, as at 30

Power may be taken from the following pin drafter, for example, by drive chain 20. The chain, through sprocket 22, drives shaft 24 and pulley 36. The pulley, through belt 38 and pulley 40, drives shaft 42, the input shaft of 35 variable speed drive 44. The output shaft 46 of the variable speed drive, through pulley 48 and belt 50, drives pulley 52 and shaft 54. The shaft, through sprocket 56 and chain 58, drive sprocket 60, shaft 62 and roll 64. Roll 66 is actuated by a portion (not shown) of roll 64 in 40 contact with it.

Sprocket 86 turns with shaft 24, and through chain 88 and sprocket 90 it drives shaft 92 and worms 96 and 147. The worms drive shafts 100 and 124 and measuring rolls 102 and 118. The speed of rotation of the measuring 45 rolls 102 and 118 bears a predetermined relation to the speed of operation of the pin drafter.

Spring 166 urges arm 150 counterclockwise as viewed in FIG. 2. Thus arms 130 are urged counterclockwise, and movable measuring roll 118 is urged toward the fixed 50 measuring roll 102.

Normally, the position of movable measuring roll 118 does not change relative to the measuring roll 102, but when the thickness of the product passing between the measuring rolls is excessive, the measuring roll 118 swings 55 clockwise away from the measuring roll 102 against the action of the spring 166, and when the thickness of the product passing between the measuring rolls is below the desired thickness, the measuring roll 118 swings counterclockwise farther toward the measuring roll 102 under the 60 influence of spring 166.

When the sliver passing between the measuring rolls is too heavy, drafting should be increased, and when the sliver passing between the measuring rolls is too light, drafting should be reduced. The degree of drafting de- 65 pends upon the surface speed of rolls 64 and 66 relative to the surface speed of rolls 102 and 118.

The adjustable pin 158 shifts back and forth axially in response to movement of the measuring roll 118 and actuates a micro-switch S6. This micro-switch is con- 70 nected in an appropriate electrical system, to be described hereinafter, which slows up or speeds up operation of rolls 64 and 66 as required to correct the variations in the weight of sliver passing between the measuring rolls. However, the corrections that are effected are delayed 75

sufficiently to take care of long term variations. Short term variations are not corrected.

Referring particularly to FIG. 7, the part of the wiring diagram above the broken line A-A shows a portion of a pin drafter circuit. A start switch is designated S1. A relay is designated R1, and its contacts are designated R1-1.

The portion of the diagram below the line A—A shows the basic circuit of the leveler. Override limit switches are designated S2 and S3. A power "off-on" switch is designated S4 and an automatic control "off-on" switch is designated S5. Diode rectifiers operating to provide a suitable potential across a capacitor C are designated D1 and D2. A rotary switch provided with four arms with three positions for each arm is designated S7. A relay is designated R2, and its contacts are designated R2-1, R2-2 and R2-3. Another relay is designated R3, and its contacts are designated R3-1, R3-2 and R3-3. A series of capacitors associated with the switch S7 are designated C1 through C6. A selector switch having three positions is designated S8. A reversible motor is designated M, and signal lights are designated W1 through W5. The main power supply line is designated L1, L2, and other conductors are designated L3, L4 and L5.

A.C. current is supplied by line L1, L2. When the start switch S1 is closed, the relay R1 is energized. closes the contacts R1-1, whereupon current is supplied to the conductor L3. With power switch S4 closed and automatic control switch S5 closed, current is supplied to lamp W5, which indicates to the operator that the leveler is set for automatic operation. The arm of switch S6 oscillates between its switch contacts 1 and 2, its movement depending upon variations in the thickness of the sliver passing between measuring rolls 102 and 118.

When the measuring rolls sense that the sliver is less than the desired thickness, i.e., that it is light, the arm of switch S6 engages the upper switch contact 2, as shown. Thereupon, the relay R2 is energized. The capacitors C4, C5 and C6 discharge before the arm of switch S6 engages the upper switch contact 2, in consequence of which when the arm of switch S6 engages the upper switch contact 2, the capacitors C4, C5 and C6 are not charged. Therefore, the relay R3 is energized when relay R2 is Open contacts R2-2 and R3-2 close, and closed contacts R2-1, R3-1, R2-3 and R3-3 open. the selector switch S8 set for automatic control, its contacts at 1 and 2 are open, and its contacts at 3 and 4 are closed. Consequently, motor M and lamps W3 and W4 are not energized. When the capacitors C4, C5 and C6 are fully charged, the relay R3 is deenergized. Thus contacts R3-1 and R3-3 reclose, and contacts R3-2 reopen. Since the contacts R2-2 and R3-1 are closed, current is supplied to the motor M for running in one direction. Since the contacts R3-3 are closed, current is supplied to the lamp W4, which indicates to the operator that a light material correction is in progress.

When the rolls sense that the sliver exceeds the desired thickness, i.e., that it is heavy, the arm of switch S6 engages the lower switch contact 1. Thereupon, the relay R3 is energized. The capacitors C1, C2 and C3 discharge before the arm of switch S6 engages the lower switch contact 1, in consequence of which when the arm of switch S6 engages the lower switch contact 1, the capacitors C1, C2 and C3 are not charged. Therefore, the relay R2 is energized when relay R3 is energized. The open contacts R2-2 and R3-2 close, and closed contacts R2-1, R3-1, R2-3 and R3-3 open. Therefore, the motor M and lamps W3 and W4 are not energized. When the capacitors C1, C2 and C3 are fully charged, the relay R2 is deenergized. Thus contacts R2-1 and R2-3 reclose. Since contacts R3-2 and R2-3 are closed, current is supplied to the motor M for running in the opposite direction. Since the contacts R2-1 are closed, current is supplied to the lamp W3, which indicates to the operator

that a heavy material correction is in progress.

It will be noted that the correction, whether for light material or heavy material, does not take place immediately, but only after a time delay, the delay depending upon setting of the rotary switch S7, which determines the number of effective capacitors. In addition, of course, it depends upon the size of the capacitors. The delay may be in the order of six seconds which is sufficient time for passing five or six yards of the sliver through the measuring rolls.

When the arm of switch S6 is in neutral position, 10 relays R2 and R3 both are energized. Contacts R2-1, R3-1, R2-3 and R3-3 open, and contacts R2-2 and R3-2 close, in consequence of which no current is supplied to the motor M or to the lamps W3 and W4. When the effective capacitors associated with the switch S7 are fully charged, the relays R2 and R3 are deenergized. The contacts R2-1, R3-1, R2-3 and R3-3 reclose, and contacts R2-2 and R3-2 reopen, in consequence of which again no current is supplied to the motor M or to the lamps W3 and W4. The motor M, 20 of course, controls the variable speed unit.

The variable speed unit comprises a pair of flanges axially shiftable relative to each other and controlled by the motor for varying the pitch of the pulley which they conjointly form. The switches S2 and S3 are associated with these flanges so that when the correction called for is beyond the capacity of the unit, one or the other of the switches opens, shutting down the leveler. When the switch S2 opens, its arm engages its upper contact. Thus current is supplied to lamp W1, which indicates 30 to the operator that the material is running too light for correction. When the switch S3 opens, its arm engages its upper contact. Thus current is supplied to lamp W1, which indicates to the operator that the material is running too heavy for correction. If the material is 35 running too light for correction, the automatic control switch S5 is opened by the operator and the selector switch S8 is put on "light," as shown. Thereupon, current is supplied to the motor M through conductor L4 for making the necessary correction. If the material is 40 running too heavy for correction, the automatic control switch S5 is opened and the selector switch S8 is put on "heavy." Thus current is supplied to the motor M through conductor L5 for making the necessary correction.

What is claimed is:

In apparatus for the continuous processing of sliver, the combination comprising a pair of nip rolls at the upstream end and a pair of measuring rolls at the downstream end of a drafting zone, a rigid frame mounting said nip rolls and mounted for pivotal movement for positioning said nip rolls a selected distance from said measuring rolls, means releasably securing said frame with said nip rolls in the selected position thereof, means stationarily mounting one of said measuring rolls, means rockably mounting the other of said measuring rolls, means yieldably biasing the same toward the stationary measuring roll, and means for actuating said nip rolls and measuring rolls in predetermined timed relation to each other for positively advancing said sliver and drafting the same to level the weight thereof per unit of length including a main drive shaft, said rigid frame being pivoted on said main drive shaft, an auxiliary drive shaft driven by said main drive shaft, means gearing said auxiliary drive shaft to said measuring rolls whereby to drive the same in opposite directions, means interposed between said main drive shaft and nip rolls whereby to drive the same in opposite directions including a variable speed unit mounted upon said rigid frame, and means responsive to the movement of said rockable means for varying the speed of operation of said measuring rolls after a predetermined time delay as required to correct for any long term variations in the weight of the sliver.

References Cited by the Examiner

UNITED STATES PATENTS

2,611,155	9/1952	Cravens 19—29	1
2,729,857	1/1956	Cushing et al 19—240	
2,950,508	8/1960	Locher 19—240	
2,964,803	12/1960	Robinson 19—240	
2,981,986	5/1961	Neil 19—24(o.
3,012,288	12/1961	Werner 19—24(J No.
3,036,345	5/1962	Naegeli 19—26	
	Ton		•

FOREIGN PATENTS

68,315 11/1957 France. 1,106,188 7/1955 France. 912,146 12/1962 Great Britain.

MERVIN STEIN, Primary Examiner.
DORSEY NEWTON, Examiner.